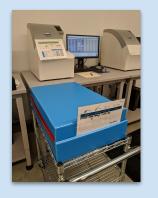
Digitizing Pathology Slides for ML Applications: Opportunities and Lessons Learned

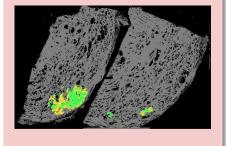
Craig Mermel, MD/PhD Staff Research Scientist, Google Health

Overview

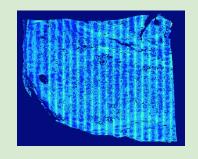
Digitization of Archival Slides



Machine Learning Applications in Pathology



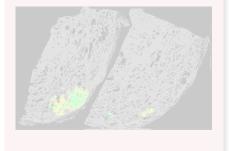
Impact of Image Quality on Machine Learning Applications



Overview

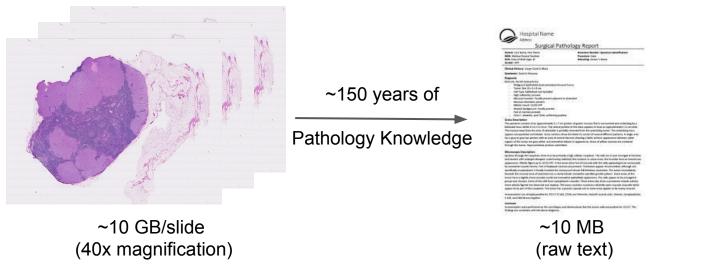
Digitization of Archival Slides

Machine Learning Applications in Pathology



Impact of Image Quality on Machine Learning Applications

Pathology Slide Digitization



Aim is to **accurately digitize** the **vast amount** of **visual information** on glass slides at **high resolution**, for both **clinical** and **non-clinical** applications

Clinical vs Research Digitization

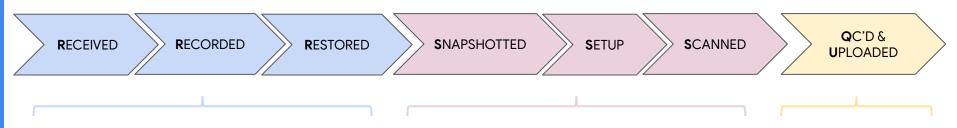
While the process of digitization is similar between clinical and research applications, the challenges are quite different

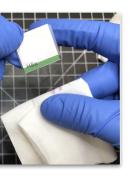
	Clinical Use	Non-Clinical/Research Use
Scale	Hundreds to thousands of slides (per day)	Hundreds of thousands to millions of slides
Latency	Low Latency Required	Medium to High Latency Often Acceptable
Input Material	Fresh cut & stained slides	Archival slides (years to decades old)
Tolerance to artifacts	Moderate (so long as doesn't interfere with diagnosis), can revert to glass	Low (small artifacts can hinder ability to train or validate models)
Slide Label	Digitize w/ PHI	Need to de-identify but preserve essential meta-data
Linkage to Clinical Data	Essential for proper diagnosis	Not essential but enabling for research

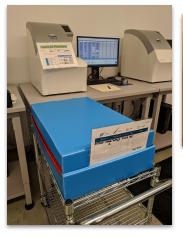
We primarily digitize archival (>10 yr old) slides

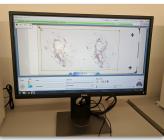
Slides are...

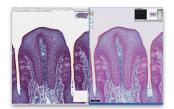
Images are...







