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Abstract

Next-generation sequencing has emerged as the method of choice to answer fundamental questions in
biology. The massively parallel sequencing technology for RNA-Seq analysis enables better understanding
of gene expression patterns in model and nonmodel organisms. Sequencing per se has reached the stage of
commodity level while analyzing and interpreting huge amount of data has been a significant challenge.
This chapter is aimed at discussing the complexities involved in sequencing and analysis, and tries to simplify
sequencing based gene expression analysis. Biologists and experimental scientists were kept in mind while
discussing the methods and analysis workflow.
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1 Introduction

The next-generation sequencing (NGS) or high throughput DNA
sequencing methods have emerged as central to answering funda-
mental biological questions on a genome wide scale, setting forth a
revolution in biology. Since the invention of DNA sequencing, the
technique has proven vital for studying the genome organization,
stability and in turn molecular understanding of traits and diseases.
The technical superiority of NGS makes it an excellent first step
analysis choice to answer fundamental questions in modern biology
[1]. Applications of NGS include genome sequencing, gene expres-
sion and epigenome analysis [2]. Molecular level comparison
between species aided by NGS-based genome decoding facilitated
better understanding of tree of life. The knowledge of gene conser-
vation across species is providing insights to the molecular mechan-
isms of gene regulation.

RNA sequencing (RNA-Seq) is emerging as a standard research
tool to address basic questions in biology such as cell cycle regula-
tion, division, and divergence. RNA-Seq is superior to microarray
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because it does not require prior sequence information of the
organism and expression can be digitally quantified; it also detects
the splicing patterns and posttranscriptional modifications [3].
RNA-Seq can be used to analyze the whole transcriptome, includ-
ing mRNA, ncRNA, and smallRNA, and it has facilitated gene
regulation profiling of nonmodel organisms like never before [4].

RNA-Seq can be performed using different NGS technologies
such as pyrosequencing (Roche), sequencing by synthesis (Illu-
mina), semiconductor sequencing (Ion torrent), single molecule
real-time sequencing (Pacific Biosciences), and nanopore sequenc-
ing (Oxford nanopore). However, Illumina’s sequencing by syn-
thesis technique is widely used for RNA-Seq because of the data
quantity requirements [5].

2 Methods

The NGS work flow can be broadly divided in to three major parts
viz. (1) Library preparation, (2) Sequencing, and (3) Data analysis.
Each of these parts includes different steps depending on the
research questions to be answered.

2.1 RNA-Seq Library

Preparation

Irrespective of the NGS technology, the first part in RNA-Seq
experiment is library generation, which depends on the fraction of
RNA (mRNA, smallRNA, transcriptome) to be investigated. Vari-
ous commercial library preparation kits are available for different
RNA-Seq applications. With the discovery of regulatory RNAs like
small RNAs, microRNAs and long-noncoding RNAs (sRNA,
miRNA, and lncRNA), recent RNA-Seq experiment are targeted
towards whole transcriptomes; which can be used to quantitate
mRNA and lncRNA transcripts.

First step of whole transcriptome library prep is depletion of
rRNA since it constitutes 90–95% of cellular RNA content. Due to
probe based design, efficiency of commercial rRNA depletion kits
varies depending on the species. Irrespective of the kit used, 5–10%
of the sequencing data would still contain rRNA reads. If an experi-
ment’s aim is to study the expression profile of protein coding
genes/transcripts, enriching poly-A tail RNA molecules
(in eukaryotes) is a flexible option.

The quality and quantity of the starting material is important to
generate good sequencing libraries. Since library preparation is
adapter ligation based, it is essential to quantify the sample accu-
rately using a RNA binding dye and degradation of RNA should be
checked on gel or using a fragment analysis method such as Caliper
LabChip or Agilent Bioanalyzer.

Most of the commercially available kits include the following
steps in RNA library preparation from mRNA or rRNA depleted
samples.
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1. Chemical fragmentation of RNA

RNA will be randomly fragmented by utilizing divalent cations
(Mg2+) and heat (~95 �C).

2. First stand cDNA synthesis

Random oligos (hexamers) are used to prime the reverse
transcription.

3. Second Strand synthesis

Depending on the requirement, the reaction mixture compo-
nents would vary. For directional library preparation, dUTPs
are used instead dTTPs, enabling quenching of second strand
during library enrichment to retain strand information of RNA.
(The strand information is utilized to discriminating transcript
reads in genomic regions where both strands transcribe to
generate different transcripts.)

4. Ligate adapters

The partial/full sequencing adapters are ligated in this step.
When the full adapters are used, independent indexed (bar-
code) adapters are used for each sample.

