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Preface

This book examines the application of basic statistical methods: primarily analysis of variance and
regression but with some discussion of count data. It is directed primarily towards Masters degree
students in statistics studying analysis of variance, design of experiments, and regression analy-
sis. I have found that the Masters level regression course is often popular with students outside of
statistics. These students are often weaker mathematically and the book caters to that fact while
continuing to give a complete matrix formulation of regression.

The book is complete enough to be used as a second course for upper division and beginning
graduate students in statistics and for graduate students in other disciplines. To do this, one must
be selective in the material covered, but the more theoretical material appropriate only for Statistics
Masters students is generally isolated in separate subsections and, less often, in separate sections.

For a Masters level course in analysis of variance and design, I have the students review Chap-
ter 2, I present Chapter 3 while simultaneously presenting the examples of Section 4.2, I present
Chapters 5 and 6, very briefly review the first five sections of Chapter 7, present Sections 7.11 and
7.12 in detail and then I cover Chapters 9, 10, 11, 12, and 17. Depending on time constraints, I will
delete material or add material from Chapter 16.

For a Masters level course in regression analysis, I again have the students review Chapter 2 and
I review Chapter 3 with examples from Section 4.2. I then present Chapters 7, 13, and 14, Appendix
A, Chapter 15, Sections 16.1.2, 16.3, 16.5 (along with analysis of covariance), Section 8.7 and
finally Chapter 18 . All of this is done in complete detail. If any time remains I like to supplement
the course with discussion of response surface methods.

As a second course for upper division and beginning graduate students in statistics and graduate
students in other disciplines, I cover the first eight chapters with omission of the more technical
material. A follow up course covers the less technical aspects of Chapters 9 through 15 and Ap-
pendix A.

I think the book is reasonably encyclopedic. It really contains everything I would like my stu-
dents to know about applied statistics prior to them taking courses in linear model theory or log-
linear models.

I believe that beginning students (even Statistics Masters students) often find statistical proce-
dures to be a morass of vaguely related special techniques. As a result, this book focuses on four
connecting themes.

1. Most inferential procedures are based on identifying a (scalar) parameter of interest, estimat-
ing that parameter, obtaining the standard error of the estimate, and identifying the appropriate
reference distribution. Given these items, the inferential procedures are identical for various pa-
rameters.

2. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of com-
paring the sample variance of the group means with the mean of the sample variances for each
group. All balanced analysis of variance problems are considered in terms of computing sample
variances for various group means.

3. Comparing different models provides a structure for examining both balanced and unbalanced
analysis of variance problems and for examining regression problems. In some problems the
most reasonable analysis is simply to find a succinct model that fits the data well.

4. Checking assumptions is a crucial part of every statistical analysis.

xiii
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The object of statistical data analysis is to reveal useful structure within the data. In a model-
based setting, I know of two ways to do this. One way is to find a succinct model for the data. In
such a case, the structure revealed is simply the model. The model selection approach is particu-
larly appropriate when the ultimate goal of the analysis is making predictions. This book uses the
model selection approach for multiple regression and for general unbalanced multifactor analysis
of variance. The other approach to revealing structure is to start with a general model, identify in-
teresting one-dimensional parameters, and perform statistical inferences on these parameters. This
parametric approach requires that the general model involve parameters that are easily interpretable.
We use the parametric approach for one-way analysis of variance, balanced multifactor analysis of
variance, and simple linear regression. In particular, the parametric approach to analysis of variance
presented here involves a strong emphasis on examining contrasts, including interaction contrasts.
In analyzing two-way tables of counts, we use a partitioning method that is analogous to looking at
contrasts.

All statistical models involve assumptions. Checking the validity of these assumptions is crucial
because the models we use are never correct. We hope that our models are good approximations
to the true condition of the data and experience indicates that our models often work very well.
Nonetheless, to have faith in our analyses, we need to check the modeling assumptions as best we
can. Some assumptions are very difficult to evaluate, e.g., the assumption that observations are statis-
tically independent. For checking other assumptions, a variety of standard tools has been developed.
Using these tools is as integral to a proper statistical analysis as is performing an appropriate confi-
dence interval or test. For the most part, using model-checking tools without the aid of a computer
is more trouble than most people are willing to tolerate.

My experience indicates that students gain a great deal of insight into balanced analysis of
variance by actually doing the computations. The computation of the mean square for treatments in
a balanced one-way analysis of variance is trivial on any hand calculator with a variance or standard
deviation key. More importantly, the calculation reinforces the fundamental and intuitive idea behind
the balanced analysis of variance test, i.e., that a mean square for treatments is just a multiple of
the sample variance of the corresponding treatment means. I believe that as long as students find
the balanced analysis of variance computations challenging, they should continue to do them by
hand (calculator). I think that automated computation should be motivated by boredom rather than
bafflement.

In addition to the four primary themes discussed above, there are several other characteristics
that I have tried to incorporate into this book.

I have tried to use examples to motivate theory rather than to illustrate theory. Most chapters
begin with data and an initial analysis of that data. After illustrating results for the particular data,
we go back and examine general models and procedures. I have done this to make the book more
palatable to two groups of people: those who only care about theory after seeing that it is useful and
those unfortunates who can never bring themselves to care about theory. (The older I get, the more I
identify with the first group. As for the other group, I find myself agreeing with W. Edwards Deming
that experience without theory teaches nothing.) As mentioned earlier, the theoretical material is
generally confined to separate subsections or, less often, separate sections, so it is easy to ignore.

I believe that the ultimate goal of all statistical analysis is prediction of observable quantities. I
have incorporated predictive inferential procedures where they seemed natural.

The object of most statistics books is to illustrate techniques rather than to analyze data; this
book is no exception. Nonetheless, I think we do students a disservice by not showing them a
substantial portion of the work necessary to analyze even ‘nice’ data. To this end, I have tried to
consistently examine residual plots, to present alternative analyses using different transformations
and case deletions, and to give some final answers in plain English. I have also tried to introduce
such material as early as possible. I have included reasonably detailed examinations of a three-factor
analysis of variance and of a split plot design with four factors. I have included some examples in
which, like real life, the final answers are not ‘neat.’ While I have tried to introduce statistical ideas
as soon as possible, I have tried to keep the mathematics as simple as possible for as long as possible.



PREFACE xv

For example, matrix formulations are postponed to the last chapter on multiple regression and the
last section on unbalanced analysis of variance.

I never use side conditions or normal equations in analysis of variance.

In multiple comparison methods, (weakly) controlling the experimentwise error rate is discussed
in terms of first performing an omnibus test for no treatment effects and then choosing a criterion for
evaluating individual hypotheses. Most methods considered divide into those that use the omnibus
F test, those that use the Studentized range test, and the Bonferroni method, which does not use any
omnibus test.

I have tried to be very clear about the fact that experimental designs are set up for arbitrary
groups of treatments and that factorial treatment structures are simply an efficient way of defining
the treatments in some problems. Thus, the nature of a randomized complete block design does not
depend on how the treatments happen to be defined. The analysis always begins with a breakdown
of the sum of squares into treatments, blocks, and error. Further analysis of the treatments then
focuses on whatever structure happens to be present.

The analysis of covariance chapter includes an extensive discussion of how the covariates must
be chosen to maintain a valid experiment. Tukey’s one degree of freedom test for nonadditivity is
presented as an analysis of covariance test for the need to perform a power transformation rather
than as a test for a particular type of interaction.

The chapter on confounding and fractional replication has more discussion of analyzing such
data than many other books contain.

Minitab commands are presented for most analyses. Minitab was chosen because I find it the
easiest of the common packages to use. However, the real point of including computer commands is
to illustrate the kinds of things that one needs to specify for any computer program and the various
auxiliary computations that may be necessary for the analysis. The other statistical packages used
in creating the book were BMDP, GLIM, and MSUSTAT.
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Chapter 1

Introduction

In this chapter we introduce basic ideas of probability and some related mathematical concepts that
are used in statistics. Values to be analyzed statistically are generally thought of as random variables;
these are numbers that result from random events. The mean (average) value of a population is
defined in terms of the expected value of a random variable. The variance is introduced as a measure
of the variability in a random variable (population). We also introduce some special distributions
(populations) that are useful in modeling statistical data. The purpose of this chapter is to introduce
these ideas, so they can be used in analyzing data and in discussing statistical models.

In writing statistical models, we often use symbols from the Greek alphabet. A table of these
symbols is provided in Appendix B.6.

Rumor has it that there are some students studying statistics who have an aversion to mathemat-
ics. Such people might be wise to focus on the concepts of this chapter and not let themselves get
bogged down in the details. The details are given to provide a more complete introduction for those
students who are not math averse.

1.1 Probability

Probabilities are numbers between zero and one that are used to explain random phenomena. We are
all familiar with simple probability models. Flip a standard coin; the probability of heads is 1/2. Roll
a die; the probability of getting a three is 1/6. Select a card from a well-shuffled deck; the probability
of getting the queen of spades is 1/52 (assuming there are no jokers). One way to view probability
models that many people find intuitive is in terms of random sampling from a fixed population.
For example, the 52 cards form a fixed population and picking a card from a well-shuffled deck is
a means of randomly selecting one element of the population. While we will exploit this idea of
sampling from fixed populations, we should also note its limitations. For example, blood pressure is
a very useful medical indicator, but even with a fixed population of people it would be very difficult
to define a useful population of blood pressures. Blood pressure depends on the time of day, recent
diet, current emotional state, the technique of the person taking the reading, and many other factors.
Thinking about populations is very useful, but the concept can be very limiting both practically and
mathematically. For measurements such as blood pressures and heights, there are difficulties in even
specifying populations mathematically.

For mathematical reasons, probabilities are defined not on particular outcomes but on sets of
outcomes (events). This is done so that continuous measurements can be dealt with. It seems much
more natural to define probabilities on outcomes as we did in the previous paragraph, but consider
some of the problems with doing that. For example, consider the problem of measuring the height of
a corpse being kept in a morgue under controlled conditions. The only reason for getting morbid here
is to have some hope of defining what the height is. Living people, to some extent, stretch and con-
tract, so a height is a nebulous thing. But even given that someone has a fixed height, we can never
know what it is. When someone’s height is measured as 177.8 centimeters (5 feet 10 inches), their
height is not really 177.8 centimeters, but (hopefully) somewhere between 177.75 and 177.85 cen-
timeters. There is really no chance that anyone’s height is exactly 177.8 cm, or exactly 177.8001 cm,

1



2 1. INTRODUCTION

or exactly 177.800000001 cm, or exactly 56.5955π cm, or exactly (76
√

5+ 4.5
√

3) cm. In any
neighborhood of 177.8, there are more numerical values than one could even imagine counting. The
height should be somewhere in the neighborhood, but it won’t be the particular value 177.8. The
point is simply that trying to specify all the possible heights and their probabilities is a hopeless
exercise. It simply cannot be done.

Even though individual heights cannot be measured exactly, when looking at a population of
heights they follow certain patterns. There are not too many people over 8 feet (244 cm) tall. There
are lots of males between 175.3 cm and 177.8 cm (5′9′′ and 5′10′′). With continuous values, each
possible outcome has no chance of occurring, but outcomes do occur and occur with regularity. If
probabilities are defined for sets instead of outcomes, these regularities can be reproduced mathe-
matically. Nonetheless, initially the best way to learn about probabilities is to think about outcomes
and their probabilities.

There are five key facts about probabilities:

1. Probabilities are between 0 and 1.
2. Something that happens with probability 1 is a sure thing.
3. If something has no chance of occurring, it has probability 0.
4. If something occurs with probability, say, .25, the probability that it will not occur is 1− .25 =

.75.
5. If two events are mutually exclusive, i.e., if they cannot possibly happen at the same time, then

the probability that either of them occurs is just the sum of their individual probabilities.

Individual outcomes are always mutually exclusive, e.g., you cannot flip a coin and get both heads
and tails, so probabilities for outcomes can always be added together. Just to be totally correct, I
should mention one other point. It may sound silly, but we need to assume that something occurring
is always a sure thing. If we flip a coin, we must get either heads or tails with probability 1. We
could even allow for the coin landing on its edge as long as the probabilities for all the outcomes
add up to 1.

EXAMPLE 1.1.1. Consider the nine outcomes that are all combinations of three heights, tall (T),
medium (M), short (S) and three eye colors, blue (Bl), brown (Br) and green (G). The combinations
are displayed below.

Height–eye color combinations
Eye color

Blue Brown Green
Tall T,Bl T,Br T,G

Height Medium M,Bl M,Br M,G
Short S,Bl S,Br S,G

The set of all outcomes is

{(T,Bl),(T,Br),(T,G),(M,Bl),(M,Br),(M,G),(S,Bl),(S,Br),(S,G)} .

The event that someone is tall consists of the three pairs in the first row of the table, i.e.,

{T}= {(T,Bl),(T,Br),(T,G)} .

This is the union of the three outcomes (T,Bl), (T,Br), and (T,G). Similarly, the set of people with
blue eyes is obtained from the first column of the table; it is the union of (T,Bl), (M,Bl), and (S,Bl)
and can be written

{Bl}= {(T,Bl),(M,Bl),(S,Bl)} .

If we know that {T} and {Bl} both occur, there is only one possible outcome, (T, Bl).
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Table 1.1: Height–eye color probabilities

Eye color
Blue Brown Green

Tall .12 .15 .03
Height Medium .22 .34 .04

Short .06 .01 .03

The event that {T} or {Bl} occurs consists of all outcomes in either the first row or the first
column of the table, i.e.,

{(T,Bl),(T,Br),(T,G),(M,Bl),(S,Bl)} . 2

EXAMPLE 1.1.2. Table 1.1 contains probabilities for the nine outcomes that are combinations of
height and eye color from Example 1.1.1.

Note that each of the nine numbers is between 0 and 1 and that the sum of all nine equals 1. The
probability of blue eyes is

Pr(Bl) = Pr[(T,Bl),(M,Bl),(S,Bl)]
= Pr(T,Bl)+Pr(M,Bl)+Pr(S,Bl)
= .12+ .22+ .06
= .4 .

Similarly, Pr(Br) = .5 and Pr(G) = .1. The probability of not having blue eyes is

Pr(not Bl) = 1−Pr(Bl)
= 1− .4
= .6 .

Note also that Pr(not Bl) = Pr(Br)+Pr(G).
The (marginal) probabilities for the various heights are:

Pr(T) = .3, Pr(M) = .6, Pr(S) = .1 . 2

Even if there are a countable (but infinite) number of possible outcomes, one can still define a
probability by defining the probabilities for each outcome. It is only for measurement data that one
really needs to define probabilities on sets.

Two random events are said to be independent if knowing that one of them occurs provides no
information about the probability that the other event will occur. Formally, two events A and B are
independent if

Pr(A and B) = Pr(A)Pr(B).

Thus the probability that both events A and B occur is just the product of the individual probabilities
that A occurs and that B occurs. As we will begin to see in the next section, independence plays an
important role is statistics.

EXAMPLE 1.1.3. Using the probabilities of Table 1.1 and the computations of Example 1.1.2,
the events tall and brown eyes are independent because

Pr(tall and brown) = Pr(T,Br) = .15 = (.3)(.5) = Pr(T)×Pr(Br).

On the other hand, medium height and blue eyes are not independent because

Pr(medium and blue) = Pr(M,Bl) = .22 6= (.6)(.4) = Pr(M)×Pr(Bl). 2
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1.2 Random variables and expectations

A random variable is simply a function that relates outcomes with numbers. The key point is that
any probability associated with the outcomes induces a probability on the numbers. The numbers
and their associated probabilities can then be manipulated mathematically. Perhaps the most
common and intuitive example of a random variable is rolling a die. The outcome is that a face of
the die with a certain number of spots ends up on top. These can be pictured as

s s s s s s

ss ss ss sss ss ss ss

Without even thinking about it, we define a random variable that transforms these six faces into the
numbers 1, 2, 3, 4, 5, 6.

In statistics we think of observations as random variables. These are often some number asso-
ciated with a randomly selected member of a population. For example, one random variable is the
height of a person who is to be randomly selected from among University of New Mexico students.
(A random selection gives the same probability to every individual in the population. This random
variable presumes that we have well-defined methods for measuring height and defining UNM stu-
dents.) Rather than measuring height, we could define a different random variable by giving the
person a score of 1 if that person is female and 0 if the person is male. We can also perform math-
ematical operations on random variables to yield new random variables. Suppose we plan to select
a random sample of 10 students, then we would have 10 random variables with female and male
scores. The sum of these random variables is another random variable that tells us the (random)
number of females in the sample. Similarly, we would have 10 random variables for heights and
we can define a new random variable consisting of the average of the 10 individual height random
variables. Some random variables are related in obvious ways. In our example we measure both a
height and a sex score on each person. If the sex score variable is a 1 (telling us that the person is fe-
male), it suggests that the height may be smaller than we would otherwise suspect. Obviously some
female students are taller than some male students, but knowing a person’s sex definitely changes
our knowledge about their probable height.

We do similar things in tossing a coin.

EXAMPLE 1.2.1. Consider tossing a coin twice. The four outcomes are ordered pairs of heads
(H) and tails (T ). The outcomes can be denoted as

(H,H) (H,T ) (T,H) (T,T )

where the outcome of the first toss is the first element of the ordered pair.
The standard probability model has the four outcomes equally probable, i.e., 1/4 = Pr(H,H) =

Pr(H,T ) = Pr(T,H) = Pr(T,T ). Equivalently
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Second toss
Heads Tails Total

First toss Heads 1/4 1/4 1/2
Tails 1/4 1/4 1/2
Total 1/2 1/2 1

The probability of heads on each toss is 1/2. The probability of tails is 1/2. We will define two
random variables:

y1(r,s) =
{1 if r = H

0 if r = T

y2(r,s) =
{1 if s = H

0 if s = T
.

Thus, y1 is 1 if the first toss is heads and 0 otherwise. Similarly, y2 is 1 if the second toss is heads
and 0 otherwise.

The event y1 = 1 occurs if and only if we get heads on the first toss. We get heads on the first toss
by getting either of the outcome pairs (H,H) or (H,T ). In other words, the event y1 = 1 is equivalent
to the event {(H,H),(H,T )}. The probability of y1 = 1 is just the sum of the probabilities of the
outcomes in {(H,H),(H,T )}.

Pr(y1 = 1) = Pr(H,H)+Pr(H,T )

= 1/4+1/4 = 1/2.

Similarly,

Pr(y1 = 0) = Pr(T,H)+Pr(T,T )
= 1/2

Pr(y2 = 1) = 1/2
Pr(y2 = 0) = 1/2 .

Now define another random variable,

W (r,s) = y1(r,s)+ y2(r,s) .

The random variable W is the total number of heads in two tosses:

W (H,H) = 2
W (H,T ) = W (T,H) = 1
W (T,T ) = 0 .

Moreover,

Pr(W = 2) = Pr(H,H) = 1/4
Pr(W = 1) = Pr(H,T )+Pr(T,H) = 1/2
Pr(W = 0) = Pr(T,T ) = 1/4 .

These three equalities define a probability on the outcomes 0, 1, 2. In working with W , we can
ignore the original outcomes of head-tail pairs and work only with the new outcomes 0, 1, 2 and
their associated probabilities. We can do the same thing for y1 and y2. The probability table given
earlier can be rewritten in terms of y1 and y2.
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y2
1 0 y1 totals

y1 1 1/4 1/4 1/2
0 1/4 1/4 1/2

y2 totals 1/2 1/2 1

Note that, for example, Pr [(y1,y2) = (1,0)] = 1/4 and Pr(y1 = 1) = 1/2. This table shows the
distribution of the probabilities for y1 and y2 both separately (marginally) and jointly.

2

For any random variable, a statement of the possible outcomes and their associated probabilities
is referred to as the (marginal) probability distribution of the random variable. For two or more
random variables, a table or other statement of the possible joint outcomes and their associated
probabilities is referred to as the joint probability distribution of the random variables.

All of the entries in the center of the distribution table given above for y1 and y2 are independent.
For example,

Pr[(y1,y2) = (1,0)]≡ Pr(y1 = 1 and y2 = 0) = Pr(y1 = 1)Pr(y2 = 0).

We therefore say that y1 and y2 are independent. In general, two random variables y1 and y2 are
independent if any event involving only y1 is independent of any event involving only y2.

Independence is an extremely important concept in statistics. Observations to be analyzed are
commonly assumed to be independent. This means that the random aspect of one observation con-
tains no information about the random aspect of any other observation. (However, every observation
tells us about fixed aspects of the underlying population such as the population center.) For most
purposes in applied statistics, just this intuitive understanding of independence is sufficient.

1.2.1 Expected values and variances

The expected value (population mean) of a random variable is a number characterizing the middle
of the distribution. For a random variable y with a discrete distribution (i.e., one having a finite or
countable number of outcomes), the expected value is

E(y)≡ ∑
all r

rPr(y = r) .

EXAMPLE 1.2.2. Let y be the result of picking one of the numbers 2, 4, 6, 8 at random. Because
the numbers are chosen at random,

1/4 = Pr(y = 2) = Pr(y = 4) = Pr(y = 6) = Pr(y = 8) .

The expected value in this simple example is just the mean (average) of the four possible outcomes.

E(y) = 2
(

1
4

)
+4
(

1
4

)
+6
(

1
4

)
+8
(

1
4

)
= (2+4+6+8)/4
= 5 . 2

EXAMPLE 1.2.3. Five pieces of paper are placed in a hat. The papers have the numbers 2, 4, 6,
6, and 8 written on them. A piece of paper is picked at random. The expected value of the number
drawn is the mean of the numbers on the five pieces of paper. Let y be the random variable that
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relates a piece of paper to the number on that paper. Each piece of paper has the same probability of
being chosen, so, because the number 6 appears twice, the distribution of the random variable y is

1
5

= Pr(y = 2) = Pr(y = 4) = Pr(y = 8)

2
5

= Pr(y = 6) .

The expected value is

E(y) = 2
(

1
5

)
+4
(

1
5

)
+6
(

2
5

)
+8
(

1
5

)
= (2+4+6+6+8)/5
= 5.2 . 2

EXAMPLE 1.2.4. Consider the coin tossing random variables y1, y2, and W from Example 1.2.1.
Recalling that y1 and y2 have the same distribution,

E(y1) = 1
(

1
2

)
+0
(

1
2

)
=

1
2

E(y2) =
1
2

E(W ) = 2
(

1
4

)
+1
(

1
2

)
+0
(

1
4

)
= 1 .

The variable y1 is the number of heads in the first toss of the coin. The two possible values 0 and
1 are equally probable, so the middle of the distribution is 1/2. W is the number of heads in two
tosses; the expected number of heads in two tosses is 1. 2

The expected value indicates the middle of a distribution, but does not indicate how spread out
(dispersed) a distribution is.

EXAMPLE 1.2.5. Consider three gambles that I will allow you to take. In game z1 you have equal
chances of winning 12, 14, 16, or 18 dollars. In game z2 you can again win 12, 14, 16, or 18 dollars,
but now the probabilities are .1 that you will win either $14 or $16 and .4 that you will win $12 or
$18. The third game I call z3 and you can win 5, 10, 20, or 25 dollars with equal chances. Being no
fool, I require you to pay me $16 for the privilege of playing any of these games. We can write each
game as a random variable.

z1 outcome 12 14 16 18
probability .25 .25 .25 .25

z2 outcome 12 14 16 18
probability .4 .1 .1 .4

z3 outcome 5 10 20 25
probability .25 .25 .25 .25

I try to be a good casino operator, so none of these games is fair. You have to pay $16 to play, but
you only expect to win $15. It is easy to see that

E(z1) = E(z2) = E(z3) = 15 .
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But don’t forget that I’m taking a loss on the ice-water I serve to players and I also have to pay for
the pictures of my extended family that I’ve decorated my office with.

Although the games z1, z2, and z3 have the same expected value, the games (random variables)
are very different. Game z2 has the same outcomes as z1, but much more of its probability is placed
farther from the middle value 15. The extreme observations 12 and 18 are much more probable
under z2 than z1. If you currently have $16, need $18 for your grandmother’s bunion removal, and
anything less than $18 has no value to you, then z2 is obviously a better game for you than z1.

Both z1 and z2 are much more tightly packed around 15 than is z3. If you needed $25 for the
bunion removal, z3 is the game to play because you can win it all in one play with probability .25.
In either of the other games you would have to win at least five times to get $25, a much less likely
occurrence. Of course you should realize that the most probable result is that Grandma will have
to live with her bunion. You are unlikely to win either $18 or $25. While the ethical moral of this
example is that a fool and his money are soon parted, the statistical point is that there is more to a
random variable than its mean. The variability of random variables is also important. 2

The (population) variance is a measure of how spread out a distribution is from its expected
value. Let y be a random variable having a discrete distribution with E(y) = µ , then the variance of
y is

Var(y)≡ ∑
all r

(r−µ)2Pr(y = r) .

This is the average squared distance of the outcomes from the center of the population. More tech-
nically, it is the expected squared distance between the outcomes and the mean of the distribution.

EXAMPLE 1.2.6. Using the random variables of Example 1.2.5,

Var(z1) = (12−15)2(.25)+(14−15)2(.25)
+(16−15)2(.25)+(18−15)2(.25)

= 5
Var(z2) = (12−15)2(.4)+(14−15)2(.1)

+(16−15)2(.1)+(18−15)2(.4)
= 7.4

Var(z3) = (5−15)2(.25)+(10−15)2(.25)
+(20−15)2(.25)+(25−15)2(.25)

= 62.5

The increasing variances from z1 through z3 indicate that the random variables are increasingly
spread out. However, the value Var(z3) = 62.5 seems too large to measure the relative variabilities
of the three random variables. More on this later. 2

EXAMPLE 1.2.7. Consider the coin tossing random variables of Examples 1.2.1 and 1.2.4.

Var(y1) =

(
1− 1

2

)2 1
2
+

(
0− 1

2

)2 1
2
=

1
4

Var(y2) =
1
4

Var(W ) = (2−1)2
(

1
4

)
+(1−1)2

(
1
2

)
+(0−1)2

(
1
4

)
=

1
2
. 2

A problem with the variance is that it is measured on the wrong scale. If y is measured in meters,
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Var(y) involves the terms (r− µ)2; hence it is measured in meters squared. To get things back on
the original scale, we consider the standard deviation of y

Std. dev. (y)≡
√

Var(y) .

EXAMPLE 1.2.8. Consider the random variables of Examples 1.2.5 and 1.2.6.

Std. dev. (z1) =
√

5 .
= 2.236

Std. dev. (z2) =
√

7.4 .
= 2.720

Std. dev. (z3) ≡
√

62.5 .
= 7.906

The standard deviation of z3 is 3 to 4 times larger than the others. From examining the distribu-
tions, the standard deviations seem to be more intuitive measures of relative variability than the
variances. The variance of z3 is 8.5 to 12.5 times larger than the other variances; these values seem
unreasonably inflated. 2

Standard deviations and variances are useful as measures of the relative dispersions of different
random variables. The actual numbers themselves do not mean much. Moreover, there are other
equally good measures of dispersion that can give results that are somewhat inconsistent with these.
One reason standard deviations and variances are so widely used is because they are convenient
mathematically. In addition, normal (Gaussian) distributions are widely used in applied statistics
and are completely characterized by their expected values (means) and variances (or standard devi-
ations). Knowing these two numbers, the mean and variance, one knows everything about a normal
distribution.

1.2.2 Chebyshev’s inequality

Another place in which the numerical values of standard deviations are useful is in applications
of Chebyshev’s inequality. Chebyshev’s inequality gives a lower bound on the probability that a
random variable is within an interval. Chebyshev’s inequality is important in quality control work
(control charts) and in evaluating prediction intervals.

Let y be a random variable with E(y) = µ and Var(y) = σ2. Chebyshev’s inequality states that
for any number k > 1,

Pr[µ− kσ < y < µ + kσ ]≥ 1− 1
k2 .

Thus the probability that y will fall within k standard deviations of µ is at least 1− (1/k2).
The beauty of Chebyshev’s inequality is that it holds for absolutely any random variable y. Thus

we can always make some statement about the probability that y is in a symmetric interval about
µ . In many cases, for particular choices of y, the probability of being in the interval can be much
greater than 1− k−2. For example, if k = 3 and y has a normal distribution as discussed in the next
section, the probability of being in the interval is actually .997, whereas Chebyshev’s inequality
only assures us that the probability is no less than 1− 3−2 = .889. However, we know the lower
bound of .889 applies regardless of whether y has a normal distribution.

1.2.3 Covariances and correlations

Often we take two (or more) observations on the same member of a population. We might observe
the height and weight of a person. We might observe the IQs of a wife and husband. (Here the
population consists of married couples.) In such cases we may want a numerical measure of the
relationship between the pairs of observations. Data analysis related to these concepts is known as
regression analysis and is discussed in Chapters 7, 13, 14, and 15. These ideas are also briefly used
for testing normality in Section 2.4.
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The covariance is a measure of the linear relationship between two random variables. Suppose
y1 and y2 are discrete random variables. Let E(y1) = µ1 and E(y2) = µ2. The covariance between y1
and y2 is

Cov(y1,y2)≡ ∑
all (r,s)

(r−µ1)(s−µ2)Pr(y1 = r,y2 = s) .

Positive covariances arise when relatively large values of y1 tend to occur with relatively large
values y2 and small values of y1 tend to occur with small values of y2. On the other hand, negative
covariances arise when relatively large values of y1 tend to occur with relatively small values y2 and
small values of y1 tend to occur with large values of y2. It is simple to see from the definition that,
for example,

Var(y1) = Cov(y1,y1) .

In an attempt to get a handle on what the numerical value of the covariance means, it is often
rescaled into a correlation coefficient.

Corr(y1,y2)≡ Cov(y1,y2)
/√

Var(y1)Var(y2) .

Positive values of the correlation have the same qualitative meaning as positive values of the covari-
ance, but now a perfect increasing linear relationship is indicated by a correlation of 1. Similarly,
negative correlations and covariances mean similar things, but a perfect decreasing linear relation-
ship gives a correlation of −1. The absence of any linear relationship is indicated by a value of
0.

A perfect linear relationship between y1 and y2 means that an increase of one unit in, say, y1
dictates an exactly proportional change in y2. For example, if we make a series of very accurate
temperature measurements on something and simultaneously use one device calibrated in Fahren-
heit and one calibrated in Celsius, the pairs of numbers should have an essentially perfect linear
relationship.

EXAMPLE 1.2.9. Let z1 and z2 be two random variables defined by the following probability
table:

z2
0 1 2 z1 totals

6 0 1/3 0 1/3
z1 4 1/3 0 0 1/3

2 0 0 1/3 1/3
z2 totals 1/3 1/3 1/3 1

Then

E(z1) = 6
(

1
3

)
+4
(

1
3

)
+2
(

1
3

)
= 4,

E(z2) = 0
(

1
3

)
+1
(

1
3

)
+2
(

1
3

)
= 1,

Var(z1) = (2−4)2
(

1
3

)
+(4−4)2

(
1
3

)
+(6−4)2

(
1
3

)
= 8/3,

Var(z2) = (0−1)2
(

1
3

)
+(1−1)2

(
1
3

)
+(2−1)2

(
1
3

)
= 2/3,
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Cov(z1,z2) = (2−4)(0−1)(0)+(2−4)(1−1)(0)+(2−4)(2−1)
(

1
3

)
+(4−4)(0−1)

(
1
3

)
+(4−4)(1−1)(0)+(4−4)(2−1)(0)

+(6−4)(0−1)(0)+(6−4)(1−1)
(

1
3

)
+(6−4)(2−1)(0)

= −2/3,

Corr(z1,z2) = (−2/3)
/√

(8/3)(2/3)

= −1/2.

This correlation indicates that relatively large z1 values tend to occur with relatively small z2 values.
However, the correlation is considerably greater than −1, so the linear relationship is less than
perfect. Moreover, the correlation measures the linear relationship and fails to identify the perfect
nonlinear relationship between z1 and z2. If z1 = 2, then z2 = 2. If z1 = 4, then z2 = 0. If z1 = 6,
then z2 = 1. If you know one random variable, you know the other, but because the relationship is
nonlinear, the correlation is not ±1. 2

EXAMPLE 1.2.10. Consider the coin toss random variables y1 and y2 from Example 1.2.1. We
earlier observed that these two random variables are independent. If so, there should be no relation-
ship between them (linear or otherwise). We now show that their covariance is 0.

Cov(y1,y2) =

(
0− 1

2

)(
0− 1

2

)
1
4
+

(
0− 1

2

)(
1− 1

2

)
1
4

+

(
1− 1

2

)(
0− 1

2

)
1
4
+

(
1− 1

2

)(
1− 1

2

)
1
4

=
1
16
− 1

16
− 1

16
+

1
16

= 0. 2

In general, whenever two random variables are independent, their covariance (and thus their
correlation) is 0. However, just because two random variables have 0 covariance does not imply that
they are independent. Independence has to do with not having any kind of relationship; covariance
examines only linear relationships. Random variables with nonlinear relationships can have zero
covariance but not be independent.

1.2.4 Rules for expected values and variances

We now present some extremely useful results that allow us to show that statistical estimates are
reasonable and to establish the variability associated with statistical estimates. These results relate to
the expected values, variances, and covariances of linear combinations of random variables. A linear
combination of random variables is something that only involves multiplying random variables by
fixed constants, adding such terms together, and adding a constant.

Proposition 1.2.11. Let y1, y2, y3, and y4 be random variables and let a1, a2, a3, and a4 be real
numbers.

1. E(a1y1 +a2y2 +a3) = a1E(y1)+a2E(y2)+a3.
2. If y1 and y2 are independent, Var(a1y1 +a2y2 +a3) = a2

1Var(y1)+a2
2Var(y2).

3. Var(a1y1 +a2y2 +a3) = a2
1Var(y1)+2a1a2Cov(y1,y2)+a2

2Var(y2).
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4. Cov(a1y1 + a2y2,a3y3 + a4y4) = a1a3Cov(y1,y3) + a1a4Cov(y1,y4) + a2a3Cov(y2,y3) +
a2a4Cov(y2,y4).

All of these results generalize to linear combinations involving more than two random variables.

EXAMPLE 1.2.12. Recall that when independently tossing a coin twice, the total number of
heads, W , is the sum of y1 and y2, the number of heads on the first and second tosses respectively.
We have already seen that E(y1) = E(y2) = .5 and that E(W ) = 1. We now illustrate item 1 of the
proposition by finding E(W ) again. Since W = y1 + y2,

E(W ) = E(y1 + y2) = E(y1)+E(y2) = .5+ .5 = 1.

We have also seen that Var(y1) = Var(y2) = .25 and that Var(W ) = .5. Since the coin tosses are
independent, item 2 above gives

Var(W ) = Var(y1 + y2) = Var(y1)+Var(y2) = .25+ .25 = .5 .

The key point is that this is an easier way of finding the expected value and variance of W than using
the original definitions. 2

We now illustrate the generalizations referred to in Proposition 1.2.11. We begin by looking at
the problem of estimating the mean of a population.

EXAMPLE 1.2.13. Let y1, y2, y3, and y4 be four random variables each with the same (population)
mean µ , i.e., E(yi) = µ for i = 1,2,3,4. We can compute the sample mean (average) of these,
defining

ȳ· ≡
y1 + y2 + y3 + y4

4

=
1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4.

The · in the subscript of ȳ· indicates that the sample mean is obtained by summing over the subscripts
of the yis. The · notation is not necessary for this problem but becomes useful in dealing with the
analysis of variance problems treated later in the book.

Using item 1 of Proposition 1.2.11 we find that

E(ȳ·) = E
(

1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4

)
=

1
4

E(y1)+
1
4

E(y2)+
1
4

E(y3)+
1
4

E(y4)

=
1
4

µ +
1
4

µ +
1
4

µ +
1
4

µ

= µ.

Thus one observation on ȳ· would make a reasonable estimate of µ .
If we also assume that the yis are independent with the same variance, say, σ2, then from item 2

of Proposition 1.2.11

Var(ȳ·) = Var
(

1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4

)
=

(
1
4

)2

Var(y1)+

(
1
4

)2

Var(y2)

+

(
1
4

)2

Var(y3)+

(
1
4

)2

Var(y4)
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=

(
1
4

)2

σ
2 +

(
1
4

)2

σ
2 +

(
1
4

)2

σ
2 +

(
1
4

)2

σ
2

=
σ2

4
.

The variance of ȳ· is only one fourth of the variance of an individual observation. Thus the ȳ·
observations are more tightly packed around their mean µ than the yis are. This indicates that one
observation on ȳ· is more likely to be close to µ than an individual yi. 2

These results for ȳ· hold quite generally; they are not restricted to the average of four random
variables. If ȳ· = (1/n)(y1 + · · ·+ yn) = ∑

n
i=1 yi/n is the sample mean of n independent random

variables all with the same population mean µ and population variance σ2,

E(ȳ·) = µ

and

Var(ȳ·) =
σ2

n
.

In fact, proving these general results uses exactly the same ideas as the proofs for a sample of size
4.

As with a sample of size 4, the general results on ȳ· are very important in statistical inference. If
we are interested in determining the population mean µ from future data, the obvious estimate is the
average of the individual observations, ȳ·. The observations are random, so the estimate ȳ· is also a
random variable and the middle of its distribution is E(ȳ·) = µ , the original population mean. Thus
ȳ· is a reasonable estimate of µ . Moreover, ȳ· is a better estimate than any particular observation
yi because ȳ· has a smaller variance, σ2/n as opposed to σ2 for yi. With less variability in the
estimate, any one observation of ȳ· is more likely to be near its mean µ than a single observation
yi. In practice, we obtain data and compute a sample mean. This constitutes one observation on the
random variable ȳ·. If our sample mean is to be a good estimate of µ , our one look at ȳ· had better
have a good chance of being close to µ . This occurs when the variance of ȳ· is small. Note that the
larger the sample size n, the smaller is σ2/n, the variance of ȳ·. We will return to these ideas later.

Generally, we will use item 1 of Proposition 1.2.11 to show that estimates are unbiased. In other
words, we will show that the expected value of an estimate is what we are trying to estimate. In
estimating µ , we have E(ȳ·) = µ , so ȳ· is an unbiased estimate of µ . All this really does is show that
ȳ· is a reasonable estimate of µ . More important than showing unbiasedness is using item 2 to find
variances of estimates. Statistical inference depends crucially on having some idea of the variability
of an estimate. Item 2 is the primary tool in finding the appropriate variance for different estimates.

1.3 Continuous distributions

As discussed in Section 1.1, many things that we would like to measure are, in the strictest sense, not
measurable. We cannot find a building’s exact height even though we can approximate it extremely
accurately. This theoretical inability to measure things exactly has little impact on our practical
world, but it has a substantial impact on the theory of statistics.

The data in most statistical applications can be viewed as counts of how often some event has
occurred or as measurements. Probabilities associated with count data are easy to describe. We dis-
cuss some probability models for count data in Sections 1.4 and 1.5. With measurement data, we can
never obtain an exact value, so we don’t even try. With measurement data, we assign probabilities to
intervals. Thus we do not discuss the probability that a person has the height 177.8 cm or 177.8001
cm or 56.5955π cm, but we do discuss the probability that someone has a height between 177.75
cm and 177.85 cm. Typically, we think of doing this in terms of pictures. We associate probabilities
with areas under curves. (Mathematically, this involves integral calculus and is discussed in a brief
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K(1 − α)0

0

1 − α α

Figure 1.1: A continuous probability density.

appendix at the end of the chapter.) Figure 1.1 contains a picture of a continuous probability distri-
bution (a density). Probabilities must be between 0 and 1, so the curve must always be nonnegative
(to make all areas nonnegative) and the area under the entire curve must be 1.

Figure 1.1 also shows a point K(1−α). This point divides the area under the curve into two
parts. The probability of obtaining a number less than K(1−α) is 1−α , i.e., the area under the
curve to the left of K(1−α) is 1−α . The probability of obtaining a number greater than K(1−α)
is α , i.e., the area under the curve to the right of K(1−α). K(1−α) is a particular number, so the
probability is 0 that K(1−α) will actually occur. There is no area under a curve associated with any
particular point.

Pictures such as Figure 1.1 are often used as models for populations of measurements. With a
fixed population of measurements, it is natural to form a histogram, i.e., a bar chart that plots in-
tervals for the measurement against the proportion of individuals that fall into a particular interval.
Pictures such as Figure 1.1 can be viewed as approximations to such histograms. The probabilities
described by pictures such as Figure 1.1 are those associated with randomly picking an individ-
ual from the population. Thus, randomly picking an individual from the population modeled by
Figure 1.1 yields a measurement less than K(1−α) with probability 1−α .

Ideas similar to those discussed in Section 1.2 can be used to define expected values, variances,
and covariances for continuous distributions. These extensions involve integral calculus and are
discussed in the appendix. In any case, Proposition 1.2.11 continues to apply.

The most commonly used distributional model for measurement data is the normal distribution
(also called the Gaussian distribution). The bell shaped curve in Figure 1.1 is referred to as the
standard normal curve. The formula for writing the curve is not too ugly, it is

f (x) =
1√
2π

e−x2/2.

Here e is the base of natural logarithms. Unfortunately, even with calculus it is very difficult to
compute areas under this curve. Finding standard normal probabilities requires a table.

By itself, the standard normal curve has little value in modeling measurements. For one thing,
the curve is centered about 0. I don’t take many measurements where I think the central value should
be 0. To make the normal distribution a useful model, we need to expand the standard normal into
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a family of distributions with different centers (expected values) µ and different spreads (standard
deviations) σ . By appropriate recentering and rescaling of the plot, all of these curves will have the
same shape as Figure 1.1.

The standard normal distribution is the special case of a normal with µ = 0 and σ = 1. The
standard normal plays an important role because it is the only normal distribution that we need
tabled. (Obviously, we could not table normal distributions for every possible value of µ and σ .)
Suppose a measurement y has a normal distribution with mean µ , standard deviation σ , and variance
σ2. We write this as

y∼ N(µ,σ2).

Normal distributions have the property that

y−µ

σ
∼ N(0,1),

cf. Exercise 1.6.2. This standardization process allows us to get by with only the standard normal
table for finding probabilities for all normal distributions.

The standard normal distribution is sometimes used in constructing statistical inferences but
more often a similar distribution is used. When data are normally distributed, statistical inferences
often require something called Student’s t distribution. (Student was the pen name of W. S. Gosset.)
The t distribution is a family of distributions all of which look roughly like Figure 1.1. They are all
symmetric about 0, but they have slightly different amounts of dispersion (spread). The amount of
variability in each distribution is determined by a positive integer parameter called the degrees of
freedom. With only 1 degree of freedom, the mathematical properties of a t distribution are fairly
bizarre. (This special case is called a Cauchy distribution.) As the number of degrees of freedom
get larger, the t distributions get better behaved and have less variability. As the degrees of freedom
gets arbitrarily large, the t distribution approximates the standard normal distribution.

Two other distributions that come up later are the chi-squared distribution (χ2) and the F dis-
tribution. These arise naturally when drawing conclusions about the population variance from data
that are normally distributed. Both distributions differ from those just discussed in that both are
asymmetric and both are restricted to positive numbers. However, the basic idea of probabilities
being areas under curves remains unchanged.

In Section 1.2, we introduced Chebyshev’s inequality. Shewhart (1931, p. 177) discusses work
by Camp and Meidell that allows us to improve on Chebyshev’s inequality for continuous distri-
butions. Once again let E(y) = µ and Var(y) = σ2. If the density, i.e., the function that defines the
curve, is symmetric, unimodal (has only one peak), and always decreases as one moves farther away
from the mode, then the inequality can be sharpened to

Pr[µ− kσ < y < µ + kσ ]≥ 1− 1
(2.25)k2 .

As discussed in the previous section, with y normal and k = 3, the true probability is .997, Cheby-
shev’s inequality gives a lower bound of .889, and the new improved Chebyshev inequality gives
a lower bound of .951. By making some relatively innocuous assumptions, we get a substantial
improvement in the lower bound.

1.4 The binomial distribution

There are a few distributions that are used in the vast majority of statistical applications. The reason
for this is that they tend to occur naturally. The normal distribution is one. As discussed in the next
chapter, the normal distribution occurs in practice because a result called The central limit theorem
dictates that many distributions can be approximated by the normal. Two other distributions, the
binomial and the multinomial, occur in practice because they are very simple. In this section we
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discuss the binomial. The next section introduces the multinomial distribution. The results of this
section are only used in Chapter 8 and in discussions of transformations.

If you have independent identical random trials and count how often something (anything) oc-
curs, the appropriate distribution is the binomial. What could be simpler?

EXAMPLE 1.4.1. Being somewhat lonely in my misspent youth, I decided to go to a dating ser-
vice. The service was to provide me with five dates. Being a very open-minded soul, I convinced
myself that the results of one date would not influence my opinion about other dates. From my
limited experience with the opposite sex, I have found that I enjoy about 40% of such brief en-
counters. I decided that my money would be well spent if I enjoyed two or more of the five dates.
Unfortunately, my loan shark repossessed my 1954 Studebaker before I could indulge in this taste
of nirvana. Back in those days, we chauvinists believed: no wheels – no women. Nevertheless, let
us compute the probability that I would have been satisfied with the dating service. Let W be the
number of dates I would have enjoyed. The simplest way to find the probability of satisfaction is
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Pr(W ≥ 2) = 1−Pr(W < 2)
= 1−Pr(W = 0)−Pr(W = 1) ,

but that is much too easy. Let’s compute

Pr(W ≥ 2) = Pr(W = 2)+Pr(W = 3)+Pr(W = 4)+Pr(W = 5) .

In particular, we compute each term on the right-hand side.
Write the outcome of the five dates as an ordered collection of Ls and Ds. For example, (L, D,

L, D, D) indicates that I like the first and third dates, but dislike the second, fourth, and fifth.
To like five dates, I must like everyone of them.

Pr(W = 5) = Pr(L,L,L,L,L) .

Remember, I assumed that the dates were independent and that the probability of my liking any one
is .4. Thus,

Pr(W = 5) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(L)
= (.4)5 .

The probability of liking four dates is a bit more complicated. I could only dislike one date, but
there are five different choices for the date that I could dislike. It could be the fifth, the fourth, the
third, the second, or the first. Any pattern of 4 Ls and a D excludes the other patterns from occurring,
e.g., if the only date I dislike is the fourth, then the only date I dislike cannot be the second. Since
the patterns are mutually exclusive (disjoint), the probability of disliking one date is the sum of the
probabilities of the individual patterns.

Pr(W = 4) = Pr(L,L,L,L,D) (1.4.1)
+Pr(L,L,L,D,L)

+Pr(L,L,D,L,L)

+Pr(L,D,L,L,L)

+Pr(D,L,L,L,L) .

By assumption Pr(L) = .4, so Pr(D) = 1−Pr(L) = 1− .4 = .6. The dates are independent, so

Pr(L,L,L,L,D) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(D)

= (.4)4.6 .

Similarly,

Pr(L,L,L,D,L) = Pr(L,L,D,L,L)

= Pr(L,D,L,L,L)

= Pr(D,L,L,L,L)

= (.4)4.6 .

Summing up the values in equation (1.4.1),

Pr(W = 4) = 5(.4)4(.6) .
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Computing the probability of liking three dates is even worse.

Pr(W = 3) = Pr(L,L,L,D,D)

+Pr(L,L,D,L,D)

+Pr(L,D,L,L,D)

+Pr(D,L,L,L,D)

+Pr(L,L,D,D,L)

+Pr(L,D,L,D,L)

+Pr(D,L,L,D,L)

+Pr(L,D,D,L,L)

+Pr(D,L,D,L,L)

+Pr(D,D,L,L,L)

Again all of these patterns have exactly the same probability. For example, using independence

Pr(D,L,D,L,L) = (.4)3(.6)2 .

Adding up all of the patterns
Pr(W = 3) = 10(.4)3(.6)2 .

By now it should be clear that

Pr(W = 2) = (no. of patterns with 2 Ls and 3 Ds)(.4)2(.6)3 .

The number of patterns can be computed as(
5
2

)
≡ 5!

2!(5−2)!
≡ 5 ·4 ·3 ·2 ·1

(2 ·1)(3 ·2 ·1)
= 10 .

The probability that I would be satisfied with the dating service is

Pr(W ≥ 2) = 10(.4)2(.6)3 +10(.4)3(.6)2 +5(.4)4.6+(.4)5

= .663 . 2

Binomial random variables can also be generated by sampling from a fixed population. If we
were going to make 20 random selections from the UNM student body, the number of females would
have a binomial distribution. Given a set of procedures for defining and sampling the student body,
there would be some fixed number of students of which a given number would be females. Under
random sampling, the probability of selecting a female on any of the 20 trials would be simply the
proportion of females in the population. Although it is very unlikely to occur in this example, the
sampling scheme must allow the possibility of students being selected more than once in the sample.
If people were not allowed to be chosen more than once, each successive selection would change the
proportion of females available for the subsequent selection. Of course, when making 20 selections
out of a population of over 20,000 UNM students, even if you did not allow people to be reselected,
the changes in the proportions of females are insubstantial and the binomial distribution makes a
good approximation to the true distribution. On the other hand, if the entire student population was
40 rather than 20,000+, it might not be wise to use the binomial approximation when people are
not allowed to be reselected.

Typically, the outcome of interest in a binomial is referred to as a success. If the probability
of a success is p for each of N independent identical trials, then the number of successes y has a
binomial distribution with parameters N and p. Write

y∼ Bin(N, p) .
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The distribution of y is

Pr(y = r) =
(

N
r

)
pr(1− p)N−r

for r = 0,1, . . . ,N. Here (
N
r

)
≡ N!

r!(N− r)!

where for any positive integer m, m! ≡ m(m− 1)(m− 2) · · ·(2)(1) and 0! ≡ 1. The notation
(N

r

)
is read “N choose r” because it is the number of distinct ways of choosing r individuals out of a
collection containing N individuals.

EXAMPLE 1.4.2. The random variables in Example 1.2.1 were y1, the number of heads on the
first toss of a coin, y2, the number of heads on the second toss of a coin, and W , the combined
number of heads from the two tosses. These have the following distributions:

y1 ∼ Bin
(

1,
1
2

)
y2 ∼ Bin

(
1,

1
2

)
W ∼ Bin

(
2,

1
2

)
.

Note that W , the Bin
(
2, 1

2

)
, was obtained by adding together the two independent Bin

(
1, 1

2

)
random

variables y1 and y2. This result is quite general. Any Bin(N, p) random variable can be written as
the sum of N independent Bin(1, p) random variables. 2

Given the probability distribution of a binomial, we can find the mean (expected value) and
variance. By definition, if y∼ Bin(N, p), the mean is

E(y) =
N

∑
r=0

r
(

N
r

)
pr(1− p)N−r .

This is difficult to evaluate directly, but by writing y as the sum of N independent Bin(1, p) random
variables and using Exercise 1.6.1 and Proposition 1.2.11, it is easily seen that

E(y) = N p .

Similarly, the variance of y is

Var(y) =
N

∑
r=0

(r−N p)2
(

N
r

)
pr(1− p)N−r

but by again writing y as the sum of N independent Bin(1, p) random variables and using Exer-
cise 1.6.1 and Proposition 1.2.11, it is easily seen that

Var(y) = N p(1− p) .

Exercise 1.6.8 consists of proving these mean and variance formulae.
On occasion we will need to look at both the number of successes from a group of N trials and

the number of failures at the same time. If the number of successes is y1 and the number of failures
is y2, then

y2 = N− y1

y1 ∼ Bin(N, p)
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and
y2 ∼ Bin(N,1− p) .

The last result holds because, with independent identical trials, the number of outcomes that we call
failures must also have a binomial distribution. If p is the probability of success, the probability of
failure is 1− p. Of course,

E(y2) = N(1− p)

Var(y2) = N(1− p)p .

Note that Var(y1) = Var(y2) regardless of the value of p. Finally,

Cov(y1,y2) =−N p(1− p)

and
Corr(y1,y2) =−1 .

There is a perfect linear relationship between y1 and y2. If y1 goes up one count, y2 goes down one
count. When we look at both successes and failures write

(y1,y2)∼ Bin
(
N, p,(1− p)

)
.

This is the simplest case of the multinomial distribution discussed in the next section.

1.5 The multinomial distribution

The multinomial distribution is a generalization of the binomial allowing more than two categories.
The results in this section are only used in Chapter 8.

EXAMPLE 1.5.1. Consider the probabilities for the nine height and eye color categories given in
Example 1.1.2. The probabilities are repeated below.

Height–eye color probabilities
Eye color

Blue Brown Green
Tall .12 .15 .03

Height Medium .22 .34 .04
Short .06 .01 .03

Suppose a random sample of 50 individuals was obtained with these probabilities. For example,
one might have a population of 100 people in which 12 were tall with blue eyes, 15 were tall with
brown eyes, 3 were short with green eyes, etc. We could randomly select one of the 100 people
as the first individual in the sample. Then, returning that individual to the population, take another
random selection from the 100 to be the second individual. We are to proceed in this way until 50
people are selected. Note that with a population of 100 and a sample of 50 there is a substantial
chance that some people would be selected more than once. The numbers of selections falling into
each of the nine categories has a multinomial distribution with N = 50 and these probabilities.

It is unlikely that one would actually perform sampling from a population of 100 people as
described above. Typically, one would not allow the same person to be chosen more than once.
However, if we had a population of 10,000 people where 1200 were tall with blue eyes, 1500 were
tall with brown eyes, 300 were short with green eyes, etc., with a sample size of 50 we might be
willing to allow the possibility of selecting the same person more than once simply because it is
extremely unlikely to happen. Technically, to obtain the multinomial distribution with N = 50 and
these probabilities, when sampling from a fixed population we need to allow individuals to appear
more than once. However, when taking a small sample from a large population, it does not matter
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much whether or not you allow people to be chosen more than once, so the multinomial often
provides a good approximation even when individuals are excluded from reappearing in the sample.
2

Consider a group of N independent identical trials in which each trial results in the occurrence
of one of q events. Let yi, i = 1, . . . ,q be the number of times that the ith event occurs and let pi be
the probability that the ith event occurs on any trial. The pis must satisfy p1 + p2 + · · ·+ pq = 1. We
say that (y1, . . . ,yq) has a multinomial distribution with parameters N, p1, . . . , pq. Write

(y1, . . . ,yq)∼Mult(N, p1, . . . , pq) .

The distribution is given by the probabilities

Pr(y1 = r1, . . . ,yq = rq) =
N!

r1! · · ·rq!
pr1

1 · · · p
rq
q

=

(
N!
/ q

∏
i=1

ri!

)
q

∏
i=1

pri
i .

Here the ris are allowed to be any whole numbers with each ri ≥ 0 and r1+ · · ·+rq = N. Note that if
q = 2, this is just a binomial distribution. In general, each individual component yi of a multinomial
consists of N trials in which category i either occurs or does not occur, so individual components
have the marginal distributions

yi ∼ Bin(N, pi).

It follows that
E(yi) = N pi

and
Var(yi) = N pi(1− pi) .

It can also be shown that

Cov(yi,y j) =−N pi p j for i 6= j .

EXAMPLE 1.5.2. Suppose that the 50 individuals from Example 1.5.1 fall into the categories as
listed below.

Height–eye color observations
Eye color

Blue Brown Green
Tall 5 8 2

Height Medium 10 18 2
Short 3 1 1

The probability of getting this particular table is

50!
5!8!2!10!18!2!3!1!1!

(.12)5(.15)8(.03)2(.22)10(.34)18(.04)2(.06)3(.01)1(.03)1.

This number is zero to over 5 decimal places. The fact that this is a very small number is not
surprising. There are a lot of possible tables, so the probability of getting any particular table is very
small. In fact, many of the possible tables are much less likely to occur than this table.

Let’s return to thinking about the observations as random. The expected number of observations
for each category is given by N pi. It is easily seen that the expected counts for the cells are as given
below.
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Height–eye color expected values
Eye color

Blue Brown Green
Tall 6.0 7.5 1.5

Height Medium 11.0 17.0 2.0
Short 3.0 0.5 1.5

Note that the expected counts need not be integers.
The variance for, say, the number of tall blue-eyed people in this population is 50(.12)(1−

.12) = 5.28. The variance of the number of short green-eyed people is 50(.03)(1− .03) = 1.455.
The covariance between the number of tall blue-eyed people and the number of short green-eyed
people is −50(.12)(.03) =−.18. The correlation between the numbers of tall blue-eyed people and
short green-eyed people is −.18/

√
(5.28)(1.455) =−0.065. 2

Appendix: probability for continuous distributions

As stated in Section 1.3, probabilities are sometimes defined as areas under a curve. The curve,
called a probability density function or just a density, must be defined by some nonnegative func-
tion f (·). (Nonnegative to ensure that probabilities are always positive.) Thus the probability that a
random observation y is between two numbers, say a and b, is the area under the curve measured
between a and b. Using calculus, this is

Pr[a < y < b] =
∫ b

a
f (y)dy.

Because we are measuring areas under curves, there is no area associated with any one point, so
Pr[a < y < b] = Pr[a≤ y < b] = Pr[a < y≤ b] = Pr[a≤ y≤ b]. The area under the entire curve must
be 1, i.e.,

1 = Pr[−∞< y <∞] =
∫ ∞
−∞

f (y)dy.

Figure 1.1 indicates that the probability below K(1−α) is 1−α , i.e.,

1−α = Pr[y < K(1−α)] =
∫ K(1−α)

−∞
f (y)dy

and that the probability above K(1−α) is α , i.e.,

α = Pr[y > K(1−α)] =
∫ ∞

K(1−α)
f (y)dy.

The expected value of y is defined as

E(y) =
∫ ∞
−∞

y f (y)dy.