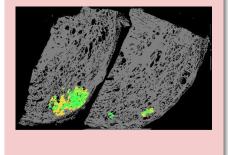




Overview

Digitization of Archival Slides

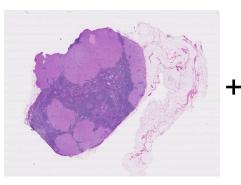
Machine Learning Applications in Pathology

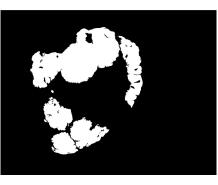


Impact of Image Quality on Machine Learning Applications

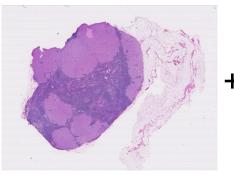
Strongly supervised learning vs Weakly supervised learning

Strongly supervised learning





Weakly supervised learning



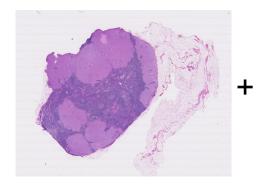
"has tumor" "grade III breast cancer" "5y+ survival"

- WSI + segmentation mask
- annotations costly
- each WSI is ~100k of samples
- 1000s WSIs usually sufficient*

- WSI + slide/case label
- annotations cheap
- each WSI is one sample
- 1000s WSIs usually not sufficient*
- can detect features unknown to pathologist

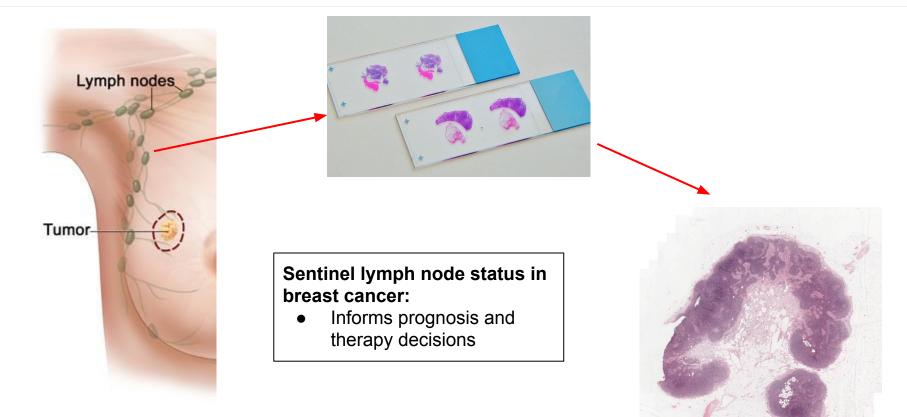
* including generalization to other slide sources, scanners, demographics, etc

Unsupervised learning

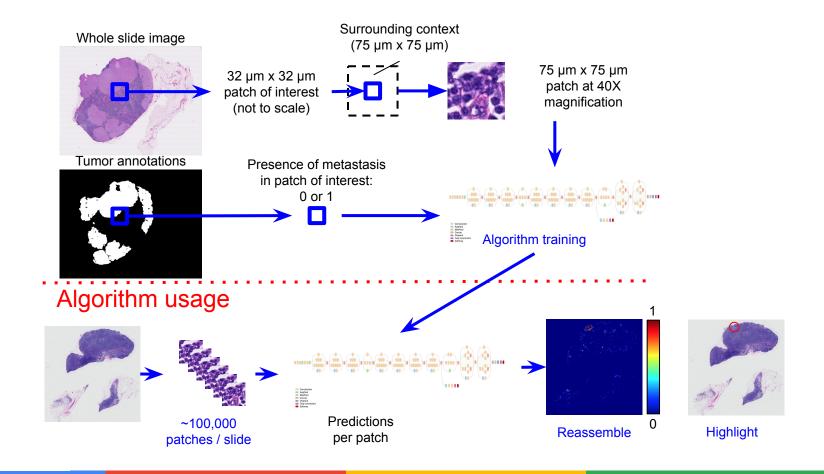


- Learns from unlabelled images
- Find patterns/structure in data "unbiased" by prior pathology knowledge
- Often need labelled data to understand the results

Detecting metastases in lymph nodes is important for tumor staging



Training an AI algorithm to detect metastases in lymph nodes



Performance in tumor localization - Camelyon16 challenge data set

Tumor localization score (FROC):