5. Size selection

Depending on the sequencing technology to be used, the size
of the library may vary. For example for Illumina sequencing
the recommended size is (300–500 nt), whereas 454 platform
is known to generate longer reads (800–1000 nt).

6. Enrichment PCR

Fragments with adapters on both the ends are enriched by
PCR. The number of PCR cycles should be optimized depend-
ing on the input RNA quantity because increasing PCR cycles
causes excessive PCR duplicates in the sequence data.

7. Quantity and quality check of library

It is essential to check the size distribution of the library using
Bioanalyzer as it is vital to calculate the molarity of the library.
The Library quantity should be measured with the use of
fluorescent dye based assay.

The smallRNA library preparation requires a different approach
because of the size of these molecules (20–32 nt). Total RNA
(100 ng–1 μg) or enriched small RNA (20–50 ng) would be used
with protocols which leverage the presence of 50 phosphate and 30

OH in mature miRNA to ligate smallRNA specific adapters. The
following steps are part of the small RNA library preparation

1. Ligate adapter(s)

The adapter(s) will be ligated to the smallRNA considering that
only mature miRNAs contain 50 phosphate and 30 OH and
hence adaptor(s) will only be ligated to those molecules.

High Throughput Sequencing-Based Approaches for Gene Expression Analysis 301



2. Reverse transcription

The smallRNA ligated with adapter(s) will be reverse-
transcribed using complementary adapter oligos.

3. Enrich library

Adapter ligated smallRNA molecules are enriched by PCR.

4. Size selection

It is essential to size select the smallRNA library because of its
proximity with the adaptor dimers (~137 nt). Polyacrylamide
gels are used to excise the smallRNA library (~145 nt) to avoid
primer and primer dimer contamination.

5. Quality and quantity check
It is essential to check the size distribution of the library using
Bioanalyzer as it is vital to calculate the molarity of the library.
Library quantity should be measured with the use of fluores-
cent dye based assay.

The sequence data quality and experiment results are depen-
dent on the quality of the library hence it is essential to generate and
QC the sequencing library adhering to recommendations of the
sequencing technology provider.

Some important considerations for library preparation

1. Target RNA fraction

Depending on the RNA fraction to be studied, a suitable
protocol should be selected. If information of transcription
strand is important, stranded/directional RNA library kits
should be used. Similarly, if the aim is to study small or
miRNA an appropriate kit for smallRNA library preparation
should be used.

2. Quality of RNA

Samples with RNA integrity number (RIN) 7 or more,
OD260/280 and OD260/230 close to 2 generate good quality
libraries. In case of FFPE samples it is prudent to follow the kit
recommendations for RNA QC.

3. Quantity check

Always use fluorescent dye based assay to quantitate RNA and
library. Most of the commercially available library preparation
methods require 10 ng–1 μg of RNA as starting material but if
sample quantity is not a limitation it is better to start with at
least 100 ng of RNA. Elute/dissolve RNA in 30–50 μL of low
TE buffer.

4. Barcoding/Indexing

For multiplexing, libraries must be indexed with appropriate
barcodes and while pooling compatibility of barcodes must be
checked to avoid data loss or contamination.
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5. Handling

Standard laboratory practices for RNA handling like use of
dedicated RNA working area, RNAse/nuclease-free plastic-
ware, water, RNAse inhibitor, barrier pipette tips, and enzyme
aliquots to avoid freeze–thaw cycles should be followed. To
avoid carryover contamination pre- and post-PCR areas should
be separated.

2.2 Sequencing To reap best results from NGS data, one should design the experi-
ment appropriately. Any biological experiment without replicates
could not deliver insightful results, and the same is applicable to
RNA-Seq experiments as well. Most of the studies generate large
number of reads per sample for an experimental condition, how-
ever, increasing number of reads may not provide articulate results
[6, 7]. The ENCODE consortium in 2011 [8] set up guidelines for
RNA-Seq experiments with regard to the number of reads, read
length, biological replicates for differential gene expression analysis.

2.2.1 Important

Considerations for

Sequence Data Generation

1. Single or Paired end reads

With reduction in the cost of sequencing data generation, most
researchers are opting for paired end reads because of superior
mapping potential of paired end reads. However, single end
reads can still be used in model organisms when cost is a
limitation.

2. Read length

Using current sequence aligners, even short reads (<50 nt) can
be mapped accurately for a model organism. For nonmodel
organisms or organisms with repetitive regions in the genomes,
100 bp or longer reads will increase the mappability. Similarly,
de novo RNA-Seq experiments require paired reads to generate
longer contigs and scaffolds.

