Future Generation Computer Systems 140 (2023) 209-224

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs Te—

The vendor-agnostic EMPAIA platform for integrating Al applications N
into digital pathology infrastructures e

Christoph Jansen ®* Bjérn Lindequist?, Klaus Strohmenger ?, Daniel Romberg?,
Tobias Kiister ¢, Nick Weiss 9, Michael Franz?, Lars Ole Schwen P, Theodore Evans ¢,
André Homeyer?, Norman Zerbe ?

2 Charité - Universitdtsmedizin Berlin, corporate member of Freie Universitdt Berlin and Humboldt-Universitdt zu Berlin,
Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany

b Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-StraRe 2, 28359 Bremen, Germany

¢ Technische Universitdt Berlin, DAI-Labor, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

4 Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Strae 3, 23562 Liibeck, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 1 July 2022

Received in revised form 5 October 2022
Accepted 23 October 2022

Available online 28 October 2022

Automated image analysis and artificial intelligence (Al) are becoming increasingly common in digital
pathology software. While various proprietary pathology systems exist, there are no fully vendor-
agnostic integration approaches for Al apps. This makes it difficult for vendors of Al solutions to
integrate their products into the multitude of non-standard software systems in pathology.

The EMPAIA Consortium is developing an open and decentralized platform allowing Al-based apps
of different vendors to be integrated with existing clinical IT infrastructures. For this purpose, we
defined, analyzed, and prioritized relevant use cases and identified requirements for an open platform
to support these use cases. We then designed the platform architecture described here to meet these
requirements based on web technologies.

For all platform services open source reference implementations are available, that are used by
developers of Al apps as an integration target. Developers of compatible clinical systems can either
use and integrate components of the reference implementation or directly implement the interfaces
as per specification, allowing apps to run in their clinical environment. Pathology laboratories can
use both on-premises and cloud deployments of the platform. Apps can be obtained via a central
marketplace so that pathologists can use them in their daily workflow.

An adoption of this platform will enable interoperability among different existing digital pathology
software systems. This reduces integration efforts for software vendors, while users will benefit from
a wider variety of tools and a quicker availability of new and innovative methods. Ultimately, the
platform will reduce barriers to market entry for Al vendors and provide pathologists with access to
advanced Al tools.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords:

Computational pathology
Artificial intelligence
Applications

API

Interoperability

Digital platform

1. Introduction humans. This becomes increasingly important due to the in-
creasing shortage of pathologists worldwide [10]. For small and
medium-sized companies specializing in Al and image processing,
it can be challenging to integrate their applications into a mul-
titude of different and mostly non-standardized hardware and
software systems currently present in the heterogeneous digital

pathology landscape [11]. These systems include WSI scanners

With the advance of digitization in pathology, new oppor-
tunities for automated analysis and applications using artificial
intelligence (AI) are emerging. Image analysis approaches, such as
Convolutional Neural Networks, have greatly improved in recent
years, many studies report successfully using Al in computational
pathology [1-7], some approaches have been implemented as

products for routine use [8,9]. These methods could supplement
the pathologist’s toolbox, e.g., to quickly quantify tumor cells
and to reduce the amount of tedious and repetitive tasks for

* Corresponding author.
E-mail address: christoph.jansen@charite.de (C. Jansen).

https://doi.org/10.1016/j.future.2022.10.025

producing vendor-specific image formats, Image Management
Systems (IMS), Vendor Neutral Archives (VNA), DICOM Picture
Archiving and Communication Systems (PACS), Anatomic Pathol-
ogy Laboratory Information Systems (APLIS), and digital pathol-
ogy workstations providing local data processing capabilities, as
well as a user interface (UI) for pathologists.

0167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.10.025
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.10.025&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:christoph.jansen@charite.de
https://doi.org/10.1016/j.future.2022.10.025
http://creativecommons.org/licenses/by/4.0/

C. Jansen, B. Lindequist, K. Strohmenger et al.

The EMPAIA Consortium (EcosysteM for Pathology Diagnostics
with Al Assistance) aims to reduce the barriers to market en-
try for Al vendors into the clinical routine of histopathological
diagnostics by providing vendor-neutral API specifications. The
specifications allow for a clear separation of concerns in digital
pathology infrastructures and therefore enable the integration
of apps in existing pathology systems via API adapters. EMPAIA
platform services are integrated into existing local clinical infras-
tructures in a decentralized way, with the option for cloud-based
service hosting per organization. A global app marketplace is
used for distribution and provides marketing and billing capabil-
ities for application vendors, with the long-term goal to foster a
self-sustaining ecosystem.

1.1. State of the art

The EMPAIA Consortium is partnering with pathology labora-
tories, clinics, and university hospitals, to evaluate the current
state of digital pathology. In 2021 the centers have answered
questionnaires about the hardware and software components
deployed in their routine workflows. The results shown in Table 1
have been provided by one Austrian and nine German centers,
therefore representing a small portion of the global market. Al-
though the number of participating centers is limited, the data
already shows a strong fragmentation of the system landscape.
In total, eight different APLIS, six different IMS/VNA/PACS, and 17
different WSI scanner models have been used at that time. In to-
tal, these components are provided by 19 different vendors. Each
center is using an APLIS and at least one scanner WSI scanner
model, but one center does not use a dedicated IMS/VNA/PACS
software and instead uses a network attached storage to store
WHI files. While D-Icom IS-P (Imassense Deutschland GmbH) is a
combined APLIS+PACS solution, in all other cases the APLIS and
IMS/VNA/PACS components are developed by separate vendors.
In order to provide an improved user experience and workflow
for pathologists, some vendors cooperate by creating one-to-one
proprietary integrations between their systems. The IntelliSite
Pathologist Solution (Koninklijke Philips N.V.) [12], pathoZoom
digitalLab (Smart In Media AG) [13] and Digital Slide Suite (VM-
scope GmbH) [14] integrate Al/advanced image analysis models
in the IMS that are being applied in the centers for routine
diagnostics. These IMS either integrate their own Al solutions
or cooperate with an external Al vendor to realize a proprietary
integration. In total only four centers use Al/advanced image
analysis applications in the clinical routine, developed by at most
two different Al vendors per center.

1.2. Related work

In the pathology landscape, various vendor-neutral and ven-
dor-specific options for integrating apps exist. Zeiss offers two
solutions: Zeiss Zen [15] integrates with Zeiss microscopes and
allows image processing via scripting and macros. The results can
be examined directly in a viewer software. Zeiss Apeer [16] is
a cloud-based digital image processing platform with a focus on
research use cases. Compatible processing modules are packaged
as container images. Module specifications describe inputs and
outputs, allowing the modules to be combined as workflows.
With HALO [17] and HALO Al [18], Indica Labs offers a research-
focused platform that enables data access via GraphQL queries or
a Python SDK. The Sectra Digital Pathology Module [19] provides
a vendor-neutral API to integrate apps, again aiming for routine
clinical use. Cytomine [20] is a server-based system that allows
for remote image inspection, analysis, and collaboration. Apps are
packaged in container images and run as jobs, communicating
via the Cytomine HTTP APIL The open DICOM standard, originally

210

Future Generation Computer Systems 140 (2023) 209-224

developed for radiology imaging, has been extended to support
WSIs [21,22]. In addition, WSI access via DICOMweb is currently
being developed [23,24], but is not yet sufficiently stable for
general use. Basic support for DICOM WSI files is already available
in the EMPAIA platform (Section 2.2.2), but offering a DICOMweb
interface is an ongoing research topic.

Moreover, new commercial cloud-based platforms for digital
pathology have been announced, namely the Sectra Amplifier
Marketplace [25] and the Roche Digital Pathology Open Environ-
ment [26]. Similar platforms for Al integration also exist in the
domain of radiology (e.g., [27]).

1.3. Contribution

The hypothesis for the present article is that it is possible to
design an open and modular architecture of a digital pathology
platform for routine use. Openness here means enabling interop-
erability among existing digital pathology infrastructure systems,
as well as between such systems and image analysis apps, in
particular interoperability between systems by different vendors.
The EMPAIA Consortium defines a reference architecture and
specifies APIs in close collaboration with hardware and software
vendors, that participate in the ecosystem. The open-source ref-
erence implementation by itself is not a certified medical device
software and does not replace the existing software solutions
available in the market. While the Al platforms mentioned in
Section 1.2 allow different Al vendors to integrate their applica-
tions, these integrations are always platform specific. In contrast,
EMPAIA aims to standardize an integration path for Al vendors,
to be compatible with many existing Al platforms and pathology
software systems at once. This many-to-many relation has the
potential to act as a multiplier to accelerate the adoption of Al
in pathology. An up-to-date list of industry partners is available
on the project website [28].

The project is currently focusing on routine diagnostics, help-
ing industry partners to overcome barriers to market entry in
terms of technical integration, validation, and certification. Once
the adoption in clinics has increased, research use-cases will
benefit as well. For example, Al developers will be able to provide
their research-grade applications via the marketplace, allowing
pathologists to easily evaluate the latest academic achievements.
Such an integration could also lower the barriers to conduct
multi-centric studies, where Al solutions are applied in a clinical
environment on local data sets, without the need to transfer data
to the researchers.

This manuscript is based on a previous publication presented
at the Workshop on Clusters, Clouds and Grids for Life Sciences -
CCGrid Life 2022 [29], but extending on how requirements were
derived and elaborating on clinical integration approaches. We
identify key use cases and requirements for Al-enabled software
platforms in pathology, describe the design decisions and the
resulting architecture of the platform, and how the platform
meets the requirements. Extensive API descriptions are not in the
scope of this manuscript. However, a previous publication [30]
covers the App API specification for image processing and Al
applications, comprising an app description format, an HTTP AP,
container technologies for the deployment, and an open source
app test suite (see Section 2.5). Further APIs for the decoupling
of web-based Uls in the frontend and the connection to storage,
compute, and information systems in the backend are in active
development. Up-to-date API specifications in the form of Open-
API [31] documents and text descriptions, as well as development
tutorials, are available in a public documentation [32].

C. Jansen, B. Lindequist, K. Strohmenger et al.

Table 1

Future Generation Computer Systems 140 (2023) 209-224

Software and hardware components deployed in one Austrian and nine German pathology centers (university hospitals, clinics, and pathology laboratories of different
sizes). Vendors are sorted alphabetically and components are grouped by APLIS, IMS/VNA/PACS and WSI Scanner models. Data has been reported by the centers in
a 2021 questionnaire initiated by the EMPAIA Consortium, illustrating the heterogeneous landscape of systems.

Vendor APLIS IMS/VNA/PACS Scanner

Basys Data GmbH PathoWin+

dc-systeme Informatik GmbH dc-Pathos

F. Hoffmann-La Roche Ltd. VENTANA DP200, VENTANA iScan HT Brightfield, VENTANA
iScan Coreo Au

Grundium Ltd. 0CUs

Hamamatsu Photonics K.K. NanoZoomer 2.0-HT

ifms GmbH PathoPro

Imassense Deutschland GmbH D-Icom IS-P D-Icom IS-P

Koninklijke Philips N.V.

Leica Biosystems Nussloch GmbH
NEXUS/AG

NEXUS/Paschmann GmbH
NEXUS/SWISSLAB GmbH
Objective Imaging Ltd.
PerkinElmer Inc., Akoya Biosciences
Inc.

PROGRAMMIERFABRIK GmbH
Sakura Finetek Europe B.V.
Smart In Media AG

VMscope GmbH

3DHISTECH Ltd.