- Single pathologist: 0.73*
- Camelyon16 winner: 0.81
- Google Al algorithm: 0.91

The algorithm also generalizes to data from other clinics and scanners

* unlimited time (30h), but 0 false positives

Slide level AUC:

- Single pathologist: 96.6%*
- Google Al Algorithm: 99.3%

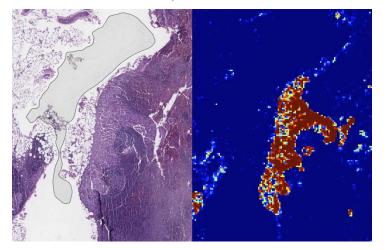
Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection

Insights Into the Black Box for Pathologists

Yun Liu, PhD; Timo Kohlberger, PhD; Mohammad Norouzi, PhD; George E. Dahl, PhD; Jenny L. Smith, MD; Arash Mohtashamian, MD; Niels Olson, MD; Lily H. Peng, MD, PhD; Jason D. Hipp, MD, PhD; Martin C. Stumpe, PhD

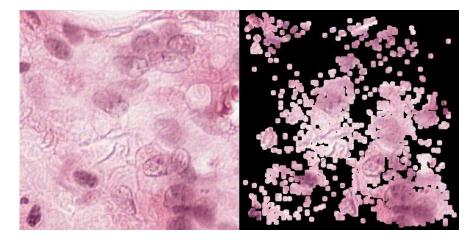
An independent clinical data set scanned with different scanners showed similar FROC results

True positive



Accurate despite: Air bubble, cutting artifacts, hemorrhagic, and necrotic and poorly processed tissue

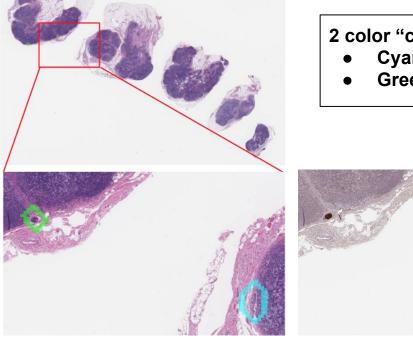
False positive



Large out of focus, overlapping histiocytes

Evaluating the utility of the AI algorithm to pathologists

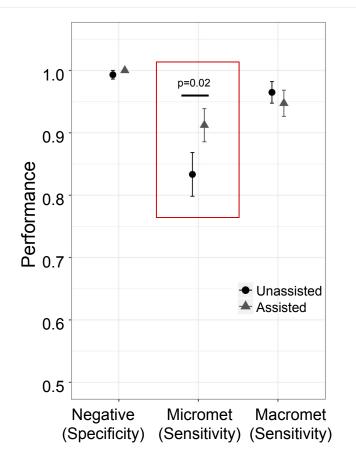
Hypothesis: The lymph node AI algorithm can improve the efficiency of pathologists



2 color "confidence" outlines:

- Cyan = high confidence (high specificity)
- Green = moderate confidence (high sensitivity)

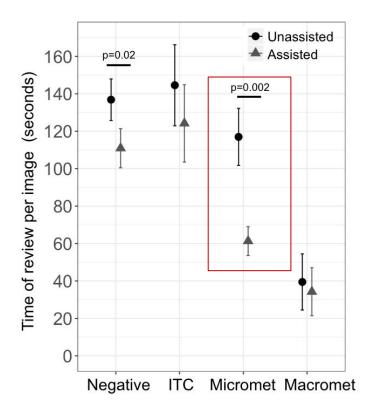
The AI algorithm improved <u>accuracy</u> of tumor detection



Accuracy (micromets): With assistance: 91% Without assistance: 83% \rightarrow error reduced by ~1/₂