3. Number of replicates

At minimum, triplicates are recommended for each experimen-
tal condition. If high variability between replicates is expected,
then increasing the number of replicates would provide better
results.

4. Number of reads

In a differential expression analyses, RNA-Seq data is consid-
ered for tag-counting. If the experiment’s goal is to identify
differential expression of highly expressing transcripts in a
model organism, 20–30 million paired reads would deliver
the results [9, 10]. If the aim is to study the low expressed
transcripts, then ~100 million reads or more would be needed.
On the other hand, de novo RNA-Seq requires relatively more
reads to generate an optimal transcriptome assembly. To deter-
mine the number of reads required, one can perform saturation
analysis.
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2.3 Data Analysis The sequence data should be filtered based on quality and further
analyzed to generate interpretable results.Many biological research-
ers are not or vaguely familiar with theNGS data analysis workflows,
causing delay in interpreting results. Since most of the analysis
programs are command line applications, may researchers face diffi-
culty in using them, and hence, in this chapter we discuss the data
analysis process in a step-by-stepmanner (Fig. 1) using example data
sets. To make the data analysis simple, we start with using Galaxy
platform [11] and gradually migrate to command line tools.

2.4 Data Format To analyze any data, one should be familiar with format of the data.
In NGS, most widely used raw read data format is FASTQ; these
files contain read name, read sequence, and quality value (of each
base) of the read. A single fastq file can contain billions of reads.
Once the sequencing run is completed the data will be demulti-
plexed to separate sample-specific reads and generate respective
fastq files. If the data is not demultiplexed, we need to use some
software utilities to demultiplex such files. A paired end sequence
information is stored in two fastq files, one for forward (left)
another for reverse (right). We will discuss about other formats of
data as we proceed with the analysis.

2.5 Data Quality

Check

Due to vast amounts of the data, it is practically impossible to check
quality of each base present in fastq file(s). Summarized quality para-
meters like quality value, read length, base distribution across the
reads, and presence of adapter sequences and duplicated sequences
would provide overall information of data quality. To understand
these parameters, we need to understand what they represent.

Quality value: The logarithmic probability of base calling error
(Q¼�log10 P) [12]. To put it in perspective,Q value 30 means the
probability of the base (nucleotide) being wrongly called is 0.001
and Q value 20 means probability of the base being wrongly called
0.01.

Fig. 1 Reference-based RNAseq data analysis workflow
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Read length distribution: percent of reads with their respective
lengths.

Nucleotide distribution: It visualizes how A, T, G, C are
distributed across all the reads at a nucleotide position. If all the
reads have same nucleotide at a given position it could be a
sequencing artifact. If all the reads have same sequence towards
their 30 end it could be adapter sequence.

Read Duplication: Few sequences representing majority of the
data indicates presence of rRNA contamination or PCR duplicates.

Since we know data format and which quality parameters to
check, let us analyze an example data set containing four fastq files.
This data is generated by sequencing a paired end stranded library
using Illumina HiSeq platform.

2.5.1 Practice To practice this data analysis, a computer with 4–8 GB RAM,
100 GB disk space and quad core processor is required. All the
analyses mentioned in this chapter are performed on a MacBook
Air. These analyses can also be performed using any computer with
Unix-based Operating System (like Linux, Biolinux [13], Ubuntu,
RHL, Fedora, and Linux Mint) or virtual drive with any Linux
distribution. It is essential, to know the administrator/root pass-
word of the computer to install few software used in this chapter.
We use Linuxbrew to install most of the applications utilized in this
chapter. An Internet connection is a must for installing applica-
tions. Read every message shown at command prompt (terminal) as
it will help in understanding the cause of error. Most of the time
errors are caused due to spelling mistakes.

2.6 Install Few

Helpful Software

Follow the links given below to install Git and Linuxbrew.

1. Installing Git

https://git-scm.com/book/en/v2/Getting-
Started-Installing-Git

2. Brew or Linuxbrew

http://linuxbrew.sh/(For Linux)
http://brew.sh/ (For Mac)
Check installation of brew by typing
brew install hisat2 to install hisat2 aligner.