NEXUS PATHOLOGIE
PAS.NET
SWISSLAB

PAS Xanthos

IntelliSite Pathologist Solution
Aperio eSlide Manager

CaseCenter)

Ultra Fast Scanner
Aperio AT2, Aperio Versa 200, Aperio GT450

Glissando Desktop Scanner
Vectra 3.0

VisionTek Live

PathoZoom digitalLab
Digital Slide Suite
SlideCenter (former

P1000, P250, Pannoramic MIDI, Pannoramic SCAN II, DESK
1 DW

1.4. Use cases and requirements

We conducted a use case and requirements analysis for Al-
based pathology software platforms. The EMPAIA Consortium
initially identified a total of 27 use cases in discussion rounds and
workshops. From these original use cases, the 8 most important
key use cases have been selected as a basis for the development
work and were specified in detail using Business Process Model
and Notation (BPMN) and component diagrams. The full list of
original use cases is available in Appendix A. The key use cases
have been further aggregated and prioritized, resulting in the
3 use cases presented in this manuscript. While the use cases
were focused on the initial release of the EMPAIA platform, we
have already considered a broader vision in the requirements
analysis, including regulatory and economic aspects as well as
existing software and hardware vendors. Hence, we prioritized
requirements in what should already be available in a first version
of the platform and what should be implemented later. Spe-
cific requirements for image processing and Al apps have been
addressed before [30] and are not covered in this manuscript.

The following critical use cases were identified:

e Use case 1: Pathologists using apps via the Workbench
Client web UI (Section 2.2.3)

e Use case 2: Registering users and organizations via the Por-
tal web UI (Section 2.2.1)

e Use case 3: Displaying apps available in the marketplace via
the Portal web Ul

Furthermore, the following general requirements were identi-
fied:

R1: Central marketplace and user management.

authentication and authorization (auth)

visibility of apps

quality control of apps, e.g., based on clinical validation
allow for later implementation of accounting services (app
usage, billing, telemetry) to commercialize the platform and
build a self-sustaining ecosystem

R2: Public API specifications.

e allow software vendors to take part in the platform eco-
system by following these specifications

211

e allow software vendors to be part of the API specification
process
e cross-vendor software compatibility

R3: Open core platform.

e provide open source reference implementations of the core
infrastructure services

e allow software vendors to test their own API implementa-
tions against existing reference implementations

e allow software vendors to use and build upon existing soft-
ware components

R4: Distributed core platform.

one service stack per pathology laboratory

data separation between laboratories

deployment on-premises, in a cloud, or across both (control
over data storage and processing locations)

integration into the local system via API implementation
or API adapters (e.g., APLIS, PACS, VNA, Digital Pathology
Workstations)

R5: Extensibility.

o first, focus on common features used by most apps
e extend with more specialized features later

R6: Web-based systems.

e accessible via modern browsers (no installation or update
required on workstations)

e compatible with IT security restrictions in clinic networks

e well-known software engineering approach accepted by de-
velopers

R7: Testability.

e provide app test suite for app developers
e provide extensive platform tests for service integration test-
ing
R8: Traceability.

e all data entities and app runs have unique IDs
e precise documentation of algorithm version and data inputs
that produced certain outputs

C. Jansen, B. Lindequist, K. Strohmenger et al.

R9: Visual diagnostic workflow.

e users can mark regions of interest for processing

e algorithms can return various geometric annotations (e.g.,
polygons, points) on histological images

e provide flexible class namespaces to classify annotations
(e.g., tumor cell, non-tumor cell)

R10: Automation.

e later support automated pre-processing of long-running
computations, i.e., trigger apps as soon as a new WSI has
been produced

e later also support automated quality assurance (e.g., image
sharpness analysis)

R11: Legal and regulatory concerns.

e provide data separation and access restrictions

e provide anonymization/pseudonymization capabilities for
research use cases

e later support regulatory approval of apps and platform inte-
grations

2. Methods

This section describes the core technologies used in the plat-
form, as well as the platform architecture with respect to the
requirements defined in Section 1.4. Furthermore, the platform’s
authentication mechanisms and the EMPAIA App Test Suite are
explained.

2.1. Core technologies

The following subsections summarize the core technologies
used for the platform’s reference implementation. Alternative
platform implementations by third-party software vendors can
opt for a different technology stack. Only the use of OAuth2 [33]
for authentication and authorization is a fixed requirement en-
forced by a global auth service. In this manuscript, we use the
term auth to refer to authentication and authorization at the
same time when a clear distinction is not required in the given
context. The open source reference implementation can also be
used independently of the global infrastructure for development
and testing purposes.

2.1.1. Whole slide images

WSIs are high-resolution scans of histopathological tissue
samples. Slide scanners of various vendors use their own pro-
prietary file formats [34] that store not only the full-resolution
image but also a pyramidal structure of pre-computed downsam-
pled versions of the image. These image layers are usually stored
in a tile-based fashion allowing WSI viewing software to access
a certain field of view at a particular resolution in a fast and
memory-efficient way. For example, the desktop viewing soft-
ware QuPath [35] uses software libraries such as OpenSlide [36]
as an abstraction over different WSI file formats, retrieving image
data by coordinates and resolution level. Web-based viewers do
not directly access the file data but instead call a web API, where
the server implements the file access via external image libraries.
Such an API provides endpoints to obtain image metadata and
individual regions or tiles required to cover a desired resolution
and viewport.

The Digital Imaging and Communications in Medicine (DICOM)
supplement 145 has been published in 2010 [22], specifying
the usage of the DICOM standard for WSI data. Since then,
the adoption of DICOM in digital pathology has slowly been
increasing while proprietary formats are still most prevalent in

212

Future Generation Computer Systems 140 (2023) 209-224

routine usage [37]. The Big Picture project of the innovative
medicines initiative (IMI) is improving the tooling around DICOM
WSI [38,39], including open source Python packages for con-
version and accessibility. The open source wsidicomizer [39] is
able to convert many proprietary WSI formats to DICOM, while
wsidicom [38] allows programmers to obtain WSI image tiles
from a DICOM file. Therefore the library provides an API that is
comparable to OpenSlide Python and abstracts away the com-
plexity of the DICOM standard. Furthermore, WSI support is
being added to the HTTP-based DICOMweb protocol [37], with an
early functional implementation in the Google Cloud Healthcare
API [40].

2.1.2. Software and tools

The decentralized service architecture introduced in the pres-
ent manuscript is mainly developed using Python 3.8 with the
modern HTTP API framework FastAPI [41]. FastAPI enables the
asynchronous processing of incoming HTTP requests via Python’s
asyncio implementation. Multiple FastAPI worker processes can
be started via the Asynchronous Server Gateway Interface (ASGI)
[42] implementation Uvicorn [43] to fully leverage the available
compute resources. Service-to-service communication is imple-
mented with the Python library aiohttp [44], enabling asyn-
chronous web requests and can be used in an asynchronous
FastAPI request handler. It also allows the implementation of
proxy routes, where the HTTP request content of one service
is streamed through another service. This is especially useful
when building multiple API layers to provide differing levels of
abstraction and authorization.

Services are bundled using Docker container images. Docker
supports the Open Container Initiative (OCI) [45] image speci-
fication, such that the container runtime is exchangeable. Test
and production environments are deployed on Linux servers
using docker-compose [46], although docker-compose could be
replaced with a more powerful orchestration framework (e.g.,
Kubernetes [47]) as soon as the need arises. Docker also allows
for developer deployments on a local Linux, Windows, or Mac
machine.

2.1.3. OpenAPI

The OpenAPI specification [31], formerly known as Swagger,
has become the industry standard for documenting web APIs [48].
OpenAPI allows for static definitions of API endpoints, their URL
and query parameters, expected HTTP response codes, error mes-
sages, as well as models of JSON documents sent in the HTTP
message body. The documentation itself is stored in a JSON file
that can be parsed to generate a documentation page. In addition,
the OpenAPI definition can be interpreted by software libraries
to auto-generate client code [49]. FastAPI has built-in support for
OpenAPI, enabling access to the API documentation at runtime.

2.1.4. OAuth2

OAuth2 [33] is a standardized protocol for authentication
(confirming identity of a client) and authorization (confirming
client access permission for specific resources) in software sys-
tems. Implementing an OAuth2 mechanism in a web-based ser-
vice platform must cover two major steps. First, a client must
retrieve an access token from an auth provider (service) using
one of many OAuth2 flows. Second, a client must include the
token in HTTP requests to a service endpoint such that the service
endpoint can validate the token to grant or deny access to the
resource.

C. Jansen, B. Lindequist, K. Strohmenger et al.

Global Infrastructure

Future Generation Computer Systems 140 (2023) 209-224

Legend

{ Auth Service }

Global services

Workstation
(Browser)
P
S
{ Portal (Web Ul) 1 &
P>
i3

Ne

Platform reference implementation

{ Marketplace Service }

Platform APIs following platform specification

Global API

Pathology Workstation
(Browser)

Core Infrastructure

Private API not part of platform specification

Third-party App

O

Workbench Client (Web Ul)

1dV YoUSGHIOM
\4

]
)

App Service

Workbench Service

ID Mapper Service

o Compute | Infrastructure
o
a (
2
_— i —t> Job Execution Service
3
i run and monitor
. v
>
<] L App J
>
3

Medical Data API

Storage | Infrastructure

v

Medical Data Service

Fig. 1. Platform Architecture: Global Services for central user-/organization-management, authentication, and app distribution are rendered in purple. Decentralized
Platform Services for pathology laboratories are rendered in yellow. Solid arrows denote the direction of HTTP API requests.

2.2. Service architecture

The software service architecture of the envisioned platform
was designed to satisfy the requirements defined in Section 1.4.
It also satisfies the three key use cases, with extensibility for
future use cases already in mind. An overview of the architecture
is shown in Fig. 1. The global infrastructure (purple) is hosted
in the EMPAIA cloud and exists exactly once. The distributed
infrastructure (yellow) is hosted once for each clinic/laboratory,
either on-premises, in the cloud, or partly on-premises and partly
in the cloud (Section 3.4). The distributed platform services are
categorized as storage, compute and core services. All of these
logical units communicate via HTTP APIs that serve as an abstrac-
tion layer and enable compatibility between units. The following
sections describe the individual units of the platform architecture
in the context of their APIs.

2.2.1. Global API

The Global API is comprised of Auth and Marketplace services.
The Auth Service provides a global organization, user and role
management. Each organization has admins and unprivileged
members that gain access to decentralized services through a
centralized OAuth2 mechanism. The marketplace hosts apps and
app metadata. The EMPAIA Portal is a central Web Ul that gives
access to the user, organization and app management. In ad-
dition, it provides a public storefront where available apps are
presented. These components implement the complete behavior
of use cases 2 and 3 and fulfill the requirements R1 and R6.
The global services are self-contained and do not depend on the
distributed services of the platform.

2.2.2. Medical data API
The Medical Data API functions as an abstraction layer for
storage systems and is provided by the Medical Data Service

213

as a reference implementation. The API gives access to clinical
metadata (e.g., cases and WSI metadata), WSIs in the form of
image tiles and regions cropped from the requested WSI image
level, geometric annotations with coordinates on the image data
(e.g., polygons; R9), primitive data (e.g., floating-point score of
an app result), collections for grouping data elements and jobs
containing references to input and output data of an app exe-
cution. A job is a first-class data structure stored alongside the
medical data, such that it is always known which app version
has produced output data based on specific input data. Data
entities that serve as job inputs or outputs become immutable
to ensure traceability (R8). All data entities, including jobs, are
referenced by unique IDs. Therefore it is possible to reuse the
data across multiple jobs and also to query input and output
data by their associated job ID. The Medical Data Service itself
is implemented as an HTTP API layer that relays requests to
an underlying microservice architecture (not shown in Fig. 1)
and satisfies the requirements R2, R3, R4, and R6. The Medical
Data API specification only covers API endpoints required by core
components, namely the Workbench Service and the App Service.
The API explicitly does not cover how clinical data is transferred
into the platform because this can be implemented in many
different ways, depending on the clinical infrastructure. Integra-
tion approaches with clinical software systems are described in
Section 3.5.