For any function g(y), the expected value is

E[g(y)] =
∫ ∞
−∞

g(y) f (y)dy.

In particular, if we let E(y) = µ and g(y) = (y−µ)2, we define the variance as

Var(y) = E[(y−µ)2] =
∫ ∞
−∞

(y−µ)2 f (y)dy.



1.6 EXERCISES 23

To define the covariance between two random variables, say y1 and y2, we need a joint density
f (y1,y2). We can find the density for y1 alone as

f1(y1) =
∫ ∞
−∞

f (y1,y2)dy2

and we can write E(y1) in two equivalent ways

E(y1) =
∫ ∞
−∞

∫ ∞
−∞

y1 f (y1,y2)dy1 dy2 =
∫ ∞
−∞

y1 f1(y1)dy1.

Writing E(y1) = µ1 and E(y2) = µ2 we can now define the covariance between y1 and y2 as

Cov(y1,y2) =
∫ ∞
−∞

∫ ∞
−∞

(y1−µ1)(y2−µ2) f (y1,y2)dy1 dy2.

1.6 Exercises

EXERCISE 1.6.1. Use the definitions to find the expected value and variance of a Bin(1, p) dis-
tribution.

EXERCISE 1.6.2. Let y be a random variable with E(y) = µ and Var(y) = σ2. Show that

E
(

y−µ

σ

)
= 0

and

Var
(

y−µ

σ

)
= 1.

Let ȳ· be the sample mean of n independent observations yi with E(yi) = µ and Var(yi) = σ2.
What is the expected value and variance of

ȳ·−µ

σ/
√

n
?

Hint: For the first part, write
y−µ

σ
as

1
σ

y− µ

σ

and use Proposition 1.2.11.

EXERCISE 1.6.3. Let y be the random variable consisting of the number of spots that face up upon
rolling a die. Give the distribution of y. Find the expected value, variance, and standard deviation of
y.

EXERCISE 1.6.4. Consider your letter grade for this course. Obviously, it is a random phe-
nomenon. Define the ‘grade point’ random variable: y(A) = 4, y(B) = 3, y(C) = 2, y(D) = 1,
y(F) = 0. If you were lucky enough to be taking the course from me, you would find that I am
an easy grader. I give 5% As, 10% Bs, 35% Cs, 30% Ds, and 20% Fs. I also assign grades at ran-
dom, that is to say, my tests generate random scores. Give the distribution of y. Find the expected
value, variance, and standard deviation of the grade points a student would earn in my class. (Just
in case you hadn’t noticed, I’m being sarcastic.)

EXERCISE 1.6.5. Referring to Exercise 1.6.4, suppose I have a class of 40 students, what is the
joint distribution for the numbers of students who get each of the five grades? Note that we are no
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longer looking at how many grade points an individual student might get, we are now counting how
many occurrences we observe of various events. What is the distribution for the number of students
who get Bs? What is the expected value of the number of students who get Cs? What is the variance
and standard deviation of the number of students who get Cs? What is the probability that in a class
of 5 students, 1 gets an A, 2 get Cs, 1 gets a D, and 1 fails?

EXERCISE 1.6.6. Graph the function f (x) = 1 if 0< x< 1 and f (x) = 0 otherwise. This is known
as the uniform density on (0,1). If we use this curve to define a probability function, what is the
probability of getting an observation larger than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.7. Arthritic ex-football players prefer their laudanum made with Old Pain-Killer
Scotch by two to one. If we take a random sample of 5 arthritic ex-football players, what is the
distribution of the number who will prefer Old Pain-Killer? What is the probability that only 2 of
the ex-players will prefer Old Pain-Killer? What is the expected number who will prefer Old Pain-
Killer? What are the variance and standard deviation of the number who will prefer Old Pain-Killer?

EXERCISE 1.6.8. Let W ∼ Bin(N, p) and for i = 1, . . . ,N take independent yis that are Bin(1, p).
Argue that W has the same distribution as y1 + · · ·+yN . Use this fact, along with Exercise 1.6.1 and
Proposition 1.2.11, to find E(W ) and Var(W ).

EXERCISE 1.6.9. Appendix B.1 gives probabilities for a family of distributions that all look
roughly like Figure 1.1. All members of the family are symmetric about zero and the members are
distinguished by having different numbers of degrees of freedom (d f ). They are called t distribu-
tions. For 0 ≤ α ≤ 1, the α percentile of a t distribution with d f degrees of freedom is the point x
such that Pr[t(d f ) ≤ x] = α . For example, from Table B.1 the row corresponding to d f = 10 and
the column for the .90 percentile tells us that Pr[t(10)≤ 1.372] = .90.

(a) Find the .99 percentile of a t(7) distribution.
(b) Find the .975 percentile of a t(50) distribution.
(c) Find the probability that a t(25) is less than or equal to 3.450.
(d) Find the probability that a t(100) is less than or equal to 2.626.
(e) Find the probability that a t(16) is greater than 2.92.
(f) Find the probability that a t(40) is greater than 1.684.
(g) Recalling that t distributions are symmetric about zero, what is the probability that a t(40) dis-

tribution is less than −1.684?
(h) What is the probability that a t(40) distribution is between −1.684 and 1.684?
(i) What is the probability that a t(25) distribution is less than −3.450?
(j) What is the probability that a t(25) distribution is between −3.450 and 3.450?

EXERCISE 1.6.10. Consider a random variable that takes on the values 25, 30, 45, and 50 with
probabilities .15, .25, .35, and .25, respectively. Find the expected value, variance, and standard
deviation of this random variable.

EXERCISE 1.6.11. Consider three independent random variables X , Y , and Z. Suppose E(X) =
25, E(Y ) = 40, and E(Z) = 55 with Var(X) = 4, Var(Y ) = 9, and Var(Z) = 25.

(a) Find E(2X +3Y +10) and Var(2X +3Y +10).
(b) Find E(2X +3Y +Z +10) and Var(2X +3Y +Z +10).
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EXERCISE 1.6.12. As of 1994, Duke University had been in the final four of the NCAA’s national
basketball championship tournament seven times in nine years. Suppose their appearances were
independent and that they had a probability of .25 for winning the tournament in each of those
years.

(a) What is the probability that Duke would win two national championships in those seven appear-
ances?

(b) What is the probability that Duke would win three national championships in those seven ap-
pearances?

(c) What is the expected number of Duke championships in those seven appearances?
(d) What is the variance of the number of Duke championships in those seven appearances?

EXERCISE 1.6.13. Graph the function f (x) = 2x if 0 < x < 1 and f (x) = 0 otherwise. If we use
this curve to define a probability function, what is the probability of getting an observation larger
than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.14. A pizza parlor makes small, medium, and large pizzas. Over the years they
make 20% small pizzas, 35% medium pizzas, and 45% large pizzas. On a given Tuesday night they
were asked to make only 10 pizzas. If the orders were independent and representative of the long-
term percentages, what is the probability that the orders would be for four small, three medium, and
three large pizzas. On such a night, what is the expected number of large pizzas to be ordered and
what is the expected number of small pizzas to be ordered? What is the variance of the number of
large pizzas to be ordered and what is the variance of the number of medium pizzas to be ordered?

EXERCISE 1.6.15. When I order a limo, 65% of the time the driver is male. Assuming indepen-
dence, what is the probability that 6 of my next 8 drivers are male? What is the expected number of
male drivers among my next eight? What is the variance of the number of male drivers among my
next eight?

EXERCISE 1.6.16. When I order a limo, 65% of the time the driver is clearly male, 30% of
the time the driver is clearly female, and 5% of the time the gender of the driver is indeterminant.
Assuming independence, what is the probability that among my next 8 drivers 5 are clearly male
and 3 are clearly female? What is the expected number of indeterminant drivers among my next
eight? What is the variance of the number of clearly female drivers among my next eight?





Chapter 2

One sample

In this chapter we examine the analysis of a single random sample consisting of n independent
observations from some population.

2.1 Example and introduction

EXAMPLE 2.1.1. Consider the dropout rate from a sample of math classes at the University of
New Mexico in the 1984–85 school year as reported by Koopmans (1987). The data are

5,22,10,12,8,17,2,25,10,10,7,7,40,7,9,17,12,12,1,

13,10,13,16,3,14,17,10,10,13,59,11,13,5,12,14,3,14,15.

This list of n = 38 observations is not very illuminating. A graphical display of the numbers is
more informative. Figure 2.1 plots the data above a single axis. This is often called a dot plot. From
Figure 2.1, we see that most of the observations are between 0 and 18. There are two conspicuously
large observations. Going back to the original data we identify these as the values 40 and 59. In
particular, these two outlying values strongly suggest that the data do not follow a bell shaped curve
and thus that the data do not follow a normal distribution.

2

Typically, for one sample of data we assume that the n observations are

Data Distribution
y1,y2, . . . ,yn independent N(µ,σ2)

The key assumptions are that the observations are independent and have the same distribution. In
particular, we assume they have the same (unknown) mean µ and the same (unknown) variance σ2.

These assumptions of independence and a constant distribution should be viewed as only useful
approximations to actual conditions. Often the most valuable approach to evaluating these assump-
tions is simply to think hard about whether they are reasonable. In any case, the conclusions we
reach are only as good as the assumptions we have made. The only way to be positive that these
assumptions are true is if we arrange for them to be true. If we have a fixed finite population and take
a random sample from the population allowing elements of the population to be observed more than

:
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.: : :::.:::.: . . . .
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0 12 24 36 48 60

Figure 2.1: Dot plot for drop rate percentage data.
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once, then the assumptions (other than normality) are true. In Example 2.1.1, if we had the dropout
rates for all math classes in the year and randomly selected these 38 while allowing for classes to
appear more than once in the sample, the assumptions of independence with the same distribution
are satisfied.

The ideal conditions of independent sampling from a fixed population are difficult to achieve.
Many populations refuse to hold still while we sample them. For example, the population of students
at a large university changes almost continuously (during working hours). To my way of thinking,
the populations associated with most interesting data are virtually impossible to define unambigu-
ously. Who really cares about the dropout rates for 1984–85? As such, they can only be used to
fix blame. Our real interest is in what the data can tell us about current and future dropout rates.
If the data are representative of current or future conditions, the data can be used to fix problems.
For example, one might find out whether certain instructors generate huge dropout rates and avoid
taking classes from them. It is difficult to decide whether these or any data are representative of
current or future conditions because we cannot possibly know the future population and we cannot
practically know the current population. As mentioned earlier, often our best hope is to think hard
about whether these data approximate independent observations from the population of interest.

Even when sampling from a fixed population, we use approximations. In practice we rarely
allow elements of a fixed population to be observed more than once in a sample. This invalidates
the assumptions. If the first sampled element is eliminated, the second element is actually being
sampled from a different population than the first. (One element has been eliminated.) Fortunately,
when the sample contains a small proportion of the fixed population, the standard assumptions make
a good approximation. Moreover, the normal distribution is never more than an approximation to a
fixed population. The normal distribution has an infinite number of possible outcomes, while fixed
populations are finite. Often, the normal distribution makes a good approximation, especially if we
do our best to validate it. In addition, the assumption of a normal distribution is only used when
drawing conclusions from small samples. For large samples we can get by without the assumption
of normality.

Our primary objective is to draw conclusions about the mean µ . We condense the data into sum-
mary statistics. These are the sample mean, the sample variance, and the sample standard deviation.
The sample mean has the algebraic formula

ȳ· ≡
1
n

n

∑
i=1

yi =
1
n
[y1 + y2 + · · ·+ yn]

where the · in ȳ· indicates that the mean is obtained by averaging the yis over the subscript i. The
sample mean ȳ· estimates the population mean µ . The sample variance is an estimate of the popula-
tion variance σ2. The sample variance is essentially the average squared distance of the observations
from the sample mean,

s2 ≡ 1
n−1

n

∑
i=1

(yi− ȳ·)
2 (2.1.1)

=
1

n−1

[
(y1− ȳ·)

2
+(y2− ȳ·)

2
+ · · ·+(yn− ȳ·)

2
]
.

The sample standard deviation is just the square root of the sample variance,

s≡
√

s2.

EXAMPLE 2.1.2. The sample mean of the dropout rate data is

ȳ· =
5+22+10+12+8+ · · ·+3+14+15

38
= 13.11.
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If we think of these data as a sample from the fixed population of math dropout rates in 1984–
85, ȳ· is obviously an estimate of the simple average of all the dropout rates of all the classes in
that academic year. Equivalently, ȳ· is an estimate of the expected value for the random variable
defined as the dropout rate obtained when we randomly select one class from the fixed population.
Alternatively, we may interpret ȳ· as an estimate of the mean of some population that is more
interesting but less well defined than the fixed population of math dropout rates for 1984–85.

The sample variance is

s2 =

[
(5−13.11)2 +(22−13.11)2 + · · ·+(14−13.11)2 +(15−13.11)2

]
38−1

= 106.5.

This estimates the variance of the random variable obtained when randomly selecting one class from
the fixed population. The sample standard deviation is

s =
√

106.5 = 10.32 . 2

The only reason s2 is not the average squared distance of the observations from the sample
mean is that the denominator in (2.1.1) is n− 1 instead of n. If µ were known, a better estimate
of the population variance σ2 would be σ̂2 ≡ ∑

n
i=1 (yi−µ)

2
/n. In s2, we have used ȳ· to estimate

µ . Not knowing µ , we know less about the population, so s2 cannot be as good an estimate as
σ̂2. The quality of a variance estimate can be measured by the number of observations on which
it is based; σ̂2 makes full use of all n observations for estimating σ2. In using s2, we lose the
functional equivalent of one observation for having estimated the parameter µ . Thus s2 has n− 1
in the denominator of (2.1.1) and is said to have n− 1 degrees of freedom. In nearly all problems
that we will discuss, there is one degree of freedom available for every observation. The degrees of
freedom are assigned to various estimates and we will need to keep track of them.

The statistics ȳ· and s2 are estimates of µ and σ2 respectively. The law of large numbers is a
mathematical result implying that for large sample sizes n, ȳ· gets arbitrarily close to µ and s2 gets
arbitrarily close to σ2.

Both ȳ· and s2 are computed from the random observations yi. The summary statistics are func-
tions of random variables, so they must also be random. Each has a distribution and to draw conclu-
sions about the unknown parameters µ and σ2 we need to know the distributions. In particular, if
the original data are normally distributed, the sample mean has the distribution

ȳ· ∼ N
(

µ,
σ2

n

)
or equivalently,

ȳ·−µ√
σ2/n

∼ N(0,1) , (2.1.2)

see Exercise 1.6.2. In Subsection 1.2.4 we established that E(ȳ·)= µ and Var(ȳ·)=σ2/n, so the only
new claim made here is that the sample mean computed from independent, identically distributed
(iid) normal random variables is again normally distributed. Moreover, the central limit theorem is
a mathematical result stating that these distributions are approximately true for ‘large’ samples n,
regardless of whether the original data are normally distributed.

As we will see below, the distributions given above are only useful in drawing conclusions
about data when σ2 is known. Generally, we will need to estimate σ2 with s2 and proceed as best
we can. By the law of large numbers, s2 becomes arbitrarily close to σ2, so for large samples we can
substitute s2 for σ2 in the distributions above. In other words, for large samples the approximation

ȳ·−µ√
s2/n

∼ N(0,1) (2.1.3)



30 2. ONE SAMPLE

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4 N(0,1)
t(3)
t(1)

Figure 2.2: Three distributions: solid, N(0,1); long dashes, t(1); short dashes, t(3).

holds regardless of whether the data were originally normal.
For small samples we cannot rely on s2 being close to σ2, so we fall back on the assumption that

the original data are normally distributed. For normally distributed data, the appropriate distribution
is called a t distribution with n−1 degrees of freedom. In particular,

ȳ·−µ√
s2/n

∼ t(n−1). (2.1.4)

The t distribution is similar to the standard normal but more spread out, see Figure 2.2. It only makes
sense that if we need to estimate σ2 rather than knowing it, our conclusions will be less exact. This
is reflected in the fact that the t distribution is more spread out than the N(0,1). In the previous
paragraph we argued that for large n the appropriate distribution is

ȳ·−µ√
s2/n

∼ N (0,1) .

We are now arguing that for normal data the appropriate distribution is t(n−1). It better be the case
(and is) that for large n the N(0,1) distribution is approximately the same as the t(n−1) distribution.
In fact, we define t(∞) to be a N(0,1) distribution where∞ indicates an infinitely large number.

Formal distribution theory

By definition, the t distribution is obtained as the ratio of two things related to the sample mean and
variance. We now present this general definition.

First, for normally distributed data, the sample variance s2 has a known distribution that depends
on σ2. It is related to a distribution called the chi-squared (χ2) distribution with n− 1 degrees of
freedom. In particular,

(n−1)s2

σ2 ∼ χ
2(n−1). (2.1.5)

Moreover, for normal data, ȳ· and s2 are independent.
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Definition 2.1.3. A t distribution is the distribution obtained when a random variable with a
N(0,1) distribution is divided by an independent random variable that is the square root of a χ2

random variable over its degrees of freedom. The t distribution has the same degrees of freedom as
the chi-square.

In particular, [ȳ·−µ]/
√

σ2/n is N(0,1),
√

[(n−1)s2/σ2]/(n−1) is the square root of a chi-
squared random variable over its degrees of freedom, and the two are independent because ȳ· and
s2 are independent, so

ȳ·−µ√
s2/n

=
[ȳ·−µ]/

√
σ2/n√

[(n−1)s2/σ2]/(n−1)
∼ t(n−1).

The t distribution has the same degrees of freedom as the estimate of σ2; this is typically the case
in other applications.

2.2 Inference about µ

Most statistical tests and confidence intervals are applications of a single theory. (Tests and confi-
dence intervals for variances are exceptions.) To use this theory we need to know four things. In the
one-sample problem the four things are
1. the parameter of interest, µ ,
2. the estimate of the parameter, ȳ·,
3. the standard error of the estimate, SE(ȳ·)≡

√
s2/n = s

/√
n, and

4. the appropriate distribution for [ȳ·−µ]
/√

s2/n .

Specifically, we need a known (tabled) distribution for [ȳ·−µ]
/√

s2/n that is symmetric about zero
and continuous. The standard error, SE(ȳ·), is the estimated standard deviation of ȳ·. Recall that the
variance of ȳ· is σ2/n, so its standard deviation is

√
σ2/n and estimating σ2 by s2 gives the standard

error
√

s2/n.
The appropriate distribution for [ȳ·−µ]

/√
s2/n when the data are normally distributed is the

t(n− 1) as in (2.1.4). For large samples, the appropriate distribution is the N(0,1) as in (2.1.3).
Recall that for large samples from a normal population, it is irrelevant whether we use the standard
normal or the t distribution because they are essentially the same. In the unrealistic case where σ2

is known we do not need to estimate it, so we use
√

σ2/n instead of
√

s2/n for the standard error.
In this case, the appropriate distribution is (2.1.2) if either the original data are normal or the sample
size is large.

We need notation for the percentage points of the known distribution and we need a name for
the point that cuts off the top α of the distribution. Typically, we need to find points that cut off the
top 5%, 2.5%, 1%, or 0.5% of the distribution, so α is .05, .025, .01, or .005. As discussed in the
previous paragraph, the appropriate distribution depends on various circumstances of the problem,
so we begin by discussing percentage points with a generic notation. We use the notation K(1−α)
for the point that cuts off the top α of the distribution. Figure 2.3 displays this idea graphically for
a value of α between 0 and .5. The distribution is described by the curve, which is symmetric about
0. K(1−α) is indicated along with the fact that the area under the curve to the right of K(1−α) is
α . Formally the point that cuts off the top α of the distribution is K(1−α) where

Pr
[

ȳ·−µ

SE(ȳ·)
> K(1−α)

]
= α.

Note that the same point K(1−α) also cuts off the bottom 1−α of the distribution, i.e.,

Pr
[

ȳ·−µ

SE(ȳ·)
< K(1−α)

]
= 1−α.
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t(1 − α, df)0
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Figure 2.3: 1−α percentile of the distribution of [ȳ·−µ]/SE(ȳ·).

This is illustrated in Figure 2.3 by the fact that the area under the curve to the left of K(1−α)
is 1−α . The reason the point is labeled K(1−α) is because it cuts off the bottom 1−α of the
distribution. The labeling depends on the percentage to the left even though our interest is in the
percentage to the right.

There are at least three different ways to label these percentage points; I have simply used the
one I feel is most consistent with general usage in probability and statistics. The key point however
is to be familiar with Figure 2.3. We need to find points that cut off a fixed percentage of the area
under the curve. As long as we can find such points, what we call them is irrelevant. Ultimately,
anyone doing statistics will need to be familiar with all three methods of labeling. One method of
labeling is in terms of the area to the left of the point; this is the one we will use. A second method
is labeling in terms of the area to the right of the point; thus the point we call K(1−α) could be
labeled, say, Q(α). The third method is to call this number, say, W (2α), where the area to the right
of the point is doubled in the label. For example, if the distribution is a N(0,1), the point that cuts
off the bottom 97.5% of the distribution is 1.96. This point also cuts off the top 2.5% of the area. It
makes no difference if we refer to 1.96 as the number that cuts off the bottom 97.5%, K(.975), or as
the number that cuts off the top 2.5%, Q(.025), or as the number W (.05) where the label involves
2× .025; the important point is being able to identify 1.96 as the appropriate number. Henceforth,
we will always refer to points in terms of K(1−α), the point that cuts off the bottom 1−α of
the distributions. No further reference to the alternative labelings will be made but all three labels
are used in Appendix B.1. There K(1−α)s are labeled as percentiles and, for reasons related to
statistical tests, Q(α)s and W (2α)s are labeled as one-sided and two-sided α levels respectively.

A fundamental assumption in inference about µ is that the distribution of [ȳ·− µ]/SE(ȳ·) is
symmetric about 0. By the symmetry around zero, if K(1−α) cuts off the top α of the distribution,
−K(1−α) must cut off the bottom α of the distribution. Thus for distributions that are symmetric
about 0 we have K(α), the point that cuts off the bottom α of the distribution, equal to −K(1−α).
This fact is illustrated in Figure 2.4. Algebraically, we write

Pr
[

ȳ·−µ

SE(ȳ·)
<−K(1−α)

]
= Pr

[
ȳ·−µ

SE(ȳ·)
< K(α)

]
= α.

Frequently, we want to create a central interval that contains a specified probability, say 1−α .
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t(1 − α, df)− t(1 − α, df) 0

0

1 − 2α αα

Figure 2.4: Symmetry about 0 in the distribution of [ȳ·−µ]/SE(ȳ·).

Figure 2.5 illustrates the construction of such an interval. Algebraically, the middle interval with
probability 1−α is obtained by

Pr
[
−K
(

1− α

2

)
<

ȳ·−µ

SE(ȳ·)
< K

(
1− α

2

)]
= 1−α.

The probability of getting something outside of this interval is

α =
α

2
+

α

2
= Pr

[
ȳ·−µ

SE(ȳ·)
<−K

(
1− α

2

)]
+Pr

[
ȳ·−µ

SE(ȳ·)
> K

(
1− α

2

)]
.

In practice, the values K(1−α) are found from either a normal table or a t table. For normal
percentage points, we use the notation

z(1−α) = K(1−α) .

For percentage points of a t with d f degrees of freedom, use

t(1−α,d f ) = K(1−α) .

Recall that as d f gets large, the t(d f ) distribution converges to a N(0,1), so

z(1−α) = t(1−α,∞).

Percentiles of the t distribution are given in Appendix B.1 with the∞ row giving percentiles of the
N(0,1) distribution.

2.2.1 Confidence intervals

A confidence interval is an interval of possible µ values in which we are ‘confident’ that the true
value of µ lies. Moreover, a numerical level of confidence is specified for the interval. Confidence
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Figure 2.5: 1−α central interval for the distribution of [ȳ·−µ]/SE(ȳ·).

intervals are commonly viewed as the most useful single procedure in statistical inference. A 95%
confidence interval for µ is based on the following probability statements:

.95 = Pr
[
−K(.975)<

ȳ·−µ

SE(ȳ·)
< K(.975)

]
= Pr[ȳ·−K(.975)SE(ȳ·)< µ < ȳ·+K(.975)SE(ȳ·)]

The first equality given above holds simply by the definition of K(.975) and the symmetry of the
distribution; it expresses Figure 2.5 algebraically for α = .05. The second equality follows from
the fact that the statements within the two sets of square brackets can be shown to be algebraically
equivalent.

More generally, a (1−α)100% confidence interval for µ is based on the following probability
statements:

1−α = Pr
[
−K
(

1− α

2

)
<

ȳ·−µ

SE(ȳ·)
< K

(
1− α

2

)]
= Pr

[
ȳ·−K

(
1− α

2

)
SE(ȳ·)< µ < ȳ·+K

(
1− α

2

)
SE(ȳ·)

]
The first equality given above holds simply by the definition of K

(
1− α

2

)
and the symmetry of the

distribution. Again, it is just an algebraic statement of Figure 2.5. The second equality follows from
the fact that the statements within the square brackets are algebraically equivalent. A proof of the
equivalence is given in the appendix to the next chapter.

The probability statement

1−α = Pr
[
ȳ·−K

(
1− α

2

)
SE(ȳ·)< µ < ȳ·+K

(
1− α

2

)
SE(ȳ·)

]
is the basis of the confidence interval for µ . The (1−α)100% confidence interval for µ is sim-
ply the interval within the square brackets, i.e., the points between ȳ· − K

(
1− α

2

)
SE(ȳ·) and

ȳ· + K
(
1− α

2

)
SE(ȳ·) with observed values substituted for ȳ· and SE(ȳ·). The endpoints can be

written
ȳ·±K

(
1− α

2

)
SE(ȳ·),
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or, substituting the form of the standard error,

ȳ·±K
(

1− α

2

) s√
n
.

Note that increasing the sample size n decreases the standard error and thus makes the confidence
interval narrower. Narrower confidence intervals give more precise information about µ . In fact, by
taking n large enough, we can make the confidence interval arbitrarily narrow.

EXAMPLE 2.2.1. For the dropout rate data presented at the beginning of the chapter, the param-
eter is the mean dropout rate for math classes, the estimate is ȳ· = 13.11, and the standard error is
s/
√

n = 10.32/
√

38 = 1.67. As seen in the dot plot, the original data are not normally distributed.
The plot looks nothing at all like the bell shaped curve in Figure 1.1, which is a picture of a normal
distribution. Thus we hope that a sample of size 38 is sufficiently large to justify use of the N(0,1)
distribution via the central limit theorem and the law of large numbers. For a 95% confidence in-
terval, 95 = (1−α)100, .95 = (1−α), α = 1− .95 = .05, and 1−α/2 = .975, so the number we
need from the t table is z(.975) = t(.975,∞) = 1.96. The endpoints of the confidence interval are

13.11±1.96(1.67)

giving an interval of
(9.8,16.4).

Rounding to simple numbers, we are 95% confident that the true dropout rate is between 10% and
16.5% 2

The confidence interval has probability 1−α that we are going to get a confidence interval that
covers what we are trying to estimate, i.e., µ . However, once the data are observed and the interval
computed, this is no longer true. The particular interval that we get either covers µ or it does not.
There is no probability associated with the coverage; nothing is random, neither µ nor the endpoints
of the interval. For this reason we say that, ‘We are (1−α)100% confident that the true value of µ

is in the interval.’ I doubt that anybody has a good definition of what the word ‘confident’ means
in that sentence. Having done my duty to explain the correct meaning of confidence intervals, you
can (and will) go back to thinking that the probability is 1−α that your interval covers µ . It does
not do any real harm and it can be justified using arguments from Bayesian statistics. This issue of
interpretation is discussed in much more detail in the next chapter.

2.2.2 Hypothesis tests

An hypothesis test is a procedure for checking the validity of a claim. Someone makes a claim which
becomes the null hypothesis. We wish to test whether or not the claim is true. If relevant data are
available, we can test the claim, but we cannot really test whether it is true or false, we can merely
test whether the data are consistent or inconsistent with the claim. Data that are inconsistent with the
claim suggest that the claim is false. Data that are consistent with the claim are just that, consistent
with the claim; they do not imply that the claim is true because other circumstances could equally
well have generated the data.

In a one sample problem, for some fixed known number m we may want to test the null hypoth-
esis

H0 : µ = m

versus the alternative hypothesis
HA : µ 6= m.

The number m must be known; it is some number that is of interest for the specific data being
analyzed. It is not just an unspecified symbol.
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EXAMPLE 2.2.2. For the dropout rate data, we might be interested in the hypothesis that the
true dropout rate is 10%. Thus the null hypothesis is H0 : µ = 10 and the alternative hypothesis is
HA : µ 6= 10. 2

The test is based on the assumption that H0 is true and we check to see if the data are inconsistent
with that assumption. The idea is much like the idea of a proof by contradiction. We make an
assumption H0. If the data contradict that assumption, we can conclude that the assumption H0 is
false. If the data do not contradict H0, we can only conclude that the data are consistent with the
assumption; we cannot conclude that the assumption is true.

Unfortunately, there are two complicating factors in a statistical test. First, data almost never
yield an absolute contradiction to the assumption. We need to quantify the extent to which the data
are inconsistent with the assumption. Second, while we wish to test a specific assumption H0, there
are other assumptions involved in any statistical procedure. A contradiction only invalidates H0 if the
other assumptions are valid. These other assumptions were discussed at the beginning of the chapter.
They include such things as independence, normality, and all observations having the same mean
and variance. While we can never confirm that these other assumptions are absolutely valid, it is a
key aspect of modern statistical practice to validate the assumptions as far as is reasonably possible.
When we are convinced that the other assumptions are reasonably valid, data that contradict the
assumptions can be reasonably interpreted as contradicting the specific assumption H0.

We need to be able to identify data that are inconsistent with the assumption that µ = m. Note
that, regardless of any hypotheses, ȳ· is an estimate µ . For example, suppose m = 10. If ȳ· = 10.1, ȳ·
is an estimate of µ , so the data seem to be consistent with the idea that µ = 10. On the other hand,
if ȳ· = 10,000, we expect that µ will be near 10,000 and the observed ȳ· seems to be inconsistent
with H0 : µ = 10. The trick is in determining which values of ȳ· are far enough away from 10 for
us to be reasonably sure that µ 6= 10. As a matter of fact, in the absence of information about the
variability of ȳ·, we cannot really say that ȳ· = 10.1 is consistent with µ = 10 or that ȳ· = 10,000 is
inconsistent with µ = 10. If the variability associated with ȳ· is extremely small, ȳ· = 10.1 may be
highly inconsistent with µ = 10. On the other hand, if the variability associated with ȳ· is extremely
large, ȳ· = 10,000 may be perfectly consistent with µ = 10. Obviously, the standard error of ȳ·,
which is our measure of variability, must play a major role in the analysis.

Generally, since ȳ· estimates µ , if µ > m, then ȳ· tends to be greater than m so that ȳ·−m and
thus [ȳ·−m]/SE(ȳ·) tend to be large positive numbers (larger than they would be if H0 : µ = m were
true). On the other hand, if µ < m, then ȳ·−m and [ȳ·−m]/SE(ȳ·) will tend to be a large negative
numbers. Data that are inconsistent with the null hypothesis µ = m are large positive and large
negative values of the test statistic [ȳ·−m]/SE(ȳ·). The problem is in specifying what we mean by
‘large’.

We reject the null hypothesis (disbelieve µ = m) if the test statistic

ȳ·−m
SE(ȳ·)

is greater than some positive cutoff value or less than some negative cutoff value. Very large and
very small (large negative) values of the test statistic are those that are most inconsistent with
µ = m. The problem is in specifying the cutoff values. For example, we do not want to reject
µ = 10 if the data are consistent with µ = 10. One of our basic assumptions is that we know
the distribution of [ȳ·−µ]/SE(ȳ·). Thus if H0 : µ = 10 is true, we know the distribution of the
test statistic [ȳ·−10]/SE(ȳ·), so we know what kind of data are consistent with µ = 10. For in-
stance, when µ = 10, 95% of the possible values of [ȳ·−10]/SE(ȳ·) are between −K(.975) and
K(.975). Any values of [ȳ·−10]/SE(ȳ·) that fall between these numbers are reasonably consistent
with µ = 10 and values outside the interval are defined as being inconsistent with µ = 10. Thus
values of [ȳ·−10]/SE(ȳ·) greater than K(.975) or less than −K(.975) cause us to reject the null
hypothesis. Note that we arbitrarily specified the central 95% of the distribution as being consistent
with µ = 10. That leaves a 5% chance of getting outside the central interval, so a 5% chance that
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we will reject µ = 10 even when it is true. In other words, even when µ = 10, 5% of the time
[ȳ·−10]/SE(ȳ·) will be outside the limits. We could reduce this chance of error by specifying the
central 99% of the distribution as consistent with µ = 10. This reduces the chance of error to 1%,
but then if µ 6= 10, we are less likely to reject µ = 10. Thus there are two types of possible errors
that we need to play off against each other. Type I error is rejecting H0 when it is true. Type II error
is not rejecting H0 when it is not true. The probability of type I error is known as the α level of the
test.

EXAMPLE 2.2.3. For the dropout rate data, consider the null hypothesis H0 : µ = 10, i.e., that the
mean dropout rate is 10%. The alternative hypothesis is HA : µ 6= 10. As discussed in the example on
confidence intervals, these data are not normal, so we must hope that the sample size is large enough
to justify use of the N(0,1) distribution. If we choose a central 90% interval and thus a type I error
rate of α = .10, the upper cutoff value is K

(
1− α

2

)
= z
(
1− α

2

)
= z(1− .05) = t(.95,∞) = 1.645.

The α = .10 level test for H0 : µ = 10 versus HA : µ 6= 10 is to reject H0 if

ȳ·−10
s/
√

38
> 1.645.

or if
ȳ·−10
s/
√

38
<−1.645.

The estimate of µ is ȳ· = 13.11 and the observed standard error is s/
√

n = 10.32/
√

38 = 1.67, so
the observed value of the test statistic is

13.11−10
1.67

= 1.86 .

Comparing this to the cutoff value of 1.645 we have 1.86 > 1.645, so the null hypothesis is rejected.
There is evidence at the α = .10 level that the mean dropout rate is not 10%. In fact, since ȳ· =
13.11 > 10 there is the suggestion that the dropout rate is greater than 10%.

This conclusion depends on the choice of the α level. If we choose α = .05, then the appropriate
cutoff value is z(.975) = 1.96. Since the observed value of the test statistic is 1.86, which is neither
greater than 1.96 nor less than −1.96, we do not reject the null hypothesis. When we do not reject
H0, we cannot say that the true mean dropout rate is 10%, but we can say that, at the α = .05 level,
the data are consistent with the (null) hypothesis that the true mean dropout rate is 10%. 2

Generally, a test of hypothesis is based on controlling the probability of making an error when
the null hypothesis is true. The α level of the test (the probability a type I error) is the probability
of rejecting the null hypothesis (saying that it is false) when the null hypothesis is in fact true. The
α level test for H0 : µ = m versus HA : µ 6= m is to reject H0 if

ȳ·−m
SE(ȳ·)

> K
(

1− α

2

)
or if

ȳ·−m
SE(ȳ·)

<−K
(

1− α

2

)
.

This is equivalent to saying, reject H0 if

|ȳ·−m|
SE(ȳ·)

> K
(

1− α

2

)
.

Note that if H0 is true, the probability that we will reject H0 is

Pr
[

ȳ·−m
SE(ȳ·)

> K
(

1− α

2

)]
+Pr

[
ȳ·−m
SE(ȳ·)

<−K
(

1− α

2

)]
= α/2+α/2 = α.
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Also note that we are rejecting H0 for those values of [ȳ·−m]/SE(ȳ·) that are most inconsistent with
H0, these being the values of the test statistic with large absolute values.

A null hypothesis should never be accepted; it is either rejected or not rejected. A better way to
think of a test is that one concludes that the data are either consistent or inconsistent with the null
hypothesis. The statement that the data are inconsistent with H0 is a strong statement. It disproves H0
in some specified degree. The statement that the data are consistent with H0 is not a strong statement;
it does not prove H0. For example, the dropout data happen to be consistent with H0 : µ = 12; the
test statistic

ȳ·−12
SE(ȳ·)

=
13.11−12

1.67
= .66

is very small. However, the data are equally consistent with µ = 12.00001. These data cannot possi-
bly indicate that µ = 12 rather than µ = 12.00001. However, when the null hypothesis is H0 : µ = 12,
the value µ = 12.00001 is part of the alternative hypothesis HA : µ 6= 12, so clearly data that are
consistent with H0 are also consistent with some elements of the alternative. In fact, we established
earlier that based on an α = .05 test, these data are even consistent with µ = 10. Data that are
consistent with H0 do not imply that the alternative is false.

With these data there is very little hope of distinguishing between µ = 12 and µ = 12.00001. The
probability of getting data that lead to rejecting H0 : µ = 12 when µ = 12.00001 is only just slightly
more than the probability of getting data that lead to rejecting H0 when µ = 12. The probability of
getting data that lead to rejecting H0 : µ = 12 when µ = 12.00001 is called the power of the test
when µ = 12.00001. The power is the probability of appropriately rejecting H0 and depends on the
particular value of µ (6= 12). The fact that the power is very small for detecting µ = 12.00001 is not
much of a problem because no one would really care about the difference between a dropout rate of
12 and a dropout rate of 12.00001. However, a small power for a difference that one cares about is a
major concern. The power is directly related to the standard error and can be increased by reducing
the standard error. One natural way to reduce the standard error s/

√
n is by increasing the sample

size n.
One of the difficulties in a general discussion of hypothesis testing is that the actual null hypoth-

esis is always context specific. You cannot give general rules for what to use as a null hypothesis
because the null hypothesis needs to be some interesting claim about the population mean µ . When
you sample different populations, the population mean differs, and interesting claims about the pop-
ulation mean depend on the exact nature of the population. The best practice for setting up null
hypotheses is simply to look at lots of problems and ask yourself what claims about the population
mean are of interest to you. As we examine more sophisticated data structures, some interesting hy-
potheses will arise from the structures themselves. For example, if we have two samples of similar
measurements we might be interested in testing the null hypothesis that they have the same popula-
tion means. Note that there are lots of ways in which the means could be different, but only one way
in which they can be the same. Of course if the specific context suggests that one mean should be,
say, 25 units greater than the other, we can use that as the null hypothesis. Similarly, if we have a
sample of objects and two different measurements on each object, we might be interested in whether
or not the measurements are related. In that case, an interesting null hypothesis is that the measure-
ments are not related. Again, there is only one way in which measurements can be unrelated, but
there are many ways for measurements to display a relationship.

We will see in the next chapter that there is a duality between testing and confidence intervals.
Tests are used to examine whether a difference can be shown to exist between the hypothesized
mean and the mean of the population being sampled. Confidence intervals are used to quantify what
is known about the population mean. In particular, confidence intervals can be used to quantify
how much difference exists between some hypothesized mean and the sampled population’s mean.
Of course, one must consider not only how much of a difference exists but also whether such a
difference is meaningful in the context of the problem.
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One-sided tests

Unless math classes were intentionally being used to weed out students (something I do not believe
was true) high dropout rates are typically considered unfortunate. Math instructors might claim that
dropout rates are 10% or less and students may want to test that claim. In such a case the claim is
only contradicted by dropout rates greater than 10%

We can do one-sided tests in a similar manner to the two-sided testing discussed previously. The
α level test for H0 : µ ≤ m versus HA : µ > m is to reject H0 if

ȳ·−m
SE(ȳ·)

> K(1−α) .

Again, the value m must be known; either someone tells it to you or you determine it from the
subject being investigated. The alternative hypothesis is that µ is greater than something and the
null hypothesis is rejected when the test statistic is greater than some cutoff value. We reject the null
hypothesis for those values of the test statistic that are most inconsistent with the null hypothesis
and most consistent with the alternative hypothesis. If the alternative is true, ȳ· should be near µ ,
which is greater than m, so large positive values of ȳ·−m or, equivalently, large positive values of
[ȳ·−m]

/
SE(ȳ·) are consistent with the alternative and inconsistent with the null hypothesis. Note

that if µ = m is true, the probability of rejecting the test is

Pr
[

ȳ·−m
SE(ȳ·)

> K(1−α)

]
= α.

Moreover, it is easily seen that if µ < m,

Pr
[

ȳ·−m
SE(ȳ·)

> K(1−α)

]
< α.

Thus when H0 is true, i.e., when µ ≤ m, the probability of rejecting the null hypothesis is at most
α . As with the two-sided tests, we have controlled the probability of making an error when the null
hypothesis is true.

EXAMPLE 2.2.4. The null hypothesis is that the dropout rate is 10% or less, i.e., H0 : µ ≤ 10.
The alternative is that the dropout rate is greater than 10%, i.e., HA : µ > 10. The α = .05 level test
rejects H0 if

ȳ·−10
SE(ȳ·)

> z(1− .05) = 1.645 .

As seen earlier, the observed value of the test statistic is 1.86 > 1.645, so the null hypothesis is
rejected. Based on a one-sided α = .05 test, we have evidence to reject the (null) hypothesis that the
true dropout rate is 10% or less. In other words, we have evidence that the dropout rate is greater
than 10%.

Students who are math averse might be interested in the claim that the dropout rate is at least
10%, i.e., µ ≥ 10. Setting this up as the null hypothesis is much less informative than the approach
just demonstrated. In this case, the value of ȳ· = 13.11 is obviously consistent with µ being at least
10%. The question is whether ȳ· is also inconsistent with µ ≤ 10. For H0 : µ ≥ 10 a test will not be
rejected. If you do not reject a test, α means very little. However, when you reject a test, α measures
your chance of making an error. Setting up the test as we did allowed us to reject H0 : µ ≤ 10 at
α = .05, which quantifies our chance for error. Accepting H0 : µ ≥ 10 tells us nothing about the
chance for error, so it is less informative. 2

As we argued earlier, with a two-sided test you can never be sure that your H0 claim is true.
With a one-sided test, this is not the case. If the data are extreme enough, one hypothesis or the
other is clearly indicated. In the dropout rate data example, with a standard error of 1.67, it is pretty
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clear that ȳ· = 4 indicates µ ≤ 10 and ȳ· = 16 indicates µ ≥ 10, assuming that all other assumptions
are valid. The problem occurs with ȳ· values close to 10, say ȳ· = 9 or ȳ· = 11. If ȳ· = 9, we cannot
be sure that µ ≤ 10 because µ could be 10 or a little larger and we would still have a reasonable
chance of observing ȳ· = 9. Similarly, ȳ· = 11 is reasonably consistent with µ values of 10 or a little
smaller. The only really hard problem is whether we are sure µ 6= 10. If µ is different from 10, it
is obvious whether µ < 10 or µ > 10. And if you are bothering to run this test at all, µ = 10 must
have some special significance and it should be of interest to establish which way µ might differ
from 10. This is one of several reasons I have for preferring two-sided tests.

The α level test for H0 : µ ≥ m versus HA : µ < m is to reject H0 if

ȳ·−m
SE(ȳ·)

<−K(1−α) .

The alternative hypothesis is that µ is less than something and the null hypothesis is rejected when
the test statistic is less than some cutoff value. Note that the form of the alternative determines the
form of the rejection region. In all cases we reject H0 for the data that are most inconsistent with
H0.

The one-sided null hypotheses involve inequalities, but µ = m is always part of the null hypoth-
esis. The tests are set up assuming that µ = m and this needs to be part of the null hypothesis. In all
cases, the test is set up so that if µ = m, then the probability of making a mistake is α .

P values

Rather than having formal rules for when to reject the null hypothesis, one can report the evidence
against the null hypothesis. This is done by reporting the significance level of the test, also known
as the P value. The P value is computed under the assumption that µ = m and is the probability of
seeing data that are as extreme or more extreme than those that were actually observed. In other
words, it is the α level at which the test would just barely be rejected.

EXAMPLE 2.2.5. For H0 : µ = 10 versus HA : µ 6= 10 the observed value of the test statistic is
1.86. Clearly, data that give values of the test statistic that are greater than 1.86 are more extreme
than the actual data. Also, by symmetry, data that give a test statistic of−1.86 are just as extreme as
data that yield a 1.86. Finally, data that give values smaller than −1.86 are more extreme than data
yielding a 1.86. As before, we use the standard normal distribution z. From a standard normal table
or an appropriate computer program,

P = Pr [z≥ 1.86]+Pr [z≤−1.86]
= .0314+ .0314
= .0628.

Thus the approximate P value is .06. The P value is approximate because the use of the standard
normal distribution is an approximation based on large samples. Note that

P = Pr [z≥ 1.86]+Pr [z≤−1.86] = Pr [|z| ≥ |1.86|] .

In the t tables of Appendix B.1, the standard normal distribution corresponds to t(∞). Compar-
ing |1.86| to the tables, we see that

t(.95,∞) = 1.645 < |1.86|< 1.96 = t(.975,∞),

so for a two-sided test the P value satisfies

2(1− .95) = .10 > P > .05 = 2(1− .975).
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In other words, t(.95,∞) is the cutoff value for an α = .10 test and t(.975,∞) is the cutoff value
for an α = .05 test; |1.86| falls between these values, so the P value is between .10 and .05. When
only a t table is available, P values are most simply specified in terms of bounds such as these. 2

The P value is a measure of the evidence against the null hypothesis in which the smaller the P
value the more evidence against H0. The P value can be used to perform various α level tests. In
the example, the P value is .06. This is less than .10, so an α = .10 level test of H0 : µ = 10 versus
HA : µ 6= 10 will reject H0. On the other hand, .06 is greater than .05, so an α = .05 test does not
reject H0 : µ = 10. Note that these are exactly the conclusions we reached in the earlier example on
testing H0 : µ = 10 versus HA : µ 6= 10.

The P value for a one-sided test, say, H0 : µ ≥ m versus HA : µ < m, is one half of the P value
from the test of H0 : µ = m versus HA : µ 6= m provided that ȳ· < m. If ȳ· ≥m, the P value is at least
.5.

2.3 Prediction intervals

In many situations, rather than trying to learn about µ , it is more important to obtain information
about future observations from the same process. With independent observations, the natural point
prediction for a future observation is just the estimate of µ , but a prediction interval with, say, 99%
confidence of containing a future observation differs from a 99% confidence interval for µ . Our
ideas about where future observations will lie involves two sources of variability. First, there is
the variability that a new observation y displays about its mean value µ . Second, we need to deal
with the fact that we do not know µ , so there is variability associated with ȳ·, our estimate of µ .
In the dropout rate example, ȳ· = 13.11 and s2 = 106.5. If we could assume that the observations
are normally distributed (which is a poor assumption), we could create a 99% prediction interval,
i.e., an interval that contains a future observation with 99% confidence. The interval for the new
observation is centered about ȳ·, our best point predictor, and is similar to a confidence interval but
uses a standard error that is appropriate for prediction. The actual interval has endpoints

ȳ·± t(.995,n−1)

√
s2 +

s2

n
.

In our example, n = 38 and t(.995,37) = 2.71, so this becomes

13.11±2.71

√
106.5+

106.5
38

or
13.11±28.33

for an interval of (−15.22,41.44). In practice, dropout percentages cannot be less than 0, so a
more practical interval is (0,41.44). To the limits of our assumptions, we can be 99% confident
that the dropout rate for a new, similar math class will be between 0 and 41.5%. It is impossible to
validate assumptions about future observations (as long as they remain in the future), thus the exact
confidence levels of prediction intervals are always suspect.

The key difference between the 99% prediction interval and a 99% confidence interval is the
standard error. In a confidence interval, the standard error is

√
s2/n. In a prediction interval, we

mentioned the need to account for two sources of variability and the corresponding standard error
is
√

s2 + s2/n. The first term in the square root estimates the variance of the new observation, while
the second term in the square root estimates the variance of ȳ·, the point predictor.

As mentioned earlier and as will be shown in the next section, the assumption of normality is
pretty poor for the 38 observations on dropout rates. Even without the assumption of normality we
can get an approximate evaluation of the interval. The interval uses the value t(.995,37) = 2.71, and



42 2. ONE SAMPLE

we will see below that even without the assumption of normality, the approximate confidence level
of this prediction interval is at least

100
(

1− 1
(2.71)2

)
% = 86%.

Theory

In this chapter we assume that the observations yi are independent from a population with mean
µ and variance σ2. We have assumed that all our previous observations on the process have been
independent, so it is reasonable to assume that the future observation y is independent of the previous
observations with the same mean and variance. The prediction interval is actually based on the
difference y− ȳ·, i.e., we examine how far a new observation may reasonably be from our point
predictor. Note that

E(y− ȳ·) = µ−µ = 0.

To proceed we need a standard error for y− ȳ· and a distribution that is symmetric about 0. The
standard error of y− ȳ· is just the standard deviation of y− ȳ· when available or, more often, an
estimate of the standard deviation. First we need to find the variance. As ȳ· is computed from the
previous observations, it is independent of y and, using Proposition 1.2.11,

Var(y− ȳ·) = Var(y)+Var(ȳ·) = σ
2 +

σ2

n
= σ

2
[

1+
1
n

]
.

The standard deviation is the square root of the variance. Typically, σ2 is unknown, so we estimate
it with s2 and our standard error becomes

SE(y− ȳ·) =

√
s2 +

s2

n
=

√
s2

[
1+

1
n

]
= s

√
1+

1
n
.

To get an appropriate distribution, we assume that all the observations are normally distributed.
In this case,

y− ȳ·
SE(y− ȳ·)

∼ t(n−1).

The validity of the t(n− 1) distribution is established in Exercise 2.7.10. When the observations
are not normally distributed, if we have a large sample we can use the law of large numbers and
Chebyshev’s inequality to approximate the worst case scenario.

Using the distribution based on normal observations, a 99% prediction interval is obtained from
the following probability equalities:

.99 = Pr
[
−t(.995,n−1)<

y− ȳ·
SE(y− ȳ·)

< t(.995,n−1)
]

= Pr[ȳ·− t(.995,n−1)SE(y− ȳ·)< y < ȳ·+ t(.995,n−1)SE(y− ȳ·)] .

The key point is that the two sets of inequalities within the square brackets are algebraically equiv-
alent. Based on the last equality, the 99% prediction interval consists of all y values between
ȳ·− t(.995,n− 1)SE(y− ȳ·) and ȳ·+ t(.995,n− 1)SE(y− ȳ·). In other words, the 99% prediction
interval has endpoints

ȳ·± t(.995,n−1)SE(y− ȳ·).

This looks similar to a 99% confidence interval for µ but the standard error is very different. In the
prediction interval, the endpoints are actually

ȳ·± t(.995,n−1)s

√[
1+

1
n

]
,
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Figure 2.6: Dot plot for drop rate percentage data: outliers deleted.

while in a confidence interval the endpoints are

ȳ·± t(.995,n−1)s

√
1
n
.

The standard error for the prediction interval is typically much larger than the standard error for
the confidence interval. Moreover, unlike the confidence interval, the prediction interval cannot be
made arbitrarily small by taking larger and larger sample sizes n. Of course to compute an arbitrary
(1−α)100% prediction interval, simply replace the value t(.995,n−1) with t(1−α/2,n−1).

As mentioned above, even when the data are not normally distributed, we can obtain an ap-
proximate worst case result for large samples. The approximation comes from using the law of
large numbers to justify treating s as if it were the actual population standard deviation σ . With this
approximation, Chebyshev’s inequality states that

1− 1
t(.995,n−1)2

≤ Pr
[
−t(.995,n−1)<

y− ȳ·
SE(y− ȳ·)

< t(.995,n−1)
]

= Pr[ȳ·− t(.995,n−1)SE(y− ȳ·)< y < ȳ·+ t(.995,n−1)SE(y− ȳ·)] ,

cf. Subsection 1.2.2. As mentioned above, the 99% prediction interval based on 38 normal observa-
tions has a confidence level of at least(

1− 1
(2.71)2

)
100% = 86%.

This assumes that the past observations and the future observation form a random sample from
the same population and assumes that 38 observations is large enough to justify using the law of
large numbers. Similarly, if we can apply the improved version of Chebyshev’s inequality from
Section 1.3, we get a lower bound of 1− [1/2.25(2.71)2] = 93.9% on the confidence coefficient.

Throughout, we have assumed that the process of generating the data yields independent obser-
vations from some population. In quality control circles this is referred to as having a process that
is under statistical control.

2.4 Checking normality

From Figure 2.1, we identified two outliers in the dropout rate data, the 40% and the 59% dropout
rates. If we delete these two points from the data, the remaining data may have a more nearly normal
distribution. The dot plot with the two cases deleted is given in Figure 2.6. This is much more nearly
normally distributed, i.e., looks much more like a bell shaped curve, than the complete data.

Dot plots and other versions of histograms are not effective in evaluating normality. Very large
amounts of data are needed before one can evaluate normality from a histogram. A more useful
technique for evaluating the normality of small and moderate size samples is the construction of
a normal probability plot, also known as a normal plot or a rankit plot. The idea is to order the
data from smallest to largest and then to compare the ordered values to what one would expect the
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Figure 2.7: Normal plot for drop rate percentage data: full data.

ordered values to be if they were truly a random sample from a normal distribution. These pairs of
values should be roughly equal, so if we plot the pairs we would expect to see a line with a slope of
about 1 that goes through the origin.

The problem with this procedure is that finding the expected ordered values requires us to know
the mean µ and standard deviation σ of the appropriate population. These are generally not avail-
able. To avoid this problem, the expectations of the ordered values are computed assuming µ = 0
and σ = 1. The expected ordered values from this standard normal distribution are called normal
scores or rankits. Computing the expected values this way, we no longer anticipate a line with slope
1 and intercept 0. We now anticipate a line with slope σ and intercept µ . While it is possible to
obtain estimates of the mean and standard deviation from a normal plot, our primary interest is in
whether the plot looks like a line. A linear plot is consistent with normal data; a nonlinear plot is
inconsistent with normal data. Christensen (1987, section XIII.2) gives a more detailed motivation
for normal plots.

The normal scores are difficult to compute, so we generally get a computer program to do the
work. In fact, just creating a plot is considerable work without a computer.

EXAMPLE 2.4.1. Consider the dropout rate data. Figure 2.7 contains the normal plot for the com-
plete data. The two outliers cause the plot to be severely nonlinear. Figure 2.8 contains the normal
plot for the dropout rate data with the two outliers deleted. It is certainly not horribly nonlinear.
There is a little shoulder at the bottom end and some wiggling in the middle.

We can eliminate the shoulder in this plot by transforming the original data. Figure 2.9 contains
a normal plot for the square roots of the data with the outliers deleted. While the plot no longer has
a shoulder on the lower end, it seems to be a bit less well behaved in the middle.

We might now repeat our tests and confidence intervals for the 36 observations left when the
outliers are deleted. We can do this for either the original data or the square roots of the original
data. In either case, it now seems reasonable to treat the data as normal, so we can use a t(36− 1)
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Figure 2.8: Normal plot for drop rate percentage data: outliers deleted.
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Figure 2.9: Normal plot for square roots of drop rate percentage data: outliers deleted.

distribution instead of hoping that the sample is large enough to justify use of the standard normal
distribution. We will consider these tests and confidence intervals in the next chapter.

It is important to remember that if outliers are deleted, the conclusions reached are not valid
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Figure 2.10: Normal plot.

for data containing outliers. For example, a confidence interval will be for the mean dropout rate
excluding the occasional classes with extremely large dropout rates. If we are confident that any
deleted outliers are not really part of the population of interest, this causes no problem. Thus, if
we were sure that the large dropout rates were the result of clerical errors and did not provide
any information about true dropout rates, our conclusions about the population should be based
on the data excluding the outliers. More often though, we do not know that outliers are simple
mistakes. Often, outliers are true observations and often they are the most interesting and useful
observations in the data. If the outliers are true observations, systematically deleting them changes
both the sample and the population of interest. In this case, the confidence interval is for the mean
of a population implicitly defined by the process of deleting outliers. Admittedly, the idea of the
mean dropout rate excluding the occasional outliers is not very clearly defined, but remember that
the real population of interest is not too clearly defined either. We do not really want to learn about
the clearly defined population of 1984–85 dropout rates, we really want to treat the dropout rate
data as a sample from a population that allows us to draw useful inferences about current and future
dropout rates. If we really cared about the fixed population, we could specify exactly what kinds of
observations we would exclude and what we meant by the population mean of the observations that
would be included. Given the nature of the true population of interest, I think that such technicalities
are more trouble than they are worth at this point. 2

Normal plots are subject to random variation because the data used in them are subject to random
variation. Typically, normal plots are not perfectly straight. Figures 2.10 through 2.15 present six
normal plots for which the data are in fact normally distributed. By comparison to these, Figures 2.8
and 2.9, the normal plots for the dropout rate data and the square root of the dropout rates both with
outliers deleted, look reasonably normal. Of course, if the dropout rate data are truly normal, the
square root of these data cannot be truly normal and vice versa. However, both are reasonably close
to normal distributions.

Figures 2.10 through 2.15 contain normal plots based on 25 observations each. Normal plots
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Figure 2.11: Normal plot.
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Figure 2.12: Normal plot.

based on larger normal samples tend to appear straighter than these. Normal plots based on smaller
normal samples can look much more crooked.



48 2. ONE SAMPLE
y4

3.0+

- *

-

-

-

1.5+

- * *

- ** *

- *

- * ***

0.0+ *

- ** ***

- * *

- **

- * * *

-1.5+ *

-

--------+---------+---------+---------+---------+-----

-1.60 -0.80 0.00 0.80 1.60

Rankits

Figure 2.13: Normal plot.
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Figure 2.14: Normal plot.