3. Install Galaxy Platform (In Biolinux Galaxy is preinstalled)

Go to Galaxy project using the following link and check how to
install latest version.
https://new.Galaxyproject.org/admin/get-Galaxy/
To get Galaxy, check for a command line like below.

git clone -b release_16.10 https://github.com/Galaxypro-

ject/Galaxy.git
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Copy and paste the “git clone” command in terminal and press
enter to download Galaxy into “galaxy” folder. Once the
download is complete, from the same terminal window go to
Galaxy folder by typing cd galaxy and start Galaxy by typing
sh run.sh

Starting Galaxy for the first instance will take a bit long
time as it requires to set up the environment and acquire some
programs. Once the setup completes we can see an http link
like below at the end of the terminal. The link is used to access
locally installed Galaxy platform.

serving on http://127.0.0.1:8080

Copy the local Galaxy http link and paste it in chrome or
Firefox web browser (Fig. 2). Create an account by clicking
on “user” and providing email and password. Now we need to
assign Galaxy administrator rights to the user we have
registered.

Close the web browser and stop Galaxy by pressing
“control+c” in the terminal where Galaxy is running. Now
go to “config” folder located in galaxy folder and find “galaxy.
ini” file. If the file does not exist, you can copy it from the
sample “galaxy.ini.sample”. Open the file using a text editor
and search for “#admin_users ¼” add the registered email
after “¼” and delete the “#” from the line. Save the “galaxy.ini”
file after modifications. Now restart the Galaxy from the com-
mand line (terminal) by typing
sh run.sh

Fig. 2 Galaxy home page
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Open Galaxy in web browser and login with the email and
password. Now we have an active “admin” option. This
admin option is crucial to install any tool required for the
analysis.

4. Install tools in Galaxy (Fig. 3)

(a) Click on “admin.”

(b) On the left click on “Search Tool Shed.”

(c) Click on “Main Galaxy Tools Shed.”

(d) Galaxy provides list of application categories, clicking on
any of these categories will provide list of applications
available for that category. To search a specific applica-
tion/program we need to use name of that application in
search bar.

Fig. 3 Installing Galaxy tools
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For data QC, most widely used application is FastQC. Try to
install it by your own (for help visit https://wiki.galaxyproject.org/
Learn).

2.6.1 Quality Check

Using FastQC

Since we have installed FastQC [14] tool in Galaxy, we will use it to
check the quality of our data.

1. Open Galaxy in web browser.

2. Import data into Galaxy by clicking on “Get Data” or .

3. Click on FastQC from your installed tools (use top left search
bar).

4. Select multiple datasets option ( ) and select all the files.

5. Click execute and wait for the process to complete.

6. Once the analysis is complete please check the “webpage”
output (in the history panel on left side) by clicking on eye
icon ( ). Check quality parameters of all four fastq files.

2.6.2 Trimming and

Filtering

Although the overall data looks acceptable we need to remove
adapter sequences and low quality bases (Q < 20) from the ends
of the reads using “Trim Galore!” [15]. Install Trim Galore in
galaxy and quality-filter the data by using default parameters, paired
end, and universal Illumina adaptor option (you may need to
change the data type of files to “fastqsanger”). Once the trimming
and filtering is complete, check the quality of the trimmed data
using FastQC tool. Now our data is ready to be used for further
analysis. Save these QC filtered fastq files to an analysis folder.

2.7 Getting

Reference Sequence

Obtaining a genome version with proper annotations of exon,
transcript, gene symbol, name, ontology, etc. is crucial for
reference-based RNA-Seq data analysis. The annotation informa-
tion of a genome is stored in a separate file in specific format. There
are two widely used file formats for annotation: (1). GFF and
(2) GTF; most of the applications used in RNA-Seq analysis
would accept both of these formats. The Ensembl data base pro-
vides well annotated genomes for most of the sequenced organisms
but for some organisms, dedicated web resources are available,
which are more frequently updated as compared to ensemble data-
base. For example, most widely used Rice genome (Oryza sativa
japonica) is maintained by MSU Rice Genome Annotation Project
team (http://rice.plantbiology.msu.edu/). Similarly PlasmoDB
[16] maintains well-annotated genomes of different Plasmodium
strains. A literature search before downloading a reference genome
would help in obtaining a good annotated genome.

2.7.1 Practice Since our data is from Human samples, check for different versions
of genomes available and download GRCh 37 version genome
(fasta file) and annotation file (.GTF).
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2.8 Indexing the

Genome

The RNA-Seq reads can be mapped to transcriptome; nonetheless,
even for well-studied species such as human, we still do not know
all transcripts, hence mapping the reads to the genome enables
identification of novel transcripts and estimate their expression
levels. Aligning reads to genome means, comparing the reads to
the reference genome and finding a best match for each read but,
NGS data contains billions of reads and mapping each read to the
genome in a convectional manner (BLAST) requires humongous
computational power and time. To answer this issue most NGS
read mapping algorithms use Burrows–Wheeler transform (BWT),
also known as block-sorting compression. In this approach the
reference sequence will be transformed into small chunks of quick
search compatible format which enable faster alignment of reads to
the genome and this is know as “indexing”.