2.2.3. Workbench API

The Workbench Service is part of the core infrastructure, and
there exists one service instance per organization. The Work-
bench Service has two main purposes, first to provide the Work-
bench API for the Workbench Client, a web Ul reference
implementation for pathologists shown in Fig. 2; and second to
aggregate and transmit data between services that do not have
direct connections due to system architecture considerations. The

C. Jansen, B. Lindequist, K. Strohmenger et al.

«- WorkbenchClient x [

Future Generation Computer Systems 140 (2023) 209-224

mox

4 C [0 © localhost:8888/wbc/#/cases/e5087613-acab-abf9-9d0e-dd37917c327

Permpaia WorkbenchClient

CASES

SLIDES

+ ANNOTATIONS

Glomerulus

Glomerulus

Glomerulus

Glomerulus

Glomerulus

EXAMINATIONS

APPS

RESULTS

Fig. 2. Workbench Client: A browser-based web UI for pathologists, that enables the usage of EMPAIA compliant image processing apps. The screenshot shows

annotations on a WSI that are the result of a successful job.

Workbench Client triggers the execution of a new job via the
Workbench Service, which connects to the Medical Data API and
the Job Execution API to synchronize the current states of running
jobs. The process flow of use case 1 that is controlled by the
Workbench Service is described in Section 3.1. In addition, the
Workbench Client contains a viewer for pathological image data
and geometric annotations that can be utilized for classification
(e.g., as tumor or non-tumor). Classified geometric annotations
produced by an app are intended to explain more abstract results
(R9), such as a calculated tumor/non-tumor ratio, and provide
pathologists with the necessary insights to evaluate and trust the
output.

The automated pre- and post-processing of apps (R10) is an
additional use case that will be covered in a future version of the
platform.

The ID Mapper Service maps platform internal IDs of cases and
WSiIs to local IDs of a pathology laboratory. This mapping allows
the platform to rely on pseudonyms that are only resolved via
the Workbench Client/Workbench Service when the user views
the data (R11). As long as the Workbench Service and ID Mapper
Service are deployed on premises, it is possible to set up the
data storage and processing in a cloud environment without the
need to upload identifying patient data. Hence, WSI files may
need to be anonymized/pseudonymized before uploading data to
a cloud environment. Various deployment scenarios are evaluated
in Section 3.4.

2.2.4. Compute API

The compute environment is managed by a Job Execution
Service. This service executes apps from the platform marketplace
based on given job data. The app runs as a headless process in a
container and is able to communicate with the App API. The Job
Execution Service itself never contacts the App API or any other
core service, but only the global marketplace and authentication
services. In case a job failure is detected by the Job Execution
Service, the Workbench Service fetches the status change using
a polling strategy (R6). The Workbench Service then transfers

214

the status update to the Medical Data APIL. Depending on the
Job Execution Service implementation, the service can distribute
jobs in a cluster of compute nodes, including nodes with GPU
resources to accelerate image processing operations and Al apps
based on Artificial Neural Networks.

2.2.5. App APl

The App Service is part of the core infrastructure and provides
an App API [30]. It is used by apps to query job input data, send
job output data, and to finalize a job. For successful API access,
the app requires job ID, job token, and App API URL environment
variables that the Job Execution Service initializes in the app
container on startup. The App API serves as an abstraction over
the Medical Data API with a limited (job-based) access scope.
There exists exactly one App Service instance per pathology labo-
ratory, and each instance always connects to exactly one Medical
Data API of the corresponding organization (R2, R4). Fig. B.5 in
Appendix B shows an exemplary HTTP request sequence of a very
simple Al app, using the App Service in the platform reference
implementation with the underlying Medical Data Service and its
microservices.

2.3. Authentication and authorization

The auth mechanisms are coordinated by a global auth service
(R1) that follows the OAuth2 standard (Section 2.1.4). A user
login is performed via a web client using the Authorization Code
Flow [33, Sec. 1.3.1]. Since services can be deployed in a dis-
tributed environment, potentially using untrustworthy networks,
a service-to-service auth is mandatory. Services that connect to
other services use a Client Credentials Flow [33, Sec. 1.3.4].

In an organization (e.g., pathology laboratory), it should not
be possible for every user to connect to every platform service
and for every service to connect to every other service. Therefore,
the platform uses an audience system, where users and services
explicitly get assigned audiences they may access (R11). These
audiences are encoded in J[SON Web Tokens (JWT) [50] by the

C. Jansen, B. Lindequist, K. Strohmenger et al.

global auth service, such that a service receiving a request includ-
ing the token is able to check whether or not itself is mentioned
as audience. If not, the authorization to access the API is rejected.
Using the audience system, every service only needs to know
its own audience identifier that is provided to the services as
a configuration setting. The alternative approach, where each
service has a list of all clients allowed to send requests, would
be an error-prone configuration overhead that is not feasible for a
large, distributed service architecture. In addition to the described
intra-organization authorization, this audience system also covers
inter-organization authorization, where user/service access from
one organization to another organization is blocked by default
but could be enabled for research or study collaboration purposes.
Another possible scenario could be an organization hosting only a
Job Execution Service providing compute capabilities for smaller
pathology laboratories or even clinics. A namespace structure is
used to assign a unique audience identifier to each service of each
organization.

The Medical Data Service and App Service provide a separate
auth system for the App APL. When a job is started, the Work-
bench Service retrieves a JWT created and signed by the Medical
Data Service. This token is handed to the Job Execution Service
alongside the remaining job data. The Job Execution Service then
hands the token to the actual app that processes the job in
the compute cluster. The app uses the token to connect to the
App Service that in turn can validate the token using the public
key of the Medical Data Service. This token contains the jobs
ID, such that authorization is only granted to retrieve the job
input data and to write appropriate output data that is expected
from the app based on its app description [30]. This job-based
token mechanism cannot be provided by the global auth service
because it does not have any connection to the Medical Data
Service deployed for the various organizations. In the future, this
approach could be extended to further restrict resource access
for users and services, for example, only allowing pathologists to
access a subset of cases stored in the Medical Data Service of their
organization.

2.4. Service development

The EMPAIA platform provides web API specifications (R2, R6)
that can be implemented and/or consumed by third-party pathol-
ogy software vendors. In order to properly design and test these
APIs, the consortium also provides a reference implementation
of web services and clients (R3). This is necessary because API
specification tools like OpenAPI (Section 2.1.3) can only document
static definitions of routes, parameters, and models but do not
reflect dynamic API behavior implicitly defined by the backend
code. Furthermore, third-party implementers might want to pro-
gram a client and test it against an existing server or might
want to implement an API server and check whether or not it
is compatible with a reference client (R7). APIs are versioned
to allow for extensions (R5) and even breaking changes in the
future. Old API versions can co-exist with new versions while
being deprecated for new apps, clients and other services.

2.5. App development

App developers need a way to develop and test their app
before uploading it into the marketplace (R7). For this purpose,
the EMPAIA App Test Suite (EATS) [51] can be used on a local
computer. The EATS is open source and contains all relevant
platform services required to run an app (R4). It provides a com-
mandline interface to start/stop services, register docker images
as apps, register/run jobs, and export data from the services to
JSON files. It also contains a web client to examine WSIs and

215

Future Generation Computer Systems 140 (2023) 209-224

input/output annotations in a viewer. The EATS is entirely self-
contained, without a connection to global services. Therefore,
user and service-to-service auth is turned off, but the job token
auth provided by the Medical Data Service and App Service (both
contained in the EATS) is turned on, as it is relevant to an app
and must be testable.

2.6. App catalog

Five software vendors have already adapted a total of ten apps
to the EMPAIA App Interface [30]. All apps use image processing
and Al technologies to process user-selected regions of interest
in a WSL. Analyses are available for H&E stains, immunohisto-
chemistry (IHC) and fluorescence in situ hybridization (FISH). The
current app catalog contains two apps based on H&E stains from
non-small cell lung cancer (NSCLC) tissue. For IHC, there are two
apps for the analysis of Ki-67-IHC from breast cancer tissue, two
apps for HER2-IHC also from breast cancer, and one app each
analyzing IHC for ER, PR, and P53 in breast cancer. One app that
is based on FISH is available for the detection of HER2/neu gene
amplification in breast and stomach carcinomas. The integrations
of additional apps are under active development.

3. Results

The distributed platform services, the Workbench Client
(Section 2.2.3), and the EATS (Section 2.5) are open source and
can be accessed on gitlab.com [52]. The following sections de-
scribe how the initial use cases (Section 1.4) have been im-
plemented. In addition, data throughput performance tests are
reported (Appendix C.2).

3.1. Use case 1: pathologists using apps

Use case 1 (Section 1.4) describes the examination of a pathol-
ogy case aided by image processing apps. Such an examination
is conducted by pathologists via a graphical UL. The Workbench
Client is a reference implementation provided by the EMPAIA
Consortium to demonstrate how this use case can be imple-
mented. Software vendors can integrate similar functionality into
existing pathology software based on the Workbench API as it is
defined by the platform.

When pathologists open the Workbench Client in the browser,
they are forwarded to a login page. The users enter their login
credentials and are redirected back to the Workbench Client. The
authentication process is the only client interaction with an API
that is not proxied by the Workbench Service (Section 2.2.3).
After a successful login, the user is prompted with a list of cases
for selection. For this purpose, the Workbench Service fetches
the case data from the Medical Data Service (Section 2.2.2) and
aggregates additional data about slides, examinations and jobs
of the case. As soon as a case is selected, the pathologists can
start browsing the case-related data. This mainly includes WSI
(Section 2.1.1) and user-created geometric annotations located on
these slides. The slide data includes metadata, image tiles, as well
as overview, macro, and label images.

To use image processing apps, the pathologists must select an
existing examination or create a new one if no open examination
exists for this case. Multiple examinations per case can exist,
but there should only be a single open examination at a time.
In the future, clinical reports could be generated as soon as an
examination is closed, summarizing the results obtained from
apps.

Apps obtained from the marketplace must be explicitly as-
signed to an open examination before they can be used. For this
purpose, the Workbench Service fetches app metadata from the

C. Jansen, B. Lindequist, K. Strohmenger et al.

global marketplace API and stores the assignment of an app to an
examination in the Medical Data Service. The user can then start
a new job for this app. In the current version of the Workbench
Client, the job parameterization is limited to the selection of a
single WSI from the case and drawing/selecting one or more
regions of interest on the selected WSI to be analyzed. In a
future version of the Workbench Client, apps will ship custom
Ul elements that allow for a more sophisticated job parameter-
ization. The job is then stored in the Medical Data Service, and
the Workbench Service sends the job data to the Job Execution
Service (Section 2.2.4) for processing. The Workbench Service
regularly updates the job status in the Medical Data Service as
reported by the Job Execution Service. As soon as a job is finished,
the user can view the results that were written to the Medical
Data Service through the App Service. Again, the result view in
the current Workbench Client version is very generic, although
custom visualization will be possible in the future via app Ul
integrations.

Pathologists can add multiple apps to an examination and run
multiple jobs per app. An examination can be closed as soon as
all jobs in the examination are finished.

3.2. Use case 2: registering organizations and users

Users can register on the platform on their own behalf via
the EMPAIA Portal. By default, users do not have access to any
organizational resources. A user can join an existing organization
or create a new organization.