Steiner et al, AJSP, 2018

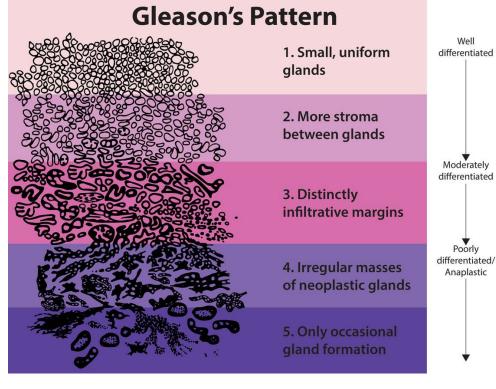
The AI algorithm improved pathologist efficiency



Time benefit:

- Negative: 111 vs. 137 s (*P=0.018*)
- Micromets: 61 vs. 116 s (*P=0.002*)

Prostate cancer Gleason grading



2nd most common cancer in men (in North America)

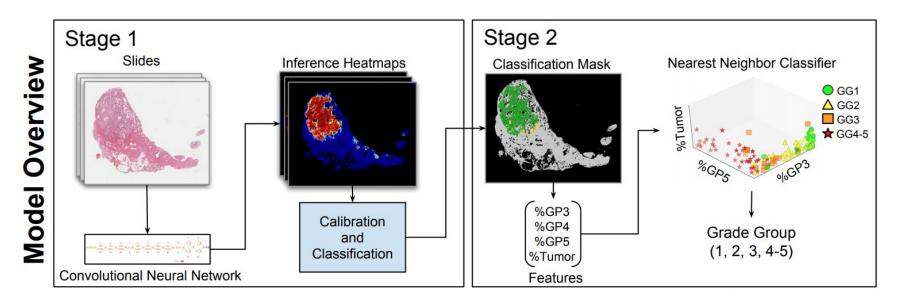
- Gleason grade has direct impact on treatment decision
- highly subjective classification task, large intergrader variability

image credit: Wikipedia

A Deep Learning System For Gleason grading

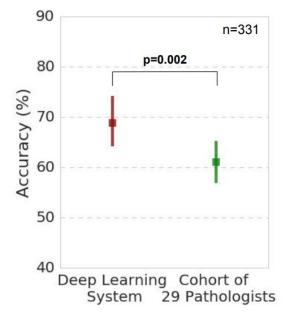
Two-stage model:

- 1. Local Gleason classification
- 2. Slide summarization



Our Gleason grading model outperforms general pathologists in on radical prostatectomy specimens

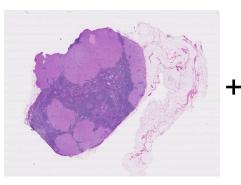
Radical Prostatectomies

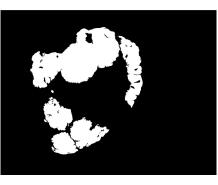


Nagpal et al, npj Digital Medicine, June 2019

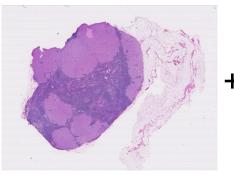
Strongly supervised learning vs Weakly supervised learning

Strongly supervised learning





Weakly supervised learning



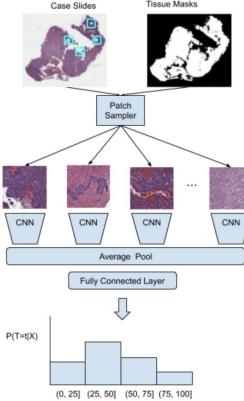
"has tumor" "grade III breast cancer" "5y+ survival"

- WSI + segmentation mask
- annotations costly
- each WSI is ~100k of samples
- 1000s WSIs usually sufficient*

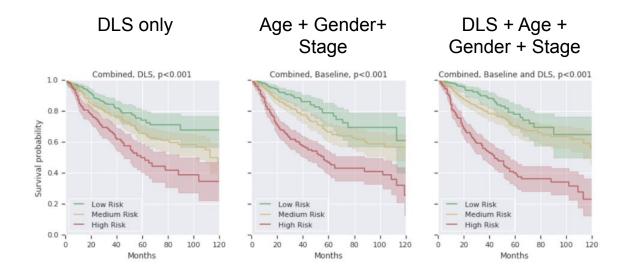
- WSI + slide/case label
- annotations cheap
- each WSI is one sample
- 1000s WSIs usually not sufficient*
- can detect features unknown to pathologist