Testing normality

In an attempt to quantify the straightness of a normal plot, Shapiro and Francia (1972) proposed
the summary statistic W ′, which is the squared sample correlation between the pairs of points in
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Figure 2.15: Normal plot.

the plots. The population correlation coefficient was introduced in Subsection 1.2.3. The sample
correlation coefficient is introduced in Chapter 7. At this point, it is sufficient to know that sam-
ple correlation coefficients near 0 indicate very little linear relationship between two variables and
sample correlation coefficients near 1 or −1 indicate a very strong linear relationship. Since you
need a computer to get the normal scores (rankits) anyway, just rely on the computer to give you the
squared sample correlation coefficient.

A sample correlation coefficient near 1 indicates a strong tendency of one variable to increase
(linearly) as the other variable increases and sample correlation coefficients near −1 indicate a
strong tendency for one variable to decrease (linearly) as the other variable increases. In normal
plots we are looking for a strong tendency for one variable, the ordered data, to increase as the
other variable, the rankits, increases, so normal data should display a sample correlation coefficient
near 1 and thus the square of the sample correlation, W ′, should be near 1. If W ′ is too small,
it indicates that the data are inconsistent with the assumption of normality. If W ′ is smaller than,
say, 95% of the values one would see from normally distributed data, it is substantial evidence
that the data are not normally distributed. If W ′ is smaller than, say, 99% of the values one would
see from normally distributed data, it is strong evidence that the data are not normally distributed.
Appendix B.3 presents tables of the values W ′(.05,n) and W ′(.01,n). These are the points above
which fall, respectively, 95% and 99% of the W ′ values one would see from normally distributed
data. Of course the W ′ percentiles are computed using not only the assumption of normality, but also
the assumptions that the observations are independent with the same mean and variance. Note also
that the values of these percentiles depend on the sample size n. The tabled values are consistent
with our earlier observation that the plots are more crooked for smaller numbers of observations
and straighter for larger numbers of observations in that the tabled values get larger with n. For
comparison, we give the observed W ′ values for the data used in Figures 2.10 through 2.15.
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Shapiro–Francia statistics
Figure W ′

2.10 0.966
2.11 0.974
2.12 0.937
2.13 0.956
2.14 0.958
2.15 0.978

These should be compared to W ′(.05,25) .
= .918 and W ′(.01,25) .

= .88 from Appendix B.3. None
of these six values is below the 5% point.
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EXAMPLE 2.4.2. For the dropout rate data we have three normal plots. The complete, untrans-
formed data yield a W ′ value of .697. This value is inconsistent with the assumption that the dropout
rate data has a normal distribution. Deleting the two outliers, W ′ is .978 for the untransformed
data and .960 for the square roots of the data. The tabled percentiles are W ′(.05,36) = .940 and
W ′(.01,36) = .91, so the untransformed data and the square root data look alright. In addition, W ′

was computed for the square roots of the complete data. Its value, .887, is still significantly low, but
is a vast improvement over the untransformed complete data. The outliers are not nearly as strange
when the square roots of the data are considered. Sometimes it is possible to find a transformation
that eliminates outliers. 2

Minitab commands

A computer program is necessary for finding the normal scores and convenient for plotting the data
and computing W ′. The following Minitab commands provide a normal plot and the W ′ statistic for
a variable in c1.

MTB > name c1 ’y’

MTB > nscores c1 c2

MTB > plot c1 c2

MTB > corr c1 c2

MTB > note The correlation is printed out, e.g., .987.

MTB > note This correlation is used in the next command.

MTB > let k1=.987**2

MTB > note k1 is W’

MTB > print k1

2.5 Transformations

In analyzing a collection of numbers, we assume that the observations are a random sample from
some population. Often, the population from which the observations come is not as well defined as
we might like. For example, if our observations are the yields of corn on 30 one acre plots of ground
grown in the summer of 1990, what is the larger population from which this is a sample? Typically,
we do not have a large number of one acre plots from which we randomly select 30. Even if we
had a large collection of plots, these plots are subject to different weather conditions, have different
fertilities, etc. Most importantly, we are rarely interested in corn grown in 1990 for its own sake. If
we are studying corn grown in 1990, we are probably interested in predicting how that same type
of corn would behave if we planted it at some time in the future. No population that currently exists
could be completely appropriate for drawing conclusions about plant growths in a future year. Thus
the assumption that the observations are a random sample from some population is often only a
useful approximation.

When making approximations, it is often necessary to adjust things to make the approximations
more accurate. In statistics, two approximations we frequently make are that all the data have the
same variance and that the data are normally distributed. Making numerical transformations of
the data is a primary tool for improving the accuracy of these approximations. When sampling
from a fixed population, we are typically interested in transformations that improve the normality
assumption because having different variances is not a problem associated with sampling from a
fixed population. With a fixed population, the variance of an object is the variance of randomly
choosing an object from the population. This is a constant regardless of which object we end up
choosing. But data are rarely as simple as random samples from a fixed population. Once we have
an object from the population, we have to obtain an observation (measurement or count) from the
object. These observations on a given object are also subject to random error and the error may well
depend on the specific object being observed.



52 2. ONE SAMPLE

We now examine the fact that observations often have different variances, depending on the
object being observed. First consider taking length measurements using a 30 centimeter ruler that
has millimeters marked on it. For measuring objects that are less than 30 centimeters long, like this
book, we can make very accurate measurements. We should be able to measure things within half a
millimeter. Now consider trying to measure the height of a dog house that is approximately 3.5 feet
tall. Using the 30 cm ruler, we measure up from the base, mark 30 cm, measure from the mark up
another 30 cm, make another mark, measure from the new mark up another 30 cm, mark again, and
finally we measure from the last mark to the top of the house. With all the marking and moving of the
ruler, we have much more opportunity for error than we have in measuring the length of the book.
Obviously, if we try to measure the height of a house containing two floors, we will have much more
error. If we try to measure the height of the Sears tower in Chicago using a 30 cm ruler, we will not
only have a lot of error, but large psychiatric expenses as well. The moral of this tale is that, when
making measurements, larger objects tend to have more variability. If the objects are about the same
size, this causes little or no problem. One can probably measure female heights with approximately
the same accuracy for all women in a sample. One probably cannot measure the weights of a large
sample of marine animals with constant variability, especially if the sample includes both shrimp
and blue whales. When the observations are the measured amounts of something, often the standard
deviation of an observation is proportional to its mean. When the standard deviation is proportional
to the mean, analyzing the logarithms of the observations is more appropriate than analyzing the
original data.

Now consider the problem of counting up the net financial worth of a sample of people. For
simplicity, let’s think of just three people, me, my 10 year old son (at least he was 10 when I started
writing this), and my rich uncle, Scrooge. In fact, let’s just think of having a stack of one dollar
bills in front of each person. My pile is of a decent size, my son’s is small, and my uncle’s is huge.
When I count my pile, it is large enough that I could miscount somewhere and make a significant,
but not major, error. When I count my son’s pile, it is small enough that I should get it about
right. When I count my uncle’s pile, it is large enough that I will, almost inevitably, make several
significant errors. As with measuring amounts of things, the larger the observation, the larger the
potential error. However, the process of making these errors is very different than that described
for measuring amounts. In such cases, the variance of the observations is often proportional to the
mean of the observations. The standard corrective measure for counts is different from the standard
corrective measure for amounts. When the observations are counts of something, often the variance
of the count is proportional to its mean. In this case, analyzing the square roots of the observations
is more appropriate than analyzing the original data.

Suppose we are looking at yearly sales for a sample of corporations. The sample may include
both the corner gas (petrol) station and Exxon. It is difficult to argue that one can really count sales
for a huge company such as Exxon. In fact, it may be difficult to count even yearly sales for a gas
station. Although in theory one should be able to count sales, it may be better to think of yearly
sales as measured amounts. It is not clear how to transform such data. Another example is age. We
usually think of counting the years a person has been alive, but one could also argue that we are
measuring the amount of time a person has been alive. In practice, we often try both logarithmic
and square root transformations and use the transformation that seems to work best, even when the
type of observation (count or amount) seems clear.

Finally, consider the proportion of times people drink a particular brand of soda pop, say, Dr.
Pepper. The idea is simply that we ask a group of people what proportion of the time they drink
Dr. Pepper. People who always drink Dr. Pepper are aware of that fact and should give a quite
accurate proportion. Similarly, people who never drink Dr. Pepper should be able to give an accurate
proportion. Moreover, people who drink Dr. Pepper about 90% of the time or about 10% of the time,
can probably give a fairly accurate proportion. The people who will have a lot of variability in their
replies are those who drink Dr. Pepper about half the time. They will have little idea whether they
drink it 50% of the time, or 60%, or 40%, or just what. With observations that are counts or amounts,
larger observations have larger variances. With observations that are proportions, observations near



2.5 TRANSFORMATIONS 53

0 and 1 have small variability and observations near .5 have large variability. Proportion data call for
a completely different type of transformation. The standard transformation for proportion data is the
inverse sine (arcsine) of the square root of the proportion. When the observations are proportions,
often the variance of the proportion is a constant times µ(1− µ)/N, where µ is the mean and N
is the number of trials. In this case, analyzing the inverse sine (arcsine) of the square root of the
proportion is more appropriate than analyzing the original data.

In practice, the square root transformation is sometimes used with proportion data. After all,
many proportions are obtained as a count divided by the total number of trials. For example, the
best data we could get in the Dr. Pepper drinking example would be the count of the number of Dr.
Peppers consumed divided by the total number of sodas devoured.

There is a subtle but important point that was glossed over in the previous paragraphs. If we take
multiple measurements on a house, the variance depends on the true height, but the true height is
the same for all observations. Such a dependence of the variance on the mean causes no problems.
The problem arises when we measure a random sample of buildings each with a variance depending
on its true height.

EXAMPLE 2.5.1. For the dropout rate data, we earlier considered the complete, untransformed
data and after deleting two outliers, we looked at the untransformed data and the square roots of the
data. In Examples 2.4.1 and 2.4.2 we saw that the untransformed data with the outliers deleted and
the square roots of the data with the outliers deleted had approximate normal distributions. Based on
the W ′ statistic, the untransformed data seemed to be more nearly normal. The data are proportions
of people who drop from a class, so our discussion in this section suggests transforming by the
inverse sine of the square roots of the proportions. Recall that proportions are values between 0 and
1, while the dropout rates were reported as values between 0 and 100, so the reported rates need
to be divided by 100. For the complete data, this transformation yields a W ′ value of .85, which
is much better than the untransformed value of .70, but worse than the value .89 obtained with the
square root transformation. With the two outliers deleted, the inverse sine of the square roots of
the proportions yields the respectable value W ′ = .96, but the square root transformation is simpler
and gives almost the same value, while the untransformed data give a much better value of .98.
Examination of the six normal plots (only three of which have been presented here) reinforce the
conclusions given above.

With the outliers deleted, it seems reasonable to analyze the untransformed data and, to a lesser
extent, the data after either transformation. Other things being equal, we prefer using the simplest
transformation that seems to work. Simple transformations are easier to explain, justify, and inter-
pret. The square root transformation is simpler, and thus better, than the inverse sine of the square
roots of the proportions. Of course, not making a transformation seems to work best and not trans-
forming is always the simplest transformation. Actually some people would point out, and it is
undeniably true, that the act of deleting outliers is really a transformation of the data. However, we
will not refer to it as such. 2

Minitab commands

Minitab commands for the three transformations discussed here and for the cubed root power trans-
formation are given below. The cubed root is just to illustrate a general power transformation.

MTB > name c1 ’y’

MTB > let c2 = loge(c1)

MTB > let c3 = sqrt(c1)

MTB > let c4 = asin(sqrt(c1))

MTB > let c5 = c1**(1/3)
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Theory

The standard transformations given above are referred to as variance stabilizing transformations.
The idea is that each observation is a look at something with a different mean and variance, where
the variance depends on the mean. For example, when we measure the height of a house, the house
has some ‘true’ height and we simply take a measurement of it. The variability of the measurement
depends on the true height of the house. Variance stabilizing transformations are designed to elimi-
nate the dependence of the variance on the mean. Although variance stabilizing transformations are
used quite generally for counts, amounts, and proportions, they are derived for certain assumptions
about the relationship between the mean and the variance. These relationships are tied to theoretical
distributions that are appropriate for some counts, amounts, and proportions. Rao (1973, section 6g)
gives a nice discussion of the mathematical theory behind variance stabilizing transformations.

Proportions are related to the binomial distribution for the numbers of successes. We have a
fixed number of trials; the proportion is the number of successes divided by the number of trials.
The mean of a Bin(N, p) distribution is N p and the variance is N p(1− p). This relationship between
the mean and variance of a binomial leads to the inverse sine of the square root transformation.

Counts are related to the Poisson distribution. The Poisson distribution is an approximation used
for binomials with a very large number of trials, each having a very small probability of success.
Poisson data has the property that the variance equals the mean of the observation. This relationship
leads to the square root as the variance stabilizing transformation.

For amounts, the log transformation comes from having the standard deviation proportional
to the mean. The standard deviation divided by the mean is called the coefficient of variation, so
the log transformation is appropriate for observations that have a constant coefficient of variation.
(The square root transformation comes from having the variance, rather than the standard deviation,
proportional to the mean.) A family of continuous distributions called the gamma distributions has
constant coefficient of variation.

The variance stabilizing transformations are given below. In each case we assume E(yi) = µi
and Var(yi) = σ2

i . The symbol ∝ means ‘proportional to.’

Variance stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson µi ∝ σ2

i
√

yi
Amount Gamma µi ∝ σi log(yi)

Proportion Binomial/N µi(1−µi)
N ∝ σ2

i sin−1(√yi
)

I cannot honestly recommend using variance stabilizing transformations to analyze either bino-
mial or Poisson data. In the past 20 years, a large body of statistical techniques has been developed
specifically for analyzing binomial and Poisson data, see, for example, Christensen (1990b). I would
recommend using these alternative methods. Many people would make a similar recommendation
for gamma distributed data citing the applicability of generalized linear model theory, cf. McCul-
lagh and Nelder (1989) or Christensen (1990b, chapter X). When applied to binomial, Poisson, or
gamma distributed data, variance stabilizing transformations provide a way to force the methods
developed for normally distributed data into giving a reasonable analysis for data that are not nor-
mally distributed. If you have a clear idea about the true distribution of the data, you should use
methods developed specifically for that distribution. The problem is that we often have little idea of
the appropriate distribution for a set of data. For example, if we simply ask people the proportion
of times they drink Dr. Pepper, we have proportion data that is not binomial. In such cases, we
seek a transformation that will make a normal theory analysis approximately correct. We often pick
transformations by trial and error. The variance stabilizing transformations provide little more than
a place to start when considering transformations.

At the beginning of this section, we mentioned two key approximations that we frequently make.



2.6 INFERENCE ABOUT σ2 55

These are that all the data have the same variance and that the data are normally distributed. While
the rationale given above for picking transformations was based on stabilizing variances, in prac-
tice we typically choose a transformation for a single sample to attain approximate normality. To
evaluate whether a transformation really stabilizes the variance, we need more information than is
contained in a single sample. Control chart methods can be used to evaluate variance stabilization
for a single sample, cf. Shewhart (1931). Those methods require formation of rational subgroups
and that requires additional information. We could also plot the sample against appropriately chosen
variables to check variance stabilization, but finding appropriate variables can be quite difficult and
would depend on properties of the particular sampling process. Variance stabilizing transformations
are probably best suited to problems that compare samples from several populations, where the
variance in each population depends on the mean of the population.

On the other hand, we already have examined methods for evaluating the normality of a single
sample. Thus, since we cannot (actually, do not) evaluate variance stabilization in a single sample, if
we think that the variance of observations should increase with their mean, we might try both the log
and square root transformations and pick the one for which the transformed data best approximate
normality.

2.6 Inference about σ2

If the data are normally distributed, we can also perform confidence intervals and tests for the
population variance σ2. While these are not typically of primary importance, they can be useful.
They also tend to be sensitive to the assumption of normality. The procedures do not follow the
same pattern used for most inferences that involve 1) a parameter of interest, 2) an estimate of the
parameter, 3) the standard error of the estimate, and 4) a known distribution symmetric about zero;
however, there are similarities. Procedures for variances typically require a parameter, an estimate,
and a known distribution.

The procedures discussed in this section actually apply to all the problems in this book that
involve a single variance parameter σ2. One need only substitute the relevant estimate of σ2 and
use its degrees of freedom. Applications to the data and models considered in Chapter 12 are not
quite as straightforward because there the models involve more than one variance.

In the one-sample problem, the parameter is σ2, the estimate is s2, and the distribution, as
discussed in equation (2.1.5), is

(n−1)s2

σ2 ∼ χ
2(n−1).

The notation χ2(1−α,n− 1) is used to denote the point that cuts off the bottom 1−α (top α) of
the χ2 distribution with n− 1 degrees of freedom. Note that (n− 1)s2/σ2 is nonnegative, so the
curve in Figure 2.16 illustrating the χ2 distribution is also nonnegative. Figure 2.16 shows a central
interval with probability 1−α for a χ2 distribution.

A (1−α)100% confidence interval for σ2 is based on the following equality:

1−α = Pr
[

χ
2
(

α

2
,n−1

)
<

(n−1)s2

σ2 < χ
2
(

1− α

2
,n−1

)]
(2.6.1)

= Pr

[
(n−1)s2

χ2
(
1− α

2 ,n−1
) < σ

2 <
(n−1)s2

χ2
(

α

2 ,n−1
)] .

The first equality corresponds to Figure 2.16 and is just the definition of the percentage points
χ2
(

α

2 ,n−1
)

and χ2
(
1− α

2 ,n−1
)
. These are defined to be the points that cut out the middle 1−α

of the chi-squared distribution and are tabled in Appendix B.2. The second equality in (2.6.1) is
based on algebraic manipulation of the terms in the square brackets. The actual derivation is given
later in this section. The second equality gives an interval that contains σ2. There is a probability of
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χ2(α 2,df) χ2(1 − α 2,df)7

0

1 − αα 2 α 2

Figure 2.16: Central χ
2 interval with probability 1−α .

1−α that σ2 is going to be in the interval(
(n−1)s2

χ2
(
1− α

2 ,n−1
) , (n−1)s2

χ2
(

α

2 ,n−1
)) . (2.6.2)

The derivation of the confidence interval for σ2 requires the data to be normally distributed. This
assumption is more vital for inferences about σ2 than it is for inferences about µ . For inferences
about µ , the central limit theorem indicates that the sample means are approximately normal even
when the data are not normal. There is no similar result indicating that the sample variance is
approximately χ2 even when the data are not normal.

EXAMPLE 2.6.1. Consider again the dropout rate data. We have seen that the complete data are
not normal, but that after deleting the two outliers, the remaining data are reasonably normal. We
find a 95% confidence interval for σ2 from the deleted data. The deleted data contain 36 observa-
tions and s2 for the deleted data is 27.45. The percentage points for the χ2(36−1) distribution are
χ2(.025,35) = 20.57 and χ2(.975,35) = 53.20. Applying (2.6.2), the 95% confidence interval is(

35(27.45)
53.20

,
35(27.45)

20.57
,

)
or equivalently (18.1,46.7). We are 95% confident that the true variance is between 18.1 and 46.7,
but remember that this is the true variance after the deletion of outliers. Again, when we delete
outliers we are a little fuzzy about the exact definition of our parameter, but we are also being fuzzy
about the exact population of interest. The exception to this is when we believe that the only outliers
that exist are observations that are not really part of the population. 2

It is the endpoints of the interval (2.6.2) that are random. To use the interval, we replace the
random variable s2 with the observed value of s2 and replace the term ‘probability (1−α)’ with
‘(1−α)100% confidence.’ Once the observed value of s2 is substituted into the interval, nothing
about the interval is random any longer, the fixed unknown value of σ2 is either in the interval or it
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is not; there is no probability associated with it. The probability statement about random variables
is mystically transformed into a ‘confidence’ statement. This is not unreasonable, but the rationale
is, to say the least, murky.

The α level test of H0 : σ2 = σ2
0 versus HA : σ2 6= σ2

0 is again based on the first equality in
equation (2.6.1). To actually perform a test, σ2

0 must be a known value. As usual, we assume that
the null hypothesis is true, i.e., σ2 = σ2

0 , so under this assumption

1−α = Pr
[

χ
2
(

α

2
,n−1

)
<

(n−1)s2

σ2
0

< χ
2
(

1− α

2
,n−1

)]
.

If we observe data yielding an s2 such that (n− 1)s2
/

σ2
0 is between the values χ2

(
α

2 ,n−1
)

and
χ2
(
1− α

2 ,n−1
)
, the data are consistent with the assumption that σ2 = σ2

0 at level α . Conversely,
we reject H0 : σ2 = σ2

0 with a two-sided α level test if

(n−1)s2

σ2
0

> χ
2
(
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2
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)
or if

(n−1)s2

σ2
0

< χ
2
(

α

2
,n−1

)
.

A clear definition of ‘confidence’ can be given in terms of testing the hypothesis H0 : σ2 = σ2
0

versus the alternative HA : σ2 6= σ2
0 . The same algebraic manipulations that lead to equation (2.6.1)

can be used to show that the (1−α)100% confidence interval contains precisely those values of σ2
0

that are consistent with the data when testing H0 : σ2 = σ2
0 at level α . This idea is discussed in more

detail in Section 3.4.

EXAMPLE 2.6.2. For the dropout rate data consider testing H0 : σ2 = 50 versus HA : σ2 6= 50
with α = .01. Again, we use the data with the two outliers deleted, so our concept of the population
variance σ2 must account for our deletion of weird cases. The test statistic is

(n−1)s2

σ2
0

=
35(27.45)

50
= 19.215.

The critical region, the region for which we reject H0, contains all values greater than χ2(.995,35)=
60.275 and all values less than χ2(.005,35) = 17.19. The test statistic is certainly not greater than
60.275 and it is also not less than 17.19, so we have no basis for rejecting the null hypothesis at the
α = .01 level. At the .01 level, the data are consistent with the claim that σ2 = 50.

The 95% confidence interval (18.1,46.7) from Example 2.6.1 contains all values of σ2 that
are consistent with the data as determined by a two-sided α = .05 level test. The interval does not
contain 50, so we do have evidence against H0 : σ2 = 50 at the α = .05 level. 2

While methods for drawing inferences about variances do not fit our standard pattern based on
1) a parameter of interest, 2) an estimate of the parameter, 3) the standard error of the estimate, and
4) a known distribution symmetric about zero, it should be noted that the basic logic behind these
confidence intervals and tests is the same. Confidence intervals are based on a random interval that
contains the parameter of interest with some specified probability. The unusable random interval is
changed into a usable nonrandom interval by substituting the observed value of the random variable
into the endpoints of the interval. The probability is then miraculously, if intuitively, turned into
‘confidence.’ Tests of hypotheses are based on evaluating whether the data are consistent with the
null hypothesis. Consistency is defined in terms of a known distribution that applies when the null
hypothesis is true. If the data are inconsistent with the null hypothesis, the null hypothesis is rejected
as being inconsistent with the observed data.
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Table 2.1: Weights of rats

59 54 56 59 57 52 52 61 59
53 59 51 51 56 58 46 53 57
60 52 49 56 46 51 63 49 57

Below is a series of equalities that justify equation (2.6.1).

1−α = Pr
[

χ
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α
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)
<
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2.7 Exercises

EXERCISE 2.7.1. Mulrow et al. (1988) presented data on the melting temperature of biphenyl as
measured on a differential scanning calorimeter. The data are given below; they are the observed
melting temperatures in Kelvin less 340.

3.02,2.36,3.35,3.13,3.33,3.67,3.54,3.11,3.31,3.41,3.84,3.27,3.28,3.30

Compute the sample mean, variance, and standard deviation. Give a 99% confidence interval for the
population mean melting temperature of biphenyl as measured by this machine. (Note that we don’t
know whether the calorimeter is accurately calibrated.)

EXERCISE 2.7.2. Box (1950) gave data on the weights of rats that were about to be used in an
experiment. The data are repeated in Table 2.1. Assuming that these are a random sample from a
broader population of rats, give a 95% confidence interval for the population mean weight. Test the
null hypothesis that the population mean weight is 60 using a .01 level test.

EXERCISE 2.7.3. Fuchs and Kenett (1987) presented data on citrus juice for fruits grown during
a specific season at a specific location. The sample size was 80 but many variables were measured
on each sample. Sample statistics for some of these variables are given below

Variable BX AC SUG K FORM PECT
Mean 10.4 1.3 7.7 1180.0 22.2 451.0
Variance 0.38 0.036 0.260 43590.364 6.529 16553.996

The variables are BX – total soluble solids produced at 20oC, AC – acidity as citric acid unhydrons,
SUG – total sugars after inversion, K – potassium, FORM – formol number, PECT – total pectin.
Give a 99% confidence interval for the population mean of each variable. Give a 99% prediction
interval for each variable. Test whether the mean of BX equals 10. Test whether the mean of SUG
is less than or equal to 7.5. Use α = .01 for each test.

EXERCISE 2.7.4. Jolicoeur and Mosimann (1960) gave data on female painted turtle shell
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Table 2.2: Female painted turtle shell lengths

98 138 123 155 105 147 133 159
103 138 133 155 109 149 134 162
103 141 133 158 123 153 136 177

Table 2.3: Percentage of fathers with white collar jobs

28.87 20.10 69.05 65.40 29.59
44.82 77.37 24.67 65.01 9.99
12.20 22.55 14.30 31.79 11.60
68.47 42.64 16.70 86.27 76.73

lengths. The data are presented in Table 2.2. Give a 95% confidence interval for the population
mean length. Give a 99% prediction interval for the shell length of a new female.

EXERCISE 2.7.5. Mosteller and Tukey (1977) extracted data from the Coleman Report. Among
the variables considered was the percentage of sixth-graders who’s fathers were employed in white
collar jobs. Data for 20 New England schools are given in Table 2.3. Are the data reasonably nor-
mal? Do any of the standard transformations improve the normality? After finding an appropriate
transformation (if necessary), test the null hypothesis that the percentage of white collar fathers is
50%. Use a .05 level test. Give a 99% confidence interval for the percentage of fathers with white
collar jobs. If a transformation was needed, relate your conclusions back to the original measure-
ment scale.

EXERCISE 2.7.6. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.7.5. Remember that inferences about variances require the assumption of
normality. Could the variance reasonably be 10?

EXERCISE 2.7.7. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.7.4. Remember that the inferences about variances require the assumption of
normality.

EXERCISE 2.7.8. Give 99% confidence intervals for the population variances of all the variables
in Exercise 2.7.3. Assume that the original data were normally distributed. Using α = .01, test
whether the potassium variance could reasonably be 45000. Could the formol number variance be
8?

EXERCISE 2.7.9. Shewhart (1931, p. 62) reproduces Millikan’s data on the charge of an election.
These are repeated in Table 2.4. Check for outliers and nonnormality. Adjust the data appropriately
if there are any problems. Give a 98% confidence interval for the population mean value. Give
a 98% prediction interval for a new measurement. (Millikan argued that some adjustments were
needed before these data could be used in an optimal fashion but we will ignore his suggestions.)

EXERCISE 2.7.10. Show that if y,y1, . . . ,yn are independent N
(
µ,σ2

)
random variables, (y−

ȳ·)/
√

σ2 +σ2/n ∼ N(0,1). Recalling that y, ȳ·, and s2 are independent and that (n− 1)s2/σ2 ∼
χ2(n−1), use Definition 2.1.3 to show that (y− ȳ·)/

√
s2 + s2/n∼ t(n−1).
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Table 2.4: Observations on the charge of an electron

4.781 4.764 4.777 4.809 4.761 4.769 4.795 4.776
4.765 4.790 4.792 4.806 4.769 4.771 4.785 4.779
4.758 4.779 4.792 4.789 4.805 4.788 4.764 4.785
4.779 4.772 4.768 4.772 4.810 4.790 4.775 4.789
4.801 4.791 4.799 4.777 4.772 4.764 4.785 4.788
4.779 4.749 4.791 4.774 4.783 4.783 4.797 4.781
4.782 4.778 4.808 4.740 4.790 4.767 4.791 4.771
4.775 4.747



Chapter 3

A general theory for testing and confidence
intervals

The most commonly used statistical tests and confidence intervals derive from a single theory. (Tests
and confidence intervals about variances are an exception.) The basic ideas of this theory were
illustrated in Chapter 2. The point of the current chapter is to present the theory in its general form
and to reemphasize fundamental techniques. The general theory will then be used throughout the
book. Because the theory is stated in quite general terms, some prior familiarity with the ideas, e.g.,
reading Sections 2.2 and 2.3, is highly recommended.

To use the general theory you need to know four things:

1. the parameter of interest, Par,
2. the estimate of the parameter, Est,
3. the standard error of the estimate, SE(Est), and
4. the appropriate reference distribution.

Specifically, what you need to know about the distribution is that

Est−Par
SE(Est)

has a known (tabled) distribution that is symmetric about zero. The estimate Est is taken to be a
random variable. The standard error, SE(Est), is the standard deviation of the estimate if that is
known, but more commonly it is an estimate of the standard deviation. If the SE(Est) is estimated,
the known distribution is usually the t distribution with some known number of degrees of freedom.
If the SE(Est) is known, then the distribution is usually the standard normal distribution, i.e., mean
0, variance 1. In some problems, e.g., problems involving the binomial distribution, the central limit
theorem is used to get an approximate distribution and inferences proceed as if that distribution is
correct. When appealing to the central limit theorem, the known distribution is the standard normal.

Identifying a parameter of interest and an estimate of that parameter is relatively easy. The more
complicated part of the procedure is obtaining the standard error. To do this, one typically derives
the variance, estimates it (if necessary), and takes the square root. Obviously, rules for deriving
variances play an important role in the process.

We need notation for the percentage points of the known reference distribution. In particular, we
need a name for the point that cuts off the top α of the distribution. The point that cuts off the top
α of the distribution also cuts off the bottom 1−α of the distribution. These ideas are illustrated in
Figure 3.1. The notation K(1−α) is used for the point that cuts off the top α .

The illustration in Figure 3.1 is written formally as

Pr
[

Est−Par
SE(Est)

> K(1−α)

]
= α.

61
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t(1 − α, df)0

0

1 − α α

Figure 3.1: Percentiles of t(df ) distributions.

By the symmetry about zero we also have

Pr
[

Est−Par
SE(Est)

<−K(1−α)

]
= α.

The value K(1−α) is called a percentile or percentage point; it is most often found from either a
standard normal table or a t table. For t percentage points with d f degrees of freedom, we use the
notation

t(1−α,d f ) = K(1−α)

and for standard normal percentage points we use

z(1−α) = K(1−α) .

As the degrees of freedom get arbitrarily large, the t distribution approximates the standard normal
distribution. Thus we write

z(1−α) = t(1−α,∞).

One can get a feeling for the quality of this approximation simply by examining the t tables in
Appendix B.1 and noting how quickly the t percentiles approach the values given for infinite degrees
of freedom.

3.1 Theory for confidence intervals

Confidence intervals are interval estimates of the parameter of interest. We have a specified ‘con-
fidence’ that the parameter is in the interval. Confidence intervals are more valuable than simply
reporting the estimate Est because confidence intervals provide an idea of the amount of error asso-
ciated with the estimate.

A (1−α)100% confidence interval for Par is based on the following probability equalities

1−α = Pr
[
−K
(

1− α

2

)
<

Est−Par
SE(Est)

< K
(

1− α

2

)]
(3.1.1)

= Pr
[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
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t(1 − α, df)− t(1 − α, df) 0

0

1 − 2α αα

Figure 3.2: Symmetry about 0 in the distribution of [Est −Par]/SE(Est).

The first equality in (3.1.1) is simply a statement of the picture illustrated in Figure 3.2. It follows
from the definition of K

(
1− α

2

)
and the symmetry of the distribution. The second equality follows

from the fact that the statements within the two sets of square brackets are algebraically equivalent.
A proof of the equivalence is given in the appendix at the end of the chapter.

The probability statement

1−α = Pr
[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
.

is the basis for the confidence interval for Par. The (1−α)100% confidence interval for Par is
simply the interval within the square brackets, i.e., the points between Est−K

(
1− α

2

)
SE(Est) and

Est+K
(
1− α

2

)
SE(Est). However, the confidence interval is obtained by substituting observed val-

ues for Est and SE(Est). We are (1−α)100% ‘confident’ that Par is in this interval. The endpoints
of the interval can be written succinctly as

Est±K
(

1− α

2

)
SE(Est).

I think everyone would agree with the statement ‘The probability is 1−α that you are going
to get a confidence interval that covers what you are trying to estimate, Par.’ I did not indicate that
the probability that your actual interval covers Par is 1−α . The particular interval that you get
uses the observed values of Est and SE(Est), so it is a fixed interval and either covers Par or does
not. There is no probability associated with Par being in the interval. For this reason the result of a
confidence interval is described as, ‘We are (1−α)100% confident that the true value of Par is in
the interval.’ I have no idea what this is supposed to mean, even though I find it intuitively appealing.
I do, however, know of two acceptable interpretations for confidence intervals. As we will see in
Section 3.4, a confidence interval contains all those parameter values that are consistent with the
data. Consistency is measured by performing a statistical test with a specified error level α . The
α in the test plays the same role as the α in a confidence interval. Since I think I understand the
philosophical basis of hypothesis tests, I am comfortable with this interpretation.

The confidence intervals obtained from the theory presented in this chapter can frequently be
obtained by another approach using ‘Bayesian’ arguments. In the Bayesian justification, the correct
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interpretation of a 95% confidence interval is that the probability is 95% that the parameter is in
the interval. This is precisely the interpretation that most statistics students wish to adopt and that
many statisticians strive so hard and so unsuccessfully to make their students reject. We will return
to the issue of interpreting confidence intervals later in this section.

EXAMPLE 3.1.1. Years ago, 10 people were independently abducted by S.P.E.C.T.R.E after a
Van Holland concert and forced to submit to psychological testing. Among the tests was a measure
of audio acuity. From many past abductions in other circumstances, S.P.E.C.T.R.E knows that such
observations form a normal population with variance 6. In this case, they found that ȳ· was 17. They
seek a 95% confidence interval for µ , the mean of the population.

1) Par = µ ,
2) Est = ȳ·,
3) SE(Est) =

√
6/10, in this case SE(Est) is known and not estimated.

4) [Est−Par]
/

SE(Est) = [ȳ·−µ]
/√

6/10 has a standard normal distribution.

To find the appropriate tabled values, observe that (1−α)100 = 95, so 1−α = .95 and α = .05.
It follows that K

(
1− α

2

)
= K(.975) = z(.975) = 1.96.

The limits of the 95% confidence interval are

ȳ·±1.96
√

6/10

or, since ȳ· = 17,
17±1.96

√
6/10.

S.P.E.C.T.R.E. was 95% confident that the mean hearing score for people at this concert (or at least
for the population they were considering for abduction) was between 15.5 and 18.5. 2

EXAMPLE 3.1.2. In Chapter 2 we considered data on dropout rates for math classes. We found
that the 38 observations on dropout rates were not normally distributed; they contained two outliers.
Our parameter for these data is µ , the population mean dropout rate for math classes, the estimate is
the sample mean ȳ·, and the standard error is

√
s2/38 where s2 is the sample variance. Based on the

central limit theorem and the law of large numbers, we used the approximate reference distribution

ȳ·−µ√
s2/38

∼ N(0,1).

From the 38 observations, we computed ȳ· = 13.11 and s2 = 106.421 and found a 95% confidence
interval for the dropout rate of (9.8,16.4). The endpoints of the confidence interval are computed as

13.11±1.96(
√

106.421/38).

If we drop the two outliers, the remaining data seem to be normally distributed. Recomputing
the sample mean and sample variance with the outliers deleted we get ȳd = 11.083 and s2

d = 27.45.
Here the subscripts d are used as a reminder that the outliers have been deleted. Without the outliers,
we can use the reference distribution

ȳd−µd√
s2

d/36
∼ t(35).

The t distribution relies on the assumption of normality (which we have validated) rather than re-
lying on the unvalidated large sample approximations from the central limit theorem and law of
large numbers. The t distribution should give more accurate results. For a 95% confidence interval
based on the data without the outliers, we need to find the appropriate tabled values. Observe once
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again that (1−α)100 = 95, so 1−α = .95 and α = .05. It follows that K
(
1− α

2

)
= K(.975) =

t(.975,35) = 2.030 and the confidence interval has endpoints

11.083±2.030(
√

27.45/36).

The actual interval is (9.3,12.9). Excluding the extremely high values that occasionally occur, we
are 95% confident that the population mean dropout rate is between 9.3 and 12.9 percent. Remem-
ber, this is a confidence interval for the mean of math classes; it does not indicate that you can be
95% confident that your next math class will have a dropout rate between 9.3 and 12.9 percent. Such
an inference requires a prediction interval. The interval (9.3,12.9) is much narrower than the one
given in the previous paragraph, largely because our estimate of the variance is much smaller when
the outliers have been deleted. Note also that with the outliers deleted, we are drawing inferences
about a different parameter than when they are present. With the outliers deleted, our conclusions are
only valid for the bulk of the observations. While occasional weird observations can be eliminated
from our analysis, we cannot stop them from occurring.

In constructing the confidence interval we used the tabled value of 2.030 from the t distribution.
This is larger than the 1.96 we obtained earlier from the standard normal distribution. Using the
larger t value makes our confidence intervals wider. Other things being equal, we prefer narrower
confidence intervals because they make more precise statements about the location of the mean.
However, even though the value 1.96 is smaller than 2.030 and thus gives narrower intervals, we
prefer to use the t distribution. The t distribution incorporates the fact that we do not know σ2

and must estimate it. Thus an analysis using the N(0,1) distribution is much cruder in that it treats
the estimate of σ2 as if it were really σ2. Whenever we can establish that the data are reasonably
normal, we will use the t distribution because it should give more accurate results.

In the previous chapter we discussed the use of transformations. In particular, we looked at
the square roots of the dropout rate data. We now consider the effect on confidence intervals of
transforming the data. With the two outliers deleted and taking square roots of the observations, we
found earlier that the data are reasonably normal. The sample mean and variance of the transformed,
deleted data are ȳrd = 3.218 and s2

rd = .749574. Here the subscript r reminds us that square roots
have been taken and the subscript d reminds us that outliers have been deleted. Using the reference
distribution

ȳrd−µrd√
s2

rd/36
∼ t(35),

we obtain a 95% confidence interval with endpoints

3.218±2.030

(√
.749574

36

)
.

The confidence interval reduces to (2.925,3.511). This is a 95% confidence interval for the pop-
ulation mean of the square roots of the dropout rate percentages with ‘outliers’ removed from the
population.

The confidence interval (2.925,3.511) does not really address the issue that we set out to inves-
tigate. We wanted some idea of the value of the population mean dropout rate. We have obtained a
95% confidence interval for the population mean of the square roots of the dropout rate percentages
(with outliers removed from the population). There is no simple, direct relationship between the
population mean dropout rate and the population mean of the square roots of the dropout rate per-
centages, but a simple device can be used to draw conclusions about typical values for mean dropout
rates when the analysis is performed on the square roots of the dropout rates. Since (2.925,3.511)
provides a 95% confidence interval from the square roots of the dropout rate percentages, we simply
square all the values in the interval to draw conclusions about the dropout rate percentages. Squar-
ing the endpoints of the interval gives the new interval (2.9252,3.5112) = (8.6,12.3). We are now
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95% confident that the central value of the population of dropout rates is between 8.6 and 12.3. The
central value referred to here is really the square of the population mean of the square roots of the
dropout rate percentages. We are using this central value as a surrogate for the population mean of
the (outlier deleted) dropout rate percentages; generally this central value will not equal the mean
of the (deleted) dropout rates. For the most part we ignore the difference between the surrogate and
the parameter that we set out to investigate. Interestingly, we will see in Section 3.5 that prediction
intervals do not share these difficulties associated with transforming the data.

Note that the retransformed interval (8.6,12.3) obtained from the transformed, deleted data is
similar to the interval (9.3,12.9) obtained earlier from the untransformed data with the outliers
deleted. When, as in this case, two distinct analyses both seem reasonably valid, I would be very
hesitant about drawing practical conclusions that could not be justified from both analyses. 2

Interpreting confidence intervals

The interpretation of confidence intervals is actually a quite profound issue that statisticians have
been arguing about for decades. This subsection presents the author’s point of view in the context
of some relatively simple problems. Although the problems are simple, the issues being discussed
are not.

The disquieting thing about confidence intervals is the logic (or lack thereof) behind the leap
from the probability of 1−α that a future interval will contain the parameter into a ‘(1−α)100%
confidence’ that the parameter is in a particular observed interval. The problem is in defining the
meaning of confidence.

The standard interpretation of (1−α)100% confidence intervals is that if you repeatedly per-
formed many similar independent confidence intervals, about (1−α)100% would contain the true
parameter. The repeated sampling interpretation is exactly the same idea as saying that since a fu-
ture coin toss has probability .5 of turning up heads, if you actually make many independent tosses
of a coin, about 50% will be heads. This interpretation is not really saying anything new nor does
it solve any problems because it still only relates to things that may be observed in the future. The
fundamental problem of inverting probabilities for future observables into confidence about param-
eters remains. Moreover, the repeated sampling interpretation rarely applies to interesting problems.
If you are obtaining a confidence interval for the height of corn plants grown outdoors, there is no
way to perform independent replications of the experiment because there is no way to reproduce
the exact growing conditions. In such cases, not only will the data behave differently but even the
parameter of interest is likely to have a different meaning and value.

An alternative interpretation of confidence intervals based on statistical tests of hypotheses is
presented in Section 3.4. I feel comfortable with the logic behind testing, so I like this interpretation.
However, this interpretation makes no appeal whatsoever to the intuitive idea that 95% confidence
means something similar to 95% probability.

I personally do not think it is possible to define confidence as anything other than probability.
Two simple examples illustrate my point. I am going to flip a coin; we agree that the probability is
.5 that it will land heads up. I flip the coin, look at it, but refuse to show it to you. Undoubtedly, you
would feel comfortable saying that you are 50% confident that the coin is heads. I cannot imagine
what that would mean except that you believe the probability is .5 that the coin is heads. Note
that the 50% confidence is a statement about your beliefs and not a statement about the coin. The
outcome of the coin toss is fixed (and known by someone other than you). This example has neither
a fixed parameter nor any observable data but we can modify the example to make it more like a
confidence interval problem. I place a coin either heads up or tails up and hide it from you, this is
the parameter. You are going to flip a coin but I exercise my well known psychic powers. When I
do this, the probability is .75 that the coin face I chose will be the face on your coin. When you toss
your coin it lands either heads or tails and you observe this datum. The observed outcome of your
toss is no longer random and it either matches mine or does not. Intuitively, you may reasonably
feel that the probability is still .75 that the coins match, regardless of how I set my coin. But now
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the probability is no longer about what the outcome of your flip will be because you have seen your
datum. The probability must now be about how you believe I set my coin. Such a probability can
only exist in your head. (Of course, I have other ideas and probabilities because, having seen both
coins, I know whether they match.) While the intuition behind this probability is appealing, the logic
escapes me. Glossing over the problem by saying that you have confidence, but not probability, of
.75 for matching my coin does nothing to clear up the real issue.

R. A. Fisher made an attempt to build a theory of inverting probabilities from future observables
into probabilities for parameters using this sort of intuition that we all find appealing. While it was a
noble effort, I do not know of anyone who thinks Fisher succeeded or anyone who thinks that such
a theory can succeed. (Of course, I have a limited sphere of acquaintance.) For more information,
see the discussion of fiducial probability in Fisher (1956).

Another method of inverting probabilities about future data into probabilities about parameters is
the theory of Bayesian statistics. Let me briefly mention how a Bayesian could arrive at a probability
of .75 for the second coin tossing example. The computations are illustrated in Exercise 3.7.1. I place
my coin any way I want. To arrive at a probability, you need to decide on your beliefs about how I
placed my coin. If you believe that I am equally likely to place it heads up or tails up, those are your
prior beliefs. Your prior beliefs are then modified by any data. In this example, if your initial beliefs
are that I was equally likely to place the coin heads up or tails up, using a result known as Bayes
theorem the probability that your coin agrees with mine becomes .75, regardless of what face of the
coin I chose to place upwards and regardless of what you actually saw on your flip.

Notice that there is a lot more structure here than the mere intuition referred to earlier. In the
intuitive discussion, your personal probability of a 75 : 25 chance of matching exists regardless of
how I set my coin. In this discussion, you need to specify your beliefs about how I set my coin and
the final 75 : 25 chance is a result of your having chosen an initial 50 : 50 chance for how I set my
coin. For example, if you thought I was four times more likely to select heads, the probability of
matching would be 12/13 if your coin turned up heads but only 3/7 if it turned up tails. Note that
these beliefs do not depend on how I actually set my coin because you cannot know that. These
beliefs do depend on your knowledge of how the data relate to how I set my coin, i.e., what data are
likely when I choose heads and what are likely when I choose tails.

Bayesian methods are often criticized for requiring you to specify your initial beliefs in terms
of a probability distribution on the possible parameter values. The result of a Bayesian data analysis
is then an updated version of your beliefs. Berger (1985), among many others, responds to such
criticisms. Many of us think that Bayesian methods provide the only logically consistent (though I
would not say the only useful) method for doing statistics.

As I see it, a person has three choices: one can ignore the problem of what confidence means,
one can use the hypothesis testing interpretation of confidence intervals to be given later, or one can
rely on Bayesian methods. As it turns out, the confidence intervals and prediction intervals used in
this book can be obtained by reasonable Bayesian methods. In the Bayesian interpretation of these
intervals, confidence simply means probability, as the data modify a particular set of prior beliefs
that are chosen to have a minimum of influence on the results of the data analysis.

3.2 Theory for hypothesis tests

Hypothesis tests are used to check whether Par has some specified value. For some fixed known
number m, we may want to test the null hypothesis

H0 : Par = m

versus the alternative hypothesis
HA : Par 6= m.

The number m must be known; it is some number that is of interest for the specific data being
analyzed. It is impossible to give general rules for picking m because the choice must depend on
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the context of the data. As mentioned in the previous chapter, the structure of the data (but not the
actual values of the data) sometimes suggests interesting hypotheses such as testing whether two
populations have the same mean or testing whether there is a relationship between two variables,
but ultimately the researcher must determine what hypotheses are of interest and these hypotheses
determine m. In any case, m is never just an unspecified symbol; it must have meaning within the
context of the problem. The test of H0 : Par = m versus HA : Par 6= m is based on the assumption that
H0 is true and consists of checking to see whether the data are inconsistent with that assumption.

To identify data that are inconsistent with the assumption that Par = m, we examine what hap-
pens when Par 6= m. Note that Est is always an estimate of Par; this has nothing to do with any
hypothesis. With Est estimating Par, it follows that if Par > m then Est tends to be larger than m.
Equivalently, Est−m, and thus [Est−m]/SE(Est), tend to be large positive numbers when Par > m
(larger than they would be if H0 : Par = m is true). On the other hand if Par < m, then Est−m and
[Est−m]/SE(Est) tend to be large negative numbers. Data that are inconsistent with the null hy-
pothesis Par = m are large positive and large negative values of the test statistic [Est−m]/SE(Est).
The problem is in specifying what we mean by ‘large.’ In practice we conclude that the data con-
tradict the null hypothesis Par = m if we observe a value of [Est−m]/SE(Est) that is further from
0 than some cutoff values. The problem is to make an intelligent choice for the cutoff values. The
solution is based on the fact that if H0 is true, the test statistic

Est−m
SE(Est)

has the known reference distribution that is symmetric about 0.
When we substitute the observed values of Est and SE(Est) into the test statistic we get one

observation on the random test statistic. When H0 is true, this observation comes from the refer-
ence distribution. The question is whether it is reasonable to believe that this one observation came
from the reference distribution. If so, the data are consistent with H0. If the observation could not
reasonably have come from the reference distribution, the data contradict H0. Contradicting H0 is a
strong inference; it implies that H0 is false. On the other hand, inferring that the data are consistent
with H0 does not suggest that H0 is true. Such data can also be consistent with some aspects of the
alternative.

Before we can state the test formally, i.e., give intelligent cutoff values to determine the test,
we need to consider the concept of error. Even if H0 is true, it is usually possible (not probable but
possible) to get any value at all for [Est−m]/SE(Est). For that reason, no matter what we conclude
about the null hypothesis, there is a possibility of error. A test of hypothesis is based on controlling
the probability of making an error when the null hypothesis is true. We define the α level of the test
as the probability of rejecting the null hypothesis (saying that it is false) when the null hypothesis is
in fact true. The α level is also called the probability of a type I error, with a type I error being the
rejection of a true null hypothesis.

The α level determines the cutoff values for testing. The α level test for H0 : Par = m versus
HA : Par 6= m is to reject H0 if

Est−m
SE(Est)

> K
(

1− α

2

)
or if

Est−m
SE(Est)

<−K
(

1− α

2

)
.

This is equivalent to saying, reject H0 if

|Est−m|
SE(Est)

> K
(

1− α

2

)
.

To see that using K
(
1− α

2

)
and−K

(
1− α

2

)
as cutoff values gives an α level test, observe that if H0
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is true, the probability that we will reject H0 is

Pr
[

Est−m
SE(Est)

> K
(

1− α

2

)]
+Pr

[
Est−m
SE(Est)

<−K
(

1− α

2

)]
= α/2+α/2 = α,

see Figure 3.2. Also note that we are rejecting H0 for those values of [Est−m]/SE(Est) that are
most inconsistent with H0, these being the values far from zero.

Actually, this test could be developed without any reference to the alternative hypothesis what-
soever. (In fact, I much prefer such a development since I believe that if you are willing to specify
an alternative you should probably do a Bayesian analysis.) The only place where we used the al-
ternative hypothesis was in determining which values of the test statistic were inconsistent with H0.
A different approach simply uses Figure 3.2 to decide which values of the test statistic are inconsis-
tent. We can define the values that are most inconsistent as those that are the least likely to occur.
The values that are least likely to occur are those where the density (i.e., the curve) is lowest. In
Figure 3.2, the lowest values of the density are those corresponding to values of the test statistic
that are far from 0. The density is symmetric, so our test should be symmetric. Thus an α level
test has exactly the form given above. Of course this analysis relies on Figure 3.2 being an accurate
portrayal of the distribution under H0, but for all of our applications it is.

EXAMPLE 3.2.1. In Example 3.1.1 we considered past data on audio acuity in a post-rock envi-
ronment. Those data were collected on fans of the group Van Holland in their Lee David Rothschild
days. The nefarious organization responsible for this study found it necessary to update their findings
after Rothschild was replaced by Slammy Hagar-Slacks. This time they abducted for themselves 16
independent observations and they were positive that the data would continue to follow a normal
distribution. (Such arrogance is probably responsible for the failure of S.P.E.C.T.R.E.’s plans of
world domination. In any case, their resident statistician was in no position to question this assump-
tion.) The observed values of ȳ· and s2 were 22 and .25 respectively for the audio acuity scores.
Now the purpose of all this is that S.P.E.C.T.R.E. had a long standing plot that required the use of
a loud rock band. They had been planning to use the group Audially Disadvantaged Leopard but
Van Holland’s fans offered certain properties they preferred, provided that those fans audio acuity
scores were satisfactory. From extremely long experience with abducting Audially Disadvantaged
Leopard fans, S.P.E.C.T.R.E. knows that they have a population mean of 20 on the audio acuity
test. S.P.E.C.T.R.E. wishes to know whether Van Holland fans differ from this value. Naturally, they
tested H0 : µ = 20 versus HA : µ 6= 20 and they chose an α level of .01.

1) Par = µ

2) Est = ȳ·
3) SE(Est) = s/

√
16. In this case the SE(Est) is estimated.

4) [Est−Par]
/

SE(Est) = [ȳ·−µ]
/
[s/
√

16] has a t(15) distribution. This follows because the data
are normally distributed and the standard error is estimated using s.

The α = .01 test is to reject H0 if

|ȳ·−20|
s/
√

16
> 2.947 = t(.995,15).

Note that the sample size is n = 16 and K(1−α/2) = K(1− .005) = t(.995,15). Since ȳ· = 22
and s2 = .25 we reject H0 if

|22−20|√
.25/16

> 2.947.

Since |22− 20|
/√

.25/16 = 16 is greater than 2.947, we reject the null hypothesis at the α = .01
level. There is clear (indeed, overwhelming) evidence that the Van Holland fans have higher scores.
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(Unfortunately, my masters will not let me inform you whether high scores mean better hearing or
worse.) 2

EXAMPLE 3.2.2. The National Association for the Abuse of Student Yahoos (also known as
NAASTY) has established guidelines indicating that university dropout rates for math classes should
be 15%. Based on an α = .05 test, we wish to know if the University of New Mexico (UNM) meets
these guidelines when treating the 1984–85 academic year data as a random sample. As is typical in
such cases, NAASTY has specified that the central value of the distribution of dropout rates should
be 15% but it has not stated a specific definition of the central value. We interpret the central value
to be the population mean of the dropout rates and test the null hypothesis H0 : µ = 15% against the
two-sided alternative HA : µ 6= 15%.

The complete data consist of 38 observations from which we compute ȳ· = 13.11 and s2 =
106.421. The data are nonnormal, so we have little choice but to hope that 38 observations constitute
a sufficiently large sample to justify the use of

ȳ·−µ√
s2/38

∼ N(0,1)

as an approximate reference distribution. With an α level of .05 and the standard normal distribution,
the two-sided test rejects H0 if

ȳ·−15√
s2/38

> 1.96 = z(.975) = z
(

1− α

2

)
or if

ȳ·−15√
s2/38

<−1.96.

Substituting the observed values for ȳ· and s2 gives the observed value of the test statistic

13.11−15√
106.421/38

=−1.13.

The value of −1.13 is neither greater than 1.96 nor less than −1.96, so the null hypothesis cannot
be rejected at the .05 level. The 1984–85 data provide no evidence that UNM violates the NAASTY
guidelines.

If we delete the two outliers, the analysis changes somewhat. Without the outliers, the data are
approximately normal and we can use the reference distribution

ȳd−µd√
s2

d/36
∼ t(35).

For this reference distribution the two-sided α = .05 test rejects H0 : µd = 15 if

ȳd−15√
s2

d/36
> 2.030 = t(.975,35)

or if
ȳd−15√

s2
d/36

<−2.030 =−t(.975,35).

With ȳd = 11.083 and s2
d = 27.45 from the data without the outliers, the observed value of the test

statistic is
11.083−15√

27.45/36
=−4.49.
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The absolute value of −4.49 is greater than 2.030, i.e., −4.49 < −2.030, so we reject the null
hypothesis of H0 : µd = 15% at the .05 level. When we exclude the two extremely high observations,
we have evidence that the typical dropout rate was different from 15%. In particular, since the test
statistic is negative, we have evidence that the population mean dropout rate with outliers deleted
was actually less than 15%. Obviously, most of the UNM math faculty during 1984–85 were not
sufficiently nasty.

Finally, we consider the role of transformations in testing. We again consider the square roots
of the dropout rates with the two outliers deleted. As discussed earlier, NAASTY has specified that
the central value of the distribution of dropout rates should be 15% but has not stated a specific
definition of the central value. We are reasonably free to interpret their guideline and we now inter-
pret it as though the population mean of the square roots of the dropout rates should be

√
15. This

interpretation leads us to the null hypothesis H0 : µrd =
√

15 and the alternative HA : µrd 6=
√

15. As
discussed earlier, a reasonably appropriate reference distribution is

ȳrd−µrd√
s2

rd/36
∼ t(35),

so the test rejects H0 if
|ȳrd−

√
15|√

s2
rd/36

> 2.030 = t(.975,35).

The sample mean and variance of the transformed, deleted data are ȳrd = 3.218 and s2
rd = .749574,

so the observed value of the test statistic is

3.218−3.873√
.749574/36

=−4.54.

The test statistic is similar to that in the previous paragraph. The null hypothesis is again rejected
and all conclusions drawn from the rejection are essentially the same. As stated earlier, I believe that
when two analyses both appear to be valid, either the practical conclusions agree or neither analysis
should be trusted. 2

One-sided tests

We can do one-sided tests in a similar manner. The α level test for H0 : Par≤m versus HA : Par > m
is to reject H0 if

Est−m
SE(Est)

> K(1−α) .

The alternative hypothesis is that Par is greater than something and the null hypothesis is rejected
when the test statistic is greater than some cutoff value. We reject the null hypothesis for the values
of the test statistic that are most inconsistent with the null hypothesis and thus most consistent with
the alternative hypothesis. If the alternative is true, Est should be near Par, which is greater than m,
so large positive values of Est−m or, equivalently, large positive values of [Est−m]

/
SE(Est) are

consistent with the alternative and inconsistent with the null hypothesis.
The α level test for H0 : Par ≥ m versus HA : Par < m is to reject H0 if

Est−m
SE(Est)

<−K(1−α) .

The alternative hypothesis is that Par is less than something and the null hypothesis is rejected when
the test statistic is less than some cutoff value. The form of the alternative determines the form of
the rejection region. In both cases we reject H0 for the data that are most inconsistent with H0
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The null hypotheses involve inequalities but Par = m is always part of the null hypotheses. The
tests are set up assuming that Par = m and this needs to be part of any null hypothesis. In both
cases, if Par = m then the probability of making a mistake is α and, more generally, if H0 is true,
the probability of making a mistake is no greater than α .