Users can create their own organization using the EMPAIA
Portal. A new organization must be approved by an EMPAIA
administrator to finalize the creation. Only approved organiza-
tions show up on the public organization overview page of the
portal. The user who created the organization by default is an
organization administrator who can approve requests from other
users to join the organization. Organizations can be assigned
different organization types, including Al Consumer and Al Ven-
dor. An Al Consumer organization can request the deployment
of the EMPAIA platform services via the EMPAIA support. The
deployment of an organization-specific software stack is not an
automated process because many different integration scenarios
exist (Section 3.4).

3.3. Use case 3: displaying available apps

Apps are displayed and described on a public marketplace
page in the EMPAIA Portal. Each app is associated with an Al Ven-
dor organization. In future versions of the platform, organizations
will be able to upload and manage their own apps. For the initial
release of the platform, apps are integrated into the marketplace
by platform administrators. In the Portal, apps can be filtered by
metadata tags that refer to the type of analysis performed with
each app (e.g., tissue type, stain, and indication). These apps will
also show up in the Workbench Client for pathologists to use in
an examination. In the future, the apps listed in the Workbench
Client will be limited to the ones previously licensed by the Al
Consumer organization via the Portal.

3.4. Deployment

The platform architecture described in Section 2.2 supports
different deployment scenarios, where services can be deployed
on-premises, in a cloud environment, or in a mixture of both.
Fig. 3 depicts four different scenarios where the Pathology Lab-
oratories 1 to 3 can be pathology institutes of larger clinics/
university hospitals or individual pathology laboratories. Depend-
ing on the size and resources of an institute, it might be possible

216

Future Generation Computer Systems 140 (2023) 209-224

to host everything on-premises, while others might want to use
cloud resources.

Pathology Laboratory 1 (yellow) deploys all decentralized plat-
form services on-premises. This even includes a compute cluster
controlled by a Job Execution Service instance. Only user/service-
to-service auth and the app marketplace are provided by global
services. In this scenario, medical data is kept locally, even for the
compute intensive processing of Al apps. It requires appropriate
server resources to be available in an institution, but also provides
the best protection of medical data, in comparison with the
following deployments.

Pathology Laboratory 2 (blue) uses an App Service and Medical
Data Services deployed on cloud servers outside the protected
network of the institution. The medical data is transmitted to
the cloud beforehand, such that the cloud compute cluster has
fast access to the data at the time of processing. For data privacy
reasons, the data is anonymized before uploading it to the cloud
(R11). Since the Workbench Service and ID Mapper Service are
deployed on premises, the mappings to local case and slide IDs
that could be classified as identifying information never leave
the originating institution. This scenario allows an institution to
leverage remote storage and compute resources, while largely
maintaining data privacy due to data anonymization. The appli-
cability of this deployment strategy depends on regulatory and
legal requirements.

Pathology Laboratory 3 (green) has a full cloud deployment,
such that no local resources are used. This scenario is not feasible
for clinical use because storing non-anonymized case mappings
and slide mappings in a cloud is a privacy issue. On the other
hand, this scenario is very useful for research purposes using
already anonymized data. Also, the initial release of the platform,
used for evaluation purposes only, follows this scenario. It allows
the platform engineers to deploy the services in a controlled
environment to simplify debugging and avoid the variety of local
infrastructures.

Independent of the deployment scenario, platform services
should not share compute resources with apps for several rea-
sons: (1) Web services and apps differ greatly in their hardware
requirements and load profile. Apps produce high bursts in CPU
or GPU load but do not need storage capacities because they send
their results to the Medical Data Service. (2) A high computational
load produced by apps might have a negative effect on the avail-
ability or responsiveness of services. (3) The Job Execution Service
can be extended to utilize multiple scheduling and orchestration
frameworks in the future. For example, the Job Execution Service
might schedule apps in a high-performance SLURM or Kuber-
netes cluster, while platform services (including the Job Execution
Service itself) are orchestrated using docker-compose.

3.5. Integration

The EMPAIA platform architecture is designed in a way that
allows parts of the platform to be interchangeable and imple-
mented by different third-party software vendors. For example,
as shown in Fig. 1, a third-party compute cluster provider can
implement the EMPAIA Compute API in a compatible way to ac-
cept job execution requests from an existing Workbench Service
implementation. Furthermore, the modular design of the EMPAIA
platform reference implementation allows a gradual integration
into clinical software and hardware infrastructures. While the
reference implementation itself is not meant to be certified on
its own as medical device software, it might be beneficial for
a software vendor to reuse certain open source components:
either to be used temporarily until a proprietary implementation
is available, or to be permanently integrated into their software
product and certified for clinical use.

C. Jansen, B. Lindequist, K. Strohmenger et al.

Future Generation Computer Systems 140 (2023) 209-224

Cloud
K
Global Compute Cluster Pathology Lab. 3
Job Execution Service Workbench Client (Web Ul)
y _ GClobal Services y Workbench Service
{ Portal (Web UI) Pathology Lab. 2y ID Mapper Service
{ Auth Service App Service App Service
{ Marketplace Service } { Medical Data Service } Medical Data Service
K A A A \ / /
Pathology Lab. 1 Pathology Lab. 2
- ™\
Workbench Client (Web Ul) { Workbench Client (Web UI) }
Workbench Service { Workbench Service J
ID Mapper Service { ID Mapper Service }
App Service
Medical Data Service
Job Execution Service
- J

Fig. 3. Deployment: Decentralized platform services are deployed per pathology laboratory. Different scenarios are depicted for each laboratory, ranging from lab. 1
(yellow) with a complete local deployment, to lab. 3 (green) with a complete cloud deployment. Lab. 2 (blue) shows a mixed deployment. Arrows denote the direction

of HTTP API requests.

In order to make the adoption of the platform reference im-
plementation as easy as possible, the Medical Data Service has
been implemented as an HTTP API layer (Section 2.2.2) in front
of microservices that store and serve different data types. This
separation is considered a technical detail of the reference imple-
mentation and is not part of the platform design. Namely these
microservices are the Clinical Data Service, the WSI Service, the
Annotation Service, the Job Service and the Examination Service.
The Clinical Data Service stores case data and clinical metadata
about the WSIs contained in a case. The WSI Service serves the
actual image tiles of a WSI and provides technical metadata, such
as the resolution and extent of each image layer. The Annotation
Service stores geometric annotations and their pixel coordinates
on a WSI, as well as primitive data types like numerical scores.
All data types can be contained in data collections. Data ele-
ments and collections can have references to other elements
and collections in order to create a semantic structure. Every
element and collection used as a job input or created by a job
as an output is being locked and becomes immutable. A flexible
query system allows data to be fetched by data types, references,
jobs, annotation coordinates (viewport) and more. The Job Service
stores job objects, that link the ID of a certain app version and the
IDs of input data to the IDs of the generated output data, which
is crucial for traceability and reproducibility of processing results.
The Examination Service stores examination objects, which link
the IDs of apps used in a certain examination to the case ID and
the corresponding job IDs.

217

As described in Section 3.4, the platform architecture allows
services to be deployed on premises in clinical infrastructures
(see pathology lab. 1 in Fig. 3). Based on this deployment scenario,
Fig. 4 demonstrates a shallow integration approach with local
systems, that can be used as a stepping stone to integrate the
platform more deeply at a later point in time. A software vendor
can, e.g., decide to use the Medical Data Service implementation,
replace the Clinical Data Service and WSI Service with adapter
implementations and use the Examination Service, Annotation
Service, and Job Service as provided by the EMPAIA platform
reference implementation. The Clinical Data Adapter can trans-
late a request for fetching metadata of a clinical case into calls
to a local APLIS, either using proprietary APIs or standardized
HL7/FHIR APIs. The WSI Adapter can translate requests for fetch-
ing WSI image tiles to a proprietary IMS, to a VNA, or to a PACS.
Since all adapter requests are translated just in time, there is
no need to copy data from existing clinical software systems
into the EMPAIA platform services. In the described scenario, the
Examination Service, Annotation Service, and Job Service are not
replaced by an adapter, because exact equivalents are most likely
not yet present in the existing clinical systems. Fig. 4 also shows
a third-party Pathology Workstation software that connects to
the Workbench API and therefore replaces the Workbench Client
reference implementation. The workstation provides a graphical
user interface for pathologists to browse patient data, cases, and
slides. Connecting to the Workbench API allows the software to
run Al apps and display the processing results, leveraging the full
potential of the platform.

C. Jansen, B. Lindequist, K. Strohmenger et al.

Future Generation Computer Systems 140 (2023) 209-224

Global API
Pathology Workstation g T Core Infrastructure o) Compute | Infrastructure
= N g e
g °
3 =3
APLIS /IMS UI "7 S Workbench Service —t ; —T> Job Execution Service
5 2 !
ID Mapper Service i run and monitor
\4
App Service < § [App J
>
3
Medical Data API
Storage Infrastructure . tegend L
¢ Platform reference implementation
Medical Data Service —
Platform APIs following platform specification
E- " Private APIs not part of platform specification
APLIS 4—\— annn®
Clinical Data Adapter <« C} Third-party App
Third-party Clinical Systems
WSI Adapter <
Gepgaiar 77 e | W GO || e
Annotation Service <
Job Service <
Examination Service <
J

Fig. 4. Platform Integration: Third-party clinical storage systems are integrated via API adapters replacing Medical Data microservices. A third-party user interface
(UI) for pathologists integrates with the Workbench API to access Al app functionality. Solid arrows denote the direction of HTTP API requests.

A deeper integration between the clinical systems and the
EMPAIA platform implies that the storage systems directly imple-
ment the Medical Data API including support for examinations,
annotations, and jobs, thereby eliminating the need for a sepa-
rate API layer and adapters. Additionally, third-party vendors can
replace the EMPAIA core services by implementing the Work-
bench and App APIs and can replace the Job Execution Service
by implementing the Compute API. Due to the modular design,
interoperability between the different parts of the architecture
is ensured, even if these components are provided by different
parties.

As described in Section 2.1.1, the slide scanners currently used
in the routine of digital pathology produce proprietary image
formats. Even though the DICOM standard for WSI data has
been published more then a decade ago [22], the adoption by
clinical hardware and software vendors has not made significant
progress yet. For this reason the HTTP endpoints of the WSI Ser-
vice have been designed as an abstraction over all existing image
formats, including DICOM WSI. The WSI Service implements a
plugin interface, that allows the usage of various WSI software
libraries, like OpenSlide [36], to open and read image tiles from
the corresponding formats. While the WSI Service is published
under the MIT license, the plugin system also allows proprietary
plugins to be implemented. For example, the isyntax image for-
mat can only be opened using the Philips Pathology SDK [53].
The SDK can be downloaded for free, but is not licensed under
open source conditions and therefore cannot be redistributed.
The WSI Services’ isyntax plugin allows developers to download
the SDK under the terms of Philips from the official website and
build the plugin locally. The DICOM plugin of the WSI Service
is based on wsidicom (Section 2.1.1), a library that provides a

218

high abstraction over the DICOM standard. For example, DICOM
image regions are usually addressed via coordinates in metric
units, e.g., (x, y) position on the physical slide in millimeters. The
wsidicom library on the other hand allows access to the image
regions via pixel coordinates and therefore behaves very similar
to OpenSlide and other WSI libraries. Implementing a WSI Service
compatible plugin based on this library was trivial and serves as a
proof of concept that other DICOM sources like DICOMweb can be
integrated via a plugin or an adapter as described in Section 3.5.