2.8.1 Practice We have our quality filtered raw sequence data and well annotated
genome, now we are ready to map (align) our sequence reads to the
genome. Rename the genome and annotation files to
“human_grch37.fasta” and “human_grch37.gtf” respectively and
copy them to the analysis folder (the folder where our QC filtered
fastq files were saved). Open a terminal window and change the
directory to our analysis folder using command cd. The read
mapping algorithm for RNA-Seq should be selected based on
their ability to map reads generated from different splice forms of
genes. In this chapter we use HISAT2 [17] due to its speed and low
memory requirement.

Index the genome by typing the following command in
terminal.

hisat2-build –t 2 human_grch37.fasta human_grch37

–t to specify number of processor cores to be used.
This command will generate multiple files with “.ht2” exten-

sion. The indexing process will take considerable time (~1–2 h) on
a laptop depending on the configuration. We can generate refer-
ence index on any of the high end systems and copy it to any other
computer. You may also try indexing the genome using Galaxy by
installing HISAT2 tool.

2.9 Aligning Reads Once genome is indexed, read mapping is straight forward, as most
of the algorithms work fine with the default parameters. However,
depending on the genome and NGS data, fine-tuning read
mapping by altering few parameters may improve overall results.
Sometimes comparing different algorithms would provide better
insight into the results.

2.9.1 Practice Rename the quality filtered fastq files for better understanding and
tracking purpose to “trimmed_normal_1.fastq”, “trimmed_nor-
mal_2.fastq”, “trimmed_tumor_1.fastq,” and “trimmed_tumor_2.

High Throughput Sequencing-Based Approaches for Gene Expression Analysis 309



fastq”. To start alignment, type the following command in the
terminal window.

hisat2 -p 4 --rna-strandness RF --dta -x human_grch37 -1

trimmed_normal_1.fastq -2 trimmerd_normal_2.fastq -S normal.

sam

-p is to specify number of processors to use

--rna-strandness specifies whether the library is strand specific
or not since our data was generated using stranded library we
use RF.

--dta enables reporting of alignments that can be used to identify
novel transcripts.

-x to specify the base name of index files

-1 forward (left) reads file

-2 reverse (right) reads file

-S out put alignment file in SAM format.

Once the alignment is complete the following message will be
shown in the terminal.

454369 reads; of these:

454369 (100.00%) were paired; of these:

5533 (1.22%) aligned concordantly 0 times

403439 (88.79%) aligned concordantly exactly 1 time

45397 (9.99%) aligned concordantly >1 times

----

5533 pairs aligned concordantly 0 times; of these:

452 (8.17%) aligned discordantly 1 time

----

5081 pairs aligned 0 times concordantly or discordantly; of

these:

10162 mates make up the pairs; of these:

5239 (51.55%) aligned 0 times

4213 (41.46%) aligned exactly 1 time

710 (6.99%) aligned >1 times

99.42% overall alignment rate

This message denotes, our data contained 454,369 reads and
all of them were paired. 88.79% of our reads mapped uniquely to
the genome and 9.99% of reads mapped at more than one genomic
location and 1.22% reads did not map to the genome. The
Sequence Alignment/Map (SAM) file contains 11 mandatory fields
for essential alignment information such as genome and read name,
mapping position, sequence, and quality scores for each alignment.
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Now try to map tumor sample reads and save the alignment to
“tumor.sam” file.

The mapping quality can be assessed by different parameters
like gene body coverage and proportion of reads mapped to fea-
tures (exons). Use Qualimap2 [18] to assess the mapping quality.

2.10 Remove PCR

Duplicates

We need to assess how many of the mapped reads originated from
the same RNA molecule (PCR-duplicates) before calculating the
expression levels. Computationally, read duplicates are defined by
their mapping position, reads with same mapping position and
length are considered as duplicates. There is no clear guideline on
removing or retaining PCR duplicates [19], however if the PCR
duplicates constitutes major fraction of the data, it is always good to
compare the results with and without duplicates.

2.10.1 Practice For this practice we use Picard tools [20] to estimate the fraction of
PCR duplicates in the mapped reads. We need to sort SAM files by
coordinate and convert them to Binary Alignment/Map (BAM)
format as Picard takes sorted BAM format file as input. To work
with SAM and BAM files we will use sambamba [21] and hence
install both programs by typing the following commands in
terminal.

brew install sambamba

brew install picard-tools

To convert SAM file to BAM use the following command.

sambamba view -f bam -S sam-o normal.bamnormal.sam

-f output file format

-S input file format

-o output file name

input file name

Now sort the bam file by coordinate

sambamba sort normal.bam

This command generates sorted bam file and index information
of the bam file normal.sorted.bam and normal.sorted.bam.
bai respectively. This bam file can be visualized using Integrative
Genomics Viewer (IGV) [22].