EXAMPLE 3.2.3. Again consider the Slammy Hagar-Slacks era Van Holland audio data. Recall
that there are 16 independent observations taken from a normal population with observed statistics
of ȳ· = 22 and s2 = .25. This time I have been required to perform a one-sided test to see whether I
can prove that the Van Holland mean audio acuity scores are lower than the Audially Disadvantaged
Leopard mean. I now test H0 : µ ≥ 20 versus HA : µ < 20 with α = .01. Here I am claiming that
the scores are not lower and check to see whether the data contradict this. If they do, then my claim
must be false and I have proven that the scores must be lower. If I initially claimed that the scores
were lower, I would not be able to prove it; I could only establish that the data were consistent with
my claim. As before,

1) Par = µ

2) Est = ȳ·
3) SE(Est) = s/

√
16. In this case the SE(Est) is estimated.

4) [Est−Par]
/

SE(Est) = [ȳ·−µ]
/
[s/
√

16] has a t(15) distribution.

The α = .01 test is to reject H0 : µ ≥ 20 if

ȳ·−20
s/
√

16
<−2.602 =−t(.99,15).

Note that with a sample size of n = 16 we get K(1−α) = K(1− .01) = t(.99,15). With ȳ· = 22 and
s2 = .25, we reject if

22−20√
.25/16

<−2.602

Since (22− 20)
/√

.25/16 = 16 is greater than −2.602 we do not reject the null hypothesis at
the α = .01 level. There is no evidence that the Van Holland mean is lower than the Audially
Disadvantaged Leopard mean. Observe that with the alternative µ < 20, i.e., µ less than something,
H0 is only rejected when the test statistic is less than some cutoff value.

If you stop and think about it, we really did not have to go to all this trouble to discover the
conclusion of this test. The null hypothesis is that µ ≥ 20. The observed ȳ· value of 22 is obviously
consistent with the hypothesis that the mean is greater than or equal to 20. Only ȳ· values that
are less than 20 could possibly contradict the null hypothesis. The only point at issue is how far
ȳ· must be below 20 before we can claim that ȳ· contradicts the null hypothesis. As discussed in
Example 2.2.4, given a choice it would be more informative to reverse the inequalities in H0 and HA
for this problem. 2

EXAMPLE 3.2.4. A colleague of mine claims that, excluding classes with outrageous dropout
rates, the math dropout rate at UNM was never more than 9% in any year during the 1980s. We
now test this claim using the only data we have, that from the 1984–85 school year. My colleague
excluded classes with outrageous dropout rates, so we use only the data with the outliers deleted.
We again use α = .05.

Based on the untransformed data, the null hypothesis is simply my colleague’s claim, i.e., H0 :
µ ≤ 9. The alternative is HA : µ > 9. With α = .05, the test is rejected if

ȳd−9√
s2

d/36
> 1.690 = t(.95,35).
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With ȳd = 11.083 and s2
d = 27.45, the observed test statistic is

11.083−9√
27.45/36

= 2.39,

so the test is easily, but not overwhelmingly, rejected.
Using the square roots of the data, the null hypothesis becomes H0 : µrd ≤

√
9. The alternative

is HA : µrd >
√

9. With α = .05, the test is rejected if

ȳrd−
√

9√
s2

rd/36
> 1.690 = t(.95,35).

The sample mean and variance of the transformed, deleted data are ȳrd = 3.218 and s2
rd = .749574,

so the observed value of the test statistic is

3.218−3√
.749574/36

= 1.51.

The observed value is not greater than 1.690, so the test cannot be rejected at the .05 level.
In this case the two tests disagree. The untransformed data rejects the .05 level test easily. The

transformed data does not quite achieve significance at the .05 level. To me, the data seem inconclu-
sive. There is certainly some reason to suspect that the true dropout rate during 1984–85 was greater
than 9%; one test rejected the null hypothesis and the other came somewhat close to being rejected.
However, both analyses seem reasonable, so I cannot place great confidence in the rejection ob-
tained using the untransformed data when the result is not fully corroborated by the transformed
data. 2

P values

Rather than having formal rules for when to reject the null hypothesis, one can report the evidence
against the null hypothesis. This is done by reporting the P value. The P value is computed under
the assumption that Par = m. It is the probability of seeing data that are as extreme or more extreme
than those that were actually observed. Formally, we write tobs for the observed value of the test
statistic, computed from the observed values of Est and SE(Est). Thus tobs is our summary of the
data that were actually observed. Recalling our earlier discussion of which values of Est would be
most inconsistent with Par = m, the probability of seeing something as or more extreme than we
actually saw is

P = Pr
[∣∣∣ Est−m

SE(Est)

∣∣∣≥ |tobs|
]

where Est (and usually SE(Est)) are viewed as random and it is assumed that Par = m. Under these
conditions (Est −m)/SE(Est) has the known reference distribution and tobs is a known number,
so we can actually compute P. The basic idea is that for, say, tobs positive, any value of (Est −
m)/SE(Est) greater than tobs is more extreme than tobs. Any data that yield (Est−m)/SE(Est) =
−tobs are just as extreme as tobs and values of (Est−m)/SE(Est) less than −tobs are more extreme
than observing tobs.

EXAMPLE 3.2.5. Again consider the Slammy Hagar-Slacks era Van Holland data. We have 16
observations taken from a normal population and we wish to test H0 : µ = 20 versus HA : µ 6= 20.
As before, 1) Par = µ , 2) Est = ȳ·, 3) SE(Est) = s/

√
16, and 4) [Est − Par]

/
SE(Est) = [ȳ· −

µ]
/
[s/
√

16] has a t(15) distribution. This time we take ȳ· = 19.78 and s2 = .25, so the observed test
statistic is

tobs =
19.78−20√

.25/16
=−1.76.
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From a t table, t(.95,15) = 1.75, so

P = Pr [|t(15)| ≥ |−1.76|] .= Pr [|t(15)| ≥ 1.75] = .10.

Alternatively, t(.95,15) .
= |1.76|, so P .

= 2(1− .95). 2

Equivalently, the P value is the smallest α level for which the test would be rejected. With
this definition, if we perform an α level test where α is less than the P value, we can conclude
immediately that the null hypothesis is not rejected. If we perform an α level test where α is greater
than the P value, we know immediately that the null hypothesis is rejected. Thus computing a P
value eliminates the need to go through the formal testing procedures described above. Knowing
the P value immediately gives the test results for any choice of α . The P value is a measure of how
consistent the data are with H0. Large values (near 1) indicate great consistency. Small values (near
0) indicate data that are inconsistent with H0.

EXAMPLE 3.2.6. In Example 3.2.2 we considered two-sided tests for the drop rate data. Using
the complete untransformed data, the null hypothesis H0 : µ = 15, and the alternative HA : µ 6= 15,
we observed the test statistic

tobs =
13.11−15√
106.421/38

=−1.13.

Using a standard normal table or a computer program, we can compute

P = Pr [|z| ≥ |−1.13|] = .26.

An α = .26 test would be just barely rejected by these data. Any test with an α level smaller than
.26 is more stringent (the cutoff values are farther from 0 than 1.13) and would not be rejected.
Thus the standard α = .05 and α = .01 tests would not be rejected. Similarly, any test with an α

level greater than .26 is less stringent and would be rejected. Of course, it is extremely rare that one
would use a test with an α level greater than .26.

Using the untransformed data with outliers deleted, the null hypothesis H0 : µd = 15, and the
alternative HA : µd 6= 15, we observed the test statistic

11.083−15√
27.45/36

=−4.49.

We compute
P = Pr [|t(35)| ≥ |−4.49|] = .000.

This P value is not really zero; it is a number that is so small that when we round it off to three
decimal places the number is zero. In any case, the test is rejected for any reasonable choice of α .
In other words, the test is rejected for any choice of α that is greater than .000. (Actually for any α

greater than .0005 because of the round off problem.)
Using the square roots of the data with outliers deleted, the null hypothesis H0 : µrd =

√
15, and

the alternative HA : µrd 6=
√

15, the observed value of the test statistic is

3.218−3.873√
.749574/36

=−4.54.

We compute
P = Pr [|t(35)| ≥ |−4.54|] = .000.

Once again, the test result is highly significant. 2

EXAMPLE 3.2.7. In Example 3.2.4 we considered one-sided tests for the drop rate data. Using
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the deleted untransformed data, the null hypothesis H0 : µd ≤ 9, and the alternative HA : µd > 9, we
observed the test statistic

11.083−9√
27.45/36

= 2.39.

Using Minitab, we compute
P = Pr [t(35)≥ 2.39] = .011.

The probability is only for large positive values because negative values of the test statistic are
consistent with H0. The P value of .011 is just greater than .01, so we would not be able to reject an
α = .01 test. We can of course reject any test with α greater than .011. The P value for the one-sided
test is exactly half of what the P value would be for testing H0 : µd = 9 versus HA : µd 6= 9.

Using the square roots of the data, the null hypothesis became H0 : µrd ≤
√

9 with the alternative
HA : µrd >

√
9. The observed value of the test statistic was

3.218−3√
.749574/36

= 1.51.

We compute
P = Pr [t(35)≥ 1.51] = .07.

The P value here is small, .07, but not small enough to reject an α = .05 test. There is some in-
dication that the null hypothesis is not true but the indication is not very strong. To be precise, if
we repeated this test procedure many times when the null hypothesis is true, 7% of the time we
would expect to get results that are at least this suggestive of the incorrect conclusion that the null
hypothesis is false. 2

Minitab commands

To find a P value using Minitab when the reference distribution is a t, start with the number −|tobs|,
where tobs is the observed value of the test statistic. In other words, find the observed test statistic
and make it a negative number. Then simply use this number with the ‘cdf’ command, specifying
the t distribution and the degrees of freedom in the subcommand. The procedure for tobs = 1.51 is
illustrated below. The probability given by the cdf command is the appropriate P value for one-sided
tests but must be doubled if the test is two-sided.

MTB > cdf -1.51;

SUBC> t 35.

Conclusion

To keep this discussion as simple as possible, the examples have been restricted to one-sample nor-
mal theory. However, the results of this section and Section 3.1 apply to more complicated problems
such as two-sample problems, testing contrasts in analysis of variance, and testing coefficients in
regression. All of these applications will be considered in later chapters.

3.3 Validity of tests and confidence intervals

In testing an hypothesis, we make an assumption, namely the null hypothesis, and check to see
whether the data are consistent with the assumption or inconsistent with it. If the data are consistent
with the null hypothesis, that is all that we can say. If the data are inconsistent with the null hypoth-
esis, it suggests that our assumption was wrong. (This is very similar to the mathematical idea of a
proof by contradiction.)

One of the problems with testing hypotheses is that we are really making a series of assumptions.
The null hypothesis is one of these, but there are many others. Typically we assume that observations
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are independent. In most tests that we will consider, we assume that the data have normal distribu-
tions. As we consider more complicated data structures, we will need to make more assumptions.
The proper conclusion from a test of hypothesis is that either the data are consistent with our as-
sumptions or the data are inconsistent with our assumptions. If the data are inconsistent with the
assumptions, it suggests that at least one of them is invalid. In particular, if the data are inconsistent
with the assumptions, it does not necessarily imply that the particular assumption embodied in the
null hypothesis is the one that is invalid. Before we can reasonably conclude that the null hypothesis
is untrue, we need to ensure that the other assumptions are reasonable. Thus it is crucial to check
our assumptions as fully as we can. Plotting the data plays a vital role in checking assumptions.
Plots are used throughout the book, but special emphasis on plotting is given in Chapter 7.

Typically, it is quite easy to define parameters Par and estimates Est. The role of the assumptions
is crucial in obtaining a valid SE(Est) and an appropriate reference distribution. If our assumptions
are reasonably valid, our SE(Est) and reference distribution will be reasonably valid and the proce-
dures outlined here for performing statistical inferences will be reasonably valid. This applies not
only to testing but to confidence intervals as well. Of course the assumptions that need to be checked
depend on the precise nature of the analysis being performed.

3.4 The relationship between confidence intervals and tests

The two most commonly used tools in statistical inference are tests and confidence intervals. Tests
determine whether a difference can be established between an hypothesized parameter value and
the true parameter for the data. Typically, one must consider not only whether a difference exists,
but how much difference exists, and whether such a difference is important within the context of
the problem. Confidence intervals are used to quantify what is known about the true parameter and
thus can be used to quantify how much of a difference may exist. In particular, confidence intervals
give all the possible parameter values that seem to be consistent with the data. Tests and confidence
intervals are very closely related inferential tools and in this section we explore their relationship.

As discussed earlier, the term ‘confidence’ as used in confidence intervals is rather nebulously
defined. Confidence intervals are based on the unusable probability statement

1−α = Pr
[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
,

which is a statement about the unknown (unobserved) random variables Est and SE(Est). It is a
highly intuitive idea that this probability statement generates a usable interval for Par,

Est−K
(

1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est),

in which the observed values of Est and SE(Est) are used to define a known interval. However,
the logic behind this intuitive idea is not clear and so we are left with an unclear definition of
‘confidence.’

A clear definition of confidence can be made in terms of testing hypotheses. The (1−α)100%
confidence interval for Par,

Est−K
(

1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est),

consists of all the values m that would not be rejected by an α level test of H0 : Par = m versus
HA : Par 6= m. To see this recall that the α level test is rejected when

Est−m
SE(Est)

> K
(

1− α

2

)
or

Est−m
SE(Est)

<−K
(

1− α

2

)
.
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Conversely, the α level test is not rejected when

−K
(

1− α

2

)
≤ Est−m

SE(Est)
≤ K

(
1− α

2

)
.

Exactly the same algebraic manipulations that lead to equation (3.1.1) also lead to the conclusion
that the test is not rejected when

Est−K
(

1− α

2

)
SE(Est)< m < Est +K

(
1− α

2

)
SE(Est).

Thus the confidence interval consists of all values of m for which the α level test of H0 : Par = m
versus HA : Par 6= m is not rejected. In other words, a (1−α)100% confidence interval consists of
all parameter values that are consistent with the data as judged by an α level test.

We have now established that there is little point in performing the fixed α , fixed m testing
procedures discussed in Section 3.2. P values give the results of testing H0 : Par = m versus HA :
Par 6= m for a fixed m but every choice of α . Confidence intervals give the results of testing H0 :
Par = m versus HA : Par 6= m for a fixed α but every choice of m.

EXAMPLE 3.4.1. In Example 3.2.1 we considered audio acuity data for Van Holland fans and
tested whether their mean score differed from fans of Audially Disadvantaged Leopard. In this
example we test whether their mean score differs from that of Tangled Female Sibling fans. Recall
that the observed values of n, ȳ·, and s2 for Van Holland fans were 16, 22, and .25, respectively and
that the data were normal. Tangled Female Sibling fans have a population mean score of 22.325, so
we test H0 : µ = 22.325 versus HA : µ 6= 22.325. The test statistic is (22−22.325)/

√
.25/16=−2.6.

If we do an α = .05 test, |−2.6|> 2.13 = t(.975,15), so we reject H0, but if we do an α = .01 test,
|−2.6|< 2.95 = t(.995,15), so we do not reject H0. In fact, |−2.6| .= t(.99,15), so the P value is
essentially .02. The P value is larger than .01, so the .01 test does not reject H0; the P value is less
than .05, so the test rejects H0 at the .05 level.

If we consider confidence intervals, the 99% interval has endpoints 22± 2.95
√

.25/16 for an
interval of (21.631,22.369) and the 95% interval has endpoints 22± 2.13

√
.25/16 for an interval

of (21.734,22.266). Notice that the hypothesized value of 22.325 is inside the 99% interval, so
it is not rejected by a .01 level test, but 22.325 is outside the 95% interval, so a .05 two-sided
test rejects H0 : µ = 22.325. The 98% interval has endpoints 22± 2.60

√
.25/16 for an interval of

(21.675,22.325) and the hypothesized value is on the edge of the interval.
2

3.5 Theory of prediction intervals

Some slight modifications of the general theory allow us to construct prediction intervals. Many of
us would argue that the fundamental purpose of science is making accurate predictions of things
that could be observed in the future. As with estimation, predicting the occurrence of a particular
value (point prediction) is less valuable than interval prediction because a point prediction gives no
idea of the variability associated with the prediction.

In constructing prediction intervals for a new observation y, we make a number of assumptions.
The observations, including the new one, are assumed to be independent and normally distributed.
Moreover, we take as our parameter Par = E(y). E(y) would be a reasonable point prediction for
y but we do not know the value of E(y). Est depends only on the observations other than y and
it estimates E(y), so Est makes a reasonable point prediction of y. We also assume that Var(y) =
σ2, that σ2 has an estimate σ̂2, that SE(Est) = σ̂A for some known constant A, and that (Est −
Par)/SE(Est) has a t distribution with, say, r degrees of freedom. (Technically, we need Est to have
a normal distribution, r(σ̂2/σ2) to have a χ2(r) distribution, and independence of Est and σ̂2.) In
some applications, these methods are used with the approximation r .

=∞, i.e., we act as if we know
the variance and the appropriate distribution is taken to be a standard normal.
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A prediction interval for y is based on the distribution of y−Est because we need to evaluate
how far y can reasonably be from our point prediction of y. The value of the future observation y is
independent of the past observations and thus of Est. It follows that the variance of y−Est is

Var(y−Est) = Var(y)+Var(Est) = σ
2 +Var(Est)

and that the standard error of y−Est is

SE(y−Est) =
√

σ̂2 +[SE(Est)]2. (3.5.1)

One can then show that
y−Est

SE(y−Est)
∼ t(r).

A (1−α)100% prediction interval is based on the probability equality,

1−α = Pr
[
−t
(

1− α

2
,r
)
<

y−Est
SE(y−Est)

< t
(

1− α

2
,r
)]

.

Rearranging the terms within the square brackets leads to the equality

1−α = Pr
[
Est− t

(
1− α

2
,r
)

SE(y−Est)< y < Est + t
(

1− α

2
,r
)

SE(y−Est)
]
.

The prediction interval consists of all y values that fall between the two observable limits in the
probability statement. The endpoints of the interval are generally written

Est± t
(

1− α

2
,r
)

SE(y−Est).

Of course, it is impossible to validate assumptions about observations to be taken in the future, so
the confidence levels of prediction intervals are always suspect.

From the form of SE(y−Est) given in (3.5.1), we see that

SE(y−Est) =
√

σ̂2 +[SE(Est)]2 ≥ SE(Est).

Typically, the prediction standard error is much larger than the standard error of the estimate, so
prediction intervals are much wider than confidence intervals. In particular, increasing the number
of observations typically decreases the standard error of the estimate but has a relatively minor effect
on the standard error of prediction. Increasing the sample size is not intended to make σ̂2 smaller,
it only makes σ̂2 a more accurate estimate of σ2.

EXAMPLE 3.5.1. As in Example 3.1.2, we eliminate the two outliers from the dropout rate data.
The 36 remaining observations are approximately normal. A 95% confidence interval for the mean
had endpoints

11.083±2.030
√

27.45/36.

A 95% prediction interval has endpoints

11.083±2.030

√
27.45+

27.45
36

or
11.083±10.782.

The prediction interval is (.301,21.865), which is much wider than the confidence interval of
(9.3,12.9). We are 95% confident that the dropout rate for a new math class would be between
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.3% and 21.9%. We are 95% confident that the population mean dropout rate for math classes is
between 9% and 13%. Of course the prediction interval assumes that the new class is from a pop-
ulation similar to the 1984–85 math classes with huge dropout rates deleted. Such assumptions are
almost impossible to validate. Moreover, there is some chance that the new observation will be one
with a huge dropout rate and this interval says nothing about such observations.

In Example 3.1.2 we also considered the square roots of the dropout rate data with the two
outliers eliminated. To predict the square root of a new observation, we use the 95% interval

3.218±2.030

(√
.749574+

.749574
36

)
,

which reduces to (1.436,5.000). This is a prediction interval for the square root of a new obser-
vation, so we are 95% confident that the actual value of the new observation will fall between
(1.4362,5.0002), i.e., (2.1,25). Retransforming a prediction interval back into the original scale
causes no problems of interpretation whatsoever. This prediction interval and the one in the pre-
vious paragraph are comparable. Both include values from near 0 up to the low to mid twenties.
2

We have criticized commonly used definitions of the word ‘confidence’ but to this point the
motivation for a prediction interval is exactly analogous to the motivation for confidence intervals.
The endpoints of a prediction interval are obtained by taking a probability statement about ran-
dom variables, substituting observed values for the random variables, and replacing ‘probability’ by
‘confidence’. For some reason, explicitly stating that a 95% prediction interval gives 95% confidence
that a future observation will fall within the interval seems to be a somewhat rare occurrence. Once
again, a solution to the problem of defining confidence can be obtained by testing. If we wanted to
test whether a new observation y was consistent with the old observations we could set up an α level
test that would reject if (y−Est)/SE(y−Est) was too far from zero, i.e., if its absolute value was
greater than K(1−α/2). Analogous to the relationship between tests of parameters and confidence
intervals, this test of a new observation will not be rejected precisely when y is within the prediction
interval. Thus the (1−α)100% prediction interval consists of all values of y that are consistent with
the other data as determined by an α level test. Moreover, the testing approach gives some insight
into why prediction intervals are based on the distribution of y−Est, i.e., because we are comparing
the new observation y to the old data as summarized by Est.

Lower bounds on prediction confidence

If the normal and χ2 distributional assumptions stated at the beginning of the section break down,
the prediction interval based on the t distribution is invalid. Relying primarily on the independence
assumptions and there being sufficient data to use σ̂2 as an approximation to σ2, we can find an
approximate lower bound for the confidence that a new observation is in the prediction interval.
Chebyshev’s inequality from Subsection 1.2.2 gives

1− t
(

1− α

2
,r
)−2
≤ Pr

[
−t
(

1− α

2
,r
)
<

y−Est
SE(y−Est)

< t
(

1− α

2
,r
)]

or equivalently

1− t
(

1− α

2
,r
)−2
≤ Pr

[
Est− t

(
1− α

2
,r
)

SE(y−Est)< y

< Est + t
(

1− α

2
,r
)

SE(y−Est)
]
.

This indicates that the confidence coefficient for the prediction interval given by

Est± t
(

1− α

2
,r
)

SE(y−Est)
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is (approximately) at least [
1− t

(
1− α

2
,r
)−2

]
100%.

If we can use the improved version of Chebyshev’s inequality from Section 1.3, we can raise the
confidence coefficient to [

1− (2.25)−1t
(

1− α

2
,r
)−2

]
100%.

EXAMPLE 3.5.2. Assuming that a sample of 36 observations is enough to ensure that s2 is es-
sentially equal to σ2, the nominal 95% prediction interval given in Example 3.5.1 for dropout rates
has a confidence level, regardless of the distribution of the data, that is at least(

1− 1
2.0302

)
= 76% or even

(
1− 1

2.25(2.030)2

)
= 89%.

3.6 Sample size determination and power

Suppose we wish to estimate the mean height of the men officially enrolled in statistics classes at the
University of New Mexico on Thursday, February 4, 1993 at 3 pm. How many observations should
we take? The answer to that question depends on how accurate our estimate needs to be and on our
having some idea of the variability in the population.

To get a rough indication of the variability we argue as follows. Generally, men have a mean
height of about 69 inches and I would guess that about 95% of them are between 63 inches and
75 inches. The probability that a N(µ,σ2) random variable is between µ ± 2σ is approximately
.95, which suggests that σ = [(µ +2σ)− (µ−2σ)]/4 may be about (75−63)/4 = 3 for a typical
population of men.

Before proceeding with sample size determination, observe that sample sizes have a real effect
on the usefulness of confidence intervals. Suppose ȳ· = 72 and n = 9, so the 95% confidence inter-
val for mean height has endpoints of roughly 72±2(3/

√
9), or 72±2, with an interval of (70,74).

Here we use 3 as a rough indication of σ in the standard error and 2 as a rough indication of the
tabled value for a 95% interval. If having an estimate that is off by 1 inch is a big deal, the confi-
dence interval is totally inadequate. There is little point in collecting the data, because regardless of
the value of ȳ·, we do not have enough accuracy to draw interesting conclusions. For example, if I
claimed that the true mean height for this population was 71 inches and I cared whether my claim
was off by an inch, the data are not only consistent with my claim but also with the claims that the
true mean height is 70 inches and 72 inches and even 74 inches. The data are inadequate for my pur-
poses. Now suppose ȳ· = 72 and n = 3600, the confidence interval has endpoints 72±2(3/

√
3600)

or 72± .1 with an interval of (71.9,72.1). We can tell that the population mean may be 72 inches
but we are quite confident that it is not 72.11 inches. Would anyone really care about the difference
between a mean height of 72 inches and a mean height of 72.11 inches? Three thousand six hundred
observations gives us more information that we really need. We would like to find a middle ground.

Now suppose we wish to learn the mean height to within 1 inch with 95% confidence. From
a sample of size n, a 95% confidence interval for the mean has endpoints that are roughly ȳ·±
2(3/
√

n). With 95% confidence, the mean height could be as high as ȳ·+ 2(3/
√

n) or as low as
ȳ· − 2(3/

√
n). We want the difference between these numbers to be no more than 1 inch. The

difference between the two numbers is 12/
√

n, so for the required difference of 1 inch set 1 =
12/
√

n, so that
√

n = 12/1 or n = 144.
The semantics of these problems can be a bit tricky. We asked for an interval that would tell us

the mean height to within 1 inch with 95% confidence. If instead we specified that we wanted our
estimate to be off by no more than 1 inch, the estimate is in the middle of the interval, so the distance
from the middle to the endpoint needs to be 1 inch. In other words, 1 = 2(3/

√
n), so

√
n = 6/1 or
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n = 36. Note that learning the parameter to within 1 inch is the same as having an estimate that is
off by no more than 1/2 inch.

The concepts illustrated above work quite generally. Typically an observation y has Var(y) = σ2

and Est has SE(Est) = σA. The constant A in SE(Est) is a known function of the sample size (or
sample sizes in situations involving more than one sample). In inference problems we replace σ in
the standard error with an estimate of σ obtained from the data. In determining sample sizes, the
data have not yet been observed, so σ has to be approximated from previous data or knowledge.
The length of a (1−α)100% confidence interval is

[Est +K(1−α/2)SE(Est)]− [Est−K(1−α/2)SE(Est)]

= 2K(1−α/2)SE(Est) = 2K(1−α/2)σA.

The tabled value K(1−α/2) can be approximated by t(1−α/2,∞). If we specify that the confi-
dence interval is to be w units wide, set

w = 2t(1−α/2,∞)σA (3.6.1)

and solve for the (approximate) appropriate sample size. In equation (3.6.1), w, t(1−α/2,∞), and
σ are all known and A is a known function of the sample size.

Unfortunately it is not possible to take equation (3.6.1) any further and show directly how it
determines the sample size. The discussion given here is general and thus the ultimate solution
depends on the type of data being examined. In the only case we have examined as yet, there is one-
sample, Par = µ , Est = ȳ·, and SE(Est) = σ/

√
n. Thus, A = 1/

√
n and equation (3.6.1) becomes

w = 2t(1−α/2,∞)σ/
√

n.

Rearranging this gives √
n = 2t(1−α/2,∞)σ/w

and
n = (2t(1−α/2,∞)σ/w)2

.

But this formula only applies to one sample problems. For other problems considered in this book,
e.g., comparing two independent samples, comparing more than two independent samples, and sim-
ple linear regression, equation (3.6.1) continues to apply but the constant A becomes more compli-
cated. In cases where there is more than one sample involved, the various sample sizes are typically
assumed to all be the same, and in general their relative sizes need to be specified, e.g., we could
specify that the first sample will have 10 more observations than the second or that the first sample
will have twice as many observations as the second.

Another approach to determining approximate sample sizes is based on the power of an α level
test. Tests are set up assuming that, say, H0 : Par = m0 is true. Power is computed assuming that
Par 6= m0. Suppose that Par = mA 6= m0, then the power when Par = mA is the probability that the
(1−α)100% confidence interval will not contain m0. Another way of saying that the confidence
interval does not contain m0 is saying that an α level two-sided test of H0 : Par = m0 rejects H0.
In determining sample sizes, you need to pick mA as some value you care about. You need to care
about it in the sense that if Par = mA rather than Par = m0, you would like to have a reasonably
good chance of rejecting H0 : Par = m0.

Cox (1958, p. 176) points out that it often works well to choose the sample size so that

|mA−m0|
.
= 3SE(Est). (3.6.2)

Cox shows that this procedure gives reasonable powers for common choices of α . Here mA and
m0 are known and SE(Est) = σA, where σ is known and A is a known function of sample size.
Also note that this suggestion does not depend on the α level of the test. As with equation (3.6.1),
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equation (3.6.2) can be solved to give n in particular cases, but a general solution for n is not possible
because it depends on the exact nature of the value A.

Consider again the problem of determining the mean height. If my null hypothesis is H0 : µ = 72
and I want a reasonable chance of rejecting H0 when µ = 73, Cox’s rule suggests that I should have
1 = |73−72| .= 3(3/

√
n) so that

√
n .
= 9 or n .

= 81.
It is important to remember that these are only rough guides for sample sizes. They involve

several approximations, the most important of which is approximating σ . If there is more than
one parameter of interest in a study, sample size computations can be performed for each and a
compromise sample size can be selected.

For the past ten years I’ve been amazed at my own lack of interest in teaching students about
statistical power. Cox (1958, p. 161) finally explained it for me. He points out that power is very
important in planning investigations but it is not very important in analyzing them. I might even go
so far as to say that once the data have been collected, a power analysis can at best tell you whether
you have been wasting your time. In other words, a power analysis will only tell you how likely you
were to find differences given the design of your experiment and the choice of test.

Appendix: derivation of confidence intervals

We wish to establish the validity of equation (3.1.1), i.e.,

1−α = Pr
[
−K
(

1− α

2

)
<

Est−Par
SE(Est)

< K
(

1− α

2

)]
= Pr

[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
and in particular we wish to show that the expressions in the square brackets are equivalent. We do
this by establishing a series of equivalences. The justifications for the equivalences are given at the
end.

−K
(

1− α

2

)
<

Est−Par
SE(Est)

< K
(

1− α

2

)
(1)

if and only if

−K
(

1− α

2

)
SE(Est)< Est−Par < K

(
1− α

2

)
SE(Est) (2)

if and only if

K
(

1− α

2

)
SE(Est)>−Est +Par >−K

(
1− α

2

)
SE(Est) (3)

if and only if

Est +K
(

1− α

2

)
SE(Est)> Par > Est−K

(
1− α

2

)
SE(Est) (4)

if and only if

Est−K
(

1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est). (5)

JUSTIFICATION OF STEPS.
For (1) iff (2): if c > 0, then a < b if and only if ac < bc.
For (2) iff (3): a < b if and only if −a >−b.
For (3) iff (4): a < b if and only if a+ c < b+ c.
For (4) iff (5): a > b if and only if b < a.
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3.7 Exercises

EXERCISE 3.7.1. This exercise illustrates the Bayesian computations discussed in the subsection
of 3.1 on interpreting confidence intervals. I place a coin either heads up or tails up and hide it from
you. Because of my psychic powers, when you subsequently flip a coin the probability is .75 that
your coin face will be the same as mine. The four things of interest here are the outcomes that I have
tails (IT ), I have heads (IH), you have tails (Y T ), and you have heads (Y H).

The computations involve ideas of conditional probability. For example, the probability that you
get tails given that my coin was placed tails up is defined to be Pr(Y T |IT )≡ Pr(Y T and IT )/Pr(IT )

Bayes’ theorem relates different conditional probabilities. It states that

Pr(IT |Y T ) =
Pr(Y T |IT )Pr(IT )

Pr(Y T |IT )Pr(IT )+Pr(Y T |IH)Pr(IH)
.

Similarly,

Pr(IH|Y H) =
Pr(Y H|IH)Pr(IH)

Pr(Y H|IH)Pr(IH)+Pr(Y H|IT )Pr(IT )
.

Clearly this problem is set up so that Pr(Y T |IT ) = Pr(Y H|IH) = .75. Show that if your prior prob-
ability is Pr(IT ) = Pr(IH) = .5, then Pr(IT |Y T ) = Pr(IH|Y H) = .75 as claimed in the earlier dis-
cussion.

The earlier discussion also mentioned prior probabilities that were four times greater for me
placing my coin heads up than tails up. In this case, Pr(IT ) = 1/5 and Pr(IH) = 4/5. Find
Pr(IT |Y T ) and Pr(IH|Y H) and check whether these agree with the values given in Section 3.1.

Obviously, you should show all of your work.

EXERCISE 3.7.2. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.1.

EXERCISE 3.7.3. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.2.

EXERCISE 3.7.4. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.4.

EXERCISE 3.7.5. Consider that I am collecting (normally distributed) data with a variance of 4
and I want to test a null hypothesis of H0 : µ = 10. What sample size should I take according to
Cox’s rule if I want a reasonable chance of rejecting H0 when µ = 13? What if I want a reasonable
chance of rejecting H0 when µ = 12? What sample size should I take if I want a 95% confidence
interval that is no more than 2 units long? What if I want a 99% confidence interval that is no more
than 2 units long?

EXERCISE 3.7.6. The turtle shell data of Jolicoeur and Mosimann (1960) given in Exercise 2.7.4
has a standard deviation of about 21.25. If we were to collect a new sample, how large should
the sample size be in order to have a 95% confidence interval with a length of (about) four units?
According to Cox’s rule, what sample size should I take if I want a reasonable chance of rejecting
H0 : µ = 130 when µ = 140?

EXERCISE 3.7.7. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to estimate the mean of BX to within .01 units with 99% confidence. How large a sample
is needed to get a reasonable test of H0 : µ = 10 when µ = 11 using Cox’s rule?

EXERCISE 3.7.8. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to get a 99% confidence for the mean of K that has a length of 60. How large a sample
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is needed to get a reasonable test of H0 : µ = 1200 when µ = 1190 using Cox’s rule? What is the
number when µ = 1150?

EXERCISE 3.7.9. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to estimate the mean of FORM to within .5 units with 95% confidence. How large a
sample is needed to get a reasonable test of H0 : µ = 20 when µ = 20.2 using Cox’s rule?

EXERCISE 3.7.10. With reference to Exercise 2.7.2, give the approximate number of observa-
tions necessary to estimate the mean rat weight to within 1 unit with 95% confidence. How large a
sample is needed to get a reasonable test of H0 : µ = 55 when µ = 54 using Cox’s rule?



Chapter 4

Two sample problems

In this chapter we consider several situations where it is of interest to compare two samples. First
we consider two samples of correlated data. These are data that consist of pairs of observations
measuring comparable quantities. Next we consider two independent samples from populations
with the same variance. We then examine two independent samples from populations with different
variances. Finally we consider the problem of testing whether the variances of two populations are
equal.

4.1 Two correlated samples: paired comparisons

Paired comparisons involve pairs of observations on similar variables. Often these are two observa-
tions taken on the same object under different circumstances or two observations taken on related
objects. No new statistical methods are needed for analyzing such data.

EXAMPLE 4.1.1. Shewhart (1931, p. 324) presents data on the hardness of an item produced by
welding two parts together. Table 4.1 gives the hardness measurements for each of the two parts.
The hardness of part 1 is denoted y1 and the hardness of part 2 is denoted y2. For i = 1,2, the data for
part i are denoted yi j, j = 1, . . . ,27. The data are actually a subset of the data presented by Shewhart.

We are interested in the difference between µ1, the population mean for part one, and µ2, the
population mean for part two. In other words, the parameter of interest is Par = µ1 − µ2. Note
that if there is no difference between the population means, µ1− µ2 = 0. The natural estimate of
this parameter is the difference between the sample means, i.e., Est = ȳ1·− ȳ2·. Here we use the ·
subscript to indicate averaging over the second subscript in ȳi· = (yi1 + · · ·+ yi27)/27.

To perform statistical inferences, we need the standard error of the estimate, i.e., SE(ȳ1·− ȳ2·).

Table 4.1: Shewhart’s hardness data

d = d =
Case y1 y2 y1− y2 Case y1 y2 y1− y2

1 50.9 44.3 6.6 15 46.6 31.5 15.1
2 44.8 25.7 19.1 16 50.4 38.1 12.3
3 51.6 39.5 12.1 17 45.9 35.2 10.7
4 43.8 19.3 24.5 18 47.3 33.4 13.9
5 49.0 43.2 5.8 19 46.6 30.7 15.9
6 45.4 26.9 18.5 20 47.3 36.8 10.5
7 44.9 34.5 10.4 21 48.7 36.8 11.9
8 49.0 37.4 11.6 22 44.9 36.7 8.2
9 53.4 38.1 15.3 23 46.8 37.1 9.7

10 48.5 33.0 15.5 24 49.6 37.8 11.8
11 46.0 32.6 13.4 25 51.4 33.5 17.9
12 49.0 35.4 13.6 26 45.8 37.5 8.3
13 43.4 36.2 7.2 27 48.5 38.3 10.2
14 44.4 32.5 11.9

85
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Figure 4.1: Dot plot of differences.

As indicated earlier, finding an appropriate standard error is often the most difficult aspect of sta-
tistical inference. In problems such as this, where the data are paired, finding the standard error is
complicated by the fact that the two observations in each pair are not independent. In data such as
these, different pairs are often independent but observations within a pair are not.

In paired comparisons, we use a trick to reduce the problem to one sample. It is a sim-
ple algebraic fact that the difference of the sample means, ȳ1· − ȳ2· is the same as the sample
mean of the differences d j = y1 j − y2 j, i.e., d̄ = ȳ1· − ȳ2·. Thus d̄ is an estimate of the param-
eter of interest µ1 − µ2. The differences are given in Table 4.1 along with the data. Summary
statistics are listed below for each variable and the differences. Note that for the hardness data,
d̄ = 12.663 = 47.552−34.889 = ȳ1·− ȳ2·. In particular, if the positive value for d̄ means anything
(other than random variation), it indicates that part one is harder than part two.

Sample statistics
Variable Ni Mean Variance Std. dev.

y1 27 47.552 6.79028 2.606
y2 27 34.889 26.51641 5.149

d = y1− y2 27 12.663 17.77165 4.216

Given that d̄ is an estimate of µ1 − µ2, we can base the entire analysis on the differences. The
differences constitute a single sample of data, so the standard error of d̄ is simply the usual one-
sample standard error,

SE(d̄) = sd
/√

27,

where sd is the sample standard deviation as computed from the 27 differences. The differences are
plotted in Figure 4.1. Note that there is one potential outlier. We leave it as an exercise to reanalyze
the data with the possible outlier removed.

We now have Par, Est, and SE(Est); it remains to find the appropriate distribution. Figure 4.2
gives a normal plot for the differences. While there is an upward curve at the top due to the possible
outlier, the curve is otherwise reasonably straight. The Wilk–Francia statistic of W ′= 0.955 is above
the fifth percentile of the null distribution. With normal data we use the reference distribution

d̄− (µ1−µ2)

sd
/√

27
∼ t(27−1)

and we are now in a position to perform statistical inferences.
Our observed values of the mean and standard error are d̄ = 12.663 and SE(d̄) = 4.216

/√
27 =

0.811. From a t(26) distribution, we find t(.995,26) = 2.78. A 99% confidence interval for the
difference in hardness has endpoints

12.663±2.78(.811),

which gives an interval of, roughly, (10.41,14.92). We are 99% confident that the population mean
hardness for part 1 is between 10.41 and 14.92 units harder than that for part 2.

We can also get a 99% prediction interval for the difference in hardness to be observed on a new
welded piece. The prediction interval has endpoints of

12.663±2.78
√

4.2162 + .8112
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Figure 4.2: Normal plot of differences, W ′ = .955.

for an interval of (.73,24.60).
To test the hypothesis that the two parts have the same hardness, we set up the hypotheses

H0 : µ1 = µ2 versus HA : µ1 6= µ2, or equivalently, H0 : µ1− µ2 = 0 versus HA : µ1− µ2 6= 0. The
test statistic is

12.663−0
.811

= 15.61.

This is far from zero, so the data are inconsistent with the null hypothesis. In other words, there is
strong evidence that the hardness of part 1 is different than the hardness of part 2. Since the test
statistic is positive, we conclude that µ1−µ2 > 0 and that part 1 is harder than part 2. Note that this
is consistent with our 99% confidence interval (10.41,14.92), which contains only positive values
for µ1−µ2.

Inferences and predictions for an individual population are made ignoring the other population,
i.e., they are made using methods for one sample. For example, using the sample statistics for y1
gives a 99% confidence interval for µ1, the population mean hardness for part 1, with endpoints

47.552±2.78

√
6.79028

27

and a 99% prediction interval for the hardness of a new piece of part 1 has endpoints

47.552±2.78

√
6.79028+

6.79028
27

and interval (40.175,59.929). Of course, the use of the t(26) distribution requires that we validate
the assumption that the observations on part 1 are a random sample from a normal distribution.

When finding a prediction interval for y1, we can typically improve the interval if we know
the corresponding value of y2. As we saw earlier, the 99% prediction interval for a new difference
d = y1−y2 has .73 < y1−y2 < 24.60. If we happen to know that, say, y2 = 35, the interval becomes
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.73< y1−35< 24.60 or 35.73< y1 < 59.60. As it turns out, with these data the new 99% prediction
interval for y1 is not an improvement over the interval in the previous paragraph. The new interval
is noticeably wider. However, these data are somewhat atypical. Typically in paired data, the two
measurements are highly correlated, so that the sample variance of the differences is substantially
less than the sample variance of the individual measurements. In such situations, the new interval
will be substantially narrower. In these data, the sample variance for the differences is 17.77165 and
is actually much larger than the sample variance of 6.79028 for y1. 2

The trick of looking at differences between pairs is necessary because the two observations in a
pair are not independent. While different pairs of welded parts are assumed to behave independently,
it seems unreasonable to assume that two hardness measurements on a single item that has been
welded together would behave independently. This lack of independence makes it difficult to find a
standard error for comparing the sample means unless we look at the differences. In the remainder
of this chapter, we consider two-sample problems in which all of the observations are assumed to
be independent. The observations in each sample are independent of each other and independent of
all the observations in the other sample. Paired comparison problems almost fit those assumptions
but they break down at one key point. In a paired comparison, we assume that every observation is
independent of the other observations in the same sample and that each observation is independent
of all the observations in the other sample except for the observation in the other sample that it is
paired with. When analyzing two samples, if we can find any reason to identify individuals as being
part of a pair, that fact is sufficient to make us treat the data as a paired comparison.

The method of paired comparisons is also the name of a totally different statistical procedure.
Suppose one wishes to compare five brands of chocolate chip cookies: A, B, C, D, E. It would be
difficult to taste all five and order them appropriately. As an alternative, one can taste test pairs of
cookies, e.g., (A,B), (A,C), (A,D), (A,E), (B,C), (B,D), etc. and identify the better of the two. The
benefit of this procedure is that it is much easier to rate two cookies than to rate five. See David
(1988) for a survey and discussion of procedures developed to analyze such data.

4.2 Two independent samples with equal variances

The most commonly used two-sample technique consists of comparing independent samples from
two populations with the same variance. The sample sizes for the two groups are possibly different,
say, N1 and N2, and we write the common variance as σ2.

EXAMPLE 4.2.1. The data in Table 4.2 are final point totals for an introductory statistics class.
The data are divided by the sex of the student. We investigate whether the data display sex dif-
ferences. The data are plotted in Figure 4.3. Figures 4.4 and 4.5 contain normal plots for the two
sets of data. Figure 4.4 is quite straight but Figure 4.5 looks curved. Our analysis is not particularly
sensitive to nonnormality and the W ′ statistic for Figure 4.5 is .937, which is well above the fifth per-
centile, so we proceed under the assumption that both samples are normal. We also assume that all
of the observations are independent. This assumption may be questionable because some students
probably studied together, nonetheless, independence seems like a reasonable working assumption.
2

The methods in this section rely on the assumption that the two populations are normally dis-
tributed and have the same variance. In particular, we assume two independent samples

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N2 iid N(µ2,σ

2)

and compute summary statistics from the samples. The summary statistics are just the sample mean
and the sample variance for each individual sample.
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Table 4.2: Final point totals for an introductory statistics class

Females Males
140 125 90 105 145 165 175 135
135 155 170 140 85 175 160 165
150 115 125 95 170 115 150
135 145 110 135 150 85 130
110 120 140 145 90 95 125

. . .

. . . . : . . : : : : . . .

-------+---------+---------+---------+---------+---------females

96 112 128 144 160 176

. . . . . . . : . : . :

---+---------+---------+---------+---------+---------+---males

80 100 120 140 160 180

Figure 4.3: Dot plots for final point totals.

females

-

- *

-

- *

150+ *

- 3

- 3 3

-

- 2

120+ *

- *

- * 2

-

- *

90+ *

- *

-

--------+---------+---------+---------+---------+--------

-1.40 -0.70 0.00 0.70 1.40

Rankits

Figure 4.4: Normal plot for females, W ′ = .974.
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males

180+

- 2

- 2 *

- *

-

150+ 2

-

- *

- *

- *

120+

- *

-

-

- *

90+ *

- *

+---------+---------+---------+---------+---------+------

-1.80 -1.20 -0.60 0.00 0.60 1.20

Rankits

Figure 4.5: Normal plot for males, W ′ = .937.

Sample statistics
Sample Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

Except for checking the validity of our assumptions, these summary statistics are more than suffi-
cient for the entire analysis. Algebraically, the sample mean for population i, i = 1,2, is

ȳi· ≡
1
Ni

Ni

∑
j=1

yi j =
1
Ni

[yi1 + yi2 + · · ·+ yiNi ]

where the · in ȳi· indicates that the mean is obtained by averaging over j, the second subscript in the
yi js. The sample means, ȳ1· and ȳ2·, are estimates of µ1 and µ2.

The sample variance for population i, i = 1,2, is

s2
i =

1
Ni−1

Ni

∑
j=1

(yi j− ȳi·)
2

=
1

Ni−1

[
(yi1− ȳi·)

2
+(yi2− ȳi·)

2
+ · · ·+(yiNi − ȳi·)

2
]
.

The s2
i s both estimate σ2. Combining the s2

i s can yield a better estimate of σ2 than either individual
estimate. We form a pooled estimate of the variance, say s2

p, by averaging s2
1 and s2

2. With unequal
sample sizes an efficient pooled estimate of σ2 must be a weighted average of the s2

i s. Obviously,
if we have N1 = 100000 observations in the first sample and only N2 = 10 observations in the
second sample, the variance estimate s2

1 is much better than s2
2 and we want to give it more weight.

The weights are the degrees of freedom associated with the estimates. The pooled estimate of the
variance is

s2
p ≡ (N1−1)s2

1 +(N2−1)s2
2

(N1−1)+(N2−1)
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=
1

N1 +N2−2

[
N1

∑
j=1

(ȳ1 j− ȳ1·)
2
+

N2

∑
j=1

(ȳ2 j− ȳ2·)
2

]

=
1

N1 +N2−2

2

∑
i=1

Ni

∑
j=1

(ȳi j− ȳi·)
2
.

The degrees of freedom for s2
p are N1+N2−2 = (N1−1)+(N2−1), i.e., the sum of the degrees

of freedom for the individual estimates s2
i .

EXAMPLE 4.2.2. For the data on final point totals, the sample statistics are given below.

Sample Statistics
Sample Ni ȳi· s2

i si
females 22 127.954545 487.2835498 22.07

males 15 139.000000 979.2857143 31.29

From these values, we obtain the pooled estimate of the variance,

s2
p =

(N1−1)s2
1 +(N2−1)s2

2
N1 +N2−2

=
(21)487.28+(14)979.29

35
= 684.08. 2

We are now in a position to draw statistical inferences about the µis. The main problem in
obtaining tests and confidence intervals is in finding appropriate standard errors. The crucial fact is
that the samples are independent so that the ȳi·s are independent.

For inferences about the difference between the two means, say, µ1−µ2, use the general proce-
dure of Chapter 3 with

Par = µ1−µ2

and
Est = ȳ1·− ȳ2·.

Note that ȳ1·− ȳ2· is unbiased for estimating µ1−µ2 because

E(ȳ1·− ȳ2·) = E(ȳ1·)−E(ȳ2·) = µ1−µ2 .

The two means are independent, so the variance of ȳ1·− ȳ2· is the variance of ȳ1· plus the variance
of ȳ2·, i.e.,

Var(ȳ1·− ȳ2·) = Var(ȳ1·)+Var(ȳ2·) =
σ2

N1
+

σ2

N2
= σ

2
[

1
N1

+
1

N2

]
.

The standard error of ȳ1·− ȳ2· is the estimated standard deviation of ȳ1·− ȳ2·,

SE(ȳ1·− ȳ2·) =

√
s2

p

[
1

N1
+

1
N2

]
.

Under our assumption that the original data are normal, the reference distribution is

(ȳ1·− ȳ2·)− (µ1−µ2)√
s2

p

[
1

N1
+ 1

N2

] ∼ t(N1 +N2−2).

The degrees of freedom for the t distribution are the degrees of freedom for s2
p. For nonnormal data

with large sample sizes, the reference distribution is N(0,1).
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Having identified the parameter, estimate, standard error, and distribution, inferences follow the
usual pattern. A 95% confidence interval for µ1−µ2 is

(ȳ1·− ȳ2·)± t(.975,N1 +N2−2)

√
s2

p

[
1

N1
+

1
N2

]
.

A test of hypothesis that the means are equal, say

H0 : µ1 = µ2 versus HA : µ1 6= µ2

can be converted into the equivalent hypothesis involving Par = µ1−µ2, namely

H0 : µ1−µ2 = 0 versus HA : µ1−µ2 6= 0.

The test is handled in the usual way. An α = .01 test rejects H0 if

|(ȳ1·− ȳ2·)−0|√
s2

p

[
1

N1
+ 1

N2

] > t(.995,N1 +N2−2).

In our discussion of comparing differences, we have defined the parameter as µ1−µ2. We could
just as well have defined the parameter as µ2− µ1. This would have given an entirely equivalent
analysis.

Inferences about a single mean, say, µ2, use the general procedures with Par = µ2 and Est = ȳ2·.
The variance of ȳ2· is σ2/N2, so SE(ȳ2·) =

√
s2

p/N2. Note the use of s2
p rather than s2

2. The reference

distribution is [ȳ2·−µ2]/SE(ȳ2·)∼ t(N1 +N2−2). A 95% confidence interval for µ2 is

ȳ2·± t(.975,N1 +N2−2)
√

s2
p/N2.

A 95% prediction interval for a new observation on variable y2 is

ȳ2·± t(.975,N1 +N2−2)

√
s2

p +
s2

p

N2
.

An α = .01 test of the hypothesis, say

H0 : µ2 = 5 versus HA : µ2 6= 5,

rejects H0 if
|ȳ2·−5|√

s2
p/N2

> t(.995,N1 +N2−2).

EXAMPLE 4.2.3. For comparing females and males on final point totals, the parameter of interest
is

Par = µ1−µ2

where µ1 indicates the population mean final point total for females and µ2 indicates the population
mean final point total for males. The estimate of the parameter is

Est = ȳ1·− ȳ2· = 127.95−139.00 =−11.05 .

The pooled estimate of the variance is s2
p = 684.08, so the standard error is

SE(ȳ1·− ȳ2·) =

√
s2

p

(
1

N1
+

1
N2

)
=

√
684.08

(
1
22

+
1
15

)
= 8.7578 .
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The data have reasonably normal distributions and the variances are not too different (more on this
later), so the reference distribution is taken as

(ȳ1·− ȳ2·)− (µ1−µ2)√
s2

p
( 1

22 +
1
15

) ∼ t(35)

where 35 = N1 +N2− 2. The tabled value for finding 95% confidence intervals and α = .05 two-
sided tests is

t(.975,35) = 2.030 .

A 95% confidence interval for µ1−µ2 has endpoints

−11.05± (2.030)8.7578

which yields an interval (−28.8,6.7). We are 95% confident that the population mean scores are
between, roughly, 29 points less for females and 7 points more for females.

An α = .05 two-sided test of H0 : µ1− µ2 = 0 versus HA : µ1− µ2 6= 0 is not rejected because
0, the hypothesized value of µ1− µ2, is contained in the 95% confidence interval for µ1− µ2. The
P value for the test is based on the observed value of the test statistic

tobs =
(ȳ1·− ȳ2·)−0√

s2
p
( 1

22 +
1
15

) = −11.05−0
8.7578

=−1.26 .

The probability of obtaining an observation from a t(35) distribution that is as extreme or more
extreme than | − 1.26| is 0.216. There is very little evidence that the population mean final point
total for females is different (smaller) than the population mean final point total for males. The P
value is greater than .2, so, as we established earlier, neither an α = .05 nor an α = .01 test is
rejected. If we were silly enough to do an α = .25 test, we would then reject the null hypothesis.

If one claimed that, for whatever reason, females tend to do worse than males in statistics classes,
a two-sided test would probably be inappropriate. To test H0 : µ1−µ2 ≤ 0 versus HA : µ1−µ2 > 0,
the test statistic is the same but the interpretation is very different. The negative value of the test
statistic is consistent with the null hypothesis. The P value is the very large value 1− .216/2 =
.892. Claiming that females do better would give the opposite one-sided test with a P value of
.216/2 = .108.

A 95% confidence interval for µ1, the mean of the females, has endpoints

127.95± (2.030)
√

684.08/22

which gives the interval (116.6,139.3). We are 95% confident that the mean of the final point totals
for females is between 117 and 139. A 95% prediction interval for a new observation on a female
has endpoints

127.95± (2.030)

√
684.08+

684.08
22

which gives the interval (73.7,182.2). We are 95% confident that a new observation on a female
will be between 74 and 182. This assumes that the new observation is randomly sampled from the
same population as the previous data.

A test of the assumption of equal variances is left for the final section but we will see in the next
section that the results for these data do not depend substantially on the equality of the variances.
2
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Table 4.3: Turtle shell heights

Female Male
51 38 63 46 39 42 37 43
51 38 60 51 39 45 35 41
53 42 62 51 38 45 35 41
57 42 63 51 40 45 39 41
55 44 61 48 40 46 38 40
56 50 67 49 40 47 37 44

.

:

: : . . .. . : . .. . . ..: .

----+---------+---------+---------+---------+---------+---Females

. : . .

: : : : : : . . . : . .

----+---------+---------+---------+---------+---------+---Males

3.60 3.72 3.84 3.96 4.08 4.20

Figure 4.6: Plot of turtle shell log heights.

4.3 Two independent samples with unequal variances

We now consider two independent samples with unequal variances σ2
1 and σ2

2 . In this section we
examine inferences about the means of the two populations. While inferences about means are im-
portant, some care is required when drawing practical conclusions about populations with unequal
variances. For example, if you want to produce gasoline with an octane of at least 87, you may have
a choice between two processes. One process y1 gives octanes distributed as N(89,4) and the other
y2 gives N(90,4). The two processes have the same variance, so the process with the higher mean
gives more gas with an octane of at least 87. On the other hand, if y1 gives N(89,4) and y2 gives
N(90,16), the y1 process with mean 89 has a higher probability of achieving an octane of 87 than
the y2 process with mean 90, see Exercise 4.5.10. This is a direct result of the y2 process having
more variability. Having given this warning, we proceed with our discussion on drawing statistical
inferences for the means.

EXAMPLE 4.3.1. Jolicoeur and Mosimann (1960) present data on the sizes of turtle shells (cara-
paces). Table 4.3 presents data on the shell heights for 24 females and 24 males. These data are not
paired; it is simply a caprice that 24 carapaces were measured for each sex. Our interest centers on
estimating the population means for female and male heights, estimating the difference between the
heights, and testing whether the difference is zero.

Following Christensen (1990a) and others, we take natural logarithms of the data, i.e.,

y1 = log(female height) y2 = log(male height).

(All logarithms in this book are natural logarithms.) The log data are plotted in Figure 4.6. The
female heights give the impression of being both larger and more spread out. Figures 4.7 and 4.8
contain normal plots for the females and males respectively. Neither is exceptionally straight but
they do not seem too bad. Summary statistics are given below; they are consistent with the visual
impressions given by Figure 4.6. The summary statistics will be used in later examples as the basis
for our statistical inferences.

Group Size Mean Variance Standard deviation
Females 24 3.9403 0.02493979 0.1579
Males 24 3.7032 0.00677276 0.0823 2
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Figure 4.7: Normal plot for female turtle shell log heights.
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Figure 4.8: Normal plot for male turtle shell log heights.
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In general we assume two independent samples

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2
1 )

2 y21,y22, . . . ,y2N2 iid N(µ2,σ
2
2 )

and compute summary statistics from the samples.

Sample Size Mean Variance
1 N1 ȳ1· s2

1
2 N2 ȳ2· s2

2

Again, the sample means, ȳ1· and ȳ2·, are estimates of µ1 and µ2, but now s2
1 and s2

2 estimate σ2
1

and σ2
2 . We have two different variances, so it is inappropriate to pool the variance estimates. Once

again, the crucial fact in obtaining a standard error is that the samples are independent.
For inferences about the difference between the two means, say, µ1−µ2, again use the general

procedure with
Par = µ1−µ2

and
Est = ȳ1·− ȳ2·.

Just as before, ȳ1·− ȳ2· is unbiased for estimating µ1−µ2. The two sample means are independent
so

Var(ȳ1·− ȳ2·) = Var(ȳ1·)+Var(ȳ2·) =
σ2

1
N1

+
σ2

2
N2

.

The standard error of ȳ1·− ȳ2· is

SE(ȳ1·− ȳ2·) =

√
s2

1
N1

+
s2

2
N2

.

Even when the original data are normal, the appropriate reference distribution is not a t distribution.
As a matter of fact, the appropriate reference distribution is not known. However, a good approxi-
mate distribution is

(ȳ1·− ȳ2·)− (µ1−µ2)√
s2

1/N1 + s2
2/N2

∼ t(ν)

where

ν ≡
(
s2

1/N1 + s2
2/N2

)2(
s2

1/N1
)2
/(N1−1)+

(
s2

2/N2
)2
/(N2−1)

(4.3.1)

is an approximate number of degrees of freedom. This approximate distribution was proposed by
Satterthwaite (1946) and is discussed by Snedecor and Cochran (1980).