3.6. Evaluation of data throughput performance when accessing im-
age data

One important characteristic of both interactive and batch use
of a digital pathology platform is data throughput performance.
A modular architecture, as presented here, might imply technical
overheads compared to a monolithic application when access-
ing image data or storing analysis results. In order to evaluate
the data throughput performance of accessing image data, tests
comparing different service setups and concurrency settings in
our reference implementation have been conducted and pre-
sented in [29]. Key results are summarized here, more detailed
information is provided in [29] and Appendix C.

In the described architecture, the Workbench Client requests
image tiles for viewing purposes in the browser, it connects to
the Workbench Service. The Workbench Service then forwards
the request to the Medical Data Service and streams the response
back to the client. In the same way, the App Service streams tile
requests from the Medical Data Service when an App requests

C. Jansen, B. Lindequist, K. Strohmenger et al.

them. For all connections from the client to the Workbench Ser-
vice and from the Workbench Service to the Medical Data Service,
OAuth2 authentication is enabled.

In the reference implementation, the Workbench Service use
the HTTP client aiohttp (Section 2.1.2) for its requests. The Med-
ical Data Service itself is only an API layer that connects to
multiple microservices (Section 3.5). It also uses aiohttp to stream
the requested image tiles from the WSI Service, therefore gen-
erating additional overhead. The latter is not inherently part of
the platform architecture, but only part of the reference imple-
mentation, third-party implementations could choose a different
approach. The experiment for evaluating data throughput perfor-
mance when accessing image data involved requesting 500 image
tiles. As a baseline, the WSI Service was timed directly when
requesting the 500 image tiles concurrently, resulting in a total
mean round trip time of 2.14 s. For the actual modular setting,
requesting the tiles via the Workbench, Medical Data, and WSI
Services and streaming the tiles back, the total mean round trip
time was 2.50 s, an increase of 17%.

4. Discussion

The following sections summarize the presented achievement,
show current limitations of the platform and discuss the future
directions of the project.

4.1. Achievements

The implementation status of the EMPAIA platform covers the
three main use cases presented in this publication (Section 1.4).
The platform is designed to support flexible deployment scenarios
(Section 3.4) that meet various regulatory and technical require-
ments. The EMPAIA Consortium collaborates with ten German
and three international reference centers (hospitals and pathol-
ogy laboratories). As of September 2022, reference centers have
access to cloud-based deployments. These deployments allow
pathologist to upload research data to gain a first impression
of the platform. Five different third-party vendors have already
integrated ten Al apps into the platform, that are now available
to pathologists via the Workbench Client web UI. App developers
are actively using the EATS (Section 2.5) to test their apps and
provide valuable feedback concerning API design, features, and
bugs via a dedicated mailing list.

For maximum compatibility, the EMPAIA platform is delib-
erately kept similar to existing free and commercial pathology
software systems (Section 1.2). Unlike many existing solutions,
the EMPAIA platform is not only intended for research applica-
tions, but also for clinical use. The EMPAIA platform is unique
in that it offers open interfaces to both different Al app ven-
dors and different pathology software system vendors. Another
unique feature is that open source reference implementations of
all components required for a functional, standalone deployment
are provided.

Performance is an important aspect of the user experience.
Delays in image and annotation rendering have a negative impact
on the acceptance of new tools. The results from Section 3.6 show
that it is possible to implement the services of the multi-layered
API architecture, using the chosen technology stack, with merely
17% loss of data throughput performance under realistic load
conditions when fetching image tiles. While there is potential
for further improvements, the performance characteristics are
acceptable for the current state of the platform reference imple-
mentation and the early adoption phase. Although a usability test
has not yet been conducted, usability of the WSI viewer built into
the Workbench Client does not seem to be negatively affected in
practice. Furthermore, Section 3.4 demonstrates the flexibility of
the architecture, such that the advantages outweigh the reduction
in performance.

219

Future Generation Computer Systems 140 (2023) 209-224

4.2. Limitations

On the one hand, the EMPAIA App Interface clearly specifies
the integration of Al apps. On the other hand, the integration
of the platform into clinical systems is much more diverse and
a large variability of different systems has to be considered.
Section 3.5 describes how a combination of open source compo-
nents from the platform reference implementation and custom
software adapters can enable a quick shallow integration with
existing infrastructures. Although the integration approaches are
currently being discussed with third-party clinical system ven-
dors, a first practical implementation is still pending. Further-
more, the shallow integration approach is only a first step and a
full integration using only certified medical device software must
be achieved for unconditional routine usage of Al apps.

When defining APIs that are implemented and used by mul-
tiple parties, it is crucial to maintain compatibility even if new
features are added to the platform and errors are being fixed.
While each App uses a certain API version, systems might have
to provide different API versions for different Apps to connect.
A platform versioning strategy that allows APIs to evolve and
features to be added, while not imposing a huge burden on
system providers in terms of maintainability, is yet to be specified
and discussed with all stakeholders. In addition, API versioning
impacts the App validation and certification process that requires
certain stability guarantees.

Section 3.5 describes the implementation of DICOM WHSI file
support. The WSI Service API endpoints are an abstraction layer
to retrieve image data and associated metadata from DICOM and
other proprietary WSI file formats, that are addressed as different
data sources using plugins in the service backend. The decision to
not directly serve DICOMweb endpoints is clearly justified by the
heterogeneous landscape, but begs the question how the EMPAIA
API can evolve, when DICOM finally becomes the norm. The
project closely tracks the standardization efforts and must find
suitable solutions to properly integrate DICOM into the EMPAIA
APIs in the future.

The evaluation of data throughput performance presented
here is limited to a reference implementation. Components of
third-party implementations might have smaller or larger over-
head due to streaming data through multiple API layers and might
implement the Medical Data Service differently, necessitating
dedicated performance measurements. Moreover, the evaluation
is limited to accessing image data, further benchmarking will be
needed: can image analysis apps store their output (e.g., large
number of annotations) sufficiently fast and is the overall usage
including running image analysis sufficiently fast, also under high
load conditions? Such performance analyses depend on the image
analysis apps and on the hardware setup (in particular network
speed between the involved servers) at the respective site using
the platform, and are beyond the scope of the present study.

4.3. Outlook

The development of the EMPAIA platform is still ongoing.
Additional use cases, that will be covered in later versions of
the platform, are the integration of a billing system, as well
as an app validation and certification process (R1 and R11 in
Section 1.4). Furthermore, the requirement to allow the automatic
pre-processing of WSIs from a scan pipeline is not fulfilled yet
(R10 in Section 1.4). Substantial gains in diagnostic efficiency
can be expected if analyses are already finished or image quality
issues have already been resolved when a pathologist first opens
a case for diagnosis. A corresponding concept that allows apps
to be used in different processing modes has been specified and
improved based on feedback provided by third-party vendors.

C. Jansen, B. Lindequist, K. Strohmenger et al.

The development process is currently ongoing and the feature
will be released as part of the EATS (see Section 2.5) soon.

The Workbench API is currently being revised to support ex-
ternal Ul modules (App UI) that ship with apps to enable custom
interactions for app parameterization and result visualization. Six
app vendors are currently adapting their apps and web Uls to
integrate with this new APIL All vendors will provide feedback
and first prototypes until the end of the year. The results will
be part of a future publication dedicated to the Workbench API
and App Ul concepts. Furthermore, on-premises deployments
and integration approaches are being discussed with reference
centers and clinical software vendors.

Satisfactory performance is only one aspect of an assessment
whether the presented platform architecture is suitable for rou-
tine use and enables interoperability of digital pathology infras-
tructure systems and image analysis apps. Like other desirable
properties such as flexibility, modularity, openness, and scala-
bility, these aspects cannot be quantified in a meaningful way.
Instead, usability studies are planned once infrastructure systems
and image analysis apps have been integrated. These studies will
involve different stakeholder groups (pathologists/end users, IT
technicians at pathology labs, infrastructure system developers,
image analysis app developers) in order to evaluate to what
extent the EMPAIA platform lives up to required and desirable
properties. Moreover, a comparison of user and developer expe-
rience to other platforms would be interesting, and should ideally
be performed by an independent group. An important aspect for
the acceptance of Al solutions in clinical use is the possibility for
pathologists to get some insight into why an app has obtained a
certain score for a given image [54]. Providing such explainability
of algorithmic results is mostly a task of the individual app, but
also requires support by the platform: it is already possible to
display intermediate results, e.g., detected cells or tumor areas,
by storing and retrieving geometric annotations (requirement R9,
Section 1.4) via the Medical Data and Workbench APIs. Handling
of suitable data representations for, e.g., saliency maps or more
advanced explainability approaches will be included in the future.

Obtaining regulatory approval is an important step for med-
ical software before it can be used in clinical routine [8]. App
validation can only be successful if the underlying infrastruc-
ture is targeting the same quality standard. However, obtaining
regulatory approval is more than a technical challenge. There-
fore, the EMPAIA Consortium also aims to support vendors to
follow best practices in medical device software development
and documentation, with the initial validation and certification
of new solutions, as well as the mandatory post-market surveil-
lance for gathering clinical performance data and problem reports
[55,56]. For this purpose, strict processes and supporting platform
components are yet to be defined.

5. Conclusion

The EMPAIA Consortium aims to launch a sustainable ecosys-
tem based on open and well-defined APIs connecting all rele-
vant stakeholders in the digital pathology landscape. We here
described the open and modular architecture of the EMPAIA
platform and how its components can be used for previously
identified use cases and how an integration with clinical in-
frastructures can be achieved. The first implementation already
meets most of the identified requirements and will be evaluated
at different reference centers, while development is ongoing.
Once enough stakeholders use the platform, it can help accelerate
the adoption of image processing and Al solutions in routine
laboratory diagnostics.

220

Future Generation Computer Systems 140 (2023) 209-224
CRediT authorship contribution statement

Christoph Jansen: Conceptualization, Methodology, Soft-
ware, Visualization, Writing - original draft. Bjorn Lindequist:
Conceptualization, Software, Writing - review & editing. Klaus
Strohmenger: Conceptualization, Software, Writing - review &
editing. Daniel Romberg: Conceptualization, Software, Writing
- review & editing. Tobias Kiister: Conceptualization, Software,
Writing - review & editing. Nick Weiss: Conceptualization,
Software, Writing review & editing. Michael Franz:
Conceptualization, Software, Writing - review & editing. Lars
Ole Schwen: Writing - review & editing. Theodore Evans:
Software, Writing review & editing. André Homeyer:
Conceptualization, Funding acquisition, Supervision, Writing -
review & editing. Norman Zerbe: Conceptualization, Funding
acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
The data that has been used is confidential.
Acknowledgment

This work was supported by the German Federal Ministry for
Economic Affairs and Climate Action (BMWK) via the
EMPAIA project (grant numbers 01MK20002A, 01MK20002B,
01MK20002C, 01MK20002E, 01MK20002F).

Appendix A. Full list of empaia platform use cases

The original use cases contained in Table A.2 refer to the use
cases presented in Section 1.4, where two original use cases have
been joined to use case 2 (Section 1.4).