Now use Picard tools to estimate duplicates percentage

picardMarkDuplicates I=normal.sorted.bam O=markdup.normal.

sorted.bam M=markdup.normal.txt

I sorted BAM file

O duplicates marked BAM file

M metrics output file name
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The metrics file contains details of number of duplicate read
pairs, single tons, etc. In our “normal sample” ~13% of reads are
duplicated. To check the file, open it with excel or any other
spreadsheet app. In this practice we are not going to remove
duplicates, you can compare these results with duplicates-removed
results by yourselves.

2.11 Calculate

Expression Values

In RNA-Seq experiments, gene/transcript expressions are
measured by counting the reads mapped to its respective position
in the genome. The expression values can be presented in different
forms like read counts, RPM, RPKM, FPKM, and TPM. If relative
expression of a transcript with respect to other transcripts in a
sample is to be measured, then RPM, RPKM, FPKM, or TPM are
used as the expression needs to be normalized. On the other hand,
to compare expression of two samples, using read counts is the
better option.

One frequently asked question is “Should we use total mapped
reads or only uniquely mapped reads?” to estimate the expression
levels. Some genomes, especially plants, contain high level repeti-
tive regions and many of these repetitive regions contain genes or
pseudo genes. In such genomes half of the reads may be mapped to
multiple locations. In such instances, it is better to use algorithms
which can assign counts to the multiple features. Similarly, if a read
is mapped to two overlapping features it would be worth while to
assign a count to both the features. For better understanding, one
can always compare the results with and without multimapped and
overlapped reads for expression analysis.

2.11.1 Practice For this analysis we will use featureCounts [23] which is a part of
subread application and can be downloaded from https://
sourceforge.net/projects/subread/files/subread-1.5.1/. If you
are not familiar with compiling source code, download binary
distribution that suits your operating system. Once download is
complete, unzip the archive and copy featureCounts executable file
from “bin” folder and paste it in our working directory. Type the
following command to get gene level summarized read counts.

featureCounts -p -T 4 -M -O -a human_grch37.gtf -o gene.

expression.txt normal.sorted.bamtumor.sorted.bam

-p for paired end reads

-T number of processors to use

-M to consider multimapped reads

-O to consider overlapping reads

-a genome annotation file

-o output filename
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The output file gene.expression.txt is a tab delimited
text file which can be opened with a spreadsheet application. Tran-
script level expression can be calculated by providing an extra
option --g “transcript_id”.

2.12 Identification of

Novel Transcripts

In the previous practice we used reference annotation to quantify
expression of known genes and transcripts. Using stringTie [24]
program we can assemble novel transcripts in genome guided or de
novo mode. Install stringTie and identify novel transcripts in refer-
ence guided mode by the following steps.

brew install stringtie

stringtie –G human_grch37.gtf –o normal.transcripts.gtfnormal.

sorted.bam

stringtie –G human_grch37.gtf –o tumor.transcripts.gtftumor.

sorted.bam

-G annotation file to be used as guide

-o output GTF file name

stringTie assigns arbitrary transcript IDs to each assembled
transcript, therefore each GTFfile (normal and tumor) may have
different set of transcripts. There may be similarities between GTF
files, but the number of transcripts and their exact structure will
differ in the output files for each sample. One solution for this
problem is to merge the GTF files and use it for expression quanti-
fication using stringTie merge option.

stringtie –-merge –o meged.gtf –G huam_grch37.gtf normal.

transcripts.gtftumor.transcripts.gtf

The “merged.gtf” can be used with featureCounts to generate
transcript level summarized read counts into “merged.transcripts.
txt”. To annotate the novel transcrips use gffcompare program.
(https://ccb.jhu.edu/software/stringtie/gffcompare.shtml).

2.13 Differential

Expression

Various statistical methods are available for differential expression
of RNA-Seq; they vary in data normalization and distribution
model considerations. Algorithms which use negative binomial
distribution like DESeq [25] and edgeR [26] are considered to be
sensitive and specific. However, using more than one differential
expression analysis method would provide better results in detect-
ing true positives.