For nonnormal data with large sample sizes, the reference distribution can be taken as N(0,1).
Having identified the parameter, estimate, standard error and reference distribution, inferences fol-
low the usual pattern.

EXAMPLE 4.3.2. Consider the turtle data. Recall that

Group Size Mean Variance Standard deviation
Females 24 3.9403 0.02493979 0.1579
Males 24 3.7032 0.00677276 0.0823
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We begin by considering a test of H0 : µ1 = µ2 versus HA : µ1 6= µ2 or equivalently H0 : µ1−µ2 = 0
versus HA : µ1−µ2 6= 0. As before, Par = µ1−µ2 and Est = 3.9403−3.7032= .2371. The standard
error is now

SE(ȳ1·− ȳ2·) =

√
0.02493979

24
+

0.00677276
24

= .03635.

Using s2
1/N1 = 0.02493979/24 = .001039158 and s2

2/N2 = 0.00677276/24 = .000282198 in equa-
tion (4.3.1), the approximate degrees of freedom are

ν =
(.001039158+ .000282198)2

(.001039158)2/23+(.000282198)2/23
= 34.6.

An α = .01 test is rejected if the observed value of the test statistic is farther from zero than the
cutoff value t(.995,34.6) .

= t(.995,35) = 2.72. The observed value of the test statistic is

tobs =
.2371−0
.03635

= 6.523

which is greater than the cutoff value, so the test is rejected. There is evidence at the .01 level
that the mean shell height for females is different from the mean shell height for males. Obviously,
since ȳ1·− ȳ2· = .2371 is positive, there is evidence that the females have shells of greater height.
Actually, the conclusion is that the means of the log(heights) are different, but if these are different
we conclude that the mean heights are different.

The 95% confidence interval for the difference between mean log shell heights for females and
males, i.e., µ1−µ2, uses t(.975,34.6) .

= t(.975,35) = 2.03. The endpoints are

.2371±2.03(.03635) ,

and the interval is (.163, .311). We took logs of the data, so if we transform back to the original
scale the interval is (e.163,e.311) or (1.18,1.36). We are 95% confident that the population center for
females is, roughly, between one and a sixth and one and a third times the shell heights for males.
Note that a difference between .163 and .311 on the log scale transforms into a multiplicative effect
between 1.18 and 1.36 on the original scale. This idea is discussed in more detail in Example 5.1.1.

It is inappropriate to pool the variance estimates, so inferences about µ1 and µ2 are performed
just as for one sample. The 95% confidence interval for the mean shell height for females, µ1, uses
the estimate ȳ1·, the standard error s1/

√
24, and the tabled value t(.975,24− 1) = 2.069. It has

endpoints
3.9403±2.069

(
0.1579

/√
24
)

which gives the interval (3.87,4.01). Transforming to the original scale gives the interval
(47.9,55.1). We are 95% confident that the ‘average’ height for females’ shells is between,
roughly, 48 and 55 millimeters. Males also have 24 observations, so the interval for µ2 also uses
t(.975,24−1), has endpoints

3.7032±2.069
(

0.0823
/√

24
)
,

and an interval (3.67,3.74). Transforming the interval back to the original scale gives (39.3,42.1).
We are 95% confident that the ‘average’ height for males’s shells is between, roughly, 39 and 42
millimeters. The 95% prediction interval for the transformed shell height of a future male has end-
points

3.7032±2.069

(
0.0823

√
1+

1
24

)
,

which gives the interval (3.529,3.877). Transforming the prediction interval back to the original
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scale gives (34.1,48.3). Transforming a prediction interval back to the original scale creates no
problems of interpretation. 2

EXAMPLE 4.3.3. Reconsider the final point totals data of Section 4.2. Without the assumption of
equal variances, the standard error is

SE(ȳ1·− ȳ2·) =

√
487.28

22
+

979.29
15

= 9.3507 .

From equation (4.3.1), the degrees of freedom for the approximate t distribution are 23. A 95%
confidence interval for the difference is (−30.4,8.3) and the observed value of the statistic for
testing equal means is tobs =−1.18. This gives a P value for a two-sided test of 0.22. These values
are all quite close to those obtained using the equal variance assumption.

2

It is an algebraic fact that if N1 = N2, the observed value of the test statistic for H0 : µ1 = µ2
based on unequal variances is the same as that based on equal variances. In the turtle example,
the sample sizes are both 24 and the test statistic of 6.523 is the same as the equal variances test
statistic. The algebraic equivalence occurs because with equal sample sizes, the standard errors from
the two procedures are the same. With equal sample sizes, the only practical difference between
the two procedures for examining Par = µ1− µ2 is in the choice of degrees of freedom for the t
distribution. In the turtle example above, the unequal variances procedure had approximately 35
degrees of freedom, while the equal variance procedure has 46 degrees of freedom. The degrees of
freedom are sufficiently close that the substantive results of the turtle analysis are essentially the
same, regardless of method. The other fact that should be recalled is that the reference distribution
associated with µ1− µ2 for the equal variance method is exactly correct for data that satisfy the
assumptions. Even for data that satisfy the unequal variance method assumptions, the reference
distribution is just an approximation.

4.4 Testing equality of the variances

Throughout this section we assume that the original data are normally distributed and that the two
samples are independent. Our goal is to test the hypothesis that the variances are equal, i.e.,

H0 : σ
2
2 = σ

2
1 versus HA : σ

2
2 6= σ

2
1 .

The hypotheses can be converted into equivalent hypotheses,

H0 :
σ2

2

σ2
1
= 1 versus HA :

σ2
2

σ2
1
6= 1.

An obvious test statistic is
s2

2

s2
1
.

We will reject the hypothesis of equal variances if the test statistic is too much greater than 1 or
too much less than 1. As always, the problem is in identifying a precise meaning for ‘too much’.
To do this, we need to know the distribution of the test statistic when the variances are equal. The
distribution is known as an F distribution, i.e., if H0 is true

s2
2

s2
1
∼ F(N2−1,N1−1).

The distribution depends on the degrees of freedom for the two estimates. The first parameter in
F(N2− 1,N1− 1) is N2− 1, the degrees of freedom for the variance estimate in the numerator of
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s2
2
/

s2
1, and the second parameter is N1− 1, the degrees of freedom for the variance estimate in the

denominator. The test statistic s2
2
/

s2
1 is nonnegative, so our reference distribution F(N2−1,N1−1)

is nonnegative. Tables are given in Appendix B.
In some sense, the F distribution is ‘centered’ around one and we reject H0 if s2

2
/

s2
1 is too large

or too small to have reasonably come from an F(N2−1,N1−1) distribution. An α = .01 level test
is rejected, i.e., we conclude that σ2

2 6= σ2
1 , if

s2
2

s2
1
> F(.995,N2−1,N1−1)

or if
s2

2

s2
1
< F(.005,N2−1,N1−1)

where F(.995,N2− 1,N1− 1) cuts off the top .005 of the distribution and F(.005,N2− 1,N1− 1)
cuts off the bottom .005 of the distribution. It is rare that one finds the bottom percentiles of an F
distribution tabled but they can be obtained from the top percentiles. In particular,

F(.005,N2−1,N1−1) =
1

F(.995,N1−1,N2−1)
.

Note that the degrees of freedom have been reversed in the right-hand side of the equality.
The procedure for this test does not fit within the general procedures outlined in Chapter 3. It

has been indicated all along that results for variances do not fit the general pattern. Although we
have a parameter, σ2

2
/

σ2
1 , and an estimate of the parameter, s2

2
/

s2
1, we do not have a standard error

or a reference distribution that is symmetric about zero. In fact, the F distribution is not symmetric
though we rely on it being ‘centered’ about 1.

EXAMPLE 4.4.1. We again consider the log turtle height data. The sample variance of log female
heights is s2

1 = 0.02493979 and the sample variance of log male heights is s2
2 = 0.00677276. An

α = .01 level test is rejected, i.e., we conclude that σ2
2 6= σ2

1 , if

.2716 =
0.00677276
0.02493979

=
s2

2

s2
1
> F(.995,23,23) = 3.04

or if
.2716 < F(.005,23,23) =

1
F(.995,23,23)

=
1

3.04
= .33.

The second of these inequalities is true, so the null hypothesis of equal variances is rejected at the
.01 level. We have evidence that σ2

2 6= σ2
1 and, since the statistic is less than one, evidence that

σ2
2 < σ2

1 . 2

EXAMPLE 4.4.2. Consider again the final point total data. The sample variance for females is
s2

1 = 487.28 and the sample variance for males is s2
2 = 979.29. The test statistic is

s2
1

s2
2
=

487.28
979.29

= 0.498 .

Naturally, it does not matter which variance estimate we put in the numerator as long as we keep the
degrees of freedom straight. The observed test statistic is not less than 1

/
F(.95,14,21)= 1

/
2.197=

.455 nor greater than F(.95,21,14) = 2.377, so the test cannot be rejected at the α = .10 level. 2

In practice, tests for the equality of variances are rarely performed. Typically, the main em-
phasis is on drawing conclusions about the µis; the motivation for testing equality of variances is
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frequently to justify the use of the pooled estimate of the variance. The test assumes that the null
hypothesis of equal variances is true and data that are inconsistent with the assumptions indicate
that the assumptions are false. We generally take this to indicate that the assumption about the null
hypothesis is false, but, in fact, unusual data may be obtained if any of the assumptions are invalid.
The equal variances test assumes that the data are independent and normal and that the variances
are equal. Minor deviations from normality may cause the test to be rejected. While procedures for
comparing µis based on the pooled estimate of the variance are sensitive to unequal variances, they
are not particularly sensitive to nonnormality. The test for equality of variances is so sensitive to
nonnormality that when rejecting this test one has little idea if the problem is really unequal vari-
ances or if it is nonnormality. Thus one has little idea whether there is a problem with the pooled
estimate procedures or not. Since the test is not very informative, it is rarely performed. However,
studying this test prepares one for examining the important analysis of variance F test that is treated
in the next chapter.

Minitab commands

Minitab can be used to get the F percentiles reported in Example 4.4.1.

MTB > invcdf .995

SUBC> f 23 23.

MTB > invcdf .005

SUBC> f 23 23.

Theory

The F distribution used here is related to the fact that for normal data

(Ni−1)s2
i

σ2
i

∼ χ
2(Ni−1).

Definition 4.4.3. An F distribution is the ratio of two independent chi-squared random variables
divided by their degrees of freedom. The numerator and denominator degrees of freedom for the F
distribution are the degrees of freedom for the respective chi-squares.

In this problem, the two chi-squared random variables divided by their degrees of freedom are

(Ni−1)s2
i /σ2

i
Ni−1

=
s2

i

σ2
i

i = 1,2. They are independent because they are taken from independent samples and their ratio is

s2
2

σ2
2

/ s2
1

σ2
1
=

s2
2

s2
1

σ2
1

σ2
2
.

When the null hypothesis is true, i.e., σ2
2 /σ2

1 = 1, by definition, we get

s2
2

s2
1
∼ F(N2−1,N1−1),

so the test statistic has an F distribution under the null hypothesis.
Note that we could equally well have reversed the roles of the two groups and set the test up as

H0 :
σ2

1

σ2
2
= 1 versus HA :

σ2
1

σ2
2
6= 1
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Table 4.4: Weights of rats on thiouracil

Rat Start Finish Rat Start Finish
1 61 129 6 51 119
2 59 122 7 56 108
3 53 133 8 58 138
4 59 122 9 46 107
5 51 140 10 53 122

Table 4.5: Weight gain comparison

Control Thyroxin
115 107 132 88
117 90 84 119
133 91 133
115 91 118
95 112 87

with the test statistic
s2

1

s2
2
.

An α level test is rejected if
s2

1

s2
2
> F

(
1− α

2
,N1−1,N2−1

)
or if

s2
1

s2
2
< F

(
α

2
,N1−1,N2−1

)
.

Using the fact that for any α between zero and one and any degrees of freedom r and s,

F(α,r,s) =
1

F(1−α,s,r)
, (4.4.1)

it is easily seen that this test is equivalent to the one we constructed. Relation (4.4.1) is a result of
the fact that with equal variances both s2

2/s2
1 and s2

1/s2
2 have F distributions. Clearly, the smallest,

say, 5% of values from s2
2/s2

1 are also the largest 5% of the values of s2
1/s2

2.

4.5 Exercises

EXERCISE 4.5.1. Box (1950) gave data on the weights of rats that were given the drug Thiouracil.
The rats were measured at the start of the experiment and at the end of the experiment. The data are
given in Table 4.4. Give a 99% confidence interval for the difference in weights between the finish
and the start. Test the null hypothesis that the population mean weight gain was less than or equal
to 50 with α = .02.

EXERCISE 4.5.2. Box (1950) also considered data on rats given Thyroxin and a control group of
rats. The weight gains are given in Table 4.5. Give a 95% confidence interval for the difference in
weight gains between the Thyroxin group and the control group. Give an α = .05 test of whether
the control group has weight gains no greater than the Thyroxin group.

EXERCISE 4.5.3. Conover (1971, p. 226) considered data on the physical fitness of male seniors
in a particular high school. The seniors were divided into two groups based on whether they lived
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Table 4.6: Physical fitness of male high school seniors

Town 12.7 16.9 7.6 2.4 6.2 9.9
Boys 14.2 7.9 11.3 6.4 6.1 10.6

12.6 16.0 8.3 9.1 15.3 14.8
2.1 10.6 6.7 6.7 10.6 5.0

17.7 5.6 3.6 18.6 1.8 2.6
11.8 5.6 1.0 3.2 5.9 4.0

Farm 14.8 7.3 5.6 6.3 9.0 4.2
Boys 10.6 12.5 12.9 16.1 11.4 2.7

Table 4.7: Turtle lengths

Females Males
98 138 123 155 121 104 116 93

103 138 133 155 125 106 117 94
103 141 133 158 127 107 117 96
105 147 133 159 128 112 119 101
109 149 134 162 131 113 120 102
123 153 136 177 135 114 120 103

on a farm or in town. The results in Table 4.6 are from a physical fitness test administered to the
students. High scores indicate that an individual is physically fit. Give a 95% confidence interval for
the difference in mean fitness scores between the town and farm students. Test the hypothesis of no
difference at the α = .10 level. Give a 99% confidence interval for the mean fitness of town boys.
Give a 99% prediction interval for a future fitness score for a farm boy.

EXERCISE 4.5.4. Use the data of Exercise 4.5.3 to test whether the fitness scores for farm boys
are more or less variable than fitness scores for town boys.

EXERCISE 4.5.5. Jolicoeur and Mosimann (1960) gave data on turtle shell lengths. The data for
females and males are given in Table 4.7. Explore the need for a transformation. Test whether there
is a difference in lengths using α = .01. Give a 95% confidence interval for the difference in lengths.

EXERCISE 4.5.6. Koopmans (1987) gave the data in Table 4.8 on verbal ability test scores for 8
year-olds and 10 year-olds. Test whether the two groups have the same mean with α = .01 and give
a 95% confidence interval for the difference in means. Give a 95% prediction interval for a new 10
year old. Check your assumptions.

EXERCISE 4.5.7. Burt (1966) and Weisberg (1985) presented data on IQ scores for identical
twins that were raised apart, one by foster parents and one by the genetic parents. Variable y1 is
the IQ score for a twin raised by foster parents, while y2 is the corresponding IQ score for the twin
raised by the genetic parents. The data are given in Table 4.9.

We are interested in the difference between µ1, the population mean for twins raised by foster

Table 4.8: Verbal ability test scores

8 yr. olds 10 yr. olds
324 344 448 428 399 414
366 390 372 366 412 396
322 434 364 386 436
398 350 404 452
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Table 4.9: Burt’s IQ data

Case y1 y2 Case y1 y2 Case y1 y2
1 82 82 10 93 82 19 97 87
2 80 90 11 95 97 20 87 93
3 88 91 12 88 100 21 94 94
4 108 115 13 111 107 22 96 95
5 116 115 14 63 68 23 112 97
6 117 129 15 77 73 24 113 97
7 132 131 16 86 81 25 106 103
8 71 78 17 83 85 26 107 106
9 75 79 18 93 87 27 98 111

Table 4.10: Atomic weights in 1931 and 1936

Compound 1931 1936 Compound 1931 1936
Arsenic 74.93 74.91 Lanthanum 138.90 138.92
Caesium 132.81 132.91 Osmium 190.8 191.5
Columbium 93.3 92.91 Potassium 39.10 39.096
Iodine 126.932 126.92 Radium 225.97 226.05
Krypton 82.9 83.7 Ytterbium 173.5 173.04

parents, and µ2, the population mean for twins raised by genetic parents. Analyze the data. Check
your assumptions.

EXERCISE 4.5.8. Table 4.10 presents data given by Shewhart (1939, p. 118) on various atomic
weights as reported in 1931 and again in 1936. Analyze the data. Check your assumptions.

EXERCISE 4.5.9. Reanalyze the data of Example 4.1.1 after deleting the one possible outlier.
Does the analysis change much? If so, how?

EXERCISE 4.5.10. Let y1 ∼ N(89,4) and y2 ∼ N(90,16). Show that Pr[y1 ≥ 87] > Pr[y2 ≥ 87],
so that the population with the lower mean has a higher probability of exceeding 87. Recall that
(y1− 89)/

√
4 ∼ N(0,1) with a similar result for y2 so that both probabilities can be rewritten in

terms of a N(0,1).

EXERCISE 4.5.11. Mandel (1972) reported stress test data on elongation for a certain type of
rubber. Four pieces of rubber sent to one laboratory yielded a sample mean and variance of 56.50
and 5.66, respectively. Four different pieces of rubber sent to another laboratory yielded a sample
mean and variance of 52.50 and 6.33, respectively. Are the data two independent samples or a paired
comparison? Is the assumption of equal variances reasonable? Give a 99% confidence interval for
the difference in population means and give an approximate P value for testing that there is no
difference between population means.

EXERCISE 4.5.12. Bethea et al. (1985) reported data on the peel-strengths of adhesives. Some of
the data are presented in Table 4.11. Give an approximate P value for testing no difference between
adhesives, a 95% confidence interval for the difference between mean peel-strengths, and a 95%
prediction interval for a new observation on Adhesive A.

EXERCISE 4.5.13. Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on different
machines. Eight homogeneous strips of cloth were divided into samples and each machine was used
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Table 4.11: Peel-strengths

Adhesive Observations
A 60 63 57 53 56 57
B 52 53 44 48 48 53

Table 4.12: Tensile strength

Strip 1 2 3 4 5 6 7 8
m1 18 9 7 6 10 7 13 1
m2 7 11 11 4 8 12 5 11

on a sample from each strip. The data are given in Table 4.12. Are the data two independent sam-
ples or a paired comparison? Give a 98% confidence interval for the difference in population means.
Give an approximate P value for testing that there is no difference between population means. What
is the result of an α = .05 test?

EXERCISE 4.5.14. Snedecor and Cochran (1967) presented data on the number of acres planted
in corn for two sizes of farms. Size was measured in acres. Some of the data are given in Table 4.13.
Are the data two independent samples or a paired comparison? Is the assumption of equal variances
reasonable? Test for differences between the farms of different sizes. Clearly state your α level.
Give a 98% confidence interval for the mean difference between different farms.

EXERCISE 4.5.15. Snedecor and Haber (1946) presented data on cutting dates of asparagus.
On two plots of land, asparagus was grown every year from 1929 to 1938. On the first plot the
asparagus was cut on June 1, while on the second plot the asparagus was cut on June 15. Note
that growing conditions will vary considerably from year to year. Also note that the data presented
have cutting dates confounded with the plots of land. If one plot of land is intrinsically better for
growing asparagus than the other, there will be no way of separating that effect from the effect of
cutting dates. Are the data two independent samples or a paired comparison? Give a 95% confidence
interval for the difference in population means and give an approximate P value for testing that there
is no difference between population means. Give a 95% prediction interval for the difference in a
new year. The data are given in Table 4.14.

EXERCISE 4.5.16. Snedecor (1945b) presented data on a pesticide spray. The treatments were
the number of units of active ingredient contained in the spray. Several different sources for breed-
ing mediums were used and each spray was applied on each distinct breeding medium. The data
consisted of numbers of dead adults flies found in cages that were set over the breeding medium

Table 4.13: Acreage in corn for different farm acreages

Size Corn acreage
240 65 80 65 85 30
400 75 35 140 90 110

Table 4.14: Cutting dates

Year 29 30 31 32 33 34 35 36 37 38
June 1 201 230 324 512 399 891 449 595 632 527
June 15 301 296 543 778 644 1147 585 807 804 749
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Table 4.15: Dead adult flies

Medium A B C D E F G
0 units 423 326 246 141 208 303 256
8 units 414 127 206 78 172 45 103

containers. Some of the data are presented in Table 4.15. Give a 95% confidence interval for the
difference in population means. Give an approximate P value for testing that there is no difference
between population means and an α = .05 test. Give a 95% prediction interval for a new obser-
vation with 8 units. Give a 95% prediction interval for a new observation with 8 units when the
corresponding 0 unit value is 300.

EXERCISE 4.5.17. Using the data of Example 4.2.1 give a 95% prediction interval for the dif-
ference in total points between a new female and a new male. This was not discussed earlier so it
requires a deeper understanding of Section 3.5.





Chapter 5

One-way analysis of variance

Analysis of variance (ANOVA) involves comparing random samples from several populations. Of-
ten the samples arise from observing experimental units with different treatments applied to them
and we refer to the populations as treatment groups. The sample sizes for the treatment groups are
possibly different, say, Ni and we assume that the samples are all independent. Moreover, we assume
that each population has the same variance and is normally distributed.

5.1 Introduction and examples

EXAMPLE 5.1.1. Table 5.1 gives data from Koopmans (1987, p. 409) on the ages at which sui-
cides were committed in Albuquerque during 1978. Ages are listed by ethnic group. The data are
plotted in Figure 5.1. The assumption is that the observations in each group are a random sam-
ple from some population. While it is not clear what these populations would be, we proceed to
examine the data. Note that there are fewer Native Americans in the study than either Hispanics
or non-Hispanic Caucasians; moreover the ages for Native Americans seem to be both lower and
less variable than for the other groups. The ages for Hispanics seem to be a bit lower than for
non-Hispanic Caucasians.

Summary statistics are given below for the three groups.

Sample statistics: suicide ages
Group Ni ȳi· s2

i si
Caucasians 44 41.66 282.9 16.82
Hispanics 34 35.06 268.3 16.38
Native Am. 15 25.07 74.4 8.51

The sample standard deviation for the Native Americans is about half the size of the others. To

Table 5.1: Suicide ages

Non-Hispanic Native
Caucasians Hispanics Americans

21 31 28 52 50 27 45 26 23
55 31 24 27 31 22 57 17 25
42 32 53 76 29 20 22 24 23
25 43 66 44 21 51 48 22 22
48 57 90 35 27 60 48 16
22 42 27 32 34 15 14 21
42 34 48 26 76 19 52 36
53 39 47 51 35 24 29 18
21 24 49 19 55 24 21 48
21 79 53 27 24 18 28 20
31 46 62 58 68 43 17 35

38

107
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Figure 5.1: Dot plots of suicide age data.
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Figure 5.2: Normal plot of suicide residuals, W ′ = .945.

evaluate the combined normality of the data, we subtracted the appropriate group mean from each
observation, i.e., we computed residuals

ε̂i j = yi j− ȳi·,

where yi j is the jth observation in the ith group and ȳi· is the sample mean from the ith group. We
then did a normal plot of the residuals. One normal plot for all of the yi js would not be appropriate
because they have different means, µi. The residuals adjust for the different means. Of course with
the reasonably large samples available here for each group, it would be permissible to do three
separate normal plots, but in other situations with small samples for each group, individual normal
plots would not contain enough observations to be of any value. The normal plot for the residuals is
given in Figure 5.2. The plot is based on n = 44+34+15 = 93 observations. This is quite a large
number, so if the data are normal the plot should be quite straight. In fact, the plot seems reasonably
curved.
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Figure 5.3: Dotplots of log suicide age data.

In order to improve the quality of the assumptions of equal variances and normality, we consider
transformations of the data. In particular, consider transforming to log(yi j). Figure 5.3 contains the
plot of the transformed data. The variability in the groups seems more nearly the same. This is
confirmed by the sample statistics given below.

Sample statistics: log of suicide ages
Group Ni ȳi· s2

i si
Caucasians 44 3.6521 0.1590 0.3987
Hispanics 34 3.4538 0.2127 0.4612
Native Am. 15 3.1770 0.0879 0.2965

The largest sample standard deviation is only about 1.5 times the smallest. The normal plot of
residuals for the transformed data is given in Figure 5.4; it seems considerably straighter than the
normal plot for the untransformed data.

All in all, the logs of the original data seem to satisfy the assumptions reasonably well and
considerably better than the untransformed data. The square roots of the data were also examined
as a possible transformation. While the square roots seem to be an improvement over the original
scale, they do not seem to satisfy the assumptions nearly as well as the log transformed data.

A basic assumption in analysis of variance is that the variance is the same for all populations. As
we did for two independent samples with the same variance, we can compute a pooled estimate of
the variance. Again, this is a weighted average of the variance estimates from the individual groups
with weights that are the individual degrees of freedom. In analysis of variance, the pooled estimate
of the variance is called the mean squared error (MSE). For the logs of the suicide age data, the
mean squared error is

MSE =
(44−1)(.1590)+(34−1)(.2127)+(15−1)(.0879)

(44−1)+(34−1)+(15−1)
= .168.

The degrees of freedom for this estimate are the sum of the degrees of freedom for the individual
estimates; the degrees of freedom for error (d fE) are

d fE = (44−1)+(34−1)+(15−1) = 44+34+15−3 = 90.

The data have an approximate normal distribution, so we can use t(90) as the reference distribution
for statistical inference.

We can now perform statistical inferences for a variety of parameters using our standard
procedure involving a Par, an Est, a SE(Est), and a known distribution symmetric about 0 for
[Est−Par]/SE(Est). In this example, perhaps the most useful things to look at are simply whether
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Figure 5.4: Normal plot of suicide residuals, log data, W ′ = .986.

there is evidence of any age differences in the three groups. Let µC, µH , and µN denote the popula-
tion means for the log ages of the non-Hispanic Caucasian, Hispanic, and Native American groups
respectively. Parameters of interest, with their estimates and the variances of the estimates, are given
below.

Par Est Var(Est)

µC−µH 3.6521−3.4538 σ2
( 1

44 +
1
34

)
µC−µN 3.6521−3.1770 σ2

( 1
44 +

1
15

)
µH −µN 3.4538−3.1770 σ2

( 1
34 +

1
15

)
The estimates and variances are obtained exactly as in Section 4.2. The standard errors of the esti-
mates are obtained by substituting MSE for σ2 in the variance formula and taking the square root.
Below are given the estimates, standard errors, the tobs values for testing H0 : Par = 0, the two-sided
test P values, and the 99% confidence intervals for Par. The confidence intervals require the value
t(.995,90) = 2.631. This t table value appears repeatedly in our discussion.

Par Est SE(Est) tobs P 99% CI
µC−µH .1983 .0936 2.12 .037 (−.04796, .44456)
µC−µN .4751 .1225 3.88 .000 (.15280, .79740)
µH −µN .2768 .1270 2.18 .032 (−.05734, .61094)

Note that while the estimated difference between Hispanics and Native Americans is half again as
large as the difference between non-Hispanic Caucasians and Hispanics, the tobs values, and thus
the significance levels of the differences, are almost identical. This occurs because the standard
errors are substantially different. The standard error for the estimate of µC− µH involves only the
reasonably large samples for non-Hispanic Caucasians and Hispanics; the standard error for the
estimate of µH − µN involves the comparatively small sample of Native Americans, which is why
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this standard error is larger. On the other hand, the standards errors for the estimates of µC−µN and
µH −µN are very similar. The difference in the standard error between having a sample of 34 or 44
is minor by comparison to the effect on the standard error of having a sample size of only 15.

The hypothesis H0 : µC− µH = 0, or equivalently H0 : µC = µH , is the only one rejected at the
.01 level. Summarizing the results of the tests at the .01 level, we have no strong evidence of a
difference between the ages at which non-Hispanic Caucasians and Hispanics commit suicide, we
have no strong evidence of a difference between the ages at which Hispanics and Native Americans
commit suicide, but we do have strong evidence that there is a difference in the ages at which
non-Hispanic Caucasians and Native Americans commit suicide.

Note that establishing a difference between non-Hispanic Caucasians and Native Americans
does little to explain why that difference exists. The reason that Native Americans committed suicide
at younger ages could be some complicated function of socio-economic factors or it could be simply
that there were many more young Native Americans than old ones in Albuquerque at the time. The
test only indicates that the two groups were different, it says nothing about why the groups were
different.

The confidence interval for the difference between non-Hispanic Caucasians and Native Amer-
icans was constructed on the log scale. Transforming the interval gives (e.1528,e.7974) or (1.2,2.2).
We are 99% confident that the average age of suicides is between 1.2 and 2.2 times higher for
non-Hispanic Caucasians than for Native Americans. Note that examining differences in log ages
transforms to the original scale as a multiplicative factor between groups. The parameters µC and
µN are means for the logs of the suicide ages. When we transform the interval (.1528, .7974) for
µC−µN into the interval (e.1528,e.7974), we obtain a confidence interval for eµC−µN or equivalently
for eµC/eµN . We can think of eµC and eµN as ‘average’ values for the age distributions of the non-
Hispanic Caucasians and Native Americans although they are not the expected values of the dis-
tributions. Obviously, eµC = (eµC/eµN )eµN , so eµC/eµN is the number of times greater the average
suicide age is for non-Hispanic Caucasians. That is the basis for the interpretation of the interval
(e.1528,e.7974).

With these data, the tests for differences in means do not depend crucially on the log trans-
formation but interpretations of the confidence intervals do. For the untransformed data, the mean
squared error is MSEu = 245 and the observed value of the test statistic for comparing non-Hispanic
Caucasians and Native Americans is

tu = 3.54 =
41.66−25.07√

245
( 1

44 +
1
15

) ,
which is not far from the transformed value 3.88. However, the untransformed 99% confidence inter-
val is (4.3,28.9), indicating a 4 to 29 year higher age for the mean non-Hispanic Caucasian suicide,
rather than the transformed interval (1.2,2.2), indicating that typical non-Hispanic Caucasian sui-
cide ages are 1.2 to 2.2 times greater than those for Native Americans.

The data do not strongly suggest that the means for Hispanics and Native Americans are dif-
ferent, so we might wish to compare the mean of the non-Hispanic Caucasians with the average of
these groups. Typically, averaging means will only be of interest if we feel comfortable treating the
means as the same. The parameter of interest is Par = µC− (µH +µN)/2 or

Par = µC−
1
2

µH −
1
2

µN

with

Est = ȳC−
1
2

ȳH −
1
2

ȳN = 3.6521− 1
2

3.4538− 1
2

3.1770 = .3367.

It is not appropriate to use our standard methods to test this contrast between the means because the
contrast was suggested by the data. Nonetheless, we will illustrate the standard methods. From the
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independence of the data in the three groups and Proposition 1.2.11, the variance of the estimate is

Var
(

ȳC−
1
2

ȳH −
1
2

ȳN

)
= Var(ȳC)+

(
−1
2

)2

Var(ȳH)+

(
−1
2

)2

Var(ȳN)

=
σ2

44
+

(
−1
2

)2
σ2

34
+

(
−1
2

)2
σ2

15

= σ
2

[
1

44
+

(
−1
2

)2 1
34

+

(
−1
2

)2 1
15

]
.

Substituting the MSE for σ2 and taking the square root, the standard error is

.0886 =

√√√√.168

[
1
44

+

(
−1
2

)2 1
34

+

(
−1
2

)2 1
15

]
.

Note that the standard error happens to be smaller than any of those we have considered when
comparing pairs of means. To test the null hypothesis that the mean for non-Hispanic Cau-
casians equals the average of the other groups, i.e., H0 : µC − 1

2 µH − 1
2 µN = 0, the test statistic

is [.3367− 0]/.0886 = 3.80, so the null hypothesis is easily rejected. This is an appropriate test
statistic for evaluating H0, but when letting the data suggest the contrast, the t(90) distribution is no
longer appropriate for quantifying the level of significance. Similarly, we could construct the 99%
confidence interval

.3367±2.631(.0886)

but again, the confidence coefficient 99% is not really appropriate for a contrast suggested by the
data.

While the parameter µC − 1
2 µH − 1

2 µN was suggested by the data, the theory of inference in
Chapter 3 assumes that the parameter of interest does not depend on the data. In particular, the
reference distributions we have used are invalid when the parameters depend on the data. Moreover,
performing numerous inferential procedures complicates the analysis. Our standard tests are set up
to check on one particular hypothesis. In the course of analyzing these data we have performed
several tests. Thus we have had multiple opportunities to commit errors. In fact, the reason we have
been discussing .01 level tests rather than .05 level tests is to help limit the number of errors made
when all of the null hypotheses are true. In Chapter 6, we discuss methods of dealing with the
problems that arise from making multiple comparisons among the means.

To this point, we have considered contrasts (comparisons) among the means. In constructing
confidence intervals, prediction intervals, or tests for an individual mean, we continue to use the
MSE and the t(d fE) distribution. For example, the endpoints of a 99% confidence interval for µH ,
the mean of the log suicide age for this Hispanic population, are

3.4538±2.631

√
.168
34

for an interval of (3.269,3.639). Transforming the interval back to the original scale gives
(26.3,38.1), i.e., we are 99% confident that the average age of suicides for this Hispanic popu-
lation is between 26.3 years old and 38.1 years old. The word ‘average’ is used because this is not
a confidence interval for the expected value of the suicide ages, it is a confidence interval for the
exponential transformation of the expected value of the log suicide age. A 99% prediction interval
for the age of a future suicide from this Hispanic population has endpoints

3.4538±2.631

√
.168+

.168
34
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for an interval of (2.360,4.548). Transforming the interval back to the original scale gives
(10.6,94.4), i.e., we are 99% confident that a future suicide from this Hispanic population would
be between 10.6 years old and 94.4 years old. This interval happens to include all of the observed
suicide ages for Hispanics in Table 5.1; that seems reasonable, if not terribly informative. 2

5.1.1 Theory

In analysis of variance, we assume that we have independent observations on, say, a different normal
populations with the same variance. In particular, we assume the following data structure.

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N2 iid N(µ2,σ

2)
...

...
...

...
a ya1,ya2, . . . ,yaNa iid N(µa,σ

2)

Here each sample is independent of the other samples. These assumptions can be written more
succinctly as the one-way analysis of variance model

yi j = µi + εi j, εi js independent N(0,σ2) (5.1.1)

i = 1, . . . ,a, j = 1, . . . ,Ni. The εi js are unobservable random errors. We are writing each observation
as its mean plus some random error. Alternatively, model (5.1.1) is often written as

yi j = µ +αi + εi j, εi js independent N(0,σ2) (5.1.2)

where µi = µ +αi. The parameter µ is viewed as a grand mean, while αi is an effect for the ith
treatment group. The µ and αi parameters are not well defined. In model (5.1.2) they only occur
as the sum µ +αi, so for any choice of µ and αi the choices, say, µ + 5 and αi− 5 are equally
valid. The 5 can be replaced by any number we choose. The parameters µ and αi are not completely
specified by the model. There would seem to be little point in messing around with model (5.1.2)
except that it has useful relationships with other models that will be considered later.

To analyze the data, we compute summary statistics from each sample. These are the sample
means and sample variances. For the ith group of observations, the sample mean is

ȳi· =
1
Ni

Ni

∑
j=1

yi j

and the sample variance is

s2
i =

1
Ni−1

Ni

∑
j=1

(yi j− ȳi·)
2
.

With independent normal errors having the same variance, all of the summary statistics are indepen-
dent of one another. Except for checking the validity of our assumptions, these summary statistics
are more than sufficient for the entire analysis. Typically, we present the summary statistics in tab-
ular form.

Sample statistics
Group Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

...
...

...
...

a Na ȳa· s2
a
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The sample means, the ȳi·s, are estimates of the corresponding µis and the s2
i s all estimate the

common population variance σ2. With unequal sample sizes an efficient pooled estimate of σ2 must
be a weighted average of the s2

i s. The weights are the degrees of freedom associated with the various
estimates. The pooled estimate of σ2 is called the mean squared error (MSE),

MSE ≡ s2
p ≡ (N1−1)s2

1 +(N2−1)s2
2 + · · ·+(Na−1)s2

a

∑
a
i=1(Ni−1)

=
1

(n−a)

a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2

where n = ∑
a
i=1 Ni is the total sample size. The degrees of freedom for the MSE are the degrees of

freedom for error,

d fE ≡ n−a =
a

∑
i=1

(Ni−1).

This is the sum of the degrees of freedom for the individual variance estimates. Note that the MSE
depends only on the sample variances, so, with independent normal errors having the same variance,
MSE is independent of the ȳi·s.

A simple average of the sample variances s2
i is not reasonable. If we had N1 = 1000000 observa-

tions in the first sample and only N2 = 5 observations in the second sample, obviously the variance
estimate from the first sample is much better than that from the second and we want to give it more
weight.

We need to check the validity of our assumptions. The errors in models (1) and (2) are assumed
to be independent normals with mean 0 and variance σ2, so we would like to use them to evaluate
the distributional assumptions, e.g., equal variances and normality. Unfortunately, the errors are
unobservable, we only see the yi js and we do not know the µis, so we cannot compute the εi js.
However, since εi j = yi j−µi and we can estimate µi, we can estimate the errors with the residuals,

ε̂i j = yi j− ȳi·.

The residuals yi j − ȳi· can be plotted against predicted values ȳi· to check whether the variance
depends in some way on the means µi. They can also be plotted against rankits (normal scores) to
check the normality assumption.

Using residuals to evaluate assumptions is a fundamental part of modern statistical data analysis.
However, complications can arise. In later chapters we will discuss reasons for using standardized
residuals rather than these raw residuals. Standardized residuals will be discussed in connection
with regression analysis. In balanced analysis of variance, i.e., situations with equal numbers of
observations on each group, the complications disappear. Thus, the unstandardized residuals are
adequate for evaluating the assumptions in a balanced analysis of variance. In other analysis of
variance situations, the problems are relatively minor.

If we are satisfied with the assumptions, we proceed to examine the parameters of interest. The
basic parameters of interest in analysis of variance are the µis, which have natural estimates, the ȳi·s.
We also have an estimate of σ2, so we are in a position to draw a variety of statistical inferences. The
main problem in obtaining tests and confidence intervals is in finding appropriate standard errors.
To do this we need to observe that each of the a samples are independent. The ȳi·s are computed
from different samples, so they are independent of each other. Moreover, ȳi· is the sample mean of
Ni observations, so

ȳi· ∼ N
(

µi,
σ2

Ni

)
.

For inferences about a single mean, say, µ2, use the general procedures with Par = µ2 and
Est = ȳ2·. The variance of ȳ2· is σ2/N2, so SE(ȳ2·) =

√
MSE/N2. The reference distribution is

[ȳ2·−µ2]/SE(ȳ2·)∼ t(d fE). Note that the degrees of freedom for the t distribution are precisely the
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degrees of freedom for the MSE. The general procedures also provide prediction intervals using the
MSE and t(d fE) distribution.

For inferences about the difference between two means, say, µ2−µ1, use the general procedures
with Par = µ2−µ1 and Est = ȳ2·− ȳ1·. The two means are independent, so the variance of ȳ2·− ȳ1·
is the variance of ȳ2· plus the variance of ȳ1·, i.e., σ2/N2 +σ2/N1. The standard error of ȳ2·− ȳ1· is

SE(ȳ2·− ȳ1·) =

√
MSE

N2
+

MSE
N1

=

√
MSE

[
1

N1
+

1
N2

]
.

The reference distribution is

(ȳ2·− ȳ1·)− (µ2−µ1)√
MSE

[
1

N1
+ 1

N2

] ∼ t(d fE).

We might wish to compare one mean, µ1, with the average of two other means, (µ2 +µ3)/2. In
this case, the parameter can be taken as Par = µ1− (µ2 +µ3)/2 = µ1− 1

2 µ2− 1
2 µ3. The estimate is

Est = ȳ1·− 1
2 ȳ2·− 1

2 ȳ3·. By the independence of the sample means, the variance of the estimate is

Var
(

ȳ1·−
1
2

ȳ2·−
1
2

ȳ3·

)
= Var(ȳ1·)+Var

(
−1
2

ȳ2·

)
+Var

(
−1
2

ȳ3·

)
=

σ2

N1
+

(
−1
2

)2
σ2

N2
+

(
−1
2

)2
σ2

N3

= σ
2
[

1
N1

+
1
4

1
N2

+
1
4

1
N3

]
.

The standard error is

SE
(

ȳ1·−
1
2

ȳ2·−
1
2

ȳ3·

)
=

√
MSE

[
1

N1
+

1
4N2

+
1

4N3

]
.

The reference distribution is(
ȳ1·− 1

2 ȳ2·− 1
2 ȳ3·

)
−
(
µ1− 1

2 µ2− 1
2 µ3
)√

MSE
[

1
N1

+ 1
4N2

+ 1
4N3

] ∼ t(d fE).

Typically, in analysis of variance we are concerned with parameters that are contrasts (compar-
isons) among the µis. For known coefficients λ1, . . . ,λa with ∑

a
i=1 λi = 0, a contrast is defined by

∑
a
i=1 λiµi. For example, µ2− µ1 has λ1 = −1, λ2 = 1, and all other λis equal to 0. The contrast

µ1− 1
2 µ2− 1

2 µ3 has λ1 = 1, λ2 = −1/2, λ3 = −1/2, and all other λis equal to 0. The natural esti-
mate of ∑

a
i=1 λiµi substitutes the sample means for the population means, i.e., the natural estimate

is ∑
a
i=1 λiȳi·. In fact, Proposition 1.2.11 gives

E

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λiE(ȳi·) =
a

∑
i=1

λiµi,

so by definition this is an unbiased estimate of the contrast. Using the independence of the sample
means and Proposition 1.2.11,

Var

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λ
2
i Var(ȳi·)
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=
a

∑
i=1

λ
2
i

σ2

Ni

= σ
2

a

∑
i=1

λ 2
i

Ni
.

The standard error is

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

Ni

and the reference distribution is

(∑
a
i=1 λiȳi·)− (∑

a
i=1 λiµi)√

MSE ∑
a
i=1 λ 2

i /Ni

∼ t(d fE),

see Exercise 5.7.14. If the independence and equal variance assumptions hold, then the central
limit theorem and law of large numbers can be used to justify a N(0,1) reference distribution even
when the data are not normal. Moreover, in one-way ANOVA all of these results hold even when
∑i λi 6= 0, so they hold for linear combinations of the µis that are not contrasts. Nonetheless, our
primary interest is in contrasts.

Having identified a parameter, an estimate, a standard error, and an appropriate reference distri-
bution, inferences follow the usual pattern. A 95% confidence interval for ∑

a
i=1 λiµi has endpoints

a

∑
i=1

λiȳi·± t(.975,d fE)

√
MSE

a

∑
i=1

λ 2
i /Ni.

An α = .05 test of H0 : ∑
a
i=1 λiµi = 0 versus HA : ∑

a
i=1 λiµi 6= 0 rejects H0 if

|∑a
i=1 λiȳi·−0|√

MSE ∑
a
i=1 λ 2

i /Ni

> t(.975,d fE) (5.1.3)

An equivalent procedure to the test in (5.1.3) is often useful. If we square both sides of (5.1.3),
the test rejects if  |∑a

i=1 λiȳi·−0|√
MSE ∑

a
i=1 λ 2

i /Ni

2

> (t(.975,d fE))2
.

The square of the test statistic leads to another statistic that will be useful later, the sum of squares
for the contrast. Rewrite the test statistic as |∑a

i=1 λiȳi·−0|√
MSE ∑

a
i=1 λ 2

i /Ni

2

=
(∑

a
i=1 λiȳi·−0)2

MSE ∑
a
i=1 λ 2

i /Ni

=
(∑

a
i=1 λiȳi·)

2/
∑

a
i=1 λ 2

i /Ni

MSE

and define the sum of squares for the contrast as

SS

(
a

∑
i=1

λiµi

)
≡ (∑

a
i=1 λiȳi·)

2

∑
a
i=1 λ 2

i /Ni
. (5.1.4)

The α = .05 t test of H0 : ∑
a
i=1 λiµi = 0 versus HA : ∑

a
i=1 λiµi 6= 0 is equivalent to rejecting H0 if

SS (∑a
i=1 λiµi)

MSE
> [t(.975,d fE)]2 .
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It is a mathematical fact that for any α between 0 and 1 and any d fE,[
t
(

1− α

2
,d fE

)]2
= F(1−α,1,d fE) .

Thus the test based on the sum of squares for the contrast is an F test with 1 degree of freedom in
the numerator. Any contrast has 1 degree of freedom associated with it.

A notational matter needs to be mentioned. Contrasts, by definition, have ∑
a
i=1 λi = 0. If we use

model (5.1.2) rather than model (5.1.1) we get
a

∑
i=1

λiµi =
a

∑
i=1

λi (µ +αi) = µ

a

∑
i=1

λi +
a

∑
i=1

λiαi =
a

∑
i=1

λiαi.

Thus contrasts in model (5.1.2) involve only the treatment effects. This is of some importance later
when dealing with more complicated models.

In our first example we transformed the suicide age data so that they better satisfy the assump-
tions of equal variances and normal distributions. In fact, analysis of variance tests and confidence
intervals are frequently useful even when these assumptions are violated. Scheffé (1959, p. 345)
concludes that (a) nonnormality is not a serious problem for inferences about means but it is a se-
rious problem for inferences about variances, (b) unequal variances are not a serious problem for
inferences about means from samples of the same size but are a serious problem for inferences
about means from samples of unequal sizes, and (c) lack of independence can be a serious problem.
Of course any such rules depend on just how bad the nonnormality is, how unequal the variances
are, and how bad the lack of independence is. My own interpretation of these rules is that if you
check the assumptions and they do not look too bad, you can probably proceed with a fair amount
of assurance.

5.1.2 Balanced ANOVA: introductory example

We now consider an example of a balanced one-way ANOVA. A balanced one-way ANOVA has
equal numbers of observations in each group, say, N = N1 = · · ·= Na.

EXAMPLE 5.1.2. Ott (1949) presented data on an electrical characteristic associated with ceramic
components for a phonograph. Ott and Schilling (1990) and Ryan (1989) have also considered these
data. Ceramic pieces were cut from strips, each of which could provide 25 pieces. It was decided
to take 7 pieces from each strip, manufacture the 7 ceramic phonograph components, and measure
the electrical characteristic on each. The data from 4 strips are given below. (These are actually the
third through sixth of the strips reported by Ott.)

Strip Observations
1 17.3 15.8 16.8 17.2 16.2 16.9 14.9
2 16.9 15.8 16.9 16.8 16.6 16.0 16.6
3 15.5 16.6 15.9 16.5 16.1 16.2 15.7
4 13.5 14.5 16.0 15.9 13.7 15.2 15.9

In the current analysis, we act as if the four strips are of intrinsic interest and investigate whether
there are differences among them. In Subsection 13.4.2 we will consider an analysis in which we
assume that the strips are themselves a random sample from some wider population. The data are
displayed in Figure 5.5 and summary statistics follow.

Sample statistics: electrical characteristics
Strip N ȳi· s2

i si
1 7 16.4429 0.749524 0.866
2 7 16.5143 0.194762 0.441
3 7 16.0714 0.162381 0.403
4 7 14.9571 1.139524 1.067
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Figure 5.5: Plot of electrical characteristics data.

The electrical characteristic appears to be lowest for strip 4 and highest for strips 1 and 2, but we
need to use formal inferential procedures to establish whether the differences could be reasonably
ascribed to random variation. The sample standard deviations, and thus the sample variances, are
comparable. The ratio of the largest to the smallest standard deviation is just over 2.5, which is not
small but which is also not large enough to cause major concern. As in Section 4.4, we could do F
tests to determine whether any pairs of variances differ. The largest of these F tests is not significant
at the .02 level and, after considering that there are six pairs to test, we conclude that there is no
cause for major concern. Figure 5.5 is poorly suited to evaluate the variances visually because in
Figure 5.5 the plot involves any differences in means as well as differences in variance. A better
plot from which to evaluate the variances is given as Figure 5.6. Figure 5.6 is a plot of the residuals
ε̂i j ≡ yi j − ȳi· against the appropriate group. The residuals have been adjusted for their different
means, so residuals, and thus residual plots, are centered at 0. Figure 5.6 is not wonderful in that we
see differences in variability for the four groups, but it is also not outlandishly inconsistent with the
assumption of equal variances. (Note that if one group had many more observations than another, the
spread for that group would be greater even if the population variances were the same.) Figure 5.7
contains a normal plot of the residuals. The plot looks fairly reasonable, although it tails off at the
top. The W ′ statistic of .956 gives a P value for the hypothesis of normality that is larger than .05
and in any case, analysis of variance procedures are not particularly sensitive to nonnormality.

With equal sample sizes in each group, the MSE reduces to the simple average of the sample
variances.

MSE =
(7−1).74952+(7−1).19476+(7−1).16238+(7−1)1.13952

7+7+7+7−4

=
.74952+ .19476+ .16238+1.13952

4
= .56155
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Figure 5.6: Residual plot.
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Figure 5.7: Normal plot of residuals, W ′ = 0.956.
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and has error degrees of freedom d fE = 7+ 7+ 7+ 7− 4 = 24. Again, we compare all pairs of
means. The value t(.995,24) = 2.797 is required for constructing 99% confidence intervals. These
intervals and two-sided tests of H0 : Par = 0 are given below.

Par Est SE(Est) tobs P 99% CI
µ1−µ4 1.4858 0.4006 3.709 .001 (0.37,2.61)
µ2−µ4 1.5572 0.4006 3.887 .001 (0.44,2.68)
µ3−µ4 1.1143 0.4006 2.782 .010 (−0.01,2.23)
µ1−µ2 −0.0714 0.4006 −0.178 .860 (−1.19,1.05)
µ1−µ3 0.3715 0.4006 0.927 .363 (−0.75,1.49)
µ2−µ3 0.4429 0.4006 1.106 .280 (−0.68,1.56)

Note that with equal numbers of observations on each group, the standard errors are the same
for each comparison of two means. Based on α = .01 tests, the electrical characteristic for strip 4
differs significantly from those for strips 1 and 2, the decision for strip 3 is essentially a toss-up, and
no other differences are significant. Even for strips 1 and 2, the 99% confidence intervals indicate
that the data are consistent with differences from strip 4 as small as .37 and .44 respectively. Such
differences may or may not be of practical importance. Clearly, the main source of differences
among these data is that strip 4 tends to give smaller values than the other strips. In fact, the P
values for comparisons among the other three strips are all quite large.

Using formula (5.1.4), the sum of squares for µ1−µ4 is

SS(µ1−µ4) =
(1.4858)2

(1)2/7+(−1)2/7
= 7.7266 .

The table below gives the sums of squares and F tests for equality between all pairs of means.

Par SS Fobs P
µ1−µ4 7.727 13.76 .001
µ2−µ4 8.487 15.11 .001
µ3−µ4 4.346 7.74 .010
µ1−µ2 0.018 0.03 .860
µ1−µ3 0.483 0.86 .363
µ2−µ3 0.687 1.22 .280

Note that the F statistics are just the sums of squares divided by the MSE. They equal the squares
of the t statistics given earlier and the P values are identical. 2

5.1.3 Analytic and enumerative studies

In one-sample, two-sample, and one-way ANOVA problems, we assume that we have random sam-
ples from various populations. In the more sophisticated models treated later, we continue to assume
that at least the errors are a random sample from a N(0,σ2) population. The statistical inferences
we draw are valid for the populations that were sampled. Often it is not clear what the sampled
populations are. What are the populations from which the Albuquerque suicide ages were sampled?
Presumably, our data were all of the suicides reported in 1978 for these ethnic groups. The electrical
characteristic data has four ceramic strips divided into 25 pieces, of which seven pieces are taken.
Are the seven pieces a random sample from the 25? They could be. Is the collection of 25 pieces
the population that we really care about? Doubtful! What we really care about is whether the differ-
ences in ceramic strips are large enough to cause problems in the production of phonographs. (Not
that anyone makes phonographs anymore.)

When we analyze data, we assume that the measurements are subject to errors and that the
errors are consistent with our models. However, the populations from which these samples are taken
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may be nothing more than mental constructs. In such cases, it requires extrastatistical reasoning to
justify applying the statistical conclusions to whatever issues we really wish to address. Moreover,
the desire to predict the future underlies virtually all studies and, unfortunately, one can never be
sure that data collected now will apply to the conditions of the future. So what can you do? Only
your best. You can try to make your data as relevant as possible to your anticipation of future
conditions. You can try to collect data for which the assumptions will be reasonably true. You can
try to validate your assumptions. Studies in which it is not clear that the data are random samples
from the population of immediate interest are often called analytic studies.

About the only time one can be really sure that statistical conclusions apply directly to the
population of interest is when one has control of the population of interest. If we have a list of all
the elements in the population, we can choose a random sample from the population. Of course,
choosing a random sample is still very different from obtaining a random sample of observations.
Without control or total cooperation, we may not be able to take measurements on the sample.
(Even when you can find people that you want for a sample, many will not submit to a measurement
process.) Studies in which one can arrange to have the assumptions met are often called enumerative
studies. See Hahn and Meeker (1993) and Deming (1986) for additional discussion of these issues.

5.2 Balanced one-way analysis of variance: theory

We now examine in detail the important special case of one-way analysis of variance in which the
numbers of observations for each sample are the same, cf. Subsection 5.1.2. In this case, the analysis
of variance is referred to as balanced. Balanced one-way ANOVA is important because it is both
understandable and extendable. The logic behind analysis of variance is much clearer when dealing
with balanced samples and the standard methods for multifactor analysis of variance are extensions
of the techniques developed for balanced one-way ANOVA. The standard methods for multifactor
ANOVA also assume equal numbers of observations on all treatments.

For balanced analysis of variance, let N ≡ N1 = · · ·= Na be the number of observations in each
sample. In particular, we assume the data structure

Sample Data Distribution
1 y11,y12, . . . ,y1N iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N iid N(µ2,σ

2)
...

...
...

...
a ya1,ya2, . . . ,yaN iid N(µa,σ

2)

with all samples independent. The data structure can be rewritten as the balanced one-way ANOVA
model

yi j = µi + εi j, εi js independent N(0,σ2)

i = 1, . . . ,a, j = 1, . . . ,N. Again, we have assumed the same variance σ2 for each sample.
In this section, we focus on testing the (null) hypothesis

H0 : µ1 = µ2 = · · ·= µa.

This is a test of whether there are any differences among the groups. If we use model (5.1.2), the null
hypothesis can be written as H0 : α1 = α2 = · · · = αa. To perform the test, first compute summary
statistics from the samples.

Sample statistics
Group Size Mean Variance

1 N ȳ1· s2
1

2 N ȳ2· s2
2

...
...

...
...

a N ȳa· s2
a
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As before, the sample means, the ȳi·s, are estimates of the µis and the s2
i s all estimate σ2.

The test of H0 is based on estimating σ2. We construct two estimates of the variance. The first
estimate is always valid, assuming of course that our initial assumptions were correct. The second
estimate is valid only when µ1 = µ2 = · · ·= µa. If the µis are all equal, we have two estimates of σ2,
so they should be about the same. If the µis are not all equal, the second estimate tends to be bigger
than σ2, so it should be larger than the first estimate. We conclude that the data are consistent with
µ1 = µ2 = · · · = µa when the two estimates seem to be about the same and conclude that the µis
are not all equal when the second estimate is substantially larger than the first. As usual, when the
estimates are about the same we conclude that the data are consistent with the µis all being equal;
we do not conclude that the µis are really all equal. If the µis are not quite equal but are very nearly
so, we cannot expect to be able to detect the differences. On the other hand, two widely different
variance estimates give substantial proof that the µis are not all the same.

The easy part of the process is creating the first estimate of the variance, the one that is always
valid. From each sample, regardless of the value of µi, we have an estimate of σ2, namely s2

i .
Obviously, the average of the s2

i s must also be an estimate of σ2. The average is the pooled estimate
of the variance, i.e., the mean squared error is

MSE ≡ s2
1 + s2

2 + · · ·+ s2
a

a

=
1

a(N−1)

a

∑
i=1

N

∑
j=1

(yi j− ȳi·)
2
.

As discussed earlier, a simple average such as this is not always appropriate. The simple average is
only reasonable because we have the same number of observations in each sample.

Recall that each s2
i has N − 1 degrees of freedom. Each s2

i is based on N observations but is
functionally based on N− 1 observations because of the need to estimate µi before estimating the
variance. By pooling together the variance estimates, we also get to pool the degrees of freedom.
We have combined a independent estimates of σ2, each with N − 1 degrees of freedom, so the
pooled estimate has a(N−1) degrees of freedom. In other words, the MSE is functionally based on
a(N−1) observations. The degrees of freedom associated with the MSE are the degrees of freedom
for error (d fE), so we have

d fE = a(N−1).