Appendix B. HTTP request sequence of a simple Al app

Fig. B.5 shows an exemplary HTTP request sequence of a very
simple Al app, using the App Service in the platform reference
implementation with the underlying Medical Data Service and its
microservices. As soon as the app is initialized, it connects to the
App APL In this case it fetches a Region Of Interest (ROI), which
is a geometric annotation of type Rectangle, Polygon, or Circle. It
is specified by a pathologist using drawing tools in a client-side
WSI viewer. The ROI refers to the ID of the corresponding WSI,
that is also part of the job’s data input. The corresponding meta
data (e.g., pixel resolution) are fetched by the app. This simple
app detects the location of cells in the tissue and marks them in
the form of Point annotations with pixel coordinates in the WSI's
coordinate system. All annotations are stored in a collection that
is created before the actual processing starts and new annotations
are added to the collection with every processing iteration. The
app only processes the image data located inside the ROL In a
loop, the app fetches all image tiles located in the ROI one by
one. Each image tile is fetched via the API and processed by an
algorithm to calculate cell locations. The resulting annotation ob-
jects are added to the collection using API requests. Note that the
loop for fetching WSI tiles, processing the image data, and writing
output annotations could be implemented using concurrent data
10 while processing to reduce idle times. In the end, the job is
finalized, such that all created data elements are implicitly locked
to be immutable and the job status is updated. The app process
then terminates itself. All mentioned data types are also briefly
described in Section 2.2.2.

C. Jansen, B. Lindequist, K. Strohmenger et al.

Table A.2

Future Generation Computer Systems 140 (2023) 209-224

Original use cases defined by the EMPAIA Consortium and selected key use cases. Key use cases, that are not marked as work in progress (WIP), have been aggregated

and are being presented in this publication.

Original use cases

User groups Key use cases

Use App for diagnostics

Use App in research/education

Buy App

Create/extend data set

Conduct study (collect and evaluate data)
Train Al model

Upload App to marketplace

Upload AppUI to marketplace

Update App in marketplace

Update AppUI in marketplace

Request clinical validation of an App

Perform clinical validation of an App

Upload WSIs

Register user account

Register organization

Administration of users, data etc.

Automatic preprocessing for diagnostics
Creating an ad-hoc App with a generic AppUI
Publishing a research-grade App (for reference in publications)
Providing quality management services for clinical validation
Beta testing and feedback from pathologist
Billing and reimbursement

Display aggregated usage data

Presentation of all Apps in the marketplace
Testing App before buying

Removing organization access/roles

Delete user account

Pathologist Use case 1
Researcher, tutor, student
Pathologist, lab. manager/director
Pathologist

Researcher, pharmacist

Researcher, software engineer
Researcher, software engineer
Researcher, software engineer
Researcher, software engineer
Researcher, software engineer
Researcher, software engineer
EMPAIA validator

Medical technical assistant, automation pipeline
All users

Lab./company manager

EMPAIA administrator

Automatic pipeline

Researcher, tutor, student

Researcher

EMPAIA validator, external certifier
Company manager, software engineer
Company manager

Company manager

All users

Researcher, pathologist

Lab. manager

All users

WIP
WIP

Use case 2
Use case 2

WIP

WIP
Use case 3

Appendix C. Evaluation of data throughput performance when
accessing image data

C.1. Test setup

In order to evaluate the overhead added by multiple API layers
in the platform architecture, simple data throughput performance
tests were executed. For this purpose, a Python script was im-
plemented that requests 500 different image tiles from a single
WSI (Mirax format) using the aiohttp library in a single process.
Each tile is 256 x 256 pixels in size, using the JPEG format with a
mean tile size of 20.91 KiB (min: 1.61 KiB, max: 43.11 KiB, total:
10.21 MiB). The time it takes to request all 500 tiles is measured
20 times (trials). The script is executed on a desktop computer
and connects to the platform services deployed on a remote
Virtual Machine (VM) with 16 CPU cores ([ntel®Xeon® Gold 6154
CPU @ 3.00 GHz) and 64 GB RAM. The network throughput from
the desktop to the VM was measured as 940 Mb/s (wget down-
load of a 1GiB random binary file via HTTPS served by nginx).
The number of processes assigned to the FastAPI services in total
is always lower than the number of VM CPU cores during all
experiments, such that the number of cores is not a limitation.
All experiments use an nginx HTTPS reverse proxy in front of the
API services. All services, except for the nginx reverse proxy, are
deployed with docker-compose.

In Experiment 1a, the 500 requests are executed concurrently,
only limited by aiohttp’s default pool size of 100 connections.
First, the requests are sent directly to the WSI Service for 20
trials, where the number of uvicorn workers (Section 2.1.2) is
limited to 1. Then the trials are repeated with 2, 3 and 4 worker
processes. In Experiment 1b, the requests are sent to the Medical
Data Service with 1, 2, 3, and 4 workers. The Medical Data Service
streams the data from the WSI Service running in the background
using 4 workers. In Experiment 1c, the requests are sent to the
Workbench Service with 1, 2, 3, and 4 workers. The Workbench
Service streams the data from the Medical Data Service using 4
workers, which itself connects to the WSI Service with 4 workers.

These experiments demonstrate how the platform architecture
scales for parallel requests and how much overhead is added
by the API layers. Experiment 2 uses a setup of 4 Workbench
Service, 4 Medical Data Service and 4 WSI Service workers, but
enables the OAuth2 authentication for all connections from the
client to the Workbench Service and from the Workbench Service
to the Medical Data Service. Experiment 3 uses a setup of 1
Workbench Service, 1 Medical Data Service and 1 WSI Service
worker. In this case, a semaphore is used in aiohttp to limit the
number of requests sent by the client’s test script to one at a
time. By omitting the concurrency, it is possible to gain a better
understanding of the latency that is added by each API layer for
individual requests. Results are reported in Appendix C.2.

C.2. Test results

Fig. C.6 shows the results of experiments 1a, 1b, and 1c, where
the WSI Service, the Medical Data Service and the Workbench
Service were targeted by the test script, respectively. As described
in Appendix C.1, each service was run with 1, 2, 3, or 4 workers
to demonstrate the scaling. As demonstrated, the WSI Service
benefits heavily from a larger number of workers (w) to improve
the trial duration for loading 500 tiles (WSI Service, w = 1:
6.71 £ 0.16 s (trial mean =+ standard deviation); WSI Service,
w = 4: 2.14 4 0.10 s). This is explained by the fact that even
though the FastAPI service uses asynchronous service handlers,
the low-level image access functions of OpenSlide are blocking
(synchronous) while they are waiting for storage IO operations.
This could be improved in the future by developing a proper
async wrapper for the OpenSlide plug-in. The Medical Data Ser-
vice and Workbench Service experiments (1b and 1c) only show a
slight performance increase with multiple workers because they
already use the asynchronous http client library aiohttp that does
not block during network IO operations, to stream the image
tiles. The mean trial duration, 2.14 s, of targeting the WSI Service
(experiment 1a) with 4 workers is now used as a baseline for the
experiments 1b and 1c. Targeting the Medical Data Service with
4 workers adds an overhead of 6% (MDS, w = 4: 2.26 4 0.08 s)
over the WSI Service. Targeting the Workbench Service, with the

221

C. Jansen, B. Lindequist, K. Strohmenger et al.

Future Generation Computer Systems 140 (2023) 209-224

App App Service Medical Data Job/Annotation/
Service WSI Service
1
1
1 fetch input
A ROI annotation fetch fetch
A . A . N
> > >
stream response stream response response
SR e L O
fetch input
WSI meta data fetch fetch
> > >
stream response stream response response
S e L CLRCITELED O et
write output
empty collection write write
N N N
L L L
stream response stream response response
SGEEEEEEE R Commm e Commm e
fetch input
WSI image tile fetch fetch
> > >
[¢) stream response stream response response
x SEEEEEEEEEEEEEEEEEEEEEEE Commm e Lo
£
()
° =
[} 8o
© o j=2)
£ 58
= £
% write output
L annotations to collection write write
o 3> 3> 3
2 > > >
o
- stream response stream response response
________________________ <_________________________ <_________________________
finalize job finalize finalize
N N N
L L L
stream response stream response response
.......................... <.......................-. <.........................

Fig. B.5. As soon as an app container is initialized, the app process is able to connect to the App Service using a token-based authentication. Job ID, job token and
App API URL are provided to the app container in the form of environment variables.

71 Experiment
I Target Workers: 1
64 [Target Workers: 2
S B Target Workers: 3
:": I Target Workers: 4
51
c
o
g
5 4
e ="
I
0 B - =
¢
é é * E’
2 4
WSI (1.A) MDS (1.B) WBS (1.C)

Target Service

Fig. C.6. Performance characteristics of web request round-trip times when
requesting image tiles, while targeting different API layers. Experiment 1a targets
the WSI Service (WSI) directly with a differing number of worker processes
enabled. Experiment 1b targets the Medical Data Service (MDS) as an abstraction
layer over the WSI Service and experiment 1c targets the Workbench Service
(WBS) as an additional abstraction layer over the Medical Data Service.

Medical Data Service as a proxy between Workbench Service
and WSI Service, adds a total overhead of 12% (WBS, w = 4:
2.41 4+ 0.08 s) over the WSI Service.

222

Experiment 2 (not shown in Fig. C.6) again uses a setup with
4 workers for each of the services. In contrast to experiment
1c, OAuth2 is enabled for client-to-service and service-to-service
auth. The total overhead added by this setup is 17% (Workbench
Service with OAuth2, w = 4: 2.50 + 0.07 s) over the WSI Service
with 4 workers.

Experiment 3 (not shown in Fig. C.6) is similar to the previous
setups but does not allow concurrent client requests in the test
script. When targeting the WSI Service with one request at a
time, each request round trip on average takes 21.49 ms (WSI
Service, w 1: 21.49 + 0.42 ms). Targeting the Medical Data
Service in the same way adds an overhead of 12% (Medical Data
Service, w 1: 24.08 £ 0.53 ms). Targeting the Workbench
Service in total adds an overhead of 24% (Workbench Service,
w = 1: 26.74 4+ 0.61 ms). Enabling OAuth2 in the platform adds
a total overhead of 31% (Workbench Service with OAuth2, w = 1:
28.07 £ 1.05 ms) over the WSI Service.

References

[1] E. Abels, L. Pantanowitz, F. Aeffner, M.D. Zarella, J. van der Laak, M.M.
Bui, V.N.P. Vemuri, A.V. Parwani, J. Gibbs, E. Agosto-Arroyo, A.H. Beck,
C. Kozlowski, Computational pathology definitions, best practices, and
recommendations for regulatory guidance: a white paper from the digital
pathology association, J. Pathol. 249 (3) (2019) 286-294, http://dx.doi.org/
10.1002/path.5331.

http://dx.doi.org/10.1002/path.5331
http://dx.doi.org/10.1002/path.5331
http://dx.doi.org/10.1002/path.5331

C. Jansen, B. Lindequist, K. Strohmenger et al.

[2]

3]

[4

5

[6

17

[8

[9

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

B. Acs, M. Rantalainen,]. Hartman, Artificial intelligence as the next step
towards precision pathology, J. Internal Med. (2020) http://dx.doi.org/10.
1111/joim.13030.

F. Aeffner, M.D. Zarella, N. Buchbinder, M.M. Bui, M.R. Goodman, D.J.
Hartman, G.M. Lujan, M.A. Molani, A.V. Parwani, K. Lillard, O.C. Turner,
V.N.P. Vemuri, A.G. Yuil-Valdes, D. Bowman, Introduction to digital image
analysis in whole-slide imaging: a white paper from the digital pathology
association, J. Pathol. Inform. 10 (2019) http://dx.doi.org/10.4103/jpi.jpi_
82_18.

A. Echle, N.T. Rindtorff, TJ. Brinker, T. Luedde, A.T. Pearson, J.N. Kather,
Deep learning in cancer pathology: a new generation of clinical biomark-
ers, Br. J. Cancer 124 (2020) 686-691, http://dx.doi.org/10.1038/s41416-
020-01122-x.

A. Serag, A. lon-Margineanu, H. Qureshi, R. McMillan, M.-J. Saint Martin,
J. Diamond, P. O'Reilly, P. Hamilton, Translational Al and deep learning in
diagnostic pathology, Front. Med. 6 (2019) http://dx.doi.org/10.3389/fmed.
2019.00185.