2.13.1 Practice In this practice we will use DESeq2 for differential expression
analysis and we require R statistical program to use DESeq2. R is
an open source language and environment for statistical computing
and graphics. Availability of number of packages for different
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applications makes R one of the widely used statistical programs in
the field of genomics. Though R is a command line driven program,
availability of Integrated Development Environments like RStudio
makes use of R relatively. So we will install R and using brew and
RStudio by downloading the installer.

brew install R

https://www.rstudio.com/products/rstudio/download/

Open RStudio and install Bioconductor Installer by typing the
following command in the console panel.

source(“https://bioconductor.org/biocLite.R”)

biocLite()

Now install DESeq 2 package by typing the following com-
mand in console panel.

biocLite(“DESeq2”)

The installation should end with *Done (DESeq2). We can
check if the package was installed or not by loading it into the R
environment by typing the following command.

Require(DESeq2)

If a package is not installed, “there is no package called
DESeq” will be returned. In such instance, one needs to check the
warning or error messages at the end of the package installation.

Now import the tab delimited text file (merged.transcripts.txt)
generated using featureCounts by clicking on “Import Dataset” in
the Environment panel and selecting “From CSV” options from
the dropdown list. In the import window change import options
“Delimiter:” to Tab and “Comment:” to # (Fig. 4). Upon success-
ful import, the data will be shown in a panel above the console
panel and environment panel will have new dataset entry.

Check the dimension of the data frame “merged_transcripts”
by typing

dim(merged_transcripts)

which returns

[1] 196678 8

There are total 196,678 rows and 8 columns in our data frame
merged_transcripts.

We only require the counts data for differential expression
analysis hence, let us create a new data frame “countdata” by
retaining columns “Geneid”, and two more colums containing
count data of our normal and tumor samples.
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countdata=merged_transcripts[,c(1,7,8)]

Above command instructs R to retain columns 1, 7, 8 in the
merged_transcripts data frame and save them to new data frame
“countdata”. Now check the dimension of countdata.

For DESeq analysis, we need a matrix as input so, transform
countdata data frame into matrix of counts with transcript ids as its
row names.

y=as.matrix(countdata[,c(2,3)])

rownames(y)=countdata$Geneid

Change the coloumn name of y to sample names “normal” and
“tumor”.

colnames(y)=c(“normal”,“tumor”)

Create comparison groups and set the column name to condi-
tion and row names to sample id.

group=as.matrix(c(“normal”,“tumor”))

colnames(group)=”condition”

rownames(group)=c(“normal1”,“tumor1”)

If we have biological replicates then the above command will
change to

Fig. 4 Importing tab delimited data into R environment using Rstudio
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group=as.matrix(c(“normal”, “normal”, “normal”, “tumor”,

“tumor”, “tumor”))

colnames(group)= “condition”

rownames(group)=c(“normal1”, “normal2”, “normal3”, “tumor1”,

“tumor2”, “tumor3”)

Load DESeq2 if not already loaded and create DESeqDataSet.

Require(DESeq2)

dde=DESeqDataSetFromMatrix(countData = y, colData = group,

design = ~condition)

Transcripts which have low read counts need to be filtered
before differential expression analysis. Let us retain transcripts
which have at least 1 read in any of the samples and store them to
“dds” and compare dimensions of data before and after filtering.

dds=dde[ rowSums(counts(dde)) > 1, ]

dde

dds

We can see only 819 transcripts out of 196,678 have at least
1 read in at least one of the samples.

Now specify the condition that should be considered as refer-
ence for differential expression analysis.

dds$condition<- relevel(dds$condition, ref=“normal”)

Perform Differential expression (DE) analysis

dds=DESeq(dds)

DESeq2 will normalize the counts and parameters based on the
number of samples, dispersion, variation between replicates, etc.
Once the analysis is complete save the results in new variable “res”.

res=results(dds)

Visualize DE results by creatingMA (Fig. 5) and Volcano plots.

plotMA(res, main=“DESeq2”, ylim=c(-10,10), alpha=0.1)

For generating volcano plot (Fig. 6) install and load Biocon-
ductor package “a4Base”.

require(BiocInstaller)

biocLite(“a4Base”)

require(a4Base)

volcanoplotter(logRatio = res$log2FoldChange, pValue = res

$pvalue, pointLabels = rownames(res), topPValues = 3,

topLogRatios = 3)
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In the volcano plot we can see the top three transcripts with
high log2foldchange and low p-value.

We can export differential analysis results to a comma delimited
file to Desktop.

write.csv(as.data.frame(res), file=“~/Desktop/DE_results.

csv”)

If we want to separately save significantly under/over expressed
transcripts, subset the results accordingly.