The data, the yi js, are random, so the MSE, which is computed from them, must also be random.
If we collected another set of similar data we would not expect to get exactly the same value for the
MSE. If we are to evaluate whether this estimate of σ2 is similar to another estimate, we need to
have some idea of the variability in the MSE. Under the assumptions we have made, the distribution
of the MSE depends only on d fE and σ2. The distribution is related to the χ2 family of distributions.
In particular,

d fE×MSE
σ2 ∼ χ

2(d fE)

where, on the right hand side, d fE indicates the particular member of the χ2 family that is appro-
priate. A commonly used terminology in analysis of variance is the sum of squares for error (SSE).
This is defined to be

SSE ≡ d fE×MSE =
a

∑
i=1

N

∑
j=1

(yi j− ȳi·)
2
. (5.2.1)

Note that SSE/σ2 ∼ χ2(d fE). Note also that the SSE is the sum of the squared residuals, the
residuals being

ε̂i j = yi j− ȳi· .

The second estimate of σ2 is to be valid only when µ1 = µ2 = · · · = µa. We have already used
the sample variances s2

i in constructing the MSE, so we use the rest of our summary statistics, the
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ȳi·s, in constructing the second estimate of σ2. In fact, the ȳi·s are estimates of the µis, so it is only
reasonable to use the ȳi·s when trying to draw conclusions about the µis. Consider the distributions
of the ȳi·s. Each is the sample mean of N observations, so each has the distribution of a sample
mean. In particular,

ȳ1· ∼ N
(

µ1,
σ2

N

)
ȳ2· ∼ N

(
µ2,

σ2

N

)
...

ȳa· ∼ N
(

µa,
σ2

N

)
The a different samples are independent of each other, so ȳ1·, ȳ2·, . . . , ȳa· are all independent. They
all have the same variance, σ2/N, and they all have normal distributions. In fact, the only thing
keeping them from having independent and identical distributions is that they have different means
µi. If we assume that µ1 = µ2 = · · ·= µa, they have independent and identical distributions and thus
form a random sample from a population. Balanced analysis of variance is based on the fact that if
the µis are the same, the ȳi·s can be treated as a random sample. If the ȳi·s are a random sample, we
can compute their sample variance to get an estimate of the variance of the ȳi·s. The variance of the
ȳi·s is σ2/N and the sample variance of the ȳi·s is

s2
ȳ =

1
a−1

a

∑
i=1

(ȳi·− ȳ··)
2

where

ȳ·· ≡
1
a

a

∑
i=1

ȳi·

is the sample mean of the ȳi·s. We have s2
ȳ as an estimate of σ2/N but we set out to find an estimate

of σ2. The obvious choice is

MSTrts≡ Ns2
ȳ =

N
a−1

a

∑
i=1

(ȳi·− ȳ··)
2

where MSTrts abbreviates the commonly used term mean squared treatments. The estimate s2
ȳ is

based on a sample of size a, so it, and thus MSTrts, has a−1 degrees of freedom. These are referred
to as the degrees of freedom for treatments (d f Trts). The sum of squares for treatments is defined
as

SSTrts≡ d f Trts×MSTrts = N
a

∑
i=1

(ȳi·− ȳ··)
2
. (5.2.2)

Just as the MSE is random, the MSTrts is also random. The estimate s2
ȳ is the sample variance of a

random sample of size a from a normal population with variance σ2/N, so

(a−1)s2
ȳ

σ2/N
=

(a−1)MSTrts
σ2 ∼ χ

2(a−1).

The discussion above is based on the assumption that µ1 = µ2 = · · ·= µa. If this is not true, the
ȳi·s do not form a random sample and s2

ȳ does not estimate σ2/N. Actually, it estimates σ2/N plus
the ‘variance’ of the µis. Algebraically, s2

ȳ estimates

E(s2
ȳ) =

σ2

N
+

1
a−1

a

∑
i=1

(µi− µ̄·)
2
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where µ̄· ≡ ∑
a
i=1 µi/a is the mean of the µis. Multiplying by N gives

E(MSTrts) = E(Ns2
ȳ) = σ

2 +
N

a−1

a

∑
i=1

(µi− µ̄·)
2
, (5.2.3)

so MSTrts is an estimate of σ2 plus something that is always nonnegative. If µ1 = µ2 = · · · = µa,
the µis are all equal to their average µ̄·, thus (µi− µ̄·)

2
= 0 for all i, and

N
a−1

a

∑
i=1

(µi− µ̄·)
2
= 0.

As advertised earlier, if µ1 = · · ·= µa, MSTrts is an estimate of σ2. If the µis are not all the same,
[N/(a− 1)]∑a

i=1 (µi− µ̄·)
2 is positive. The larger this term is, the easier it is to conclude that the

treatment means are different. The term increases when N, the number of observations in each
group, increases and when the variability of the µis increases, i.e., when ∑

a
i=1 (µi− µ̄·)

2
/(a− 1)

increases.
A decision regarding the validity of the claim µ1 = µ2 = · · ·= µa is based on comparing MSTrts

with MSE. If they are about the same, or equivalently if

F ≡ MSTrts
MSE

(5.2.4)

is about 1, the data are consistent with the idea that MSTrts and MSE both estimate the same
(unknown) quantity σ2 and thus are consistent with µ1 = µ2 = · · ·= µa. The alternative is that the
µis are not all equal, in which case MSTrts is estimating something larger than σ2, while MSE
continues to estimate σ2. In this case, the ratio F = MSTrts/MSE estimates something greater than
1. If F is much greater than 1, it provides clear evidence that the statistics are not estimating the
same thing and thus that the µis are not all equal.

The nature of this evidence is probabilistic and one cannot eliminate the possibility of error.
Although they are very unlikely to occur, F ratios much greater than 1 can arise even when the µis
are all equal. Assuming that model (5.1.1) is appropriate, when the data yield a very large F ratio,
the correct conclusion is either that the assumption of equal treatment means is violated or that the
means are equal and a very rare event has occurred. The rarer the event, the stronger the suggestion
of unequal treatment means. While we cannot directly quantify the strength of the suggestion of
unequal treatment means, we can quantify it indirectly by evaluating how rarely large F ratios occur
when the treatment means are equal. Under the assumption that µ1 = µ2 = · · · = µa, the F ratio is
random and has an F(a− 1,a(N− 1)) distribution. (This distribution is called an F distribution in
honor of the originator of analysis of variance, R. A. Fisher.)

The F distribution determines those values of the F ratio in (5.2.4) that commonly occur with
equal treatment means. If the observed F ratio is so large as to be an uncommon occurrence when
µ1 = µ2 = · · · = µa, we conclude that the µis are not all equal. To measure the strength of this
conclusion, compute the probability of obtaining an F ratio as large or larger than that actually
obtained from the data. This probability is called the P value or the significance level of the test.
The smaller the P value, the more inconsistent the observed F ratio is with the assumption that the
µis are all equal.

On occasion, it may be desired to have a fixed decision rule as to whether the data are inconsis-
tent with the (null) hypothesis of equal means. One may decide that, with equal treatment means,
common occurrences of the F ratio include 95% or 99% or more generally (1−α)100% of the pos-
sible F values. Thus uncommon occurrences constitute 5% or 1% or 100α% of the observations.
The hypothesis µ1 = µ2 = · · ·= µa is rejected at the α level if

MSTrts
MSE

≥ F(1−α,a−1,d fE).
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Table 5.2: Analysis of variance

Source d f SS MS F

Treatments a−1 N ∑
a
i=1 (ȳi·− ȳ··)2 SSTrts/(a−1) MSTrts

MSE

Error aN −a ∑
a
i=1 ∑

N
j=1
(
yi j − ȳi·

)2 SSE/(n−a)

Total−C aN −1 ∑
a
i=1 ∑

N
j=1
(
yi j − ȳ··

)2

Here F(1−α,a− 1,d fE) is the number below which fall (1−α)100% of the possible F ratios
when the µis are all equal. There is a possibility that our data would yield an F ratio at least this
large when the µis are all equal but it is pretty slim, α . We consider it more reasonable that the
assumption of equal µis is violated. The number F(1−α,a− 1,d fE) can be obtained from tables
of the F distribution, see Appendix B.7. The number depends not only on the choice of α but also
on the degrees of freedom for the estimate in the numerator of the ratio, a− 1, and the degrees of
freedom for the estimate in the denominator of the ratio, d fE. If we do not reject the hypothesis,
the data are consistent with the hypothesis. Again, just because the data are consistent with the
hypothesis does not mean that the hypothesis is true.

Fixed α level tests are easy to perform if the P value is available. To perform, say, an α = .05
test, just compare the P value with .05. If the P value is greater than .05, a .05 level test does not
reject the hypothesis of equal treatment means µi. If the P value is less than .05, a .05 test rejects
the hypothesis.

5.2.1 The analysis of variance table

The computations for the analysis of variance F test can be summarized in an analysis of variance
table. The columns of the table are sources, degrees of freedom (d f ), sums of squares (SS), mean
squares (MS), and F . There are rows for treatments, error, and total (corrected for the grand mean).
The commonly used form for the analysis of variance table is given in Table 5.2. The sums of squares
for error and treatments are just those given in equations (5.2.1) and (5.2.2). In each row, the mean
square is the sum of squares divided by the degrees of freedom. The degrees of freedom and sums
of squares for treatments and error can be added together to give the degrees of freedom and sum of
squares total (corrected for the grand mean) respectively. Note that the sum of squares total divided
by the degrees of freedom total is s2

y , the sample variance of all aN observations computed without
reference to any treatment groups. The degrees of freedom in the total line are just the degrees of
freedom associated with the sample variance based on all aN observations. Traditionally, the total
line does not include a mean square. The sample variance of all aN observations, and thus the total
line, involves adjusting each observation for the grand mean. This can be accomplished as indicated
in Table 5.2 or, alternatively, by the use of a correction factor. The correction factor is C ≡ aNȳ2

··,
so that SSTot−C = ∑

a
i=1 ∑

N
j=1 y2

i j−C, which is the sum of the squares of all the observations minus
the correction factor.

A less commonly used form for the analysis of variance table, but one I prefer, is presented in
Table 5.3. In this form, the total degrees of freedom consist of one degree of freedom for every
observation, the sum of squares total is the sum of all of the squared observations, and an extra row
has been added for the grand mean. The degrees of freedom and sums of squares for the grand mean,
treatments, and error can be added together to obtain the degrees of freedom and sums of square
total. In spite of my preference for Table 5.3, I will bow to tradition and generally use Table 5.2 with
the −C notation deleted from the Total line.

EXAMPLE 5.2.1. We now examine the analysis of variance table for the electrical characteristic
data of Example 5.1.2. The summary statistics for the four samples are repeated below.
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Table 5.3: Analysis of variance

Source d f SS MS F

Grand mean 1 aNȳ2
·· ≡C aNȳ2

··

Treatments a−1 N ∑
a
i=1 (ȳi·− ȳ··)2 SSTrts/(a−1) MSTrts

MSE

Error aN −a ∑
a
i=1 ∑

N
j=1
(
yi j − ȳi·

)2 SSE/(n−a)

Total aN ∑
a
i=1 ∑

N
j=1 y2

i j

Table 5.4: Analysis of variance table: electrical characteristic data

Source d f SS MS F P
Treatments 3 10.873 3.624 6.45 0.002
Error 24 13.477 0.562
Total 27 24.350

Sample statistics: electrical characteristics
Strip N ȳi· s2

i
1 7 16.4429 0.749524
2 7 16.5143 0.194762
3 7 16.0714 0.162381
4 7 14.9571 1.139524

The MSE for balanced data is the simple average of the s2
i s,

MSE =
.74952+ .19476+ .16238+1.13952

4
= .56155.

The sample mean of the ȳi·s is

ȳ·· =
16.4429+16.5143+16.0714+14.9571

4
= 15.996425

and the sample variance of the ȳi·s is

s2
ȳ =

1
4−1

[
(16.4429−15.996425)2 +(16.5143−15.996425)2

+(16.0714−15.996425)2 +(14.9571−15.996425)2]= .517784 .

The mean square treatments is the sample variance of the ȳi·s times the number of observations in
each ȳi·,

MSTrts = Ns2
ȳ = 7(.517784) = 3.6245.

The analysis of variance table is given as Table 5.4. As discussed earlier in this section, all of the
table entries are easily computed given the MSE and the MSTrts.

The F statistic for these data is substantial and the P value is quite small. There is strong evidence
that the treatments do not have the same mean. In other words, strips 1, 2, 3, and 4 do not have
the same mean value for the electrical characteristic. The analysis of variance F test tells us that
the means are not all equal but it does not tell us which particular means are unequal. Examining
individual contrasts is required to answer more specific questions about the means. 2
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Distribution theory

It has been stated that when there are no differences between the treatment means, the test statistic
F = MSTrts/MSE has an F(a−1,d fE) distribution. We now briefly expand on that statement. By
Definition 4.4.3, an F distribution is constructed from two independent χ2 distributions. If W1 ∼
χ2(r) and W2 ∼ χ2(s) with W1 and W2 independent, then by definition

W1/r
W2/s

∼ F(r,s).

In analysis of variance with the usual assumptions, the ȳi·s and s2
i s are all independent of each

other. The MSE is computed from the s2
i s and the MSTrts is computed from the ȳi·s, so the MSE is

independent of the MSTrts. We mentioned earlier that when the means are all equal

(a−1)MSTrts
σ2 ∼ χ

2(a−1)

and regardless of the mean structure

d fE×MSE
σ2 ∼ χ

2(d fE),

so it follows from the definition of the F distribution that, when the means are all equal,

MSTrts
MSE

=

[
(a−1)MSTrts/σ2

]
/(a−1)

[(d fE)MSE/σ2]/d fE
∼ F(a−1,d fE).

When the treatment means are not all equal, the distribution of MSTrts depends on the value of

N
(a−1)σ2

a

∑
i=1

(µi− µ̄·)
2
.

Note the similarity of this number to the expected value of MSTrts given in (5.2.3).

5.3 Unbalanced analysis of variance

In unbalanced analysis of variance we allow different numbers Ni of observations on the groups.
The analysis is slightly more difficult but it follows the same pattern as in Section 5.2. In particular,
we assume that

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N2 iid N(µ2,σ

2)
...

...
...

...
a ya1,ya2, . . . ,yaNa iid N(µa,σ

2)

with independent samples and the same variance σ2 for each sample. In other words, we assume

yi j = µi + εi j, εi js independent N(0,σ2)

i = 1, . . . ,a and j = 1, . . . ,Ni. The total number of observations is denoted n = ∑
a
i=1 Ni. We wish to

examine the (null) hypothesis
H0 : µ1 = µ2 = · · ·= µa.

Again we compute summary statistics from the samples.
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Sample statistics
Group Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

...
...

...
...

a Na ȳa· s2
a

As before, the sample means, the ȳi·s, are estimates of the corresponding µis and the s2
i s all estimate

σ2. As discussed earlier, with unequal sample sizes an efficient pooled estimate of σ2 must be
a weighted average of the s2

i s. The weights are the degrees of freedom associated with various
estimates.

MSE ≡ (N1−1)s2
1 +(N2−1)s2

2 + · · ·+(Na−1)s2
a

∑
a
i=1(Ni−1)

=
1

(n−a)

a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2
.

As before, d fE = n−a and SSE = (d fE)MSE.
The second estimate of σ2, the one based on the ȳi·s, is not particularly intuitive. The ȳi·s do not

all have the same variance, so even when the µis are all equal, the ȳi·s do not form a random sample.
To get a variance estimate, the ȳi·s must be weighted appropriately. It turns out that the appropriate
estimate of σ2 is

MSTrts =
1

a−1

a

∑
i=1

Ni (ȳi·− ȳ··)
2

where

ȳ·· =
1
n

a

∑
i=1

Niȳi· =
1
n

a

∑
i=1

Ni

∑
j=1

yi j.

Thus ȳ·· is the sample mean of all n observations, ignoring the treatment structure. As in the balanced
case, the degrees of freedom are a− 1 and SSTrts = (a− 1)MSTrts. In general, MSTrts is an
estimate of

E(MSTrts) = σ
2 +

1
a−1

a

∑
i=1

Ni (µi− µ̄·)
2

where

µ̄· ≡
1
n

a

∑
i=1

Niµi

is the weighted mean of the µis. Once again, if the µis are all equal, µi = µ̄· for every i and MSTrts
is an estimate of σ2. If the means are not all equal, MSTrts is an estimate of something larger than
σ2. Values of MSTrts/MSE that are much larger than 1 call in question the hypothesis of equal
population means. Note that the computations for balanced data are just a special, simpler case of
the computations for unbalanced data. In particular, the balanced case has Ni = N and n = aN.

The computations are again summarized in an analysis of variance table. The commonly used
form for the analysis of variance table is given below.

Analysis of variance
Source d f SS MS F

Treatments a−1 ∑
a
i=1 Ni (ȳi·− ȳ··)2 SSTrts/(a−1) MSTrts

MSE

Error n−a ∑
a
i=1 ∑

Ni
j=1
(
yi j − ȳi·

)2 SSE/(n−a)

Total n−1 ∑
a
i=1 ∑

Ni
j=1
(
yi j − ȳ··

)2
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Table 5.5: Analysis of variance, logs of suicide age data

Source d f SS MS F P
Groups 2 2.655 1.328 7.92 0.001
Error 90 15.088 0.168
Total 92 17.743

The degrees of freedom and sums of squares for treatments and error can be added together to give
the degrees of freedom and sum of squares total (corrected for the grand mean). Again,

SSE =
a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2
=

a

∑
i=1

Ni

∑
j=1

ε̂
2
i j,

establishing that the sum of squares error is the sum of the squared residuals. Moreover,
SSTot/d f Tot = s2

y , the sample variance of all n observations computed without reference to treat-
ment groups. The degrees of freedom in the total line are the degrees of freedom associated with
the sample variance based on all n observations. The total line is corrected for the grand mean, so
that SSTot = ∑

a
i=1 ∑

Ni
j=1 y2

i j−C, which is the sum of the squares of all the observations minus the
correction factor, C ≡ nȳ2

··.

EXAMPLE 5.3.1. We now consider construction of the analysis of variance table for the logs of
the suicide data. The sample statistics are repeated below.

Sample statistics: log of suicide ages
Group Ni ȳi· s2

i
Caucasians 44 3.6521 0.1590
Hispanics 34 3.4538 0.2127
Native Am. 15 3.1770 0.0879

The mean squared error was computed earlier as .168. The sum of squares error is just the degrees
of freedom error, 90, times the MSE. The sum of squares treatments is

SSTrts = 2.655 = 44(3.6521−3.5030)2 +34(3.4538−3.5030)2 +15(3.1770−3.5030)2

where

3.5030 = ȳ·· =
44(3.6521)+34(3.4538)+15(3.1770)

44+34+15
.

The ANOVA table is presented as Table 5.5.
The extremely small P value for the analysis of variance F test establishes a clear difference

between the mean log suicide ages. Again, more detailed comparisons are needed to identify which
particular groups are different. We established earlier that at the .01 level, only non-Hispanic Cau-
casians and Native Americans display a pairwise difference. 2

5.4 Choosing contrasts

You may be wondering why statisticians make a big fuss about analysis of variance. The procedures
discussed in Sections 5.2 and 5.3 are not really of much use. The analysis of variance test involves
only one hypothesis, that of equal treatment means µi. The more interesting issue of identifying
which means are different is handled with a pooled estimate of the variance and the usual techniques
involving a Par, an Est, a SE(Est), and a known distribution symmetric about zero for [Est −
Par]/SE(Est). Actually, ‘analysis of variance’ is used as a name for the entire package of techniques
used to compare more than two samples. The analysis of variance F test, from which the name
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devolves, is only one small part of the package. There are two reasons for examining the F test in
detail. In more complicated situations than one-way ANOVA, the analysis of variance table becomes
a very useful tool for identifying aspects of a complicated problem that deserve more attention. The
other reason is that it introduces the SSTrts as a measure of treatment differences.

The SSTrts can be broken into components corresponding to the sums of squares for individual
orthogonal contrasts. These components of SSTrts can then be used to explain the differences in
the means. Recall that a contrast is a parameter ∑

a
i=1 λiµi where the λis satisfy ∑

a
i=1 λi = 0. The

appropriate estimate and standard error were discussed earlier and the sum of squares for a contrast
was given in (5.1.4) as

SS

(
a

∑
i=1

λiµi

)
≡ (∑

a
i=1 λiȳi·)

2

∑
a
i=1 λ 2

i /Ni
.

In the balanced case with N = Ni for all i,

SS

(
a

∑
i=1

λiµi

)
=

(∑
a
i=1 λiȳi·)

2(
∑

a
i=1 λ 2

i

)/
N
.

The F test for H0 : ∑
a
i=1 λiµi = 0 versus HA : ∑

a
i=1 λiµi 6= 0 rejects H0 for large values of

SS (∑a
i=1 λiµi)/MSE.

Two contrasts ∑
a
i=1 λi1µi and ∑

a
i=1 λi2µi are defined to be orthogonal if

a

∑
i=1

λi1λi2

Ni
= 0.

In balanced problems, Ni = N for all i, so the condition of orthogonality becomes ∑
a
i=1 λi1λi2/N = 0

or equivalently
a

∑
i=1

λi1λi2 = 0.

Contrasts are only of interest when they define interesting functions of the µis. Orthogonal contrasts
are most useful in balanced problems because a set of orthogonal contrasts can retain interesting
interpretations. In unbalanced cases, orthogonality depends on the unequal Nis, so there is rarely
more than one interpretable contrast in a set of orthogonal contrasts.

EXAMPLE 5.4.1. Consider again the electrical characteristic data. The sample statistics are

Sample statistics: electrical characteristics
Strip N ȳi· s2

i
1 7 16.4429 0.749524
2 7 16.5143 0.194762
3 7 16.0714 0.162381
4 7 14.9571 1.139524

with MSE = .56155. We examine four contrasts

C1 ≡ (1)µ1 +(−1)µ2 +(0)µ3 +(0)µ4 = µ1−µ2,

C2 ≡ (1/2)µ1 +(1/2)µ2 +(−1)µ3 +(0)µ4 =
µ1 +µ2

2
−µ3,

C3 ≡ (1/3)µ1 +(1/3)µ2 +(1/3)µ3 +(−1)µ4 =
µ1 +µ2 +µ3

3
−µ4,

and
C4 ≡ (−1)µ1 +(−1)µ2 +(2)µ3 +(0)µ4.
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Contrasts C1 and C2 are orthogonal because

(1)(1/2)+(−1)(1/2)+(0)(−1)+(0)(0) = 0.

Similarly, C1 and C3 are orthogonal and C2 and C3 are orthogonal. We have previously examined
the contrast C1 and found the sum of squares to be

SS(C1) =
[(1)16.4429+(−1)16.5143+(0)16.0714+(0)14.9571]2

[12 +(−1)2 +02 +02]/7
= 0.0178 .

The sum of squares for C2 is

SS(C2) =
[(1/2)16.4429+(1/2)16.5143+(−1)16.0714+(0)14.9571]2

[(1/2)2 +(1/2)2 +(−1)2 +02]/7
= 0.7738.

The sum of squares for C3 is

SS(C3) =
[(1/3)16.4429+(1/3)16.5143+(1/3)16.0714+(−1)14.9571]2

[(1/3)2 +(1/3)2 +(1/3)2 +(−1)2]/7
= 10.0818.

The decomposition referred to earlier follows from the fact that

10.873 = SSTrts = SS(C1)+SS(C2)+SS(C3) = 0.0178+0.7738+10.0818 .

SSTrts is a measure of the evidence for differences between means. Almost all of the SSTrts is
accounted for by C3. Thus, almost all of the differences between the means can be accounted for
by the difference between µ4 and the average of µ1, µ2, and µ3. Almost none of the sum of squares
for treatments is due to the difference between µ1 and µ2. A small amount is due to the difference
between µ3 and the average of µ1 and µ2. The data are consistent with the idea that the means for
strips 1, 2, and 3 are the same.

The contrast C4 was introduced to illustrate the fact that multiplying a contrast by a constant has
no real effect on the contrast. Observe that

C4 =−2C2 .

In particular, C4 = 0 if and only if C2 = 0. Note that

SS(C4) =
[(−1)16.4429+(−1)16.5143+(2)16.0714+(0)14.9571]2

[(−1)2 +(−1)2 +22 +02]/7
= 0.7738,

so SS(C4) = SS(C2) and the F test for C2 = 0 is identical to the F test for C4 = 0. It is also easily
seen that a two-sided t test for H0 : C4 = 0 is identical to that for H0 : C2 = 0. The factor of −2 must
be accounted for in estimation and in tests of C2 and C4 other than testing that they are zero, but,
after suitable adjustment, estimation and testing are equivalent. The virtue of using C4 rather than
C2 is that the λis in C4 are all integers, so computations are simpler with C4.

There are many ways to pick a set of orthogonal contrasts. We established that the data are
consistent with the idea that ceramic strip 4 is different from the other strips and that there are no
differences between the other strips. The data are even more consistent with another set of orthog-
onal contrasts. Consider the claim that the value for strip 4 is the average of the values for strips 1
and 2, i.e., µ4 = (µ1 +µ2)/2 or equivalently

C5 ≡ (1)µ1 +(1)µ2 +(0)µ3 +(−2)µ4 = 0.
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A contrast orthogonal to C5 is C1, considered earlier. A contrast orthogonal to both C5 and C1 is

C6 ≡ (1)µ1 +(1)µ2 +(−3)µ3 +(1)µ4.

The sum of squares for C5 is

SS(C5) =
[(1)16.4429+(1)16.5143+(0)16.0714+(−2)14.9571]2

[12 +12 +02 +(−2)2]/7
= 10.803 .

The sum of squares for C1 was given earlier, SS(C1) = .018. The sum of squares for C6 is

SS(C6) =
[(1)16.4429+(1)16.5143+(−3)16.0714+(1)14.9571]2

[12 +12 +(−3)2 +12]/7
= .052 .

As before, with orthogonal contrasts

10.873 = SSTrts = SS(C5)+SS(C1)+SS(C6) = 10.803+ .018+ .052 .

For all practical purposes, these data are totally consistent with the claims C6 = 0 and C1 = 0 be-
cause SS(C6)

.
= 0 .

= SS(C1). Essentially, all the differences in means can be attributed to C5 because
SS(C5)

.
= SSTrts. 2

It is a mathematical fact that there is always one contrast that accounts for all of SSTrts, how-
ever, this contrast rarely has a simple interpretation because the coefficients of this contrast depend
on the sample means. In a balanced one-way analysis of variance with, say, four treatments, the
coefficients of the contrast that accounts for the entire SSTrts are λ1 = ȳ1· − ȳ··, λ2 = ȳ2· − ȳ··,
λ3 = ȳ3·− ȳ··, and λ4 = ȳ4·− ȳ··. Typically, a contrast with these coefficients will be difficult to in-
terpret. In Example 5.4.1, C5 was constructed in this way, but to simplify the discussion we rounded
the coefficients off. Rounding the coefficients helps to make the contrast more interpretable. In the
case of C5, the contrast became very simple. When rounding the coefficients, the contrast will not
contain quite all of the sum of squares for treatments.

One reasonable approach to analysis of variance is to identify the contrast that accounts for all
of the SSTrts and to try to interpret it. I prefer to look at the data and try to identify a contrast or
a few orthogonal contrasts that are interpretable and account for most of SSTrts. Either of these
approaches involves looking at the data to identify contrasts of interest. In such a situation, using
the standard F(1,d fE) or t(d fE) distributions for statistical inference is inappropriate. Appropriate
statistical methods are discussed in the next chapter.

In some situations, the structure of the treatments suggests orthogonal contrasts that are both
interesting and interpretable. When the structure of the treatments, rather than the data, suggests the
contrasts, standard methods of inference apply.

The key fact about orthogonal contrasts is that if C1, . . . ,Ca−1 is any set of contrasts with each
orthogonal to every other one, then

SSTrts = SS(C1)+ · · ·+SS(Ca−1).

In our example, a = 4, so there were sets of a− 1 = 3 orthogonal contrasts that decompose the
SSTrts. We gave two such sets of contrasts. There are an infinite number of other ways to choose
sets of orthogonal contrasts.

With a treatments, a set of orthogonal contrasts can contain no more than a−1 elements. There
can be at most a−1 orthogonal contrasts but one can also choose sets of orthogonal contrasts with,
say, q < a−1 elements. In such a case,

SSTrts≥ SS(C1)+ · · ·+SS(Cq).
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In particular, any one contrast C can be viewed as a set with q = 1, so

SSTrts≥ SS(C). (5.4.1)

Interesting contrasts are determined by the structure of the treatments. We now illustrate this
fact with an example.

EXAMPLE 5.4.2. Five diets were investigated to determine their effects on the growth of animals.
If the diets do not have any recognizable structure, about the only interesting set of contrasts is to
compare all pairs of population means. The collection of contrasts is µi− µi′ for i, i′ = 1,2,3,4,5
with i 6= i′. Note that µ1 = µ2 = µ3 = µ4 = µ5 if and only if all 10 of these contrast are zero, i.e.,
if µi− µi′ = 0 for all i 6= i′. These contrasts are not orthogonal. There can be at most 5− 1 = 4
members in a set of orthogonal contrasts; this collection of contrasts has 10 members. In fact, many
of these 10 contrasts are redundant. For example, if µ1− µ2 = 0 and µ2− µ3 = 0, then, of course,
µ1− µ3 = 0. More generally, if you know the value of µi− µ j and the value of µ j− µk, you also
know the value of µi−µk.

Although these 10 contrasts may be redundant, statistical inferences about them may not be. For
example, failing to reject H0 : µ1−µ2 = 0 and H0 : µ2−µ3 = 0 in no way implies the we will fail
to reject H0 : µ1−µ3 = 0. Similarly, rejecting H0 : µ1−µ2 = 0 and H0 : µ2−µ3 = 0 does not imply
that we will reject H0 : µ1−µ3 = 0.

Now suppose we are told that treatment 1 is the standard diet and that the other four treatments
are new, experimental diets. In this case, the structure of the treatments suggests that we might
examine only the contrasts µ1− µi for i = 2,3,4,5. These contrasts are not redundant. Knowing
two or three of them will never tell you the values of any others. For example, if µ1 − µ2 = 0,
µ1−µ3 = 0, and µ1−µ4 = 0, we still do not know the value of µ1−µ5. On the other hand, if all 4
of the contrasts equal 0, we must have µ1 = µ2 = µ3 = µ4 = µ5, and if the treatment means are all
equal, every contrast must be zero. These four contrasts are not orthogonal in any ANOVA.

Contrasts that are not redundant are said to be linearly independent. With a treatments, one can
have at most a− 1 linearly independent contrasts. Nontrivial orthogonal contrasts are always lin-
early independent. (The trivial contrast has λi = 0 for all i.) If any set of a−1 linearly independent
contrasts are all equal to 0, then µ1 = µ2 = · · ·= µa.

Additional structure on the treatments may suggest other contrasts. Suppose that the four new
diets are, in order, two based on beef, one based on pork, and one based on soybeans. In this case
contrasts with the following coefficients seem interesting.

Diet treatments
Control Beef Beef Pork Beans

Contrast λ1 λ2 λ3 λ4 λ5
Ctrl vs others 4 −1 −1 −1 −1
Beef vs beef 0 1 −1 0 0
Beef vs pork 0 1 1 −2 0
Meat vs beans 0 1 1 1 −3

The first contrast, Ctrl vs others, compares the control (standard diet) to the average of the other
four diets. This contrast would actually be

µ1−
µ2 +µ3 +µ4 +µ5

4

but multiplying the contrast by 4 gives the equivalent contrast

4µ1−µ2−µ3−µ4−µ5

which is the one tabled. The tabled contrast is simpler to work with because its contrast coefficients
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are all integers. The other three contrasts compare the two beef diets, the average of the beef diets
with the pork diet, and the average of the meat diets with the soybean diet. In a balanced ANOVA,
these four contrasts are all orthogonal to each other.

If the structure of the treatments was different, say, the first beef diet was instead a diet based on
lima beans, the interesting orthogonal contrasts change.

Diet treatments
Control Lima Beef Pork Soy

Contrast λ1 λ2 λ3 λ4 λ5
Ctrl vs others 4 −1 −1 −1 −1
Beef vs pork 0 0 1 −1 0
Lima vs soy 0 1 0 0 −1

Meat vs beans 0 −1 1 1 −1

These contrasts compare the control to the average of the other four diets, the two meat diets, the
two bean diets, and the average of the meat diets with the average of the bean diets. Again, the
contrasts are all orthogonal in a balanced ANOVA. 2

5.5 Comparing models

The hypothesis
H0 : µ1 = µ2 = · · ·= µa

can be viewed as imposing a change in the analysis of variance model

yi j = µi + εi j, (5.5.1)

i = 1, . . . ,a, j = 1, . . . ,Ni. If for some value µ , µ = µ1 = µ2 = · · · = µa the analysis of variance
model can be rewritten as

yi j = µ + εi j, (5.5.2)

which involves only a grand mean µ . This is just the special case of the analysis of variance model
in which the µis do not really depend on the value of i. In (5.1.2) we wrote the analysis of vari-
ance model as yi j = µ +αi + εi j. Model (5.5.2) is the special case obtained by dropping the αis.
For simplicity, in this section models (5.5.1) and (5.5.2) will be referred to as models (1) and (2),
respectively.

We wish to evaluate how well model (2) fits as compared to how well model (1) fits. A measure
of how well any model fits is the sum of squared errors; a poor fitting model has much larger errors
and thus a much larger SSE. In yi j = µi + εi j, the errors are εi j = yi j− µi and the estimated errors
(residuals) are ε̂i j = yi j− ȳi·. The sum of squares error in model (1) is the usual analysis of variance
sum of squares error,

SSE(1) =
a

∑
i=1

Ni

∑
j=1

ε̂
2
i j =

a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2
.

Recall that MSE(1) = SSE(1)/(n−a) is an estimate of σ2 and denote the error degrees of freedom

d fE(1) = n−a.

Model (2) treats all n observations as a random sample from one population with mean µ . Under
model (2), an estimate of σ2 is s2

y , the sample variance of all n observations, so

MSE(2)≡ s2
y =

1
n−1

a

∑
i=1

Ni

∑
j=1

(yi j− ȳ··)
2
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with error degrees of freedom
d fE(2) = n−1.

We define the sum of squares error from model (2) to be

SSE(2) = d fE(2)×MSE(2)

=
a

∑
i=1

Ni

∑
j=1

(yi j− ȳ··)
2
.

Since model (2) is a special case of model (1), the error from model (2) must be as large as
the error from model (1), i.e., SSE(2)≥ SSE(1). However, if SSE(2) is much greater than SSE(1),
it suggests that the special case, model (2), is an inadequate substitute for the full model (1). In
particular, large values of SSE(2)− SSE(1) suggest that the reduced model (2) is inadequate to
explain the data that, by assumption, were adequately explained using the full model (1). It can be
established that, if the reduced model is true, the statistic

MSTest ≡ SSE(2)−SSE(1)
d fE(2)−d fE(1)

is an estimate of σ2, which is independent of the estimate from the full model, MSE(1). If the
reduced model is not true, MSTest estimates σ2 plus a positive number. A test of whether model (2)
is an adequate substitute for model (1) is rejected if

F =
[SSE(2)−SSE(1)]

/
[d fE(2)−d fE(1)]

MSE(1)
(5.5.3)

is too much larger than 1. In particular, an α level test rejects the adequacy of model (2) when

[SSE(2)−SSE(1)]
/
[d fE(2)−d fE(1)]

MSE(1)
> F (1−α,d fE(2)−d fE(1),d fE(1)) . (5.5.4)

To see that the numerator in (5.5.3) is a reasonable estimate of σ2 when model (2) holds, write

MSE(2) =
1

d fE(2)
[SSE(2)−SSE(1)+SSE(1)]

=
d fE(2)−d fE(1)

d fE(2)

(
SSE(2)−SSE(1)
d fE(2)−d fE(1)

)
+

d fE(1)
d fE(2)

MSE(1).

MSE(2) is a weighted average of MSTest and MSE(1). MSE(1) is certainly a reasonable estimate
of σ2 and, if the means are all equal, MSE(2) is also a reasonable estimate of σ2. Thus, if the means
are all equal, [SSE(2)− SSE(1)]/[d fE(2)− d fE(1)] must be a reasonable estimate of σ2 because
if it were not, a weighted average of it and MSE(1) would not be a reasonable estimate of σ2.

The F statistic in (5.5.3) is exactly the analysis of variance table F statistic. This follows because,
relative to the analysis of variance table,

SSTot = SSE(2)
d f Tot = d fE(2)

SSE = SSE(1)
d fE = d fE(1)

MSE = SSE(1)
/

d fE(1)
SSTrts = SSE(2)−SSE(1)
d f Trts = d fE(2)−d fE(1)

MSTrts = [SSE(2)−SSE(1)]
/
[d fE(2)−d fE(1)]
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This technique of testing the adequacy of a reduced (special case) model by comparing the
error sum of squares for the full model and the reduced model is applicable very generally. In
more sophisticated unbalanced analysis of variance situations and in regression analysis, this is a
primary method used to test hypotheses. In particular, the test in (5.5.4) applies for any ANOVA or
regression model (2) that is a special case of any ANOVA or regression model (1) as long as the
errors are independent N(0,σ2).

5.6 The power of the analysis of variance F test

The power of a test is the probability of rejecting the null hypothesis when the null hypothesis is
false. Thus, the power of the analysis of variance F test is the probability of correctly concluding
that the µis are not all the same when they are in fact not all the same. In this section we give some
intuition for the power of the analysis of variance F test. For simplicity we discuss only balanced
analysis of variance.

As discussed in Section 5.2, whenever the analysis of variance model is correct, the MSE is an
unbiased estimate of

E(MSE) = σ
2 (5.6.1)

and MSTrts is an unbiased estimate of

E(MSTrts) = σ
2 +

N
a−1

a

∑
i=1

(µi− µ̄·)
2. (5.6.2)

Write

s2
µ =

1
a−1

a

∑
i=1

(µi− µ̄·)
2, (5.6.3)

so s2
µ is the ‘sample’ variance of the µis. The word sample is in quotation marks because we do not

really have a sample of µis, in fact we never get to observe the µis. s2
µ is a sample variance only in

the sense that the computational formula (5.6.3) is identical to that for a sample variance. With the
new notation, we can rewrite (5.6.2) as

E(MSTrts) = σ
2 +Ns2

µ . (5.6.4)

The analysis of variance F statistic is defined as

F =
MSTrts

MSE
.

Since the MSE and the MSTrts estimate (5.6.1) and (5.6.4) respectively, by substitution we see that
F is an estimate of

σ2 +Ns2
µ

σ2 = 1+
N
σ2 s2

µ . (5.6.5)

(F is not an unbiased estimate of this quantity but F is a reasonable estimate of it.)
The behavior of the F test depends crucially on the quantity that F estimates. First notice that if

the µis are all equal, they have no variability and s2
µ = 0. In fact the µis are all equal if and only if

s2
µ = 0. The statistic F always estimates the value in (5.6.5) and when s2

µ = 0 that value is 1. Thus
an F statistic that is too far above 1 suggests that s2

µ 6= 0. Alternatively, when the µis are not all
equal, they have positive variability and s2

µ > 0. In this case, F is estimating a value in (5.6.5) that
is greater than 1, so values of F substantially greater than 1 lead us to suspect that s2

µ > 0 and hence
that the µis are not all equal.

Remember that even when s2
µ = 0, F is only an estimate of 1; it has a natural variability about

1. To reject the idea that s2
µ = 0, an observed F value must be larger than would normally be

experienced when s2
µ = 0.
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When s2
µ = 0, the statistic F has an F(d f Trts,d fE) distribution. This distribution specifies

the values of F that would normally be experienced. Thus an α level test is rejected when the
observed F value is larger than all but 100α% of the observations that normally occur, i.e., larger
than F(1−α,d f Trts,d fE). When s2

µ = 0 there is only a probability of α that the observed F value
will exceed F(1−α,d f Trts,d fE).

Note that values of F that are much smaller than 1 do not suggest that s2
µ > 0. Within the present

discussion, values of F that are smaller than 1 are most consistent with s2
µ = 0 and will not be

considered further. It should be noted, however, that very small values of F are suggestive. In terms
of modeling, they are suggestive of something fairly complicated, cf. Christensen (1989, 1991).
Very small test statistics have also been known to occur when someone has manufactured data in
order to justify a null hypothesis. For example, some data reported by Mendel that supported his
theories of genetic inheritance were too good to be true.

We reject the hypothesis of equal µis for F values that are substantially greater than 1. It is
natural to ask what causes F to take on values that are substantially greater than 1. In other words,
what causes the test to have high power for detecting differences in the µis? Obviously, F will tend
to be substantially greater than 1 when it is estimating something that is substantially greater than
1, i.e., when

1+
N
σ2 s2

µ

is substantially greater than 1. There are three items involved. To make 1+Ns2
µ/σ2 much larger

than 1 we need some combination of N large, σ2 small, and s2
µ large. The first two items are some-

what controllable. To increase the power of the F test we can increase N, the size of the various
samples. The second item, σ2, is a parameter, so we will never know it exactly, but improving one’s
experimental methods can make it smaller. For example, measuring the height of a house with a
meter stick rather than a 30 centimeter ruler is likely to yield a much more accurate value for the
height. In later chapters we discuss some general methods for designing experiments that enable us
to reduce σ2. The third item above, s2

µ , we are simply stuck with. There is little we can do with
the µis to cause a test to be powerful. If the differences among the µis are small, the µis have little
variability and s2

µ is near zero. Other things being equal, it is unlikely that we will correctly reject
the F test when s2

µ is near zero. More accurately, it is unlikely that we will correctly reject the F
test when s2

µ is so small that Ns2
µ/σ2 is near zero. Even when s2

µ is small in absolute terms, if N is
large or σ2 is much smaller than s2

µ , we have a good chance of correctly identifying that there are
differences in the µis.

For specified values of Ns2
µ/σ2 it is possible to compute the probability of rejecting the F test.

To specify Ns2
µ/σ2 one needs to know N and some approximation for σ2; these are often available.

The most difficult part of computing the power of an F test is in specifying a reasonable value for
s2

µ . In specifying a value for s2
µ we need both to specify a pattern for the differences in the µis and to

quantify the extent of the differences. For example, our interest may be in detecting differences in
the µis when all of the µis are equal except one, which is, say, d units larger than the others. We can
compute the value for s2

µ by specifying d. Similarly, with an even number of treatments our interest
may be in detecting differences in the µis in which half the µis equal one value and the other half
equal a different value, with the two values d units apart. Again we can compute a value of s2

µ for
any difference d but the value of s2

µ depends on d in a very different manner than in the first case.

5.7 Exercises

EXERCISE 5.7.1. In a study of stress at 600% elongation for a certain type of rubber, Mandel
(1972) reported stress test data from five different laboratories. Summary statistics are given in
Table 5.6. Compute the analysis of variance table and test for differences in means between all pairs
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Table 5.6: Rubber stress at five laboratories

Sample Sample Sample
Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

Table 5.7: Acreage in corn for different sized farms

Farm Sample Sample Sample
acres size mean std. dev.

80 5 2.9957 0.4333
160 5 3.6282 0.4056
240 5 4.1149 0.4169
320 5 4.0904 0.4688
400 5 4.4030 0.5277

of labs. Use α = .01. Is there any reason to worry about the assumptions of the analysis of variance
model?

EXERCISE 5.7.2. Snedecor and Cochran (1967, section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of
acres planted in corn. Summary statistics are presented in Table 5.7. Note that the sample standard
deviations rather than the sample variances are given. In addition, the pooled standard deviation is
0.4526.

(a) Give the one-way analysis of variance model with all of its assumptions. Can any problems with
the assumptions be identified?

(b) Give the analysis of variance table for these data. Test whether there are any differences in corn
acreages due to the different size farms. Use α = .01.

(c) Test for differences between all pairs of farm sizes using α = .01 tests.
(d) Find the sum of squares for the following contrast:

Farm 80 160 240 320 400
Coeff. −2 −1 0 1 2

What percentage is this of the treatment sum of squares?
e) Give 95% confidence and prediction intervals for the number of acres in corn for each farm

size.

EXERCISE 5.7.3. Table 5.8 gives data on heights and weights of people. Give the analysis of
variance table and test for differences among the four groups. Give a 99% confidence interval for
the mean weight of people in the 72 inch height group.

EXERCISE 5.7.4. Conover (1971, p. 326) presented data on the amount of iron found in the
livers of white rats. Fifty rats were randomly divided into five groups of ten and each group was
given a different diet. We analyze the logs of the original data. The total sample variance of the 50
observations is 0.521767 and the means for each diet are given below.



5.7 EXERCISES 139

Table 5.8: Weights (in pounds) for various heights (in inches)

Sample Sample Sample
Height size mean variance

63 3 121.66̄ 158.333̄
65 4 131.25 72.913̄
66 2 142.50 112.500
72 3 171.66̄ 158.333̄

Table 5.9: Peel-strength of various adhesive systems

Adhesive
system Observations

1 60 63 57 53 56 57
2 57 52 55 59 56 54
3 19.8 19.5 19.7 21.6 21.1 19.3
4 52 53 44 48 48 53

Diet A B C D E
Mean 1.6517 0.87413 0.89390 0.40557 0.025882

Compute the analysis of variance table and test whether there are differences due to diet.
If diets A and B emphasize beef and pork respectively, diet C emphasizes poultry, and diets D

and E are based on dried beans and oats, the following contrasts may be of interest.

Diet
Contrast A B C D E
Beef vs. pork 1 −1 0 0 0
Mammals vs. poultry 1 1 −2 0 0
Beans vs. oats 0 0 0 1 −1
Animal vs. vegetable 2 2 2 −3 −3

Show that the contrasts are orthogonal and compute sums of squares for each contrast. Interpret
your results and draw conclusions about the data.

EXERCISE 5.7.5. In addition to the data discussed earlier, Mandel (1972) reported data from one
laboratory on four different types of rubber. Four observations were taken on each type of rubber.
The means are given below.

Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600

The sample variance of the 16 observations is 14.730793. Compute the analysis of variance table,
the overall F test, and test for differences between each pair of rubber types. Use α = .05.

EXERCISE 5.7.6. In Exercise 5.7.5 on the stress of four types of rubber, the observations on
material B were 22.96, 22.93, 22.49, and 35.71. Redo the analysis, eliminating the outlier. The
sample variance of the 15 remaining observations is 9.3052838.

EXERCISE 5.7.7. Bethea et al. (1985) reported data on an experiment to determine the effective-
ness of four adhesive systems for bonding insulation to a chamber. The data are a measure of the
peel-strength of the adhesives and are presented in Table 5.9. A disturbing aspect of these data is
that the values for adhesive system 3 are reported with an extra digit.
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Table 5.10: Weight gains of rats

Thyroxin Thiouracil Control
132 68 68 107 115
84 63 52 90 117

133 80 80 91 133
118 63 61 91 115

87 89 69 112 95
88

119

Table 5.11: Tetrahydrocortisone values for patients with Cushing’s syndrome

a b c
3.1 8.3 15.4 10.2
3.0 3.8 7.7 9.2
1.9 3.9 6.5 9.6
3.8 7.8 5.7 53.8
4.1 9.1 13.6 15.8
1.9

(a) Compute the sample means and variances for each group. Give the one-way analysis of variance
model with all of its assumptions. Are there problems with the assumptions? If so, does an
analysis on the square roots or logs of the data reduce these problems?

(b) Give the analysis of variance table for these (possibly transformed) data. Test whether there are
any differences in adhesive systems. Use α = .01.

(c) Test for differences between all pairs of adhesive systems using α = .01 tests.
(d) Find the sums of squares i) for comparing system 1 with system 4 and ii) for comparing system

2 with system 3.
(e) Perform a .01 level F test for whether the mean peel-strength of systems 1 and 4 differs from the

mean peel-strength of systems 2 and 3.
(f) What property is displayed by the sums of squares computed in (d) and (e)? Why do they have

this property?
(g) Give a 99% confidence interval for the mean of every adhesive system.
(h) Give a 99% prediction interval for every adhesive system.
(i) Give a 95% confidence interval for the difference between systems 1 and 2.

EXERCISE 5.7.8. Table 5.10 contains weight gains of rats from Box (1950). The rats were given
either Thyroxin or Thiouracil or were in a control group. Do a complete analysis of variance on the
data. Give the model, check assumptions, make residual plots, give the ANOVA table, and examine
appropriate contrasts.

EXERCISE 5.7.9. Aitchison and Dunsmore (1975) presented data on Cushing’s syndrome. Cush-
ing’s syndrome is a condition in which the adrenal cortex overproduces cortisol. Patients are divided
into one of three groups based on the cause of the syndrome: a – adenoma, b – bilateral hyperplasia,
and c – carcinoma. The data are amounts of tetrahydrocortisone in the urine of the patients. The
data are given in Table 5.11. Give a complete analysis.

EXERCISE 5.7.10. Draper and Smith (1966, p. 41) considered data on the relationship between
the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six month
period. The data are given in Table 5.12.
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Table 5.12: Age and costs of maintenance for truck tractors

Age Costs
0.5 163 182
1.0 978 466 549
4.0 495 723 681
4.5 619 1049 1033
5.0 890 1522 1194
5.5 987
6.0 764 1373

Note that there is only one observation at 5.5 years of age. This group does not yield an estimate
of the variance and can be ignored for the purpose of computing the mean squared error. In the
weighted average of variance estimates, the variance of this group is undefined but the variance gets
0 weight, so there is no problem.

Give the analysis of variance table for these data. Does cost differ with age? Is there a significant
difference between the cost at 0.5 years as opposed to 1.0 year? Use several contrasts to determine
whether there are any differences between costs at 4, 4.5, 5, 5.5, and 6 years. How much of the sum
of squares for treatments is due to the following contrast?

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Coeff. −5 −5 2 2 2 2 2

What is the sum of squares for the contrast that compares the average of 0.5 and 1.0 with the
averages of 4, 4.5, 5, 5.5, and 6?

EXERCISE 5.7.11. George Snedecor (1945a) asked for the appropriate variance estimate in the
following problem. One of six treatments was applied to the 10 hens contained in each of 12 cages.
Each treatment was randomly assigned to two cages. The data were the number of eggs laid by each
hen.

(a) What should you tell Snedecor? Were the treatments applied to the hens or to the cages? How
will the analysis differ depending on the answer to this question?

(b) The mean of the 12 sample variances computed from the 10 hens in each cage was 297.8. The
average of the 6 sample variances computed from the two cage means for each treatment was
57.59. The sample variance of the 6 treatment means was 53.725. How should you construct an
F test? Remember that the numbers reported above are not necessarily mean squares.

EXERCISE 5.7.12. Lehmann (1975), citing Heyl (1930) and Brownlee (1960), considered data
on determining the gravitational constant of three elements: gold, platinum, and glass. The data
Lehmann gives are the third and fourth decimal places in five determinations of the gravitational
constant. They are presented below. Analyze the data.

Gold Platinum Glass
83 61 78
81 61 71
76 67 75
79 67 72
76 64 74

EXERCISE 5.7.13. Shewhart (1939, p. 69) also presented the gravitational constant data of Heyl
(1930) that was considered in the previous problem, but Shewhart reports six observations for gold
instead of five. Shewhart’s data are given below. Analyze these data and compare your results to
those of the previous exercise.
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Gold Platinum Glass
83 61 78
81 61 71
76 67 75
79 67 72
78 64 74
72

EXERCISE 5.7.14. Recall that if Z ∼ N(0,1) and W ∼ χ2(r) with Z and W independent, then
by Definition 2.1.3 Z

/√
W/r has a t(r) distribution. Also recall that in a one-way ANOVA with

independent normal errors, a contrast has

a

∑
i=1

λiȳi· ∼ N

(
a

∑
i=1

λiµi,σ
2

a

∑
i=1

λ 2
i

Ni

)
,

SSE
σ2 ∼ χ

2(d fE),

and MSE independent of all the ȳi·s. Show that

∑
a
i=1 λiȳi·−∑

a
i=1 λiµi√

MSE ∑
a
i=1 λ 2

i /Ni

∼ t(d fE).



Chapter 6

Multiple comparison methods

As illustrated in Section 5.1, the most useful information from a one-way ANOVA is obtained
through examining contrasts. The trick is in picking interesting contrasts to consider. Interesting
contrasts are determined by the structure of the treatments or are suggested by the data.

The structure of the treatments often suggests a fixed group of contrasts that are of interest. For
example, if one of the treatments is a standard treatment or a control, it is of interest to compare
all of the other treatments to the standard. With a treatments, this leads to a− 1 contrasts. (These
will not be orthogonal.) In Chapter 11 we will consider factorial treatment structures. These include
cases such as four fertilizer treatments, say,

n0 p0 n0 p1 n1 p0 n1 p1

where n0 p0 is no fertilizer, n0 p1 consists of no nitrogen fertilizer but application of a phosphorous
fertilizer, n1 p0 consists of a nitrogen fertilizer but no phosphorous fertilizer, and n1 p1 indicates both
types of fertilizer. Again the treatment structure suggests a fixed group of contrasts to examine. One
interesting contrast compares the two treatments having nitrogen fertilizer against the two without
nitrogen fertilizer, another compares the two treatments having phosphorous fertilizer against the
two without phosphorous fertilizer, and a third contrast compares the effect of nitrogen fertilizer
when phosphorous is not applied with the effect of nitrogen fertilizer when phosphorous is applied.
Again, we have a treatments and a− 1 contrasts. In a balanced ANOVA, these a− 1 contrasts are
orthogonal. Even when there is an apparent lack of structure in the treatments, the very lack of
structure suggests a fixed group of contrasts. If there is no apparent structure, the obvious thing to
do is compare all of the treatments with all of the other treatments. With three treatments, there are
three distinct pairs of treatments to compare. With four treatments, there are six distinct pairs of
treatments to compare. With five treatments, there are ten pairs. With seven treatments, there are 21
pairs. With 13 treatments, there are 78 pairs.

One problem is that, with a moderate number of treatment groups, there are many contrasts to
look at. When we do tests or confidence intervals, there is a built in chance for error. The more
statistical inferences we perform, the more likely we are to commit an error. The purpose of the
multiple comparison methods examined in this chapter is to control the probability of making a
specific type of error. When testing many contrasts, we have many null hypotheses. This chapter
considers multiple comparison methods that control (i.e., limit) the probability of making an error
in any of the tests, when all of the null hypotheses are correct. Limiting this probability is referred to
as weak control of the experimentwise error rate. It is referred to as weak control because the control
only applies under the very stringent assumption that all null hypotheses are correct. Some authors
consider a different approach and define strong control of the experimentwise error rate as control
of the probability of falsely rejecting any null hypothesis. Thus strong control limits the probability
of false rejections even when some of the null hypotheses are false. Not everybody distinguishes
between weak and strong control, so the definition of experimentwise error rate depends on whose
work you are reading. One argument against weak control of the experimentwise error rate is that in
designed experiments, you choose treatments that you expect to have different effects. In such cases,

143
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Table 6.1: Mandel’s data on thirteen laboratories with summary statistics for the logs of the data

Lab Observations N ȳi· s2
i si

1 133 129 123 156 4 4.9031 0.01061315 0.1030
2 129 125 136 127 4 4.8612 0.00134015 0.0366
3 121 125 109 128 4 4.7919 0.00502248 0.0709
4 57 58 59 67 4 4.0964 0.00540738 0.0735
5 122 98 107 110 4 4.6906 0.00814531 0.0903
6 109 120 112 107 4 4.7175 0.00252643 0.0503
7 80 72 76 64 4 4.2871 0.00915446 0.0957
8 135 151 143 142 4 4.9603 0.00210031 0.0458
9 69 69 73 70 4 4.2518 0.00071054 0.0267

10 132 129 141 137 4 4.9028 0.00155179 0.0394
11 118 109 115 106 4 4.7176 0.00239586 0.0489
12 133 133 129 128 4 4.8731 0.00040518 0.0201
13 86 84 96 81 4 4.4610 0.00535505 0.0732

it makes little sense to concentrate on controlling the error under the assumption that all treatments
have the same effect. On the other hand, strong control is more difficult to establish.

Our discussion of multiple comparisons focuses on testing whether contrasts are equal to 0. In
all but one of the methods considered in this chapter, the experimentwise error rate is (weakly)
controlled by first doing a test of the hypothesis µ1 = µ2 = · · · = µa. If this test is not rejected, we
do not claim that any individual contrast is different from 0. In particular, if µ1 = µ2 = · · ·= µa, any
contrast among the means must equal 0, so all of the null hypotheses are correct. Since the error rate
for the test of µ1 = µ2 = · · ·= µa is controlled, the weak experimentwise error rate for the contrasts
is also controlled.

Many multiple testing procedures can be adjusted to provide multiple confidence intervals that
have a guaranteed simultaneous coverage. Several such methods will be presented in this chapter.

Besides the treatment structure suggesting contrasts, the other source of interesting contrasts is
having the data suggest them. If the data suggest a contrast, then the ‘parameter’ in our standard
theory for statistical inferences is a function of the data and not a parameter in the usual sense of
the word. When the data suggest the parameter, the standard theory for inferences does not apply.
To handle such situations we can often include the contrasts suggested by the data in a broader class
of contrasts and develop a procedure that applies to all contrasts in the class. In such cases we can
ignore the fact that the data suggested particular contrasts of interest because these are still contrasts
in the class and the method applies for all contrasts in the class. Of the methods considered in the
current chapter, only Scheffé’s method (discussed in Section 6.4) is generally considered appropriate
for this kind of data dredging.

Recently, a number of books have been published on multiple comparison methods, e.g.,
Hochberg and Tamhane (1987). A classic discussion is Miller (1981), who also focuses on weak
control of the experimentwise error rate, cf. Miller’s section 1.2.

We present multiple comparison methods in the context of the one-way ANOVA model (5.1.1)
but the methods extend easily to many other situations. We will use a single numerical example to
illustrate most of the methods discussed in this chapter. The data are introduced in Example 6.0.1.