C.L. Srinidhi, O. Ciga, A.L. Martel, Deep neural network models for com-
putational histopathology: A survey, Med. Image Anal. (2020) 101813,
http://dx.doi.org/10.1016/j.media.2020.101813.

H.R. Tizhoosh, L. Pantanowitz, Artificial intelligence and digital pathology:
Challenges and opportunities, J. Pathol. Inform. 9 (2018) http://dx.doi.org/
10.4103/jpi.jpi_53_18.

A. Homeyer, J. Lotz, L.O. Schwen, N. Weiss, D. Romberg, H. Hofener, N.
Zerbe, P. Hufnagl, Artificial intelligence in pathology: From prototype to
product, J. Pathol. Inform. 12 (13) (2021) 1-13, http://dx.doi.org/10.4103/
jpi.jpi_84_20.

K. Bera, K.A. Schalper, D.L. Rimm, V. Velcheti, A. Madabhushi, Artificial
intelligence in digital pathology—new tools for diagnosis and precision
oncology, Nature Rev. Clin. Cncol. 16 (11) (2019) 703-715, http://dx.doi.
0rg/10.1038/541571-019-0252-y.

D.J. Gross, W.S. Black-Schaffer, R.D. Hoffman, D.S. Karcher, E. Lopez Estrada,
S.J. Robboy, M.B. Cohen, The state of the job market for pathologists:
Evidence from the college of American pathologists practice leader survey,
Arch. Pathol. Lab. Med. 144 (4) (2020) 420-426, http://dx.doi.org/10.5858/
arpa.2019-0356-cp.

S.T.C. Wong, Is pathology prepared for the adoption of artificial intelli-
gence? Cancer Cytopathol. 126 (6) (2018) http://dx.doi.org/10.1002/cncy.
21994.

Philips, Philips IntelliSense Pathology Solutions, 2022, https://www.philips.
de/healthcare/resources/landing/philips-intellisite- pathology-solution, ac-
cessed: 2022-06-21.

Smart in Media AG, pathoZoom digitalLlab, 2022, https://www.
smartinmedia.com/pathozoom-digital-lab/, accessed: 2022-09-25.
VMscope, Digital Slide Suite, 2022, https://virtuelle-mikroskopie.de/dss/
mobilesuite.aspx, accessed: 2022-09-25.

Carl Zeiss AG, Zeiss Zen, 2022, https://www.zeiss.com/,
2022-06-21.

Carl Zeiss AG, Apeer, 2022, https://www.apeer.com/, accessed: 2022-06-21.
Indica Labs, HALO, 2022, https://indicalab.com/halo/, accessed: 2022-06-21.
Indica Labs, HALO Al, 2022, https://indicalab.com/halo-ai/, accessed:
2022-06-21.

Sectra, Sectra Digital Pathology Solutions, 2022, https://medical.sectra.
com/, accessed: 2022-06-21.

G. Vincke, et al, Cytomine, 2022, https://cytomine.com/, accessed:
2022-06-21.

M. Herrmann, D. Clunie, A. Fedorov, S. Doyle, S. Pieper, V. Klepeis, L. Le,
G. Mutter, D. Milstone, T. Schultz, R. Kikinis, G. Kotecha, D. Hwang, K.
Andriole, A. Iafrate, J. Brink, G. Boland, K. Dreyer, M. Michalski,]. Golden, D.
Louis,]. Lennerz, Implementing the DICOM standard for digital pathology,
J. Pathol. Inform. 9 (37) (2018) http://dx.doi.org/10.4103/jpi.jpi_42_18.

R. Singh, L. Chubb, L. Pantanowitz, A. Parwani, Standardization in digital
pathology: Supplement 145 of the DICOM standards, J. Pathol. Inform. 2
(23) (2011) http://dx.doi.org/10.4103/2153-3539.80719.

R. Lebre, R. Jesus, P. Nunes, C. Costa, Collaborative framework for a
whole-slide image viewer, in: 2019 IEEE 32nd International Symposium
on Computer-Based Medical Systems (CBMS), 2019, pp. 221-224, http:
//dx.doi.org/10.1109/CBMS.2019.00053.

B.W. Genereaux, D.K. Dennison, K. Ho, R. Horn, E.L. Silver, K. O'Donnell, C.E.
Kahn Jr., DICOMweb™: Background and application of the web standard
for medical imaging, J. Digital Imaging 31 (2018) 321-326, http://dx.doi.
0rg/10.1007/510278-018-0073-z.

Sectra, Sectra Amplifier Marketplace, 2022, https://medical.sectra.com/
product/sectra-amplifier-marketplace/, accessed: 2022-06-21.

Roche, Roche Digital Pathology Open Environment, 2022, https:
//diagnostics.roche.com/global/en/article-listing/roche-digital- pathology-
open-environment.html, accessed: 2022-06-21.

deepc, deepcOS, 2022, https://www.deepc.ai/, accessed: 2022-06-21.
EMPAIA Consortium, EMPAIA, 2022, https://www.empaia.org/, accessed:
2022-09-28.

accessed:

223

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]

[46]
[47]

[48]

[49]
[50]
[51]
[52]
[53]

[54]

[55]

[56]

Future Generation Computer Systems 140 (2023) 209-224

C. Jansen, K. Strohmenger, D. Romberg, T. Kiister, N. Weiss, B. Lindequist,
M. Franz, A. Homeyer, N. Zerbe, The EMPAIA Platform: Vendor-neutral
integration of Al applications into digital pathology infrastructures, in:
2022 22nd International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2022, http://dx.doi.org/10.1109/CCGrid54584.2022.00124.

D. Romberg, K. Strohmenger, C. Jansen, T. Kiister, N. Weiss, C. GeiRler,
T. Sottysiriski, M. Takla, P. Hufnagl, N. Zerbe, A. Homeyer, EMPAIA app
interface: An open and vendor-neutral interface for Al applications in
pathology, Comput. Methods Programs Biomed. 215 (2022) 106596, http:
//dx.doi.org/10.1016/j.cmpb.2021.106596.

OpenAPI Initiative, OpenAPI Specification, 2022, https://spec.openapis.org/
oas/latest, accessed: 2022-09-26.

EMPAIA Consortium, EMPAIA Developer Portal, 2022, https://developer.
empaia.org/, accessed: 2022-09-28.

D. Hardt, The OAuth 2.0 Authorization Framework, 2012, http://dx.doi.org/
10.17487|RFC6749, RFC 6749.

L. Pantanowitz, P.N. Valenstein, AJ. Evans, KJ. Kaplan,].D. Pfeifer, D.C.
Wilbur, L.C. Collins, T.J. Colgan, Review of the current state of whole slide
imaging in pathology, J. Pathol. Inform. 2 (36) (2011) http://dx.doi.org/10.
4103/2153-3539.83746.

P. Bankhead, M.B. Loughrey, J.A. Fernindez, Y. Dombrowski, D.G. McArt,
P.D. Dunne, S. McQuaid, RT. Gray, LJ. Murray, H.G. Coleman, J.A. James,
M. Salto-Tellez, P.W. Hamilton, QuPath: Open source software for digital
pathology image analysis, Sci. Rep. 7 (1) (2017) 1-7, http://dx.doi.org/10.
1038/s41598-017-17204-5.

A. Goode, B. Gilbert, J. Harkes, D. Jukic, M. Satyanarayanan, OpenSlide: A
vendor-neutral software foundation for digital pathology,]J. Pathol. Inform.
4 (2013) http://dx.doi.org/10.4103/2153-3539.119005.

D.A. Clunie, DICOM format and protocol standardization—A core require-
ment for digital pathology success, Toxicol. Pathol. 4 (49) (2020) http:
//dx.doi.org/10.1177/0192623320965893.

IMI-BigPicture, wsidicom, 2022, https://github.com/imi-bigpicture/
wsidicom, accessed: 2022-06-21.

IMI-BigPicture, wsidicomizer, 2022, https://github.com/imi-bigpicture/
wsidicomizer, accessed: 2022-06-21.

Google Cloud Healthcare API, Using the Cloud Healthcare API for dig-
ital pathology, 2022, https://cloud.google.com/healthcare-api/docs/how-
tos/dicom-digital-pathology, accessed: 2022-06-21.

S. Ramirez, et al., FastAPl, 2022, https://fastapi.tiangolo.com/, accessed:
2022-06-21.

A. Godwin, et al., Asynchronous Server Gateway Interface, 2022, https:
|/asgi.readthedocs.io/, accessed: 2022-06-21.

T. Christie, et al., Uvicorn, 2022, https://www.uvicorn.org/, accessed:
2022-06-21.

A. Svetlov, et al, AioHttp, 2022, https://docs.aiohttp.org/, accessed:
2022-06-21.

Open Container Initiative, OCI Image Format Specification, 2022, https:
//github.com/opencontainers/image-spec, accessed: 2022-06-21.

Docker, Docker, 2022, https://docs.docker.com/, accessed: 2022-06-21.
The Kubernetes Authors, Kubernetes, 2022, https://kubernetes.io/, ac-
cessed: 2022-06-28.

H. Ed-Douibi, J.L. Canovas Izquierdo,]. Cabot, OpenAPItoUML: a tool to gen-
erate UML models from OpenAPI definitions, in: International Conference
on Web Engineering ICWE 2018, in: Lecture Notes in Computer Science,
vol. 10845, Springer, 2018, pp. 487-491, http://dx.doi.org/10.1007/978-3-
319-91662-0_41.

LF. Planella Gonzalez, et al., Angular OpenAPI 3 code generator, 2022,
https://www.npmjs.com/package/ng-openapi-gen/, accessed: 2022-06-21.
M. Jones,]. Bradley, N. Sakimura, JSON Web Token (JWT), 2015, http:
//dx.doi.org/10.17487/RFC7519, RFC 7519.

EMPAIA Consortium, EMPAIA App Test Suite, 2022, https://gitlab.com/
empaia/integration/empaia-app-test-suite, accessed: 2022-09-28.

EMPAIA Consortium, EMPAIA Open Source Software Repositories, 2022,
https://gitlab.com/empaia/, accessed: 2022-06-21.

Philips, Philips Pathology SDK, 2022, https://www.usa.philips.com/
healthcare/sites/pathology/about/sdk/, accessed: 2022-06-21.

T. Evans, C.O. Retzlaff, C. GeiBler, M. Kargl, M. Plass, H. Miiller, T.-R.
Kiehl, N. Zerbe, A. Holzinger, The explainability paradox: Challenges for
XAl in digital pathology, Future Gener. Comput. Syst. 133 (2022) 281-296,
http://dx.doi.org/10.1016/j.future.2022.03.009.

Regulation (EU) 2017/746 of the European parliament and of the council
of 5 april 2017 on in vitro diagnostic medical devices and repealing
directive 98/79/EC and commission decision 2010/227/EU, 2017, pp. 176-
332, OJ L 117. URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:32017R0746.