Fig. 5 Differential expression MA plot

Fig. 6 Differential expression volcano plot
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DEresults=as.data.frame(res)

underEx=subset(DEresults, DEresults$log2FoldChange < -2

&DEresults$pvalue< 0.05)

overEx=subset(DEresults, DEresults$log2FoldChange > 2

&DEresults$pvalue< 0.05)

write.csv(underEx, file=“~/Desktop/under_expressed.csv”)

write.csv(overEx, file=“~/Dekstop/over_expressed.csv”)

2.14 Gene Ontology

and Pathway Analysis

The Gene Ontology (GO) describes gene function and its classifi-
cation based on their function. GO information is mainly used for
enrichment analysis of gene sets that are up or down regulated
under certain conditions. Gene set enrichment analysis will find
which GO terms are overrepresented (or underrepresented). Simi-
larly, pathway enrichment analysis will identify the major pathways
in which these genes are involved.

2.14.1 Practice Within R, there are many packages to perform gene set enrichment
analysis but, due to ease, we will use Database for Annotation,
Visualization, and Integrated Discovery (DAVID) [27]. Open
https://david.ncifcrf.gov/ in web browser and select functional
annotation.

1. Copy and paste ids of over expressed transcripts in upload gene
list box.

2. Select the identifier “ENSEMBL_TRANSCRIPT_ID” from
drop down menu. Select “Gene list” and submit the list
(Fig. 7).

3. Some of our transcript ids will not be mapped because they
were specific to our experiment hence in the next page click on
“Continue to Submit the IDs That DAVID Could Map”
(Fig. 8).

4. In next page (Fig. 9) select functional annotation chart.

5. Clear all default selections in next page (Fig. 10) and in Gene
Ontology select GOTERM_BP_DIRECT, GOTERM_CC_-
DIRECT, and GOTERM_CC_DIRECT. Similarly select
KEGG_PATHWAY in Pathways and click on Functional Anno-
tation Chart button.

6. Results will open in a separate browser window (Fig. 11) and
clicking on download file will open a text file in web browser.
We can copy and paste the data in a text editor or spreadsheet
application.

You may try performing gene set enrichment analysis for under
expressed transcripts as well.
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2.15 De Novo

Transcriptome

Analysis

One of the major advantages of RNA-Seq is its capability to study
expression profile of organism for which reference genome or
transcriptome are not available. Analyzing such RNA-Seq data
consists two extra steps compared to the aforementioned
reference-based analysis. (1) Assembling Transcriptome and
(2) Annotating assembled transcripts. Once an annotated transcrip-
tome is available, one can follow the reference based approach for
differential expression analysis.

There are various de novo transcriptome assemblers [28–30],
most of them work on the same principle “De Bruijn graph”
[31]. According this method, the reads are broken into small
K-mers and the overlapping K-mers are collapsed to make contigs.
It is important to select the right K-mer length to get optimal
assembly, hence generating assemblies with different K-mer length
and comparing them is widely practiced [32]. The de novo tran-
scriptome needs to be validated before using it as reference for
differential expression analysis. Number of contigs, distribution of
contig length and how many of them are annotated will provide

Fig. 7 Uploading Gene/Transcriptome list to DAVID
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Fig. 9 Getting annotation chart data

Fig. 8 Converting Gene/Transcript IDs
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Fig. 10 Gene Ontology and Pathway parameter setup

Fig. 11 Exporting GO and Pathway enrichment data
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basic impression of how well the transcriptome is assembled
[33]. In addition, what proportion of raw reads gets mapped
onto the transcriptome also provides an idea of assembled tran-
scriptome. The contigs are scaffolded with the paired end read
information, as one of the paired reads are mapped to one contig
and the other to another contig, these two contigs are stitched
together. The scaffolds are annotated by BLASTing them against
protein and noncoding RNA databases like Uniref90, NCBI non-
redundant (nr) protein database using BLAST or similar tools, and
the annotated contigs are termed Unigenes.

2.15.1 Practice Using brew install “trinity” de novo transcriptome assembler using
brew and generate de novo transcriptome from our practice data by
default parameters. Scaffold the trinity contigs using SSPACE [34]
default parameters. Check how many reads are mapping onto the
scaffolds using HISAT2. Annotate scaffolds using Blast2GO [35]
and export the annotation information into a tab delimited text file.
Create a GTF file using the Blast2GO output and use it as reference
annotation for scaffolds to perform differential expression analysis.

3 Conclusion

In conclusion, RNA-Seq is by far the best method available to study
gene expression in model and nonmodel organisms. Success of any
study depends on the experiment design and right amount of data.
Careful selection of right tools from the library preparation to
differential expression analysis would provide great insights into
gene expression and functional profile of the study organism.
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