EXAMPLE 6.0.1. Mandel (1972) presented data on the stress at 600% elongation for natural
rubber with a 40 minute cure at 140 oC. Stress was measured four times by each of 13 laboratories.
The units for the data are kilograms per centimeter squared (kg/cm2). The data are presented in
Table 6.1. While an analysis of these data on the original scale is not unreasonable, the assumptions
of equal variances and normality seem to be more nearly satisfied on the logarithmic scale. The
standard summary statistics for computing the analysis of variance on the natural logs of the data
are also given in Table 6.1.

This is a balanced one-way ANOVA, so the simple average of the 13 s2
i s gives the MSE. There
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Table 6.2: Analysis of variance table for logs of Mandel’s data

Source d f SS MS F P
Trts 12 3.92678 0.32723 77.73 0.000
Error 39 0.16418 0.00421
Total 51 4.09097
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Figure 6.1: Plot of residuals versus predicted values.

are three degrees of freedom for the variance estimate from each laboratory, so with 13 laboratories
there are a total of 13(3) = 39 degrees of freedom for error. The mean squared error times the
degrees of freedom for error gives the sum of squares for error. The sample variance of the 13
ȳi·s is s2

ȳ = .081806429. Multiplying this by the number of observations in each group, 4, gives
the MSTrts. The MSTrts times (13− 1) gives the SSTrts. The sum of squares total is the sample
variance of the logs of all 52 observations times (52−1). The degrees of freedom total are 52−1.
These calculations are summarized in the analysis of variance table given in Table 6.2.

Figures 6.1, 6.2, and 6.3 give residual plots. Figure 6.1 is a plot of the residuals versus the pre-
dicted values. The group mean ȳi· is the predicted value for an observation from group i. Figure 6.1
shows no particular trend in the variabilities. Figure 6.2 is a plot of the residuals versus indicators
of the 13 laboratories. Again, there are no obvious problems. Figure 6.3 gives a normal plot of the
residuals; the plot looks quite straight.

For pedagogical purposes, on some occasions we consider only the first seven of the 13 treatment
groups. We are not selecting these laboratories based on the data and we will continue to use the
MSE and d fE from the full data. 2

6.1 Fisher’s least significant difference method

The easiest way to adjust for multiple comparisons is to use R. A. Fisher’s least significant difference
method. To put it as simply as possible, with this method you first look at the analysis of variance
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Figure 6.2: Plot of residuals versus treatment number.
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Figure 6.3: Normal plot of residuals, W ′ = 0.976.
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F test for whether there are differences between the groups. If this test provides no evidence of
differences, you quit and go home. If the test is significant at, say, the α = .05 level, you just
ignore the multiple comparison problem and do all other tests in the usual way at the .05 level. This
method is generally considered inappropriate for use with contrasts suggested by the data. While
the theoretical basis for excluding contrasts suggested by the data is not clear (at least relative to
weak control of the experimentwise error rate), experience indicates that the method rejects far too
many individual null hypotheses if this exclusion is not applied. In addition, many people would not
apply the method unless the number of comparisons to be made was quite small.

The term ‘least significant difference’ comes from comparing pairs of means in a balanced
ANOVA. There is a number, the least significant difference (LSD), such that the difference between
two means must be greater than the LSD for the corresponding treatments to be considered signifi-
cantly different. Generally, we have a significant difference between µi and µ j if

|ȳi·− ȳ j·|√
MSE

[ 1
N + 1

N

] > t
(

1− α

2
,d fE

)
.

Multiplying both sides by the standard error leads to rejection if

|ȳi·− ȳ j·|> t
(

1− α

2
,d fE

)√
MSE

[
1
N
+

1
N

]
.

The number on the right is defined as the least significant difference,

LSD≡ t
(

1− α

2
,d fE

)√
MSE

2
N
.

Note that the LSD depends on the choice of α but does not depend on which means are being
examined. If the absolute difference between two sample means is greater than the LSD the popu-
lation means are declared significantly different. Recall, however, that these comparisons are never
attempted unless the analysis of variance F test is rejected at the α level. The reason that a single
number exists for comparing all pairs of means is that in a balanced ANOVA the standard error is
the same for any comparison between a pair of means.

EXAMPLE 6.1.1. For Mandel’s laboratory data, the analysis of variance F test is highly signifi-
cant, so we can proceed to make individual comparisons among pairs of means. With α = .05,

LSD = t(.975,39)

√
.00421

[
1
4
+

1
4

]
= 2.023(.0459) = .093

Means that are greater than .093 apart are significantly different. Means that are less than .093 apart
are not significantly different. We display the results visually. Order the sample means from smallest
to largest and indicate groups of means that are not significantly different by underlining the group.
Such a display is given below for comparing laboratories 1 through 7.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

Laboratories 4 and 7 are distinct from all other laboratories. All the other consecutive pairs of labs
are insignificantly different. Thus labs 5 and 6 cannot be distinguished. Similarly, labs 6 and 3
cannot be distinguished, 3 and 2 cannot be distinguished, and labs 2 and 1 cannot be distinguished.
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However, lab 5 is significantly different from labs 3, 2, and 1. Lab 6 is significantly different from
labs 2 and 1. Also, lab 3 is different from lab 1.

To be completely correct, when comparing just the first 7 laboratories the LSD method should
be based on an F test for just those 7 laboratories rather than the F test from Table 6.2 which is
based on all 13 laboratories. This can be done by computing a MSTrts in the usual way from the
sample means of just the first 7 labs. The resulting F test has 6 degrees of freedom in the numerator
and is highly significant (F = 89.84). Unfortunately, this point is often ignored in practice.

We can also use the LSD to compare all 13 laboratories. Again, we use a visual display, but with
more means we list the ordered means vertically and use letters, rather than lines, to indicate groups
that are not significantly different.

Lab. Mean
4 4.0964 A
9 4.2518 B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D E

11 4.7176 D E
3 4.7919 F E
2 4.8612 F G

12 4.8731 F G H
10 4.9028 G H

1 4.9031 G H
8 4.9603 H

For example, labs 12, 10, 1, and 8 all share the letter H, so there are no significant differences
declared among those four labs. 2

For testing a group of contrasts that are 1) not just comparisons between pairs of means or 2)
not from a balanced ANOVA, first perform the analysis of variance F test at the α level and if it is
rejected, test H0 : ∑i λiµi = 0 by rejecting if

SS (∑i λiµi)

MSE
> F(1−α,1,d fE).

Alternatively, one can use the equivalent t tests for the contrasts.

EXAMPLE 6.1.2. Suppose that in Mandel’s data the first two laboratories are in San Francisco,
the second two are in Seattle, the fifth is in New York, and the sixth and seventh are in Boston.
This structure to the treatments suggests some interesting orthogonal contrasts. We can compare the
average of the labs on the West Coast with the average of the labs on the East Coast. On the West
Coast we can compare the average of the San Francisco labs with the average of the Seattle labs,
we can compare the San Francisco labs with each other and the Seattle labs with each other. On the
East Coast we can compare the New York lab with the average of the Boston labs and the Boston
labs with each other. The contrast coefficients along with estimates and sums of squares are given
in Table 6.3. The contrasts involving averages have been multiplied by appropriate constants to get
simple integer contrast coefficients.

Recalling that the overall F test is highly significant for the first 7 labs, to perform the α = .05
level LSD method on the contrasts of Table 6.3, just divide each sum of squares by MSE = .00421
to get an F statistic and compare the F statistics to F(.95,1,39) = 4.09. The F statistics are given
below.

Contrast C1 C2 C3 C4 C5 C6
F 15.68 182.28 0.83 229.76 22.45 88.03
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Table 6.3: Orthogonal contrasts for the first seven laboratories in Mandel’s data

Contrast coefficients
Lab. C1 C2 C3 C4 C5 C6

1 3 1 1 0 0 0
2 3 1 −1 0 0 0
3 3 −1 0 1 0 0
4 3 −1 0 −1 0 0
5 −4 0 0 0 2 0
6 −4 0 0 0 −1 1
7 −4 0 0 0 −1 −1

Est 1.177 .8760 .0418 .6954 .3765 .4305
SS .0660 .7674 .0035 .9673 .0945 .3706

All of the contrasts are significantly different from zero except C3, the comparison between the two
labs in San Francisco. 2

Apparently some people have taken to calling this method the Fisher significant difference
(FSD) method. One suspects that this is a reaction to another meaning commonly associated with
the letters LSD. I, for one, would never suggest that only people who are hallucinating would believe
all differences declared by LSD are real.

6.2 Bonferroni adjustments

The Bonferroni method is the one method we consider that does not stem from a test of µ1 = µ2 =
· · ·= µa. Rather, it controls the experimentwise error rate by employing a simple adjustment to the
significance level of each individual test. If you have planned to do s tests, you just perform each test
at the α/s level rather than at the α level. This method is absolutely not appropriate for contrasts
that are suggested by the data.

The justification for Bonferroni’s method relies on a very simple result from probability: for two
events, the probability that one or the other event occurs is no more than the sum of the probabilities
for the individual events. Thus with two tests, say A and B, the probability that we reject A or reject B
is less than or equal to the probability of rejecting A plus the probability of rejecting B. In particular,
if we fix the probability of rejecting A at α/2 and the probability of rejecting B at α/2, then the
probability of rejecting A or B is no more than α/2+α/2 = α . More generally, if we have s tests
and control the probability of type I error for each test at α/s, then the probability of rejecting any
of the tests when all s null hypotheses are true is no more than α/s+ · · ·+α/s = α .

To compare pairs of means in a balanced ANOVA, as with the least significant difference
method, there is a single number to which we can compare the differences in means. For a fixed
α , this number is called the Bonferroni significant difference and takes on the value

BSD≡ t
(

1− α

2s
,d fE

)√
MSE

[
1
N
+

1
N

]
.

Recall for comparison that with the least significant difference method, the necessary tabled value is
t(1−α/2,d fE), which is always smaller than the tabled value for the BSD. Thus the BSD is always
larger than the LSD and the BSD tends to display fewer differences among the means than the LSD.

When testing a group of contrasts that are not just comparisons between pairs of means in a
balanced ANOVA, reject a particular contrast hypothesis H0 : ∑i λiµi = 0 if

SS (∑i λiµi)

MSE
> F

(
1− α

s
,1,d fE

)
.

Equivalent adjustments can be made when performing t rather than F tests.
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Bonferroni adjustments can also be used to obtain confidence intervals that have a simultaneous
confidence of (1−α)100% for covering all of the contrasts. The endpoints of these intervals are

a

∑
i=1

λiȳi·± t
(

1− α

2s
,d fE

)
SE

(
a

∑
i=1

λiȳi·

)
.

Recall that for an unbalanced ANOVA,

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

Ni
.

Only the tabled value distinguishes this interval from a standard confidence interval for ∑
a
i=1 λiµi.

In the special case of comparing pairs of means in a balanced ANOVA, the Bonferroni confidence
interval for, say, µi−µ j reduces to

(ȳi·− ȳ j·)±BSD.

For these intervals, we are (1−α)100% confident that the collection of all such intervals simulta-
neously contain all of the corresponding differences between pairs of population means.

EXAMPLE 6.2.1. In comparing the first 7 laboratories, we have
(7

2

)
= 21 pairs of laboratories to

contrast. The Bonferroni significant difference for α = .05 is

BSD = t
(

1− .025
21

,39
)√

.00421
[

1
4
+

1
4

]
= t(.99881,39).04588 = 3.2499(.04588) = .149 .

Means that are greater than .149 apart are significantly different. Means that are less than .149 apart
are not significantly different. Once again, we display the results visually. We order the sample
means from smallest to largest and indicate groups of means that are not significantly different by
underlining the group.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

Laboratories 4 and 7 are distinct from all other laboratories. Labs 5, 6, and 3 cannot be distinguished.
Similarly, labs 6, 3, and 2 cannot be distinguished; however, lab 5 is significantly different from lab
2 and also lab 1. Labs 3, 2, and 1 cannot be distinguished, but lab 1 is significantly different from
lab 6.

The Bonferroni simultaneous 95% confidence interval for, say, µ2−µ5 has endpoints

(4.8612−4.6906)± .149

which gives the interval (.021,.320). Transforming back to the original scale from the logarithmic
scale, we are 95% confident that values for lab 2 average being between e.021 = 1.02 and e.320 =
1.38 times greater than the values for lab 5. Similar conclusions are drawn for the other twenty
comparisons between pairs of means.

If we examine all 13 means, we have
(13

2

)
= 78 comparisons to make. The Bonferroni significant

difference for α = .05 is

BSD = t
(

1− .025
78

,39
)√

.00421
[

1
4
+

1
4

]
= t(.9997,39).04588 = 3.7125(.04588) = .170.



6.3 STUDENTIZED RANGE METHODS 151

Unlike the LSD, with more means to consider the BSD is larger. Now, means that are greater than
.170 apart are significantly different. Means that are less than .170 apart are not significantly differ-
ent. Again, we use a visual display, but with more means we list the ordered means vertically and
use letters, rather than lines, to indicate groups that are not significantly different.

Lab. Mean
4 4.0964 A
9 4.2518 A B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D E

11 4.7176 D E
3 4.7919 D E F
2 4.8612 E F

12 4.8731 E F
10 4.9028 F

1 4.9031 F
8 4.9603 F

Here, for example, labs 4 and 9 are not significantly different, nor are labs 9 and 7 but 4 and 7 are
different. Lab 13 is significantly different from all other labs. 2

EXAMPLE 6.2.2. Consider again the six contrasts from Example 6.1.2 and Table 6.3. To per-
form the α = .05 level Bonferroni adjustments on these six contrasts, once again divide the
sums of squares in Table 6.3 by the MSE to get F statistics but now compare the F statistics to
F(.9916̄,1,39) = 7.73, where .9916̄ = 1− .05/6. As given in Example 6.1.2, the F statistics are

Contrast C1 C2 C3 C4 C5 C6
F 15.68 182.28 0.83 229.76 22.45 88.03

Comparing these to 7.73 shows that once again all of the contrasts are significantly different from
zero except C3, the comparison between the two labs in San Francisco. 2

Minitab commands

Minitab can be used to obtain the F and t percentage points needed for Bonferroni’s method. In this
section we have used t(.99881,39), t(.9997,39), and F(.9916̄,1,39). To obtain these, use Minitab’s
inverse cumulative distribution function command.

MTB > invcdf .99881;

SUBC> t 39.

MTB > invcdf .9997;

SUBC> t 39.

MTB > invcdf .9916666;

SUBC> f 1 39.

6.3 Studentized range methods

Studentized range methods are generally used only for comparing pairs of means in balanced anal-
ysis of variance problems. They are not based on the analysis of variance F test but on an alternative
test of µ1 = µ2 = · · ·= µa.

The range of a random sample is the difference between the largest observation and the smallest
observation. For a known variance σ2, the range of a random sample from a normal population has a
distribution that can be worked out. This distribution depends on σ2 and the number of observations
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in the sample. It is only reasonable that the distribution depend on the number of observations
because the difference between the largest and smallest observations ought to be larger in a sample
of 75 observations than in a sample of 3 observations. Just by chance, we would expect the extreme
observations to become more extreme in larger samples.

Knowing the distribution of the range is not very useful because the distribution depends on σ2,
which we do not know. To eliminate this problem, divide the range by an independent estimate of
the standard deviation, say, σ̂ having rσ̂2/σ2 ∼ χ2(r). The distribution of this studentized range no
longer depends on σ2 but rather it depends on the degrees of freedom for the variance estimate. For
a sample of n observations and a variance estimate with r degrees of freedom, the distribution of the
studentized range is written as

Q(n,r).

Tables are given in Appendix B.5. The α percentile is denoted Q(α,n,r).
As discussed in Section 5.2, if µ1 = µ2 = · · ·= µa in a balanced ANOVA, the ȳi·s form a random

sample of size a from a N(µ1,σ
2/N) population. Looking at the range of this sample and dividing

by the natural independent chi-squared estimate of the standard deviation leads to the statistic

Q =
max ȳi·−min ȳi·√

MSE/N
.

If the observed value of this studentized range statistic is consistent with its coming from a
Q(a,d fE) distribution, then the data are consistent with the null hypothesis of equal means µi.
If the µis are not all equal, the studentized range Q tends to be larger than if the means were all
equal; the difference between the largest and smallest observations will involve not only random
variation but also the differences in the µis. Thus, for an α = .05 level test, if the observed value of
Q is larger than Q(.95,a,d fE), we reject the claim that the means are all equal.

The studentized range multiple comparison methods discussed in this section begin with this
studentized range test.

6.3.1 Tukey’s honest significant difference

John Tukey’s honest significant difference method is to reject the equality of a pair of means, say,
µi and µ j at the α = .05 level, if

|ȳi·− ȳ j·|√
MSE/N

> Q(.95,a,d fE).

Obviously, this test cannot be rejected for any pair of means unless the test based on the maximum
and minimum sample means is also rejected. For an equivalent way of performing the test, reject
equality of µi and µ j if

|ȳi·− ȳ j·|> Q(.95,a,d fE)
√

MSE/N.

With a fixed α , the honest significant difference is

HSD≡ Q(1−α,a,d fE)
√

MSE
/

N.

For any pair of sample means with an absolute difference greater than the HSD, we conclude that the
corresponding population means are significantly different. The HSD is the number that an observed
difference must be greater than in order for the population means to have an ‘honestly’ significant
difference. The use of the word ‘honest’ is a reflection of the view that the LSD method allows ‘too
many’ rejections.

Tukey’s method can be extended to provide simultaneous (1−α)100% confidence intervals for
all differences between pairs of means. The interval for the difference µi−µ j has end points

ȳi·− ȳ j·±HSD
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where HSD depends on α . For α = .05, we are 95% confident that the collection of all such intervals
simultaneously contains all of the corresponding differences between pairs of population means.

EXAMPLE 6.3.1. For comparing the first 7 laboratories in Mandel’s data with α = .05, the honest
significant difference is approximately

HSD = Q(.95,7,40)
√

MSE/4 = 4.39
√
.00421/4 = .142.

Here we have used Q(.95,7,40) rather than the correct value Q(.95,7,39) because the correct value
was not available in the table used. Treatment means that are more than .142 apart are significantly
different. Means that are less than .142 apart are not significantly different. Note that the HSD value
is similar to the corresponding BSD value of .149; this frequently occurs. Once again, we display
the results visually.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

These results are nearly the same as for the BSD except that labs 6 and 2 are significantly different
by the HSD criterion.

The HSD simultaneous 95% confidence interval for, say, µ2−µ5 has endpoints

(4.8612−4.6906)± .142

which gives the interval (.029, .313). Transforming back to the original scale from the logarithmic
scale, we are 95% confident that values for lab 2 average being between e.029 = 1.03 and e.313 = 1.37
times greater than values for lab 5. Again, there are 20 more intervals to examine.

If we consider all 13 means, the honest significant difference is approximately

HSD = Q(.95,13,40)
√

MSE/4 = 4.98
√

.00421/4 = .162

Unlike the LSD, but like the BSD, with more means to consider the HSD is larger. Now, means that
are greater than .162 apart are significantly different. Means that are less than .162 apart are not
significantly different. Again, we use a vertical display with letters to indicate groups that are not
significantly different.

Lab. Mean
4 4.0964 A
9 4.2518 A B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D E

11 4.7176 D E
3 4.7919 D E F
2 4.8612 G E F

12 4.8731 G E F
10 4.9028 G F

1 4.9031 G F
8 4.9603 G

The results are similar to those for the corresponding BSD of .170 except that labs 3 and 8 are now
different. 2
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Table 6.4: Comparison values for Newman–Keuls method as applied to Mandel’s data

r Q(.95, r,40) HSD r Q(.95, r,40) HSD
13 4.98 .162 7 4.39 .142
12 4.90 .159 6 4.23 .137
11 4.82 .156 5 4.04 .131
10 4.74 .154 4 3.79 .123

9 4.64 .151 3 3.44 .112
8 4.52 .147 2 2.86 .093

6.3.2 Newman–Keuls multiple range method

The Newman–Keuls multiple range method involves repeated use of the honest significant differ-
ence method with some minor adjustments. Multiple range methods are difficult to describe in
general, so we simply demonstrate how they work.

EXAMPLE 6.3.2. To use the Newman–Keuls method for comparing the first 7 laboratories in
Mandel’s data, we need the HSD value for comparing not only 7 laboratories, but also for comparing
6, 5, 4, 3, and 2 laboratories. Table 6.4 presents all the values needed, not only for comparing the first
7 labs, but also for comparing all 13 labs. Again, we approximate Q(.95,r,39) with Q(.95,r,40), so
HSD = Q(.95,r,40)

√
MSE/4 where

√
MSE/4 =

√
.00421/4 = .0324423.

As before, the seven means are ordered from smallest to largest. The smallest mean, 4.0964, and
the largest mean, 4.9031, are compared using the r = 7 value of HSD from Table 6.4. These means
are more than .142 apart so we go to the next stage.

At the second stage, the smallest mean, 4.0964, is compared with the second largest mean,
4.8612, and the second smallest mean, 4.2871, is compared to largest mean, 4.9031. These are
groups of means that are 6 apart, so they are compared using the HSD value for r = 6. Both differ-
ences in means are greater than .137, so we progress to the third stage.

In the third stage, the smallest mean, 4.0964, is compared to the third largest mean, 4.7919,
the second smallest mean, 4.2871, is compared to the second largest mean, 4.8612, and the third
smallest mean, 4.6906, is compared to the largest mean, 4.9031. These are groups of means that
are 5 apart, so they are compared using the HSD value for r = 5. All three differences in means are
greater than .131, so we progress to the fourth stage and so on.

At any particular stage, means that are r apart get compared using the HSD value for comparing
groups of r means. The only exception to this rule is that if at any given stage we conclude that
certain means are not significantly different, then at later stages we never reconsider the possibility
that they may contain significant differences. The standard visual display is given below.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

All ordered means that were r = 4 apart were different. Of the means that were r = 3 apart, two
groups were not significantly different. One of these consists of labs 5, 6, and 3, while the other
group consists of labs 3, 2, and 1. For r = 2, we do not consider the possibility that there may be
differences between labs 5, 6, and 3 or between labs 3, 2, and 1. We do consider possible differences
between 4 and 7 and between 7 and 5.

If the mean for lab 6 was 4.7875, rather than its actual value 4.7175, the exception referred to
in the previous paragraph would have come into play. In examining labs 5, 6, and 3, the difference
between the largest and smallest of the three consecutive means 4.6906, 4.7875, and 4.7919 would
still be less than the HSD for r = 3 which is .112. Thus the three labs would still be considered not
significantly different. The rule is that, since the three are not significantly different, we no longer
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consider the possibility that any subset of the means could be different. If we allowed ourselves
to compare the consecutive means 4.6906 and 4.7875 with r = 2, the appropriate HSD value is
.093 and the means for labs 5 and 6 would be considered significantly different. However, because
the triple 4.6906, 4.7875, and 4.7919 are not significantly different, we never compare 4.6906 and
4.7875 directly.

The visual display for all 13 laboratories is given below.

Lab. Mean
4 4.0964 A
9 4.2518 B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D

11 4.7176 D
3 4.7919 D E
2 4.8612 F E

12 4.8731 F E
10 4.9028 F E

1 4.9031 F E
8 4.9603 F

2

6.4 Scheffé’s method

Scheffé’s method is valid for examining any and all contrasts simultaneously. This method is pri-
marily used with contrasts that were suggested by the data. Scheffé’s method should not be used for
comparing pairs of means in a balanced ANOVA because the HSD method has properties compara-
ble to Scheffé’s but is better for comparing pairs of means.

Scheffé’s method is closely related to the analysis of variance F test. Recalling the definition of
the MSTrts, the analysis of variance F test is rejected when

SSTrts/(a−1)
MSE

> F(1−α,a−1,d fE). (6.4.1)

Recall from Section 5.4 that for any contrast ∑i λiµi,

SS

(
∑

i
λiµi

)
≤ SSTrts. (6.4.2)

It follows immediately that

SS (∑i λiµi)/(a−1)
MSE

≤ SSTrts/(a−1)
MSE

.

Scheffé’s method is to replace SSTrts in (6.4.1) with SS (∑i λiµi) and to reject H0 : ∑i λiµi = 0 if

SS (∑i λiµi)/(a−1)
MSE

> F(1−α,a−1,d fE).

From (6.4.1) and (6.4.2), Scheffé’s test cannot possibly be rejected unless the ANOVA test is re-
jected. This controls the experimentwise error rate for multiple tests. However, there always exists
a contrast that contains all of the SSTrts, i.e., there is always a contrast that achieves equality in
relation (6.4.2), so if the ANOVA test is rejected, there is always some contrast that can be rejected
using Scheffé’s method. This contrast may not be interesting but it exists, cf. Section 5.4.
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Scheffé’s method can be adapted to provide simultaneous (1−α)100% confidence intervals for
contrasts. These have the endpoints

a

∑
i=1

λiȳi·±
√
(a−1)F(1−α,a−1,d fE) SE

(
a

∑
i=1

λiȳi·

)
.

EXAMPLE 6.4.1. Just for a change, we reexamine the electrical characteristic data of Chapter 5
rather than illustrating the methods with Mandel’s data. The electrical characteristic data has MSE =
.56155 with d fE = 24. We examined the orthogonal contrasts

C1 ≡ (1)µ1 +(−1)µ2 +(0)µ3 +(0)µ4 = µ1−µ2,

C2 ≡ (1/2)µ1 +(1/2)µ2 +(−1)µ3 +(0)µ4 =
µ1 +µ2

2
−µ3,

and
C3 ≡ (1/3)µ1 +(1/3)µ2 +(1/3)µ3 +(−1)µ4 =

µ1 +µ2 +µ3

3
−µ4.

The sums of squares for C1, C2, and C3 are

SS(C1) = 0.0178, SS(C2) = 0.7738, and SS(C3) = 10.0818 .

These orthogonal contrasts were constructed because C3 is easily interpretable and contains a large
proportion of the available sum of squares for treatments; SSTrts = 10.873. The vast bulk of the
treatment differences are due to the difference between sheet 4 and the average of the other sheets.
The data suggest these contrasts, so it is not appropriate to ignore the selection process when testing
whether the contrasts are 0. Scheffé’s method compares

SS (C3)/(a−1)
MSE

=
10.0818/3
.56155

= 5.98

to an F(3,24) distribution. F(.999,3,24) = 7.55 and F(.99,3,24) = 4.72, so there is very substan-
tial evidence that sheet 4 differs from the average of the other sheets as evaluated using Scheffé’s
method. The similar computation for C1 gives an F of 0.01 and for C2 an F of 0.46. Both are less
than 1, so neither is significant.

In our earlier consideration of these data, we also examined the orthogonal contrasts

C5 ≡ (1)µ1 +(1)µ2 +(0)µ3 +(−2)µ4,

C1, and
C6 ≡ (1)µ1 +(1)µ2 +(−3)µ3 +(1)µ4.

The sums of squares for C5, C1, and C6 are

SS(C5) = 10.803, SS(C1) = 0.018, and SS(C6) = 0.052 .

These contrasts were specifically constructed so that S(C5)
.
= SSTrts. The only way to test a contrast

that was constructed so as to contain all of the sums of squares treatments is to behave as if the
contrast were the entire contribution from the treatments. Scheffé’s method uses the test statistic

SS (C5)/(a−1)
MSE

=
10.803/3
.56155

= 6.41

and compares it to an F(3,24) distribution. This is essentially the analysis of variance F test.
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The 95% Scheffé confidence interval for C3 has endpoints

(1/3)16.4429+(1/3)16.5143+(1/3)16.0714+(−1)14.9571

±
√

3F(.95,3,24)

√
.56155

(1/3)2 +(1/3)2 +(1/3)2 +(−1)2

7
.

F(.95,3,24) = 3.01, so the endpoints reduce to 1.386± .983 and the interval is (0.40,2.37).
2

As with the LSD method, the overall F test and thus Scheffé’s method should be adapted to the
contrasts of interest. For example, if we are considering only the first seven labs in Mandel’s data,
we would use an overall F test with only six degrees of freedom in the numerator and Scheffé’s
method for examining contrasts among the seven labs uses 6 in place of a−1 = 13.

6.5 Other methods

Other multiple comparison methods have been developed that are similar in spirit to the studentized
range methods. Just as studentized range methods were developed for comparing pairs of means in
balanced analysis of variance problems, these other methods were developed for examining other
sets of contrasts in balanced ANOVA. Again, the methods are not based on the analysis of variance
F test but on alternative tests of µ1 = µ2 = · · ·= µa. We will briefly discuss two of these methods:
Ott’s analysis of means method (AOM) and Dunnett’s many-one t statistics. In addition, we mention
another studentized range method proposed by Duncan that can also be modified for application
with AOM and Dunnett’s method.

6.5.1 Ott’s analysis of means method

Ott (1967) introduced a graphical method called analysis of means for comparing each mean to the
average of all the means. It is most often used in quality control work and the graphical method is
closely related to control charts for means, cf. Shewhart (1931). Ott’s work was founded upon earlier
work that is referenced in his article. Nelson (1993) contains a brief, clear introduction, extensions,
some tables, and references to other tables.

Balanced one-way ANOVA methods are founded on the fact that if µ1 = µ2 = · · · = µa, the
ȳi·s form a random sample of size a from a N(µ1,σ

2/N) population. We have already seen that the
distribution of the studentized range is known when µ1 = µ2 = · · ·= µa, so comparing the observed
studentized range to the known distribution provides a test of H0 : µ1 = µ2 = · · ·= µa. This test was
then modified to provide multiple comparison methods.

The AOM method is based on knowing the distribution of

max
i

|ȳi·− ȳ··|
SE(ȳi·− ȳ··)

when the null hypothesis H0 : µ1 = µ2 = · · · = µa is true. The distribution depends on the number
of treatments a and the d fE. The 1−α percentile of this distribution is often denoted h(α,a,d fE).
An α level test of H0 is rejected if

max
i

|ȳi·− ȳ··|
SE(ȳi·− ȳ··)

> h(α,a,d fE).

When this test is rejected, we can do multiple comparisons to identify which individual means are
different from the overall average. A particular mean µi is considered different if

|ȳi·− ȳ··|
SE(ȳi·− ȳ··)

> h(α,a,d fE).
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Clearly, if the overall test is not rejected, none of the individual means will be considered different.
The test given above is easily seen to be equivalent to the following: µi is considered different

from the average of all the µs (or equivalently from the average of the other µs) if ȳi· is not between
the values

ȳ··±h(α,a,d fE)SE(ȳi·− ȳ··).

This leads to a simple graphical procedure. Plot the pairs (i, ȳi·). On this plot add horizontal lines
at ȳ··± h(α,a,d fE)SE(ȳi·− ȳ··). Any ȳi· that lies outside the horizontal lines indicates a µi that is
different from the others. While it is not crucial, traditionally the graphical display also includes a
center line at ȳ··. This graphical display is very similar to a control chart for means. The AOM is
focused on testing whether one particular mean is different from the rest of the means. This may be
particularly appropriate for quality control problems.

The primary detail that we have not yet covered is the exact formula for SE(ȳi·− ȳ··). To compute
this, first note that

ȳi·− ȳ·· = ȳi·−
ȳ1·+ · · ·+ ȳa·

a

=
a−1

a
ȳi·−

1
a ∑

k 6=i
ȳk·.

It follows that the standard error is

SE(ȳi·− ȳ··) =

√√√√MSE

[(
a−1

a

)2

+(a−1)
(

1
a

)2
]/

N

=

√
MSE

[
a−1
aN

]
.

In fact, this argument explicates exactly what AOM is examining. AOM is simultaneously testing
whether the contrasts [(a−1)/a]µi− (1/a)∑k 6=i µk, i = 1, . . . ,a are all equal to 0. Equivalently, we
can multiply the contrasts by a and think of the contrasts as being (a−1)µi−∑k 6=i µk, i = 1, . . . ,a.
It is not difficult to see that these contrasts all equal 0 if and only if the µis are all equal.

A modification similar to the Newman–Keuls procedure can be used with AOM. The modifica-
tion involves changing the value of a in h(α,a,d fE). Order the values of |ȳi·− ȳ··|. When examining
the largest value of |ȳi·− ȳ··| compare it to h(α,a,d fE)SE(ȳi·− ȳ··), when examining the second
largest value of |ȳi·− ȳ··|, compare it to h(α,a−1,d fE)SE(ȳi·− ȳ··), etc. To maintain consistency,
if, say, the second largest value of |ȳi·− ȳ··| is not greater than h(α,a− 1,d fE)SE(ȳi·− ȳ··), all of
the smaller values of |ȳi·− ȳ··| should also be considered nonsignificant. Note that h(α,1,d fE) = 0
for any α , so that if all the other means are declared different, the mean with the smallest deviation
from ȳ·· will also be declared different, assuming that the deviation is positive.

6.5.2 Dunnett’s many-one t statistic method

Dunnett’s method is designed for situations in which there is a standard treatment (or placebo or
control) and where interest lies in comparing each of the other treatments to the standard. Miller
(1981) contains a thorough discussion along with references to the early work by Dunnett and
Paulson.

Suppose that the standard treatment is i = 1. Dunnett’s method is based on knowing the distri-
bution of

max
i

|ȳi·− ȳ1·|
SE(ȳi·− ȳ1·)

when the null hypothesis H0 : µ1 = µ2 = · · · = µa is true. If we denote the 1−α percentile of the
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distribution as d(1−α,a,d fE), an α level test of H0 is rejected if

max
i

|ȳi·− ȳ1·|
SE(ȳi·− ȳ1·)

> d(1−α,a,d fE).

When the overall test is rejected, we can do multiple comparisons to identify which µis are different
from µ1. A particular mean µi is considered different if

|ȳi·− ȳ1·|
SE(ȳi·− ȳ1·)

> d(1−α,a,d fE).

Clearly, if the overall test is not rejected, none of the individual means will be considered different.
It is also clear that µ1 = µ2 = · · ·= µa if and only if µi−µ1 = 0 for all i > 1. The standard error is
that for comparing two means, so

SE(ȳi·− ȳ1·) =

√
MSE

[
1
N
+

1
N

]
.

Simultaneous (1−α)100% confidence intervals for the µi−µ1s have endpoints

ȳi·− ȳ1·±d(1−α,a,d fE)SE(ȳi·− ȳ1·).

A modification similar to Newman–Keuls can be used with Dunnett’s method. This modification
orders the values of |ȳi·− ȳ1·| and adjusts the value of the a parameter in d(1−α,a,d fE). When ex-
amining the largest value of |ȳi·− ȳ1·|, use d(1−α,a,d fE), when examining the second largest value
of |ȳi·− ȳ1·|, use d(1−α,a−1,d fE), etc. Of course to maintain consistency, when it is determined
that, say, the second largest value of |ȳi·− ȳ1·| is not greater than d(1−α,a−1,d fE)SE(ȳi·− ȳ1·),
all of the smaller values of |ȳi·− ȳ1·| should be considered as nonsignificant also.

6.5.3 Duncan’s multiple range method

Duncan has developed a multiple range procedure similar to that of Newman–Keuls. Newman–
Keuls uses a series of tabled values Q(1 − α,a,d fE), Q(1 − α,a − 1,d fE), . . ., Q(1 −
α,2,d fE). Duncan’s method simply changes the tabled values. Duncan uses Q

(
[1−α]a−1,a,d fE

)
,

Q
(
[1−α]a−2,a−1,d fE

)
, . . ., Q(1−α,2,d fE). See Miller (1981) for a discussion of the rationale

behind these choices.
Using Duncan’s value Q

(
[1−α]a−1,a,d fE

)
to compare the largest and smallest means does

not control the experimentwise error rate at α . (It controls it at 1− [1−α]a−1.) As a result, Duncan
suggests performing the analysis of variance F test first and proceeding only if the F test indicates
that there are differences among the means at level α . Duncan’s method is more likely to conclude
that a pair of means is different than the Newman–Keuls method and less likely to establish a
difference than the LSD method. Just as the Newman–Keuls approach can be used to modify the
AOM and Dunnett’s method, Duncan’s idea can also be applied to the AOM and Dunnett’s method.

6.6 Summary of multiple comparison procedures

In this section we review and compare the uses of the various multiple comparison procedures.
The most general procedures are the least significant difference, the Bonferroni, and the Scheffé

methods. These can be used for arbitrary sets of preplanned contrasts. They are listed in order from
least conservative (most likely to reject an individual null hypothesis) to most conservative (least
likely to reject). Scheffé’s method can also be used for examining contrasts suggested by the data.
Bonferroni’s method has the advantage that it can easily be applied to almost any multiple testing
problem.
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Table 6.5: Rubber stress at five laboratories

Sample Sample Sample
Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

To compare all of the treatment groups in a balanced analysis of variance, we can use the least
significant difference, the Duncan, the Newman–Keuls, the Bonferroni, and the Tukey methods.
Again, these are (roughly) listed in the order from least conservative to most conservative. In some
cases, for example when comparing Bonferroni and Tukey, an exact statement of which is more
conservative is not possible.

To decide on a method, you need to decide on how conservative you want to be. If it is very
important not to claim differences when there are none, you should be very conservative. If it is
most important to identify differences that may exist, then you should choose less conservative
methods.

Finally, we discussed two specialized methods for balanced ANOVA. The analysis of means
provides for testing whether each group differs from all the other groups and Dunnett’s method
allows multiple testing of each group against a fixed standard group.

Many of the methods have corresponding methods for constructing multiple confidence in-
tervals. Various computer programs execute these procedures. For example, newer versions of
Minitab’s ‘oneway’ command compute these for Fisher’s LSD method, Tukey’s method, and Dun-
nett’s method.

6.7 Exercises

EXERCISE 6.7.1. Exercise 5.7.1 involved measurements from different laboratories on the stress
at 600% elongation for a certain type of rubber. The summary statistics are repeated in Table 6.5.
Ignoring any reservations you may have about the appropriateness of the analysis of variance model
for these data, compare all pairs of laboratories using α = .10 for the LSD, Bonferroni, Tukey,
and Newman–Keuls methods. Give joint 95% confidence intervals using Tukey’s method for all
differences between pairs of labs.

EXERCISE 6.7.2. Use Scheffé’s method with α = .01 to test whether the contrast in Exer-
cise 5.7.2d is zero.

EXERCISE 6.7.3. Use Bonferroni’s method with an α near .01 to give simultaneous confidence
intervals for the mean weight in each height group for Exercise 5.7.3.

EXERCISE 6.7.4. Use the LSD, Bonferroni, and Scheffé’s methods to test whether the four or-
thogonal contrasts in Exercise 5.7.4 are zero. Use α = .05.

EXERCISE 6.7.5. Exercise 5.7.5 contained data on stress measurements for four different types
of rubber. Four observations were taken on each type of rubber; the means are repeated below

Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600
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and the sample variance of the 16 observations is 14.730793. Test for differences between all pairs
of materials using α = .05 for the LSD, Bonferroni, Tukey, and Newman–Keuls methods. Give 95%
confidence intervals for the differences between all pairs of materials using the BSD method.

EXERCISE 6.7.6. In Exercise 5.7.6 on the stress of four types of rubber an outlier was noted
in material B. Redo the multiple comparisons of the previous problem eliminating the outlier and
using only the methods that are still applicable.

EXERCISE 6.7.7. In Exercise 5.7.7 on the peel-strength of different adhesive systems, parts (b)
and (c) amount to doing LSD multiple comparisons for all pairs of systems. Compare the LSD
results with the results obtained using the Tukey and Newman–Keuls methods with α = .01.

EXERCISE 6.7.8. For the weight gain data of Exercise 5.7.8, use the LSD, Bonferroni, and
Scheffé methods to test whether the following contrasts are zero: 1) the contrast that compares
the two drugs and 2) the contrast that compares the control with the average of the two drugs. Pick
an α level but clearly state the level chosen.

EXERCISE 6.7.9. For the Cushing’s syndrome data of Exercise 5.7.9, use all appropriate methods
to compare all pairwise differences among the three treatments. Pick an α level but clearly state the
level chosen.

EXERCISE 6.7.10. Use Scheffé’s method with α = .05 and the data of Exercise 5.7.10 to test the
significance of the contrast

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Coeff. −5 −5 2 2 2 2 2





Chapter 7

Simple linear and polynomial regression

This chapter examines data that come as pairs of numbers, say (x,y), and the problem of fitting a
line to them. More generally, it examines the problem of predicting one variable (y) from values of
another variable (x). Consider for the moment the popular wisdom that people who read a lot tend
to have large vocabularies and poor eyes. Thus reading causes both conditions: large vocabularies
and poor eyes. If this is true, it may be possible to predict the size of someone’s vocabulary from the
condition of their eyes. Of course this does not mean that having poor eyes causes large vocabularies.
Quite the contrary, if anything poor eyes probably keep people from reading and thus cause small
vocabularies. Regression analysis is concerned with predictive ability, not with causation.

Section 7.1 of this chapter introduces an example along with many of the basic ideas and meth-
ods of simple linear regression. The next five sections go into the details of simple linear regression.
Sections 7.7 and 7.8 deal with an idea closely related to simple linear regression: the correlation be-
tween two variables. Section 7.9 deals with methods for checking the assumptions made in simple
linear regression. If the assumptions are violated, we need alternative methods of analysis. Sec-
tion 7.10 presents methods for transforming the original data so that the assumptions become rea-
sonable on the transformed data. Sections 7.9 and 7.10 apply quite generally to analysis of variance
and regression models. They are not restricted to simple linear regression. Section 7.11 treats an al-
ternative to transformations as a method for dealing with nonlinearity in the relationship between y
and x, namely fitting polynomials (parabolas, etc.) to the data. Section 7.12 explores the relationship
between one-way analysis of variance and fitting polynomials.

7.1 An example

Data from The Coleman Report were reproduced in Mosteller and Tukey (1977). The data were
collected from schools in the New England and Mid-Atlantic states of the USA. In this chapter we
consider only two variables: y – the mean verbal test score for sixth graders and x – a composite
measure of socioeconomic status. The data are presented in Table 7.1.

Figure 7.1 contains a scatter plot of the data. Note that there is a rough linear relationship. The

Table 7.1: Coleman Report data

School y x School y x
1 37.01 7.20 11 23.30 −12.86
2 26.51 −11.71 12 35.20 0.92
3 36.51 12.32 13 34.90 4.77
4 40.70 14.28 14 33.10 −0.96
5 37.10 6.31 15 22.70 −16.04
6 33.90 6.16 16 39.70 10.62
7 41.80 12.70 17 31.80 2.66
8 33.40 −0.17 18 31.70 −10.99
9 41.01 9.85 19 43.10 15.03

10 37.20 −0.05 20 41.01 12.77

163
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Figure 7.1: Plot of y versus x.

higher the composite socioeconomic status variable, the higher the mean verbal test score. However,
there is a considerable amount of error in the relationship. By no means do the points lie exactly on
a straight line.

We assume a basic linear relationship between the ys and xs, something like y = β0 +β1x. Here
β1 is the slope of the line and β0 is the intercept. Unfortunately, the observed y values do not fit
exactly on a line so y = β0 + β1x is only an approximation. We need to modify this equation to
allow for the variability of the observations about the line. We do this by building a random error
term into the linear relationship. Write the relationship as y = β0 +β1x+ ε , where ε indicates the
random error. In this model for the behavior of the data, ε accounts for the deviations between the
y values we actually observe and the line β0 + β1x where we expect to observe any y value that
corresponds to x. As we are interested in predicting y from known x values, we treat x as a known
(nonrandom) variable.

We assume that the relationship y = β0 +β1x+ ε applies to all of our observations. For the cur-
rent data, that means we assume this relationship holds for all of the 20 pairs of values in Table 7.1.
This assumption is stated as the simple linear regression model for these data,

yi = β0 +β1xi + εi, (7.1.1)

i = 1, . . . ,20. For this model to be useful, we need to make some assumptions about the errors, the
εis. The standard assumption is that the

εis are independent N(0,σ2).

Given data for which these assumptions are reasonable, we can estimate the unknown parameters.
Although we assume a linear relationship between the ys and xs, the model does not assume that
we know the slope β1 or the intercept β0. Together these unknown parameters would tell us the
exact nature of the linear relationship but both need to be estimated. We use the notation β̂1 and
β̂0 to denote estimates of β1 and β0, respectively. To perform statistical inferences we also need
to estimate the variance of the errors, σ2. Note that σ2 is also the variance of the y observations
because none of β0, β1, and x are random.
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Simple linear regression involves many assumptions. It assumes that the relationship between
y and x is linear, it assumes that the errors are normally distributed, it assumes that the errors all
have the same variance, it assumes that the errors are all independent, and it assumes that the errors
all have mean 0. This last assumption is redundant. It turns out that the errors all have mean 0 if
and only if the relationship between y and x is linear. As far as possible, we will want to verify
(validate) that these assumptions are reasonable before we put much faith in the estimates and
statistical inferences that can be obtained from simple linear regression. Section 7.9 deals with
checking these assumptions.

Before getting into a detailed discussion of simple linear regression, we illustrate some high-
lights using the Coleman Report data. We need to fit model (7.1.1) to the data. A computer program
typically yields parameter estimates, standard errors for the estimates, t ratios for testing whether
the parameters are zero, P values for the tests, and an analysis of variance table. These results are
often displayed in a fashion similar to that illustrated below.

Predictor β̂k SE(β̂k) t P
Constant 33.3228 0.5280 63.11 0.000
x 0.56033 0.05337 10.50 0.000

Analysis of Variance
Source d f SS MS F P
Regression 1 552.68 552.68 110.23 0.000
Error 18 90.25 5.01
Total 19 642.92

Much can be learned from these two tables of statistics. The estimated regression equation is

y = 33.3+0.560x.

This equation allows us to predict a value for y when the value of x is given. In particular, for these
data an increase of one unit in socioeconomic status tends to increase mean verbal test scores by
about .56 units. This is not to say that some program to increase socioeconomic statuses by one unit
will increase mean verbal test scores by about .56 unit. The .56 describes the current data, it does
not imply a causal relationship. If we want to predict the mean verbal test score for a school that
is very similar to the ones in this study, this equation should give good predictions. If we want to
predict the mean verbal test score for a school that is very different from the ones in this study, this
equation is likely to give poor predictions. In fact, if we collect new data from schools with very
different socioeconomic statuses, the data are not similar to these, so this fitted model would be
highly questionable if applied to the new situation. Nevertheless, a simple linear regression model
with a different intercept and slope might fit the new data well. Similarly, data collected after a
successful program to raise socioeconomic statuses are unlikely to be similar to the data collected
before such a program. The relationship between socioeconomic status and mean verbal test scores
may be changed by such a program. In particular, the things causing both socioeconomic status
and mean verbal test score may be changed in unknown ways by such a program. These are crucial
points and bear repeating. The regression equation describes an observed relationship between mean
verbal test scores and socioeconomic status. It can be used to predict mean verbal test scores from
socioeconomic status in similar situations. It does not imply that changing the socioeconomic status
a fixed amount will cause the mean verbal test scores to change by a proportional amount.

In simple linear regression, the reference distribution for statistical inferences is almost invari-
ably t(d fE) where d fE is the degrees of freedom for error from the analysis of variance table. For
these data, d fE = 18. We now consider some illustrations of statistical inferences.

From our standard theory of Chapter 3, the 95% confidence interval for β1 has endpoints

β̂1± t(.975,d fE)SE
(

β̂1

)
.
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From a t table, t(.975,18) = 2.101, so, using the tabled statistics, the endpoints are

.56033±2.101(.05337).

The confidence interval is (.448, .672), so we are 95% confident that the slope β1 is between .448
and .672.

The t statistics for testing H0 : βk = 0 versus HA : βk 6= 0 are reported in the first table. For
example, the test of H0 : β1 = 0 versus HA : β1 6= 0 has

tobs =
0.56033
.05337

= 10.50.

The significance level of the test is the P value,

P = Pr[|t|> 10.50] = .000.

The value .000 indicates a large amount of evidence that β1 6= 0. Note that if β1 = 0, the linear
relationship becomes y = β0 +ε , so there is no relationship between y and x, i.e., y does not depend
on x. The small P value indicates that the slope is not zero and thus the variable x helps to explain
the variable y.

The primary value of the analysis of variance table is that it gives the degrees of freedom, the
sum of squares, and the mean square for error. The mean squared error is the estimate of σ2 and the
sum of squares error and degrees of freedom for error are vital for comparing different regression
models that we may choose to consider. Note that the sums of squares for regression and error add
up to the sum of squares total and that the degrees of freedom for regression and error also add up
to the degrees of freedom total.

The analysis of variance table gives an alternative but equivalent test for whether the x variable
helps to explain y. The alternative test of

H0 : β1 = 0 versus HA : β1 6= 0

is based on
F =

MSReg
MSE

=
552.68

5.01
= 110.23.

Note that the value of this statistic is 110.23 = (10.50)2; the F statistic is just the square of the
corresponding t statistic for testing H0 : β1 = 0 versus HA : β1 6= 0. The F and t tests are equivalent.
In particular the P values are identical. In this case, both are infinitesimal, zero to three decimal
places. Our conclusion that β1 6= 0 means that the x variable helps to explain the variation in the
y variable. In other words, it is possible to predict the verbal test scores for a school’s sixth grade
class from the socioeconomic measure. Of course, the fact that some predictive ability exists does
not mean that the predictive ability is sufficient to be useful.

The coefficient of determination, R2, measures the percentage of the total variability in y that is
explained by the x variable. If this number is large, it suggests a substantial predictive ability. In our
example

R2 ≡ SSReg
SSTot

=
552.68
642.92

= 86.0%,

so 86.0% of the total variability is explained by the regression model. This is a large percentage, so
it appears that the x variable has substantial predictive power. However, a large R2 does not imply
that the model is good in absolute terms. It may be possible to show that this model does not fit
the data adequately. In other words, while this model is explaining much of the variability, we may
be able to establish that it is not explaining as much of the variability as it ought. (Example 7.9.2
involves a model with a high R2 that is demonstrably inadequate.) Conversely, a model with a low
R2 value may be the perfect model but the data may simply have a great deal of variability. For
example, if you have temperature measurements obtained by having someone walk outdoors and
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guess the Celsius temperature and then use the true Fahrenheit temperatures as a predictor, the exact
linear relationship between Celsius and Fahrenheit temperatures may make a line the ideal model.
Nonetheless, the obvious inaccuracy involved in people guessing Celsius temperatures may cause a
low R2. Moreover, even a high R2 of 86% may provide inadequate predictions for the purposes of
the study, while in other situations an R2 of, say, 14% may be perfectly adequate. It depends on the
purpose of the study. Finally, it must be recognized that a large R2 may be an unrepeatable artifact
of a particular data set. The coefficient of determination is a useful tool but it must be used with care.
In particular, it is a much better measure of the predictive ability of a model than of the correctness
of a model.

Consider the problem of estimating the value of the line at x = −16.04. This value of x is the
minimum observed value for socioeconomic status, so it is somewhat dissimilar to the other x values
in the data. Its dissimilarity causes there to be substantial variability in estimating the regression line
(mean value of y) at this point. The point on the line is β0 +β1(−16.04) and the estimator is

β̂0 + β̂1x = 33.32+ .560(−16.04) = 24.34.

For constructing 95% t intervals, the percentile needed is t(.975,18) = 2.101. The standard error for
the estimate of the point on the line is usually available from computer programs; in this example it
is 1.140. The 95% confidence interval for the point on the line β0 +β1(−16.04) has endpoints

24.34±2.101(1.140)

which gives the interval (21.9,26.7). We are 95% confident that the population mean of the school-
wise mean verbal test scores for New England and Mid-Atlantic sixth graders with a school socioe-
conomic measure of −16.04 is between 21.9 and 26.7.

The prediction ŷ for a new observation with x = −16.04 is simply the estimated point on the
line

ŷ = β̂0 + β̂1(−16.04) = 24.34.

Prediction of a new observation is subject to more error than estimation of a point on the line. A new
observation has the same variance as all other observations, so the prediction interval must account
for this variance as well as for the variance of estimating the point on the line. The standard error
for the prediction interval is computed as

SE(Prediction) =
√

MSE +SE(Line)2. (7.1.2)

In this example,

SE(Prediction) =
√

5.01+(1.140)2 = 2.512.

The prediction interval endpoints are

24.34±2.101(2.512).

and the 95% prediction interval is (19.1,29.6). We are 95% confident that sixth graders’s mean
verbal test scores would be between 19.1 and 29.6 for a different New England or Mid-Atlantic
school with a socioeconomic measure of −16.04. Note that the prediction interval is considerably
wider than the corresponding confidence interval. Note also that this is just another special case of
the prediction theory in Section 3.5. As such, these results are analogous to those obtained for the
one sample, two sample, and one-way ANOVA data structures.

Minitab commands

The Minitab commands given below generate the table of estimates and the analysis of variance
table. Column c1 contains the test scores y and column c2 contains the composite socioeconomic
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statuses x. The primary command is to regress c1 on 1 predictor variable, c2. This same command
allows for more predictor variables and we will use that capability in this chapter as well as in the
chapters on multiple regression. In our example, the subcommand ‘predict −16.04’ was used; this
subcommand gives the estimate of the line (prediction) when x =−16.04, the standard error for the
estimate of the line, the 95% confidence interval for the value of the line at x = −16.04, and the
95% prediction interval when x =−16.04.

MTB > name c1 ’test’ c2 ’socio’

MTB > regress c1 on 1 c2;

SUBC> predict -16.04.

7.2 The simple linear regression model

In general, simple linear regression seeks to fit a line to pairs of numbers (x,y) that are subject to
error. These pairs of numbers may arise when there is a perfect linear relationship between x and a
variable y∗ but where y∗ cannot be measured without error. Our actual observations y are then the
sum of y∗ and the measurement error. Alternatively, we may sample a population of objects and
take two measurements on each object. In this case, both elements of the pair (x,y) are random. In
simple linear regression we think of using the x measurement to predict the y measurement. While
x is actually random in this scenario, we use it as if it were fixed because we cannot predict y until
we have actually observed the x value. We want to use the particular observed value of x to predict
y, so for our purposes x is a fixed number. In any case, the xs are always treated as fixed numbers in
simple linear regression.

The model for simple linear regression is a line with the addition of errors

yi = β0 +β1xi + εi, i = 1, . . . ,n

where y is the variable of primary interest and x is the predictor variable. Both the yis and the xis are
observable, the yis are assumed to be random and the xis are assumed to be known fixed constants.
The unknown constants (regression parameters) β0 and β1 are the intercept and the slope of the line,
respectively. The εis are unobservable errors that are assumed to be independent of each other with
mean zero and the same variance, i.e.,

E(εi) = 0, Var(εi) = σ
2.

Typically the errors are also assumed to have normal distributions, i.e.,

εis independent N(0,σ2).

Sometimes the assumption of independence is replaced by the assumption that Cov(εi,ε j) = 0 for
i 6= j.

Note that since β0, β1, and the xis are all assumed to be fixed constants,

E(yi) = E(β0 +β1xi + εi) = β0 +β1xi +E(εi) = β0 +β1xi,

Var(yi) = Var(εi) = σ
2,

and if the εis are independent, the yis are independent.

7.3 Estimation of parameters

The unknown parameters in the simple linear regression model are the slope, β1, the intercept, β0,
and the variance, σ2. All of the estimates β̂1, β̂0, and MSE, can be computed from just six summary
statistics

n, x̄·, s2
x , ȳ·, s2

y ,
n

∑
i=1

xiyi,
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i.e., the sample size, the sample mean and variance of the xis, the sample mean and variance of the
yis, and ∑

n
i=1 xiyi. The only one of these that is any real work to obtain on a decent hand calculator

is ∑
n
i=1 xiyi. The standard estimates of the parameters are, respectively,

β̂1 =
∑

n
i=1 (xi− x̄·)yi

∑
n
i=1 (xi− x̄·)

2

β̂0 = ȳ·− β̂1x̄·

and the mean squared error

MSE =
∑

n
i=1

(
yi− β̂0− β̂1xi

)2

n−2

=
1

n−2

[
n

∑
i=1

(yi− ȳ·)
2− β̂

2
1

n

∑
i=1

(xi− x̄·)
2

]

=
1

n−2

[
(n−1)s2

y− β̂
2
1 (n−1)s2

x

]
.

The slope estimate β̂1 given above is the form that is most convenient for deriving its statistical
properties. In this form it is just a linear combination of the yis. However, β̂1 is commonly written in
a variety of ways to simplify various computations and, unfortunately for students, they are expected
to recognize all of them. Observing that 0 = ∑

n
i=1 (xi− x̄·) so that 0 = ∑

n
i=1 (xi− x̄·) ȳ·, we can also

write

β̂1 =
∑

n
i=1 (xi− x̄·)(yi− ȳ·)

∑
n
i=1 (xi− x̄·)

2 =
sxy

s2
x
=

(∑
n
i=1 xiyi)−nx̄·ȳ·
(n−1)s2

x
. (7.3.1)

Here

sxy =
1

n−1

n

∑
i=1

(xi− x̄·)(yi− ȳ·)

is the sample covariance between x and y. The last equality on the right of equation (7.3.1) gives a
form suitable for computing β̂1 from the summary statistics.

EXAMPLE 7.3.1. For the Coleman Report data,

n = 20, x̄· = 3.1405, s2
x = 92.64798395,

ȳ· = 35.0825, s2
y = 33.838125,

n

∑
i=1

xiyi = 3189.8793 .