* including generalization to other slide sources, scanners, demographics, etc

Weakly supervised learning: Direct survival prediction

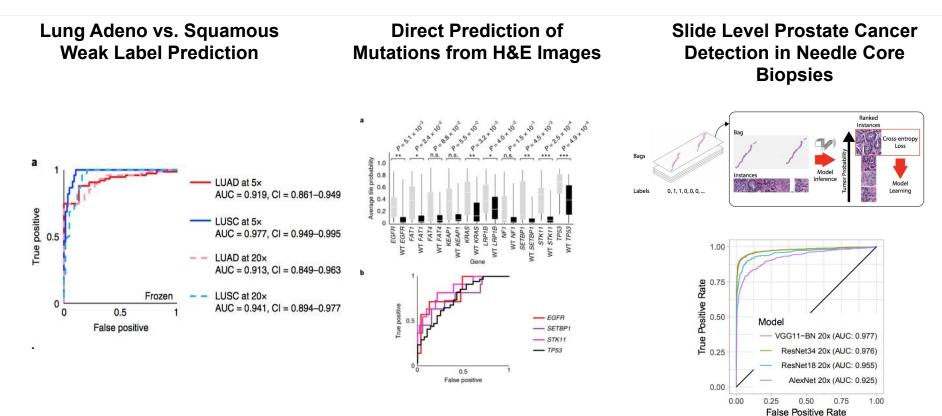


т



Pan cancer analysis (4,880 across 10 TCGA cancer types)

Other Weak Label Examples (non-Google)

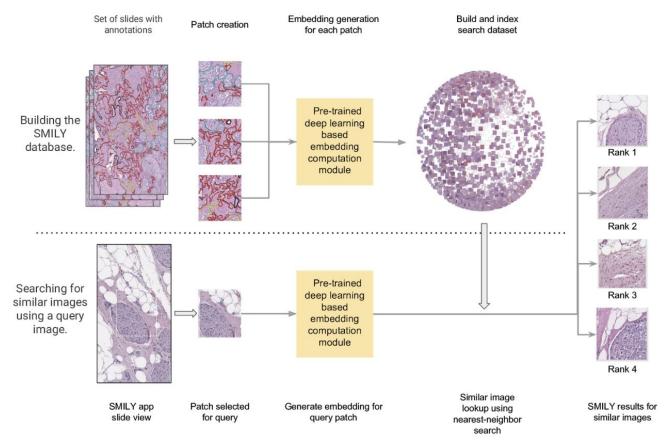


Unsupervised Similar Image Search for Pathology (SMILY)

and the state of the Similar cases: Case 1234 Smart archival lookup tool for pathologists to Prostate cancer 4 find cases that are 2y survival 93% similarity visually similar Prediction: Case 5678 87% Gleason 3 13% Gleason 4 Prostate cancer 3 8y survival 86% similarity

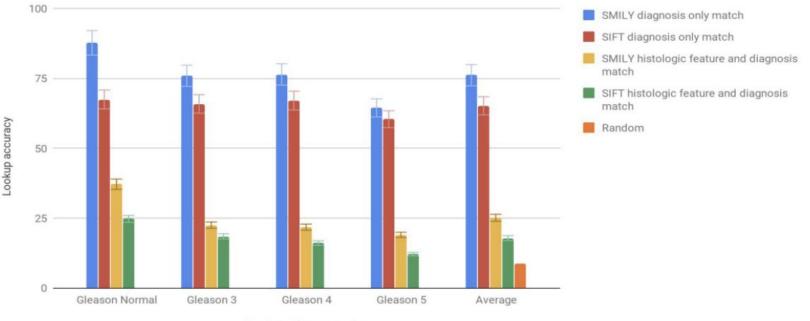
> Mock of the SMILY panel (right) in the pathology frontend along with the classification predictions (left).