21 CER. § 822, 2022, https://[www.ecfr.gov/current/title-21/chapter-I/
subchapter-H/part-822.

http://dx.doi.org/10.1111/joim.13030
http://dx.doi.org/10.1111/joim.13030
http://dx.doi.org/10.1111/joim.13030
http://dx.doi.org/10.4103/jpi.jpi_82_18
http://dx.doi.org/10.4103/jpi.jpi_82_18
http://dx.doi.org/10.4103/jpi.jpi_82_18
http://dx.doi.org/10.1038/s41416-020-01122-x
http://dx.doi.org/10.1038/s41416-020-01122-x
http://dx.doi.org/10.1038/s41416-020-01122-x
http://dx.doi.org/10.3389/fmed.2019.00185
http://dx.doi.org/10.3389/fmed.2019.00185
http://dx.doi.org/10.3389/fmed.2019.00185
http://dx.doi.org/10.1016/j.media.2020.101813
http://dx.doi.org/10.4103/jpi.jpi_53_18
http://dx.doi.org/10.4103/jpi.jpi_53_18
http://dx.doi.org/10.4103/jpi.jpi_53_18
http://dx.doi.org/10.4103/jpi.jpi_84_20
http://dx.doi.org/10.4103/jpi.jpi_84_20
http://dx.doi.org/10.4103/jpi.jpi_84_20
http://dx.doi.org/10.1038/s41571-019-0252-y
http://dx.doi.org/10.1038/s41571-019-0252-y
http://dx.doi.org/10.1038/s41571-019-0252-y
http://dx.doi.org/10.5858/arpa.2019-0356-cp
http://dx.doi.org/10.5858/arpa.2019-0356-cp
http://dx.doi.org/10.5858/arpa.2019-0356-cp
http://dx.doi.org/10.1002/cncy.21994
http://dx.doi.org/10.1002/cncy.21994
http://dx.doi.org/10.1002/cncy.21994
https://www.philips.de/healthcare/resources/landing/philips-intellisite-pathology-solution
https://www.philips.de/healthcare/resources/landing/philips-intellisite-pathology-solution
https://www.philips.de/healthcare/resources/landing/philips-intellisite-pathology-solution
https://www.smartinmedia.com/pathozoom-digital-lab/
https://www.smartinmedia.com/pathozoom-digital-lab/
https://www.smartinmedia.com/pathozoom-digital-lab/
https://virtuelle-mikroskopie.de/dss/mobilesuite.aspx
https://virtuelle-mikroskopie.de/dss/mobilesuite.aspx
https://virtuelle-mikroskopie.de/dss/mobilesuite.aspx
https://www.zeiss.com/
https://www.apeer.com/
https://indicalab.com/halo/
https://indicalab.com/halo-ai/
https://medical.sectra.com/
https://medical.sectra.com/
https://medical.sectra.com/
https://cytomine.com/
http://dx.doi.org/10.4103/jpi.jpi_42_18
http://dx.doi.org/10.4103/2153-3539.80719
http://dx.doi.org/10.1109/CBMS.2019.00053
http://dx.doi.org/10.1109/CBMS.2019.00053
http://dx.doi.org/10.1109/CBMS.2019.00053
http://dx.doi.org/10.1007/s10278-018-0073-z
http://dx.doi.org/10.1007/s10278-018-0073-z
http://dx.doi.org/10.1007/s10278-018-0073-z
https://medical.sectra.com/product/sectra-amplifier-marketplace/
https://medical.sectra.com/product/sectra-amplifier-marketplace/
https://medical.sectra.com/product/sectra-amplifier-marketplace/
https://diagnostics.roche.com/global/en/article-listing/roche-digital-pathology-open-environment.html
https://diagnostics.roche.com/global/en/article-listing/roche-digital-pathology-open-environment.html
https://diagnostics.roche.com/global/en/article-listing/roche-digital-pathology-open-environment.html
https://diagnostics.roche.com/global/en/article-listing/roche-digital-pathology-open-environment.html
https://diagnostics.roche.com/global/en/article-listing/roche-digital-pathology-open-environment.html
https://www.deepc.ai/
https://www.empaia.org/
http://dx.doi.org/10.1109/CCGrid54584.2022.00124
http://dx.doi.org/10.1016/j.cmpb.2021.106596
http://dx.doi.org/10.1016/j.cmpb.2021.106596
http://dx.doi.org/10.1016/j.cmpb.2021.106596
https://spec.openapis.org/oas/latest
https://spec.openapis.org/oas/latest
https://spec.openapis.org/oas/latest
https://developer.empaia.org/
https://developer.empaia.org/
https://developer.empaia.org/
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.4103/2153-3539.83746
http://dx.doi.org/10.4103/2153-3539.83746
http://dx.doi.org/10.4103/2153-3539.83746
http://dx.doi.org/10.1038/s41598-017-17204-5
http://dx.doi.org/10.1038/s41598-017-17204-5
http://dx.doi.org/10.1038/s41598-017-17204-5
http://dx.doi.org/10.4103/2153-3539.119005
http://dx.doi.org/10.1177/0192623320965893
http://dx.doi.org/10.1177/0192623320965893
http://dx.doi.org/10.1177/0192623320965893
https://github.com/imi-bigpicture/wsidicom
https://github.com/imi-bigpicture/wsidicom
https://github.com/imi-bigpicture/wsidicom
https://github.com/imi-bigpicture/wsidicomizer
https://github.com/imi-bigpicture/wsidicomizer
https://github.com/imi-bigpicture/wsidicomizer
https://cloud.google.com/healthcare-api/docs/how-tos/dicom-digital-pathology
https://cloud.google.com/healthcare-api/docs/how-tos/dicom-digital-pathology
https://cloud.google.com/healthcare-api/docs/how-tos/dicom-digital-pathology
https://fastapi.tiangolo.com/
https://asgi.readthedocs.io/
https://asgi.readthedocs.io/
https://asgi.readthedocs.io/
https://www.uvicorn.org/
https://docs.aiohttp.org/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://docs.docker.com/
https://kubernetes.io/
http://dx.doi.org/10.1007/978-3-319-91662-0_41
http://dx.doi.org/10.1007/978-3-319-91662-0_41
http://dx.doi.org/10.1007/978-3-319-91662-0_41
https://www.npmjs.com/package/ng-openapi-gen/
http://dx.doi.org/10.17487/RFC7519
http://dx.doi.org/10.17487/RFC7519
http://dx.doi.org/10.17487/RFC7519
https://gitlab.com/empaia/integration/empaia-app-test-suite
https://gitlab.com/empaia/integration/empaia-app-test-suite
https://gitlab.com/empaia/integration/empaia-app-test-suite
https://gitlab.com/empaia/
https://www.usa.philips.com/healthcare/sites/pathology/about/sdk/
https://www.usa.philips.com/healthcare/sites/pathology/about/sdk/
https://www.usa.philips.com/healthcare/sites/pathology/about/sdk/
http://dx.doi.org/10.1016/j.future.2022.03.009
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0746
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0746
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0746
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-822
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-822
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-822

C. Jansen, B. Lindequist, K. Strohmenger et al.

Christoph Jansen acquired his master’s degree in com-
puter science with a specialization in visual computing
at the HTW Berlin in 2015 and acquired his doctoral
degree in medical sciences at Charité Berlin in 2020.
He has worked in several research projects focusing
on compute infrastructures and explainable machine
learning methods in sleep medicine. Since 2020 he is
the lead software architect in the EMPAIA project at
the Institute of Pathology at Charité Berlin.

Bjorn Lindequist acquired his master’s degree in Ap-
plied Computer Science at the HTW Berlin in 2014.
Afterwards, he was a research assistant at the Institute
of Pathology at Charité Berlin and HTW in the field of
biobanking, digital image processing and classification.
Since 2020, he is a research assistant at the Charité
Berlin in the context of the EMPAIA project, with a
focus on data management, platform and web service
development.

Klaus Strohmenger acquired his master’s degree in
Applied Computer Science at the HTW Berlin in 2018.
Afterwards, he was a research assistant at the HTW
in the field of machine and deep learning. Since 2021,
he is a research assistant at the Charité Berlin in the
context of the EMPAIA project, with a focus on artificial
intelligence for medical image processing and platform
development.

Daniel Romberg received his diploma in computer
science from the University of Liibeck, in 2010. He
then joined Fraunhofer MEVIS as a research software
engineer with a focus on real-time image processing
and asynchronous operations for medical products. His
current research interests include cloud computing,
API usability and framework design. In the EMPAIA
project, he focuses on the App interface, client-side
anonymization of whole-slide images and conceptual
development.

Tobias Kiister has obtained his diploma in computer
science in 2007 at TU Berlin, and his doctoral degree
in 2017. He is currently heading the competence cen-
ter “Agent Core Technologies” (ACT) at DAI-Labor, TU
Berlin, and has worked in different research projects
on multi-agent systems, process modeling, and the
optimization of industrial processes and schedules. In
the EMPAIA project, he is primarily working on services
for managing and executing individual app executions.

Nick Weiss received his master’s degree in Medical
Engineering Science from the University of Liibeck,
in 2014. Afterwards, he joined Fraunhofer MEVIS in
Liibeck, Germany, as software engineer with focus
on image registration and computational pathology.
Within EMPAIA, he is primarily working on data
management, platform and web service development.

224

Future Generation Computer Systems 140 (2023) 209-224

Michael Franz has obtained his master’s degree in
Applied Computer Science at the HTW Berlin in 2020
and subsequently started working as a software de-
veloper at the Charité Berlin. The main focus of his
research are medical image formats, image registration
and 3D visualization. Within the EMPAIA project he
maintains various medical data services and works on
the integration of the EMPAIA marketplace.

Lars Ole Schwen received his diploma in Technomath-
ematics from University of Duisburg-Essen in 2005, and
his doctoral degree in Mathematics from University
of Bonn in 2010. Since then, he has been a scientist
at Fraunhofer MEVIS in Bremen, Germany, working
in the fields of modeling and simulation in systems
biology as well as data science and artificial intelligence
in computational pathology. Within EMPAIA, he has
mostly worked on data science topics.

Theodore Evans obtained his M.Phys. degree in Physics
from the University of Manchester, with a focus on
theoretical physics and information theory. He has a
PGCE in Secondary Education from the University of
Sussex and is a qualified science teacher. Since 2020
he has conducted research as part of EMPAIA into
computer vision and explainable Al for the medical
imaging domain at the Distributed Al Laboratory, TU
Berlin.

André Homeyer is a principal scientist at Fraunhofer
MEVIS, Bremen. He received a Ph.D. in computer sci-
ence from the University of Bremen. Since 2008, he has
been conducting research in the field of computational
pathology. His research interests include applications
of machine learning and data analytics in biomedicine,
with a current focus on technology transfer.

Norman Zerbe holds a Computer Science degree from
the University of Applied Sciences Berlin. He is Head of
Digital Pathology Research at the Institute of Pathology
at Charité. He was co-organizer of several Interna-
tional Scanner Contests that assessed and validated the
performance and quality of WSI scanners. Norman is
President of the European Society of Digital and Inte-
grative Pathology (ESDIP) and chair of the Informatics,
Digital Pathology and Biobanking WG of the German
Society of Pathology (DGP). Moreover, he actively con-
tributes to standardization and interoperability efforts

within the DICOM WG-26 as well as in the IHE PaLM WG.

	The vendor-agnostic EMPAIA platform for integrating AI applications into digital pathology infrastructures
	Introduction
	State of the art
	Related work
	Contribution
	Use cases and requirements

	Methods
	Core technologies
	Whole Slide Images
	Software and tools
	OpenAPI
	OAuth2

	Service architecture
	Global API
	Medical Data API
	Workbench API
	Compute API
	App API

	Authentication and authorization
	Service development
	App development
	App catalog

	Results
	Use case 1: pathologists using apps
	Use case 2: registering organizations and users
	Use case 3: displaying available apps
	Deployment
	Integration
	Evaluation of data throughput performance when accessing image data

	Discussion
	Achievements
	Limitations
	Outlook

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix A. Full list of EMPAIA platform use cases
	Appendix B. HTTP request sequence of a simple AI app
	Appendix C. Evaluation of data throughput performance when accessing image data
	Test Setup
	Test Results

	References