Similar Image Search for Pathology (SMILY)



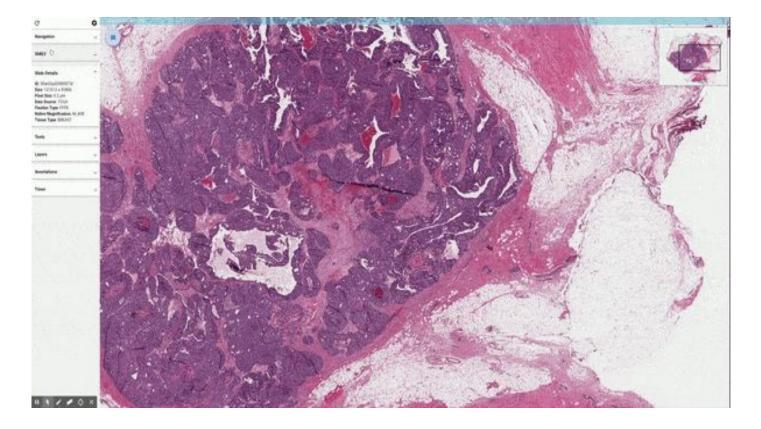
Hegde et al, npj Digital Medicine, June 2019

Similar Image Search for Pathology (SMILY)



Prostate Gleason grades

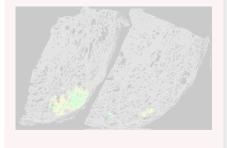
Similar Image Search for Pathology (SMILY)



Overview

Digitization of Archival Slides

Machine Learning Applications in Pathology



Impact of Image Quality on Machine Learning Applications

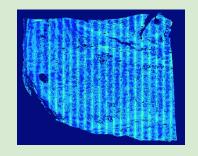
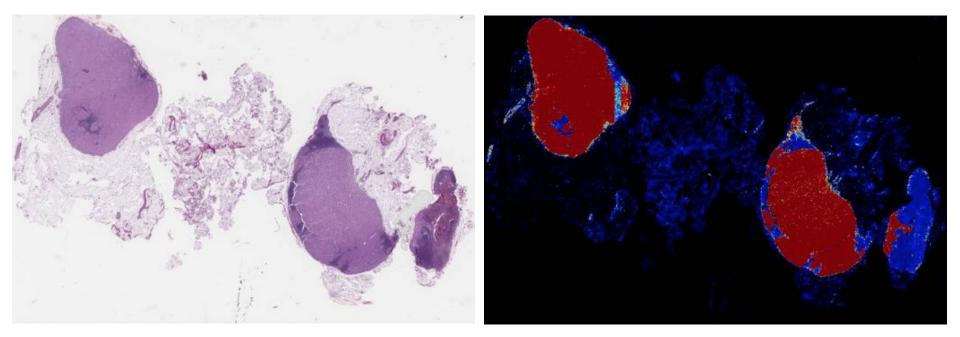


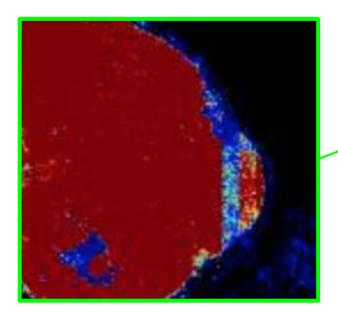
Image quality matters

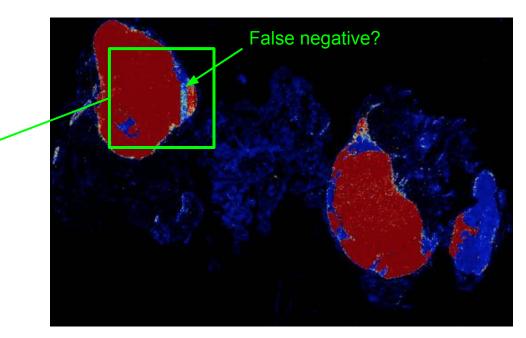


Lymph node biopsy

Tumor prediction

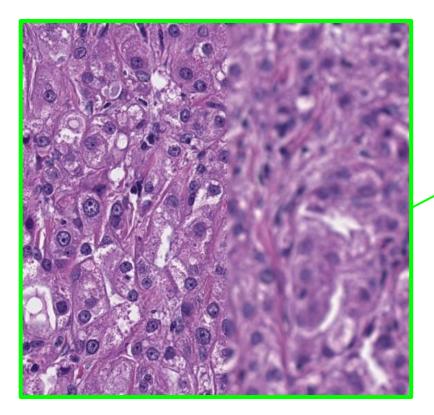
Image quality matters

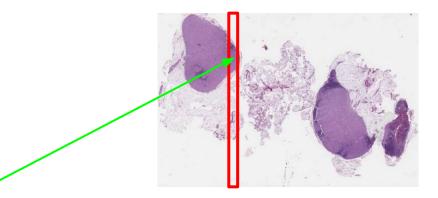




Tumor prediction

Image quality matters





- Entire scan column out of focus
- Confuses model (and potentially pathologist)
- Mitigation: detect and flag ungradable areas

Training a Classifier to Detect OOF Patches

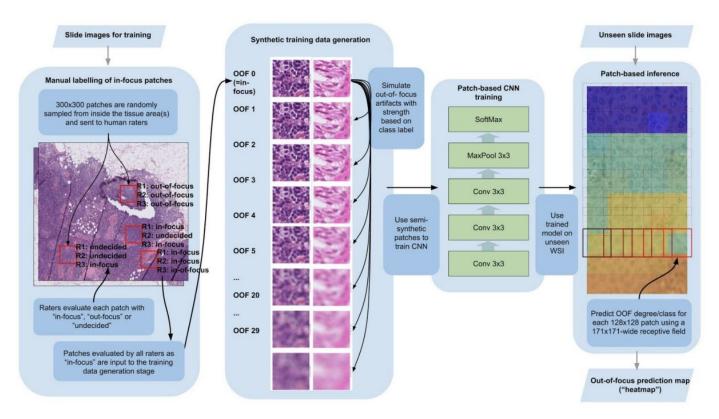
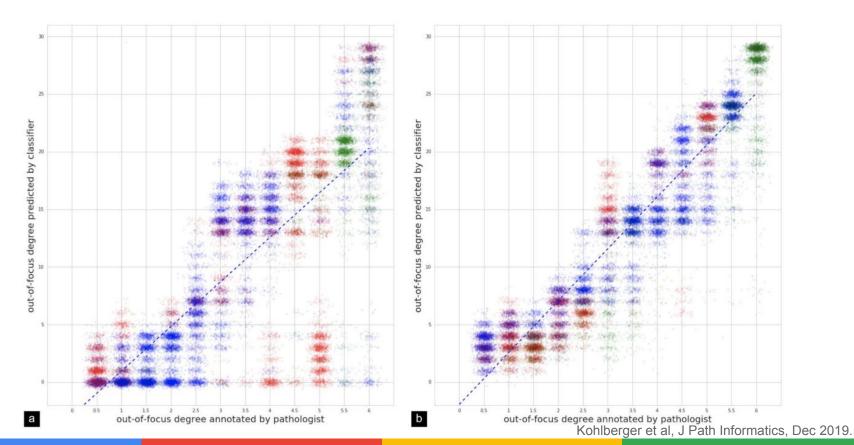


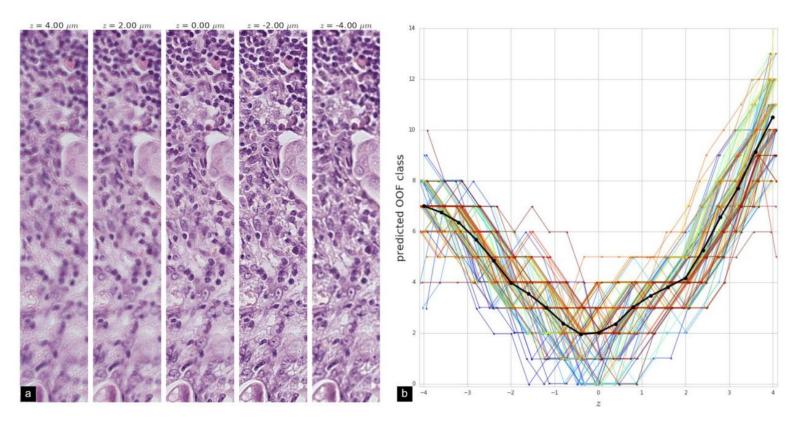
Figure 2: Overview of our convolutional neural network (CNN) approach to automated out-of-focus (OOF) grading: ConvFocus.

Kohlberger et al. J Path Informatics. Dec 2019.

Predicted Focus Quality vs. Pathologist Annotation for 2 Different Scanner Types

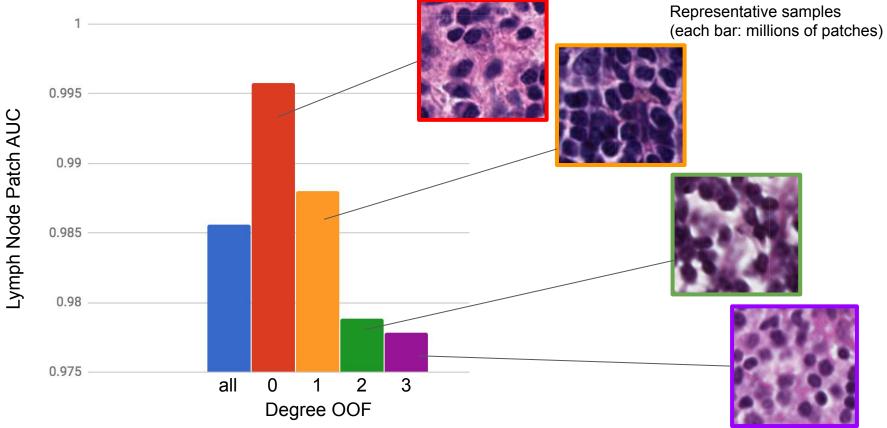


OOF class vs. z-stack depth



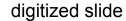
Kohlberger et al, J Path Informatics, Dec 2019.

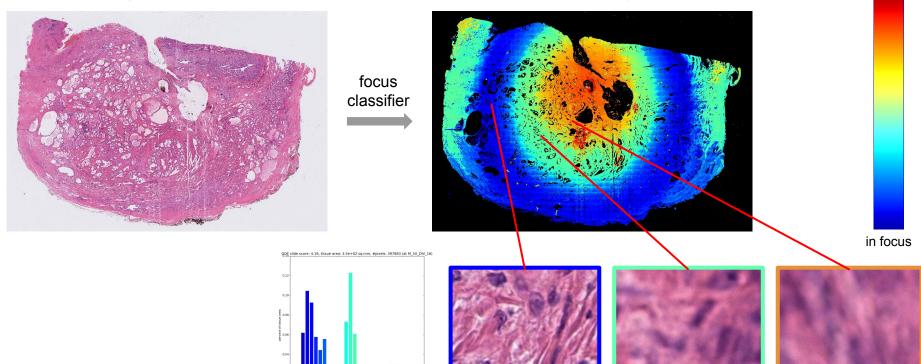
How image quality impacts model performance



Kohlberger et al, J Path Informatics, Dec 2019.

Automatic quality control for all images





focus quality map

out of focus

5 10 15 20 25 out-of-focus degree (=class)