The estimates are

β̂1 =
3189.8793−20(3.1405)(35.0825)

(20−1)92.64798395
= .560325468,

β̂0 = 35.0825− .560325468(3.1405) = 33.32279787

and

MSE

=
1

20−2
[
(20−1)33.838125− (.560325468)2(20−1)92.64798395

]
=

1
18

[642.924375−552.6756109] (7.3.2)

=
90.2487641

18
= 5.01382.
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Up to round off error, these are the same results as tabled in Section 7.1. 2

It is not clear that these estimates of β0, β1, and σ2 are even reasonable. The estimate of the
slope β1 seems particularly unintuitive. However, from Proposition 7.3.2 below, the estimates are
unbiased, so they are at least estimating what we claim that they estimate.

Proposition 7.3.2. E
(

β̂1

)
= β1, E

(
β̂0

)
= β0, and E(MSE) = σ2.

Proofs of the unbiasedness of the slope and intercept are given in the appendix to this chapter.
The parameter estimates are unbiased but that alone does not ensure that they are good esti-

mates. These estimates are the best estimates available in several senses. We briefly mention these
optimality properties but for a detailed discussion see Christensen (1987, chapter II). Assuming that
the errors have independent normal distributions, all of the estimates have the smallest variance of
any unbiased estimates. The regression parameters are also maximum likelihood estimates. Max-
imum likelihood estimates are those values of the parameters that are most likely to generate the
data that were actually observed. Without assuming that the errors are normally distributed, the re-
gression parameters have the smallest variance of any unbiased estimates that are linear functions
of the y observations. (Linear functions allow multiplying the yis by constants and adding terms to-
gether. Remember, the xis are constants, as are any functions of the xis.) Note that with this weaker
assumption, i.e., giving up normality, we get a weaker result, minimum variance among only linear
unbiased estimates instead of all unbiased estimates. The regression parameter estimates are also
least squares estimates. Least squares estimates are choices of β0 and β1 that minimize

n

∑
i=1

(yi−β0−β1xi)
2
.

Under the standard assumptions, least squares estimates of the regression parameters are best (min-
imum variance) linear unbiased estimates (BLUEs), and for normally distributed data they are min-
imum variance unbiased estimates and maximum likelihood estimates.

To draw statistical inferences about the regression parameters, we need standard errors for the
estimates. To find the standard errors we need to know the variance of each estimate.

Proposition 7.3.3.

Var
(

β̂1

)
=

σ2

∑
n
i=1 (xi− x̄·)

2 =
σ2

(n−1)s2
x

and

Var
(

β̂0

)
= σ

2

[
1
n
+

x̄2
·

∑
n
i=1 (xi− x̄·)

2

]
= σ

2
[

1
n
+

x̄2
·

(n−1)s2
x

]
.

The proof of this proposition is given in the appendix at the end of the chapter. Note that, except
for the unknown parameter σ2, the variances can be computed using the same six numbers we used
to compute β̂0, β̂1, and MSE. Using MSE to estimate σ2 and taking square roots, we get the standard
errors.

SE
(

β̂1

)
=

√
MSE

(n−1)s2
x

and

SE
(

β̂0

)
=

√
MSE

[
1
n
+

x̄2
·

(n−1)s2
x

]
.
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Table 7.2: Analysis of variance

Source d f SS MS F

Intercept(β0) 1 nȳ2
· ≡C nȳ2

·

Regression(β1) 1 β̂
2
1 ∑

n
i=1 (xi − x̄·)2 SSReg MSReg

MSE

Error n−2 ∑
n
i=1

(
yi − β̂0 − β̂1xi

)2
SSE/(n−2)

Total n ∑
n
i=1 y2

i

EXAMPLE 7.3.4. For the Coleman Report data, using the numbers n, x̄·, and s2
x ,

Var
(

β̂1

)
=

σ2

(20−1)92.64798395
=

σ2

1760.311695

and

Var
(

β̂0

)
= σ

2
[

1
20

+
3.14052

(20−1)92.64798395

]
= σ

2 [.055602837] .

The MSE is 5.014, so the standard errors are

SE
(

β̂1

)
=

√
5.014

1760.311695
= .05337

and
SE
(

β̂0

)
=
√

5.014 [.055602837] = .5280.

2

We always like to have estimates with small variances. The forms of the variances show how
to achieve this. For example, the variance of β̂1 gets smaller when n or s2

x gets larger. Thus, more
observations (larger n) result in a smaller slope variance and more dispersed xi values (larger s2

x)
also result in a smaller slope variance. Of course all of this assumes that the simple linear regression
model is correct.

7.4 The analysis of variance table

A standard tool in regression analysis is the construction of an analysis of variance table. The best
form is given in Table 7.2. In this form there is one degree of freedom for every observation, cf. the
total line, and the sum of squares total is the sum of all of the squared observations. The degrees of
freedom and sums of squares for intercept, regression, and error can be added to obtain the degrees
of freedom and sums of squares total. We see that one degree of freedom is used to estimate the
intercept, one is used for the slope, and the rest are used to estimate the variance.

The more commonly used form for the analysis of variance table is given as Table 7.3. It elimi-
nates the line for the intercept and corrects the total line so that the degrees of freedom and sums of
squares still add up.

These two forms for the analysis of variance table are analogous to the two different forms
discussed in Section 5.2 for the one-way ANOVA analysis of variance table.

EXAMPLE 7.4.1. Consider again the Coleman Report data. The analysis of variance table was
given in Section 7.1; Table 7.4 illustrates the necessary computations. Most of the computations
were made earlier in equation (7.3.2) during the process of obtaining the MSE and all are based on
the usual six numbers, n, x̄·, s2

x , ȳ·, s2
y , and ∑xiyi. More directly, the computations depend on n, β̂1, s2

x ,
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Table 7.3: Analysis of variance

Source d f SS MS F

Regression(β1) 1 β̂
2
1 ∑

n
i=1 (xi − x̄·)2 SSReg MSReg

MSE

Error n−2 ∑
n
i=1

(
yi − β̂0 − β̂1xi

)2
SSE/(n−2)

Total n−1 ∑
n
i=1 (yi − ȳ·)2

Table 7.4: Analysis of variance

Source d f SS MS F

Regression(β1) 1 .5603252(20−1)92.64798 552.6756109 552.68
5.014

Error 20−2 90.2487641 90.2487641/18
Total 20−1 (20−1)33.838125

and s2
y . The corrected version of SSTot is (n−1)s2

y . Note that the SSE is obtained as SSTot−SSReg.
The correction factor C in Table 7.2 is 20(35.0825)2 but it is not used in these computations for
Table 7.4. 2

7.5 Inferential procedures

The general theory of Chapter 3 applies to inferences about regression parameters. The theory re-
quires 1) a parameter (Par), 2) an estimate (Est) of the parameter, 3) the standard error of the
estimate (SE(Est)) and 4) a known (tabled) distribution for

Est−Par
SE(Est)

that is symmetric about 0. The computations for most of the applications considered in this section
were illustrated in Section 7.1 for the Coleman Report data.

Consider inferences about the slope parameter β1. The estimate β̂1 and the standard error of β̂1
are as given in Section 7.3. The appropriate reference distribution is

β̂1−β1

SE
(

β̂1

) ∼ t(n−2).

Using standard methods, the 99% confidence interval for β1 has endpoints

β̂1± t(.995,n−2)SE
(

β̂1

)
.

An α = .05 test of, say, H0 : β1 = 0 versus HA : β1 6= 0 rejects H0 if

|β̂1−0|

SE
(

β̂1

) > t(.975,n−2).

An α = .05 test of H0 : β1 ≥ 1 versus HA : β1 < 1 rejects H0 if

β̂1−1

SE
(

β̂1

) <−t(.95,n−2).



7.5 INFERENTIAL PROCEDURES 173

For inferences about the intercept parameter β0, the estimate β̂0, and the standard error of β̂0 are
as given in Section 7.3. The appropriate reference distribution is

β̂0−β0

SE
(

β̂0

) ∼ t(n−2).

A 95% confidence interval for β0 has endpoints

β̂0± t(.975,n−2)SE
(

β̂0

)
.

An α = .01 test of H0 : β0 = 0 versus HA : β0 6= 0 rejects H0 if

|β̂0−0|

SE
(

β̂0

) > t(.995,n−2).

An α = .05 test of H0 : β0 ≤ 0 versus HA : β0 > 0 rejects H0 if

β̂0−0

SE
(

β̂0

) > t(.95,n−2).

Typically inferences about β0 are not of substantial interest. β0 is the intercept, it is the value of
the line when x = 0. Typically, the line is only an approximation to the behavior of the (x,y) pairs
in the neighborhood of the observed data. This approximation is only valid in the neighborhood of
the observed data. If we have not collected data near x = 0, the intercept is describing behavior of
the line outside the range of valid approximation.

We can also draw inferences about a point on the line y = β0 + β1x. For any fixed point x,
β0 +β1x has an estimate

ŷ≡ β̂0 + β̂1x.

To get a standard error for ŷ, we first need its variance. As shown in the appendix to this chapter, the
variance of ŷ is

Var
(

β̂0 + β̂1x
)
= σ

2

[
1
n
+

(x− x̄·)
2

(n−1)s2
x

]
, (7.5.1)

so the standard error of ŷ is

SE
(

β̂0 + β̂1x
)
=

√√√√MSE

[
1
n
+

(x− x̄·)
2

(n−1)s2
x

]
. (7.5.2)

The appropriate distribution for inferences about the point β0 +β1x is(
β̂0 + β̂1x

)
− (β0 +β1x)

SE
(

β̂0 + β̂1x
) ∼ t(n−2).

Using standard methods, the 99% confidence interval for (β0 +β1x) has endpoints(
β̂0 + β̂1x

)
± t(.995,n−2)SE

(
β̂0 + β̂1x

)
.

We typically prefer to have small standard errors. Even when σ2, and thus MSE, is large, from
equation (7.5.2) we see that the standard error of ŷ will be small when the number of observations
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n is large, when the xi values are well spread out, i.e., s2
x is large, and when x is close to x̄·. In

other words, the line can be estimated efficiently in the neighborhood of x̄· by collecting a lot
of data. Unfortunately, if we try to estimate the line far from where we collected the data, the
standard error of the estimate gets large. The standard error gets larger as x gets farther away from
the center of the data, x̄·, because the term (x− x̄·)

2 gets larger. This effect is standardized by the
original observations; the term in question is (x− x̄·)

2/
(n−1)s2

x , so (x− x̄·)
2 must be large relative

to (n−1)s2
x before a problem develops. In other words, the distance between x and x̄· must be several

times the standard deviation sx before a problem develops. Nonetheless, large standard errors occur
when we try to estimate the line far from where we collected the data. Moreover, the regression
line is often just an approximation that holds in the neighborhood of where the data were collected.
This approximation may be invalid for data points far from the original data. So, in addition to the
problem of having large standard errors, estimates far from the neighborhood of the original data
may be totally invalid.

Estimating a point on the line is distinct from prediction of a new observation for a given x
value. Ideally, the prediction would be the true point on the line for the value x. However, the true
line is an unknown quantity, so our prediction is the estimated point on the line at x. The distinction
between prediction and estimating a point on the line arises because a new observation is subject
to variability about the line. In making a prediction we must account for the variability of the new
observation even when the line is known, as well as account for the variability associated with our
need to estimate the line. The new observation is assumed to be independent of the past data, so
the variance of the prediction is σ2 (the variance of the new observation) plus the variance of the
estimate of the line as given in (7.5.1). The standard error replaces σ2 with MSE and takes the
square root, i.e.,

SE(Prediction) =

√√√√MSE

[
1+

1
n
+

(x− x̄·)
2

(n−1)s2
x

]
.

Note that this is the same as the formula given in equation (7.1.2). Prediction intervals follow in the
usual way. For example, the 99% prediction interval associated with x has endpoints

(ŷ)± t(.995,n−2)SE(Prediction) .

As discussed earlier, estimation of points on the line should be restricted to x values in the
neighborhood of the original data. For similar reasons, predictions should also be made only in the
neighborhood of the original data. While it is possible, by collecting a lot of data, to estimate the line
well even when the variance σ2 is large, it is not always possible to get good prediction intervals.
Prediction intervals are subject to the variability of both the observations and the estimate of the
line. The variability of the observations cannot be eliminated or reduced. If this variability is too
large, we may get prediction intervals that are too large to be useful. If the simple linear regression
model is the ‘truth’, there is nothing to be done, i.e., no way to improve the prediction intervals. If
the simple linear regression model is only an approximation to the true process, a more sophisticated
model may give a better approximation and produce better prediction intervals.

7.6 An alternative model

For some purposes, it is more convenient to work with an alternative to the model yi = β0+β1xi+εi.
The alternative model is

yi = β∗0 +β1 (xi− x̄·)+ εi

where we have adjusted the predictor variable for its mean. The key difference between the param-
eters in the two models is that

β0 = β∗0−β1x̄·.
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In fact, this is the basis for our formula for estimating β0. The new parameter β∗0 has a very simple
estimate, β̂∗0 ≡ ȳ·. It then follows that

β̂0 = ȳ·− β̂1x̄·.

The reason that this model is useful is because the predictor variable xi− x̄· has the property
∑

n
i=1 (xi− x̄·) = 0. This property leads to the simple estimate of β∗0 but also to the fact that ȳ· and β̂1

are independent. Independence simplifies the computation of variances for regression line estimates.
We will not go further into these claims at this point but the results follow trivially from the matrix
approach to regression that will be treated in later chapters.

The key point about the alternative model is that it is equivalent to the original model. The
β1 parameters are the same, as are their estimates and standard errors. The models give the same
predictions, the same ANOVA table F test, and the same R2. Even the intercept parameters are
equivalent, i.e., they are related in a precise fashion so that knowing about the intercept in either
model yields equivalent information about the intercept in the other model.

7.7 Correlation

The correlation coefficient is a measure of the linear relationship between two variables. The popu-
lation correlation coefficient, usually denoted ρ , was discussed in Chapter 1. The sample correlation
is defined as

r =
sxy

sx sy
=

∑
n
i=1 (xi− x̄·)(yi− ȳ·)√

∑
n
i=1 (xi− x̄·)

2
∑

n
i=1 (yi− ȳ·)

2
.

The sample correlation coefficient is related to the estimated slope. From equation (7.3.1) it is easily
seen that

r = β̂1
sx

sy
.

EXAMPLE 7.7.1. Simulated data with various correlations
Figures 7.2 through 7.5 contain plots of 25 correlated observations. These are presented so the reader
can get some feeling for the meaning of various sample correlation values. The caption of each plot
gives the sample correlation r and also the population correlation ρ . The population correlation is
only useful in that it provides some feeling for the amount of sampling variation to be found in r
based on samples of 25 from (jointly) normally distributed data. 2

A commonly used statistic in regression analysis is the coefficient of determination,

R2 ≡ SSReg
SSTot

.

This is the percentage of the total variation in the dependent variable that is explained by the regres-
sion. For simple linear regression,

R2 =
β̂ 2

1 ∑
n
i=1 (xi− x̄·)

2

∑
n
i=1 (yi− ȳ·)

2 = β̂
2
1

s2
x

s2
y
= r2.

In later chapters we will consider regression problems with more than one predictor variable. For
such problems R2 does not equal r2. In fact, with more than one predictor, there are several r2s that
one could compute. It is not clear which of these one would want to compare to R2.
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y2
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Figure 7.2: Correlation plot, ρ = 0.000, r = 0.144.
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Figure 7.3: Correlation plot, ρ = 0.894, r = 0.929.



7.7 CORRELATION 177

y4
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Figure 7.4: Correlation plot, ρ =−0.894, r =−0.929.
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Figure 7.5: Correlation plot, ρ = 0.447, r = 0.593.
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7.8 Recognizing randomness: simulated data with zero correlation

Just as it is important to be able to look at a plot and tell when the x and y variables are related,
it is important to be able to look at a plot and tell that two variables are unrelated. In other words,
we need to be able to identify plots that only display random variation. This skill is of particular
importance in Section 7.9 where we use plots to evaluate the assumptions made in simple linear
regression. To check the assumptions of the regression model, we use plots that should display only
random variation when the assumptions are true. Any systematic pattern in the model checking plots
indicates a problem with our assumed regression model.

EXAMPLE 7.8.1. Simulated data with zero correlation
We now examine data on six uncorrelated variables, C10 through C15. Figures 7.6 through 7.14
contain various plots of the variables. Since all the variable pairs have zero correlation, i.e., ρ = 0,
any ‘patterns’ that are recognizable in these plots are due entirely to random variation. In particular,
note that there is no real pattern in Figure 7.13.

The point of this example is to familiarize the reader with the appearance of random plots. The
reader should try to identify systematic patterns in these plots, remembering that there are none.
This suggests that in the model checking plots that appear later, any systematic pattern of interest
should be more pronounced than anything that can be detected in Figures 7.6 through 7.15.

Below are the sample correlations r for each pair of variables. Although ρ = 0, none of the r
values is zero and some of them are quite far from 0.

Sample correlations
C10 C11 C12 C13 C14 C15

C10 1.000
C11 0.005 1.000
C12 −0.145 −0.209 1.000
C13 −0.162 −0.416 0.488 1.000
C14 −0.034 −0.038 −0.265 0.003 1.000
C15 −0.218 −0.202 0.310 0.114 0.134 1.000

2
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c10
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Figure 7.6: Plot of data with ρ = 0.
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Figure 7.7: Plot of data with ρ = 0.
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Figure 7.8: Plot of data with ρ = 0.
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Figure 7.9: Plot of data with ρ = 0.
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Figure 7.10: Plot of data with ρ = 0.
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Figure 7.11: Plot of data with ρ = 0.
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c14
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Figure 7.12: Plot of data with ρ = 0.
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Figure 7.13: Plot of data with ρ = 0.
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Figure 7.14: Plot of data with ρ = 0.

Minitab commands

The plots and sample correlations in this section were obtained with the Minitab commands given
below.

MTB > random 25 c10-c15;

SUBC> normal 0 1.

MTB > plot c10 c11

MTB > plot c11 c12

MTB > plot c12 c13

MTB > plot c13 c14

MTB > plot c14 c15

MTB > plot c15 c13

MTB > plot c14 c12

MTB > plot c13 c11

MTB > plot c12 c10

MTB > note OBTAIN SAMPLE CORRELATION MATRIX

MTB > corr c10-c15

7.9 Checking assumptions: residual analysis

The assumptions involved in regression can all be thought of in terms of the errors. The assumptions
are that

1. the εis are independent,
2. E(εi) = 0 for all i,
3. Var(εi) = σ2 for all i,
4. the εis are normally distributed.
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To have faith in our analysis, we need to validate these assumptions as far as possible. These are
assumptions and cannot be validated completely, but we can try to detect gross violations of the
assumptions.

The first assumption, that the εis are independent, is the most difficult to validate. If the obser-
vations are taken at regular time intervals, they may lack independence and standard time series
methods may be useful in the analysis. We will not consider this further, the interested reader can
consult the time series literature, e.g., Shumway (1988). In general, we rely on the data analyst to
think hard about whether there are reasons for the data to lack independence.

The second assumption is that E(εi) = 0. This is violated when we have the wrong regression
model. The simple linear regression model with E(εi) = 0 specifies that

E(yi) = β0 +β1xi.

If we fit this model when it is incorrect, we will not have errors with E(εi) = 0. Having the wrong
model is called lack of fit.

The last two assumptions are that the errors all have some common variance σ2 and that they
are normally distributed. The term homoscedasticity refers to having a constant (homogeneous)
variance. The term heteroscedasticity refers to having nonconstant (heterogeneous) variances.

In checking the error assumptions, we are hampered by the fact that the errors are not observable;
we must estimate them. The model involves

yi = β0 +β1xi + εi

or equivalently,
yi−β0−β1xi = εi.

We can estimate εi with the residual

ε̂i = yi− β̂0− β̂1xi.

Actually, I prefer to call this predicting the error rather than estimating it. One estimates fixed un-
known parameters and predicts unobserved random variables.

Previously, we used residuals to check assumptions in one-way analysis of variance. The discus-
sion here is similar but more extensive. The methods presented here also apply to ANOVA models,
but, especially in balanced ANOVA, many of the issues are not as crucial. Note also that, as in one-
way ANOVA, the SSE for simple linear regression is precisely the sum of the squared residuals.

Two of the error assumptions are independence and homoscedasticity of the variances. Unfor-
tunately, the residuals are neither independent nor do they have the same variance. The residuals
all involve the random variables β̂0 and β̂1, so they are not independent. Moreover, the ith residual
involves β̂0 + β̂1xi, the variance of which depends on (xi− x̄·). Thus the variance of ε̂i depends on
xi. There is little we can do about the lack of independence except hope that it does not cause se-
vere problems. On the other hand, we can adjust for the differences in variances. The variance of a
residual is

Var(ε̂i) = σ
2(1−hi)

where hi is the leverage of the ith case. Leverages are discussed a bit later in this section and more
extensively in relation to multiple regression.

Given the variance of a residual, we can obtain a standard error for it,

SE(ε̂i) =
√

MSE(1−hi).

We can now adjust the residuals so they all have a variance of about 1; these standardized residuals
are

ri =
ε̂i√

MSE(1−hi)
.
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The main tool used in checking assumptions is plotting the residuals or, more commonly, the
standardized residuals. If the assumptions are correct, plots of the standardized residuals versus any
variable should look random. If the variable plotted against the ris is continuous with no major
gaps, the plots should look similar to the plots given in the previous section. In analysis of variance
problems, we often plot the residuals against indicators of the treatment groups, so the discrete
nature of the number of groups keeps the plots from looking like those of the previous section. The
single most popular diagnostic plot is probably the plot of the standardized residuals against the
predicted values

ŷi = β̂0 + β̂1xi,

however the ris can be plotted against any variable that provides a value associated with each case.
Violations of the error assumptions are indicated by any systematic pattern in the residuals. This

could be, for example, a pattern of increased variability as the predicted values increase, or some
curved pattern in the residuals, or any change in the variability of the residuals.

A residual plot that displays an increasing variance looks roughly like a horn opening to the
right.
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A residual plot indicating a decreasing variance is a horn opening to the left.
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Plots that display curved shapes typically indicate lack of fit. One example of a curve is given below.

# ' $

EXAMPLE 7.9.1. Coleman Report data
Figures 7.15 through 7.17 contain standardized residual plots for the Coleman Report Data. Fig-
ure 7.15 is a plot against the predicted values; Figure 7.16 is a plot against the sole predictor vari-
able x. The shapes of these two plots are identical. This always occurs in simple linear regression
because the predictions ŷ are a linear function of the one predictor x. The one caveat to the claim
of identical shapes is that the plots may be reversed. If the estimated slope is negative, the largest
x values correspond to the smallest ŷ values. Figures 7.15 and 7.16 look like random patterns but
it should be noted that if the smallest standardized residual were dropped (the small one on the
right), the plot might suggest decreasing variability. The normal plot of the standardized residuals
in Figure 7.17 does not look too bad. 2
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Figure 7.15: Plot of the standardized residuals r versus ŷ, Coleman Report.
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Figure 7.16: Plot of the standardized residuals r versus x, Coleman Report.
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Figure 7.17: Normal plot, Coleman Report, W ′ = .966.

Minitab commands

We now illustrate the Minitab commands necessary for the analysis in Example 7.9.1. The subtlest
thing going on here is in the command ‘regress c1 on 1 c2 c11 c12’. The number 1 indicates that
there is one predictor variable x and the first column (c2) after the number 1 is taken to be that pre-
dictor. The command recognizes columns c11 and c12 as not being predictors; in fact, the command
puts the standardized residuals ri in the first column (c11) listed after the predictor and the predicted
values ŷi in the second column (c12) listed after
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Table 7.5: Hooker data

Case Temperature Pressure Case Temperature Pressure
1 180.6 15.376 17 191.1 19.490
2 181.0 15.919 18 191.4 19.758
3 181.9 16.106 19 193.4 20.480
4 181.9 15.928 20 193.6 20.212
5 182.4 16.235 21 195.6 21.605
6 183.2 16.385 22 196.3 21.654
7 184.1 16.959 23 196.4 21.928
8 184.1 16.817 24 197.0 21.892
9 184.6 16.881 25 199.5 23.030

10 185.6 17.062 26 200.1 23.369
11 185.7 17.267 27 200.6 23.726
12 186.0 17.221 28 202.5 24.697
13 188.5 18.507 29 208.4 27.972
14 188.8 18.356 30 210.2 28.559
15 189.5 18.869 31 210.8 29.211
16 190.6 19.386

the predictor variable. Actually, Minitab will let you write the command as ‘regress c1 on 1 c2 put
standardized resids in c11 put predicted values in c12’. Minitab just ignores all the words in this
command other than ‘regress’.

MTB > names c1 ’test’ c2 ’socio’

MTB > regress c1 on 1 c2 c11 c12

MTB > names c11 ’r’ c12 ’yhat’

MTB > note PLOT STD. RESIDS AGAINST PRED. VALUES

MTB > plot c11 c12

MTB > note PLOT STD. RESIDS AGAINST x

MTB > plot c11 c2

MTB > note COMPUTE NORMAL SCORES (RANKITS) FOR THE

MTB > note STANDARDIZED RESIDUALS

MTB > nscores c11 c10

MTB > note MAKE NORMAL PLOT

MTB > plot c11 c10

MTB > note COMPUTE W’ STATISTIC

MTB > corr c11 c10

MTB > note CORR PRINTS OUT A NUMBER LIKE .978

MTB > let k1=.978**2

MTB > print k1

Another example

EXAMPLE 7.9.2. Hooker data
Forbes (1857) reported data on the relationship between atmospheric pressure and the boiling point
of water that were collected in the Himalaya mountains by Joseph Hooker. Weisberg (1985, p. 28)
presented a subset of 31 observations that are reproduced in Table 7.5.

A scatter plot of the data is given in Figure 7.18. The data appear to fit a line very closely. The
usual summary tables are given below.

Predictor β̂k SE(β̂k) t P
Constant −64.413 1.429 −45.07 0.000
Temperature 0.440282 0.007444 59.14 0.000



7.9 CHECKING ASSUMPTIONS: RESIDUAL ANALYSIS 189
Pressure

30.0+

- **

- *

-

-

25.0+ *

- *

- **

- *2*

-

20.0+ * **

- * * **

- *

- 2*2*

- *2**

15.0+ *

-

--+---------+---------+---------+---------+---------+----

180.0 186.0 192.0 198.0 204.0 210.0

Temperature

Figure 7.18: Scatter plot of Hooker data.

Analysis of variance
Source d f SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
Total 30 447.85

The coefficient of determination is an exceptionally large

R2 =
444.17
447.85

= 99.2%.

The plot of residuals versus predicted values is given in Figure 7.19. A pattern is very clear; the
residuals form something like a parabola. In spite of a very large R2 and a scatter plot that looks
very linear, the residual plot shows that a lack of fit obviously exists. After seeing the residual
plot, you can go back to the scatter plot and detect suggestions of nonlinearity. The simple linear
regression model is clearly inadequate, so we do not bother presenting a normal plot. In the next
two sections, we will examine ways of dealing with this lack of fit.

2

Outliers

Outliers are bizarre data points. They are points that do not seem to fit with the other observations
in a data set. We can characterize bizarre points as having either bizarre x values or bizarre y values.
There are two valuable tools for identifying outliers.

Leverages are values between 0 and 1 that measure how bizarre an x value is relative to the
other x values in the data. A leverage near 1 is a very bizarre point. Leverages that are small are
similar to the other data. The sum of all the leverages in a simple linear regression is always 2, thus
the average leverage is 2/n. Points with leverages larger that 4/n or 6/n are often considered high
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Figure 7.19: Standardized residuals versus predicted values for Hooker data.

leverage points. The concept of leverage will be discussed in more detail when we discuss multiple
regression.

Outliers in the y values can be detected from the standardized deleted residuals. Standardized
deleted residuals are just standardized residuals, but the residual for the ith case is computed from a
regression that does not include the ith case. For example, the third deleted residual is

ε̂[3] = y3− β̂0[3]− β̂1[3]x3

where the estimates β̂0[3] and β̂1[3] are computed from a regression in which case 3 has been dropped
from the data. The third standardized deleted residual is simply the third deleted residual divided
by its standard error. The standardized deleted residuals really contain the same information as the
standardized residuals; the largest standardized deleted residuals are also the largest standardized
residuals. The main virtue of the standardized deleted residuals is that they can be compared to a
t(n− 3) distribution to test whether they could reasonably have occurred when the model is true.
The degrees of freedom in the test are n− 3 because the simple linear regression model was fitted
without the ith case so there are only n−1 data points in the fit and (n−1)−2 degrees of freedom
for error.

If one compares the largest absolute standardized deleted residual to a t distribution, one is
essentially testing whether every case is an outlier. Thus a total of n tests are being performed and
the overall error rate from an individual α level test may be as high as nα . For n = 20 and α = .05,
nα = 1, so we can reasonably expect to ‘find an outlier’ in the Coleman Report data even when
none exists. Obviously, one needs a more stringent requirement for declaring a case to be an outlier.
The criterion for declaring a case to be an outlier should be something like significance at the .05/n
level rather than at the .05 level. This is just the Bonferroni adjustment discussed in the previous
chapter. Often the standardized deleted residuals are simply called t residuals and denoted ti.

EXAMPLE 7.9.3. The leverages and standardized deleted residuals are given in Table 7.6 for the
Coleman Report data with one predictor. Compared to the leverage rule of thumb 4/n = 4/20 = .2,
only case 15 has a noticeably large leverage. None of the cases is above the 6/n rule of thumb.
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Table 7.6: Outlier diagnostics for the Coleman Report data

Std. del. Std. del.
Case Leverages residuals Case Leverages residuals

1 0.059362 −0.15546 11 0.195438 −1.44426
2 0.175283 −0.12019 12 0.052801 0.61394
3 0.097868 −1.86339 13 0.051508 −0.49168
4 0.120492 −0.28961 14 0.059552 0.14111
5 0.055707 0.10792 15 0.258992 −0.84143
6 0.055179 −1.35054 16 0.081780 0.19341
7 0.101914 0.63059 17 0.050131 −1.41912
8 0.056226 0.07706 18 0.163429 2.52294
9 0.075574 1.00744 19 0.130304 0.63836

10 0.055783 1.92501 20 0.102677 0.24410

In simple linear regression, one does not really need to evaluate the leverages directly because
the necessary information about bizarre x values is readily available from the x,y plot. In multiple
regression with three or more predictor variables, leverages are vital because no one scatter plot can
give the information on bizarre x values. In the scatter plot of the Coleman Report data, Figure 7.1,
there are no outrageous x values, although there is a noticeable gap between the smallest four values
and the rest. From Table 7.1 we see that the cases with the smallest x values are 2, 11, 15, and 18.
These cases also have the highest leverages reported in Table 7.6. The next two highest leverages
are for cases 4 and 19; these have the largest x values.

For an overall α = .05 level test of the deleted residuals, the tabled value needed is

t
(

1− .05
2(20)

,17
)
= 3.54 .

None of the standardized deleted residuals approach this, so there is no evidence of any unaccount-
ably bizarre y values.

A handy way to identify cases with large leverages, residuals, standardized residuals, or stan-
dardized deleted residuals is with an index plot. This is simply a plot of the value against the case
number as in Figure 7.20 for leverages. In this version of the plot, the symbol plotted is the last digit
of the case number. 2

Minitab commands

We now illustrate the Minitab commands necessary for obtaining the leverages and standardized
deleted residuals for the Coleman Report data. Both sets of values are obtained by using subcom-
mands of the regress command. The ‘hi’ subcommand gives leverages, while the ‘tresid’ subcom-
mand gives standardized deleted residuals. The last command gives the index plot for leverages.
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Figure 7.20: Index plot of leverages for the Coleman Report data.

MTB > names c1 ’test’ c2 ’socio’

MTB > regress c1 on 1 c2;

SUBC> hi c13;

SUBC> tresid c14.

MTB > tsplot c13

Effects of high leverage

EXAMPLE 7.9.4. Figure 7.21 contains some data along with their least squares estimated line.
The four points on the left form a perfect line with slope 1 and intercept 0. There is one high leverage
point far away to the right. The actual data are given below along with their leverages.

Case 1 2 3 4 5
y 1 2 3 4 −3
x 1 2 3 4 20
Leverage .30 .26 .24 .22 .98

The case with x= 20 is an extremely high leverage point; it has a leverage of nearly 1. The estimated
regression line is forced to go very nearly through this high leverage point. In fact, this plot has two
clusters of points that are very far apart, so a rough approximation to the estimated line is the line
that goes through the mean x and y values for each of the two clusters. This example has one cluster
of four cases on the left of the plot and another cluster consisting solely of the one case on the right.
The average values for the four cases on the left give the point (x̄, ȳ) = (2.5,2.5). The one case on the
right is (20,−3). A little algebra shows the line through these two points to be ŷ = 3.286−0.314x.
The estimated line using least squares turns out to be ŷ = 3.128−0.288x, which is not too different.
The least squares line goes through the two points (2.5,2.408) and (20,−2.632), so the least squares
line is a little lower at x = 2.5 and a little higher at x = 20.

Obviously, the single point on the right of Figure 7.21 dominates the estimated straight line.
For example, if the point on the right was (20,15), the estimated line would go roughly through
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Figure 7.21: Plot of y versus x.

this point and (2.5,2.5). Substantially changing the y value at x = 20 always gives an extremely
different estimated line than the ones we just considered. Wherever the point on the right is, the
estimated line follows it. This happens regardless of the fact that the four cases on the left follow a
perfect straight line with slope 1 and intercept 0. The behavior of the four points on the left is almost
irrelevant to the fitted line when there is a high leverage point on the right. They have an effect on
the quality of the rough two-point approximation to the actual estimated line but their overall effect
is small.

To summarize what can be learned from Figure 7.21, we have a reasonable idea about what
happens to y for x values near the range 1 to 4 and we have some idea of what happens when x
is 20 but, barring outside information, we have not the slightest idea what happens to y when x is
between 4 and 20. Fitting a line to the complete data suggests that we know something about the
behavior of y for any value of x between 1 and 20. This is just silly! We would be better off to
analyze the two clusters of points separately and to admit that learning about y when x is between 4
and 20 requires us to obtain data on y when x is between 4 and 20. In this example, the two separate
statistical analyses are trivial. The cluster on the left follows a perfect line so we simply report that
line. The cluster on the right is a single point so we report the point. 2
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Figure 7.22: The circle of x,y transformations.

7.10 Transformations

If the residuals show a problem with lack of fit, heteroscedasticity, or nonnormality, one way to deal
with the problem is to try transforming the yis. Typically, this only works well when ymax/ymin is
reasonably large. The use of transformations is often a matter of trial and error. Various transforma-
tions are tried and the one that gives the best fitting model is used. In this context, the best fitting
model should have residual plots indicating that the model assumptions are reasonably valid. The
first approach to transforming the data should be to consider transformations that are suggested by
any theory associated with the data collection. Another approach to choosing a transformation is
to try a variance stabilizing transformation. These were discussed in Section 2.5 and are repeated
below for data yi with E(yi) = µi and Var(yi) = σ2

i .

Variance stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson µi ∝ σ2

i
√

yi
Amount Gamma µi ∝ σi log(yi)

Proportion Binomial/N µi(1−µi)
N ∝ σ2

i sin−1(√yi
)

Whenever the data have the indicated mean, variance relationship, the corresponding variance sta-
bilizing transformation should work reasonably well.

The shape of an x,y plot can also suggest possible transformations to straighten it out. We con-
sider power transformations of both y and x, thus y is transformed into, say, yλ and x is transformed
into xγ . Note that λ = 1 and γ = 1 indicate no transformation. As we will justify later, we treat λ = 0
and γ = 0 as log transformations.

Figure 7.22 indicates the kinds of transformations appropriate for some different shapes of x,y
curves. For example, if the x,y curve is similar to that in quadrant I, i.e., the y values decrease as x
increases and the curve opens to the lower left, appropriate transformations involve increasing λ or
increasing γ or both. Here we refer to increasing λ and γ relative to the no transformation values of
λ = 1 and γ = 1. In particular, Figure 7.23 gives an x,y plot for part of a cosine curve that is shaped
like the curve in quadrant I. Figure 7.24 is a plot of the numbers after x has been transformed into
x1.5 and y has been transformed into y1.5. Note that the curve in Figure 7.24 is much straighter than
the curve in Figure 7.23. If the x,y curve increases and opens to the lower right such as those in
quadrant II, appropriate transformations involve increasing λ or decreasing γ or both. An x,y curve
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Figure 7.23: Curved x,y plot.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.7
0.8

0.9
1.0

x1.5

y1.5

Figure 7.24: Plot of x1.5,y1.5.

similar to that in quadrant III suggests decreasing λ or decreasing γ or both. The graph given in
Figure 7.22 is often referred to as the circle of x,y transformations.

We established in the previous section that the Hooker data does not fit a straight line and that
the scatter plot in Figure 7.18 increases with a slight tendency to open to the upper left. This is
the same shaped curve as in quadrant IV of Figure 7.22. The circle of x,y transformations suggests
that to straighten the curve, we should try transformations with decreased values of λ or increased
values of γ or both. Thus we might try transforming y into y1/2, y1/4, log(y), or y−1. Similarly, we
might try transforming x into x1.5 or x2.

To get a preliminary idea of how well various transformations work, we should do a series of
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plots. We might begin by examining the four plots in which y1/2, y1/4, log(y), and y−1 are plotted
against x. We might then plot y against both x1.5 and x2. We should also plot all possibilities involv-
ing one of y1/2, y1/4, log(y), and y−1 plotted against one of x1.5 and x2 and we may need to consider
other choices of λ and γ . For the Hooker data, looking at these plots would probably only allow us
to eliminate the worst transformations. Recall that Figure 7.18 looks remarkably straight and it is
only after fitting a simple linear regression model and examining residuals that the lack of fit (the
curvature of the x,y plot) becomes apparent. Evaluating the transformations would require fitting a
simple linear regression for every pair of transformed variables that has a plot that looks reasonably
straight.

Observe that many of the power transformations considered here break down with values of y
that are negative. For example, it is difficult to take square roots and logs of negative numbers. For-
tunately, data are often positive or at least nonnegative. Measured amounts, counts and proportions
are almost always nonnegative. When problems arise, a small constant is often added to all cases so
that they all become positive. Of course, it is unclear what constant should be added.

Obviously, the circle of transformations, just like the variance stabilizing transformations, pro-
vides only suggestions on how to transform the data. The process of choosing a particular transfor-
mation remains one of trial and error. We begin with reasonable candidates and examine how well
these transformations agree with the simple linear regression model. When we find a transformation
that agrees well with the assumptions of simple linear regression, we proceed to analyze the data.
Obviously, an alternative to transforming the data is to change the model. In the next section we
consider a new class of models that incorporate transformations of the x variable. In the remainder
of this section, we focus on a systematic method for choosing a transformation of y.

7.10.1 Box–Cox transformations

We now consider a systematic method, introduced by Box and Cox (1964), for choosing a power
transformation. Consider the family of power transformations, say, yλ

i . This includes the square
root transformation as the special case λ = 1/2 and other interesting transformations such as the
reciprocal transformation y−1

i . By making a minor adjustment, we can bring log transformations
into the power family. Consider the transformations

y(λ )i =

{(
yλ

i −1
)
/λ λ 6= 0

log(yi) λ = 0
.

For any fixed λ 6= 0, the transformation y(λ )i is equivalent to yλ
i , because the difference between the

two transformations consists of subtracting a constant and dividing by a constant. In other words,
fitting the model

yλ
i = β0 +β1xi + εi

is equivalent to fitting the model
y(λ )i = β0 +β1xi + εi,

although the regression parameters in the two models have slightly different meanings. While the
transformation

(
yλ

i −1
)
/λ is undefined for λ = 0, as λ approaches 0,

(
yλ

i −1
)
/λ approaches

log(yi), so the log transformation fits in naturally.
Unfortunately, the results of fitting models to y(λ )i with different values of λ are not directly

comparable. Thus it is difficult to decide which transformation in the family to use. This problem is
easily evaded (cf. Cook and Weisberg, 1982) by further modifying the family of transformations so
that the results of fitting with different λ s are comparable. Let ỹ be the geometric mean of the yis,
i.e.,

ỹ =

[
n

∏
i=1

yi

]1/n

= exp

[
1
n

n

∑
i=1

log(yi)

]
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Table 7.7: Choice of power transformation

λ 1/2 1/3 1/4 0 −1/4 −1/2
SSE(λ ) 1.21 0.87 0.78 0.79 1.21 1.98

and define the family of transformations

z(λ )i =

{[
yλ

i −1
]/[

λ ỹλ−1
]

λ 6= 0
ỹ log(yi) λ = 0

.

The results of fitting the model
z(λ )i = β0 +β1xi + εi

can be summarized via SSE(λ ). These values are directly comparable for different values of λ . The
choice of λ that yields the smallest SSE(λ ) is the best fitting model. (It maximizes the likelihood
with respect to λ .) Actually, this method of choosing a transformation works for any ANOVA or
regression model.

Box and Draper (1987, p. 290) discuss finding a confidence interval for the transformation pa-
rameter λ . An approximate (1−α)100% confidence interval consists of all λ values that satisfy

logSSE(λ )− logSSE(λ̂ )≤ χ
2(1−α,1)/d fE

where λ̂ is the value of λ that minimizes SSE(λ ). When ymax/ymin is not large, the interval tends to
be wide.

EXAMPLE 7.10.1. Hooker data
In the previous section, we found that Hooker’s data on atmospheric pressure and boiling points
displayed a lack of fit when regressing pressure on temperature. We now consider using power
transformations to eliminate the lack of fit.

Table 7.7 contains SSE(λ ) values for some reasonable choices of λ . Assuming that SSE(λ ) is
a very smooth (convex) function of λ , the best λ value is probably between 0 and 1/4. If the curve
being minimized is very flat between 0 and 1/4, there is a possibility that the minimizing value is
between 1/4 and 1/3. One could pick more λ values and compute more SSE(λ )s but I have a bias
towards simple transformations. (They are easier to sell to clients.)

The log transformation of λ = 0 is simple (certainly simpler than the fourth root) and λ = 0 is
near the optimum, so we will consider it further. We now use the simple log transformation, rather
than adjusting for the geometric mean. The usual summary tables are given below.

Predictor β̂k SE(β̂k) t P
Constant −1.02214 0.03365 −30.38 0.000
Temp. 0.0208698 0.0001753 119.08 0.000

Analysis of variance: log Hooker data
Source d f SS MS F P
Regression 1 0.99798 0.99798 14180.91 0.000
Error 29 0.00204 0.00007
Total 30 1.00002

The coefficient of determination is again extremely high, R2 = 99.8%. The plot of the standardized
residuals versus the predicted values is given in Figure 7.25. There is no obvious lack of fit or
inconstancy of variances. Figure 7.26 contains a normal plot of the standardized residuals. The
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normal plot is not horrible but it is not wonderful either. There is a pronounced shoulder at the
bottom and perhaps even an S shape.

If we are interested in the mean value of log pressure for a temperature of 205◦F, the esti-
mate is 3.2562 = −1.02214+ .0208698(205) with a standard error of 0.00276 and a 95% con-
fidence interval of (3.2505,3.2618). In the original units, the estimate is e3.2562 = 25.95 and the
confidence interval becomes (e3.2505,e3.2618) or (25.80,26.10). The point prediction for a new log
observation at 205◦F has the same value as the point estimate and has a 95% prediction interval
of (3.2381,3.2742). In the original units, the prediction is again 25.95 and the prediction interval
becomes (e3.2381,e3.2742) or (25.49,26.42). 2

One way to test whether a transformation is needed is to use a constructed variable as introduced
by Atkinson (1973). Let

wi = yi [log(yi/ỹ)−1]

and fit the multiple regression model

yi = β0 +β1xi +β2wi + εi.

Multiple regression gives results similar to those for simple linear regression; typical output includes
estimates of the β s, standard errors, t statistics, and an ANOVA table. A test of H0 : β2 = 0 gives an
approximate test that no transformation is needed. The test is performed using the standard methods
of Chapter 3. Details are illustrated in the example below and discussed in the chapters on multiple
regression. In addition, the estimate β̂2 provides, indirectly, an estimate of λ ,

λ̂ = 1− β̂2.

Frequently, this is not a very good estimate of λ but it gives an idea of where to begin a search for
good λ s.

EXAMPLE 7.10.2. Hooker data
Performing the multiple regression of pressure on both temperature and the constructed variable w
gives the following results.

Predictor β̂k SE(β̂k) t P
Constant −43.426 2.074 −20.94 0.000
Temperature 0.411816 0.004301 95.75 0.000
w 0.80252 0.07534 10.65 0.000

The t statistic is 10.65 = .80252/.07534 for testing that the regression coefficient of the constructed
variable is 0. The P value is 0.000, which strongly indicates the need for a transformation. The
estimate of λ is

λ̂ = 1− β̂2 = 1−0.80 = .2,

which is consistent with what we learned from Table 7.7. From Table 7.7 we suspected that the best
transformation would be between 0 and .25. Of course this estimate of λ is quite crude, finding the
‘best’ transformation requires a more extensive version of Table 7.7. I limited the choices of λ in
Table 7.7 because I was unwilling to consider transformations that I did not consider simple. 2

Computational techniques

Below are given Minitab commands for performing the Box–Cox transformations and the con-
structed variable test. To perform multiple regression using the ‘regress’ command, you need to
specify the number of predictor variables, in this case 2.
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MTB > name c1 ’temp’ c2 ’press’

MTB > note CONSTRUCT THE GEOMETRIC MEAN

MTB > let c9 = loge(c2)

MTB > mean c9 k1

MEAN = 2.9804

MTB > let k2 = expo(k1)

MTB > note PRINT THE GEOMETRIC MEAN

MTB > print k2

K2 19.6960

MTB > note CONSTRUCT THE z VARIABLES

MTB > note FOR DIFFERENT LAMBDAS

MTB > let c20=(c2**.5-1)/(.5*k2**(.5-1))

MTB > let c21=(c2**.25-1)/(.25*k2**(.25-1))

MTB > let c22=(c2**.333333-1)/(.333333*k2**(.333333-1))

MTB > let c23=loge(c2)*k2

MTB > let c24=(c2**(-.5) - 1)/(-.5*k2**(-1.5))

MTB > let c25=(c2**(-.25) -1)/(-.25*k2**(-1.25))

MTB > note REGRESS z FOR LAMBDA = .5 ON c1

MTB > regress c20 on 1 c1

MTB > note 4 MORE REGRESSIONS ARE NECESSARY

MTB > note

MTB > note CONSTRUCT THE VARIABLE w

MTB > let c3=c2*(c9-k1-1)

MTB > note PERFORM THE MULTIPLE REGRESSION ON x AND THE

MTB > note CONSTRUCTED VARIABLE w

MTB > regress c2 on 2 c1 c3

Transforming the predictor variable

Weisberg (1985, p. 156) suggests applying a log transformation to the predictor variable x whenever
xmax/xmin is larger than 10 or so. There is also a procedure, originally due to Box and Tidwell (1962),
that is akin to the constructed variable test but that is used for checking the need to transform x. As
presented by Weisberg, this procedure consists of fitting the original model

yi = β0 +β1xi + εi

to obtain β̂1 and then fitting the model

yi = η0 +η1xi +η2xi log(xi)+ εi.

Here, xi log(xi) is just an additional predictor variable that we compute from the values of xi. The
test of H0 : η2 = 0 is a test for whether a transformation of x is needed. If η2 6= 0, transforming x
into xγ is suggested where a rough estimate of γ is

γ̂ =
η̂2

β̂1
+1

and γ = 0 is viewed as the log transformation. Typically, only γ values between about −2 and 2 are
considered useable. Of course none of this is going to make any sense if x takes on negative values,
and if xmax/xmin is not large, computational problems may occur when trying to fit a model that
contains both xi and xi log(xi).
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7.11 Polynomial regression

With Hooker’s data, the simple linear regression of pressure on temperature showed a lack of fit. In
the previous section, we used a power transformation in an attempt to eliminate the lack of fit. In this
section we introduce an alternative method, a special case of multiple regression called polynomial
regression. With a single predictor variable x, we can try to eliminate lack of fit by fitting larger
models. In particular, we can fit the quadratic (parabolic) model

yi = β0 +β1xi +β2x2
i + εi.

We could also try a cubic model

yi = β0 +β1xi +β2x2
i +β3x3

i + εi,

the quartic model
yi = β0 +β1xi +β2x2

i +β3x3
i +β4x4

i + εi,

or even higher degree polynomials. If we view our purpose as finding good, easily interpretable
approximate models for the data, high degree polynomials can behave poorly. As we will see later,
the process of fitting the observed data can cause high degree polynomials to give very erratic results
in areas very near the observed data. A good approximate model should work well, not only at the
observed data, but also near it. Thus, we should focus on low degree polynomials.

EXAMPLE 7.11.1. We again examine Hooker’s data. Computer programs give output for poly-
nomial regression that is very similar to that for simple linear regression. Typical summary tables
for fitting the quadratic model are given below.

Predictor β̂k SE(β̂k) t P
Constant 88.02 13.93 6.32 0.000
Temp. −1.1295 0.1434 −7.88 0.000
Temp squared 0.0040330 0.0003682 10.95 0.000

Analysis of variance
Source d f SS MS F P
Regression 2 447.15 223.58 8984.23 0.000
Error 28 0.70 0.02
Total 30 447.85

The MSE, regression parameter estimates, and standard errors are used in the usual way. The t
statistics and P values are for the two-sided tests of whether the corresponding β parameters are 0.
The t statistic for β2 is −7.88, which is highly significant, so the quadratic model accounts for a
significant amount of the lack of fit displayed by the simple linear regression model. (It is not clear
yet that the quadratic accounts for all of the lack of fit.)

Usually, the only interesting test for a regression coefficient is the one for the highest term in
the polynomial. In particular, it usually makes little sense to have a quadratic (second degree) model
that does not include a first degree term, so there is little point in testing β1 = 0. One reason for this
is that simple linear transformations of the predictor variable change the roles of lower order terms.
For example, the Hooker data uses temperature measured in Fahrenheit as a predictor variable.
While it is not actually the case, suppose the quadratic model for the Hooker data was consistent
with β1 = 0. If we then changed to measuring temperature in Celsius, we would be unlikely to have
a new quadratic model that is still consistent with β1 = 0. When there is a quadratic term in the
model, a linear term based on Fahrenheit measurements has a completely different meaning than a
linear term based on Celsius measurements. On the other hand, the Fahrenheit and Celsius quadratic
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Figure 7.27: Standardized residuals versus predicted values, quadratic model.

models that include linear terms and intercepts are equivalent, just as the simple linear regressions
based on Fahrenheit and Celsius are equivalent.

We will not discuss the ANOVA table in detail, but note that with two predictors, x and x2, there
are 2 degrees of freedom for regression. In general, if we fit a polynomial of degree a, there will be
a degrees of freedom for regression, one degree of freedom for every term other than the intercept.
Correspondingly, when fitting a polynomial of degree a, there are n−a−1 degrees of freedom for
error. The ANOVA table F statistic provides a test of whether the quadratic model explains the data
better than the model with only an intercept.

The coefficient of determination is computed and interpreted as before. It is the SSReg divided
by the SSTot, so it measures the amount of the total variability that is explained by the predictor
variables temperature and temperature squared. For these data, R2 = 99.8%, which is an increase
from 99.2% for the simple linear regression model. It is not appropriate to compare the R2 for this
model to the R2 from the log transformed model of the previous section because they are computed
from data that use different scales.

The standardized residual plots are given in Figures 7.27 and 7.28. The plot against the predicted
values looks good, just as it did for the transformed data examined in the previous section. The
normal plot for this model has a shoulder at the top but it looks much better than the normal plot for
the simple linear regression on the log transformed data.

If we are interested in the mean value of pressure for a temperature of 205◦F, the quadratic
model estimate is (up to a little of round off error)

ŷ = 25.95 = 88.02−1.1295(205)+ .004033(205)2.

The standard error (as reported by the computer program) is 0.0528 and a 95% confidence inter-
val is (25.84,26.06). This compares to a point estimate of 25.95 and a 95% confidence interval of
(25.80,26.10) obtained in the previous section from regressing the log of pressure on temperature.
The quadratic model prediction for a new observation at 205◦F is again 25.95 with a 95% predic-
tion interval of (25.61,26.29). The corresponding prediction interval from the log transformed data
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Figure 7.28: Normal plot for quadratic model, W ′ = 0.966.

is (25.49,26.42). In this example, the results of the two methods for dealing with lack of fit are
qualitatively very similar, at least at 205◦F.

Finally, we tried fitting a cubic model to these data. The cubic model suffers from substantial
numerical instability. (Some computer programs object to fitting it.) This may be related to the fact
that the R2 is so high. The β3 coefficient does not seem to be significantly different from 0, so
considering the good residual plots, the quadratic model seems adequate. (One easy way to improve
numerical stability is to adjust the predictor variables for their mean as in Section 7.6. In other
words, one builds a polynomial using powers of the predictor variable xi− x̄·.) 2

EXAMPLE 7.11.2. We now present a simple example that illustrates two points: that leverages
depend on the model and that high order polynomials can fit the data in very strange ways. The data
for the example are given below.

Case 1 2 3 4 5 6 7
y 0.445 1.206 0.100 −2.198 0.536 0.329 −0.689
x 0.0 0.5 1.0 10.0 19.0 19.5 20.0

I selected the x values. The y values are a sample of size 7 from a N(0,1) distribution. Note that
with seven distinct x values, we can fit a polynomial of degree 6.

The data are plotted in Figure 7.29. Just by chance (honest folks), I observed a very small y value
at x = 10, so the data appear to follow a parabola that opens up. The small y value at x = 10 totally
dominates the impression given by Figure 7.29 If the y value at x = 10 had been near 3 rather than
near −2, the data would appear to be a parabola that opens down. If the y value had been between 0
and 1, the data would appear to fit a line with a slightly negative slope. When thinking about fitting
a parabola, the case with x = 10 is an extremely high leverage point.

Depending on the y value at x = 10, the data suggest a parabola opening up, a parabola opening
down, or that we do not need a parabola to explain the data. Regardless of the y value observed at
x = 10, the fitted parabola must go nearly through the point (10,y). On the other hand, if we think
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Figure 7.29: Plot of y versus x.

Table 7.8: Leverages

Model
x Linear Quadratic Cubic Quartic Quintic Hexic

0.0 0.33 0.40 0.64 0.87 0.94 1.00
0.5 0.31 0.33 0.33 0.34 0.67 1.00
1.0 0.29 0.29 0.55 0.80 0.89 1.00

10.0 0.14 0.96 0.96 1.00 1.00 1.00
19.0 0.29 0.29 0.55 0.80 0.89 1.00
19.5 0.31 0.33 0.33 0.34 0.67 1.00
20.0 0.33 0.40 0.64 0.87 0.94 1.00

only about fitting a line to these data, the small y value at x = 10 has much less effect. In fitting
a line, the value y = −2.198 will look unusually small (it will have a very noticeable standardized
residual), but it will not force the fitted line to go nearly through the point (10,−2.198).

Table 7.8 gives the leverages for all of the polynomial models that can be fitted to these data.
Note that there are no large leverages for the simple linear regression model (the linear polynomial).
For the quadratic (parabolic) model, all of the leverages are reasonably small except the leverage
of .96 at x = 10 which very nearly equals 1. Thus, in the quadratic model, the value of y at x = 10
dominates the fitted polynomial. The cubic model has extremely high leverage at x = 10, but the
leverages are also beginning to get large at x = 0,1,19,20. For the quartic model, the leverage at
x = 10 is 1 to two decimal places; the leverages for x = 0,1,19,20 are also nearly 1. The same
pattern continues with the quintic model but the leverages at x = 0.5,19.5 are also becoming large.
Finally, with the sixth degree (hexic) polynomial, all of the leverages are exactly one. This indicates
that the sixth degree polynomial has to go through every data point exactly and thus every data point
is extremely influential on the estimate of the sixth degree polynomial.

As we fit larger polynomials, we get more high leverage cases (and more numerical instability).
The estimated polynomials must go very nearly through all high leverage cases. To accomplish this
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Figure 7.30: Plots of linear (solid), quadratic (long dashes), and cubic (short dashes) regression curves.

the estimated polynomials may get very strange. Below we give all of the fitted polynomials for
these data.

Model Estimated polynomial
Linear ŷ = 0.252−0.029x
Quadratic ŷ = 0.822−0.536x+0.0253x2

Cubic ŷ = 1.188−1.395x+0.1487x2−0.0041x3

Quartic ŷ = 0.713−0.141x−0.1540x2 +0.0199x3

−0.00060x4

Quintic ŷ = 0.623+1.144x−1.7196x2 +0.3011x3

−0.01778x4 +0.000344x5

Hexic ŷ = 0.445+3.936x−5.4316x2 +1.2626x3

−0.11735x4 +0.004876x5

−0.00007554x6

Figures 7.30 and 7.31 contain graphs of these estimated polynomials.
Figure 7.30 contains the estimated linear, quadratic, and cubic polynomials. The linear and

quadratic curves fit about as one would expect from looking at the scatter plot Figure 7.29. For
x values near the range 0 to 20, we could use these curves to predict y values and get reasonable, if
not necessarily good, results. One could not say the same for the estimated cubic polynomial. The
cubic curve takes on ŷ values near −3 for some x values that are near 6. The y values in the data are
between about −2 and 1.2; nothing in the data suggests that y values near −3 are likely to occur.
Such predicted values are entirely the product of fitting a cubic polynomial. If we really knew that a
cubic polynomial was correct for these data, the estimated polynomial would be perfectly appropri-
ate. But most often we use polynomials to approximate the behavior of the data and for these data
the cubic polynomial gives a poor approximation.

Figure 7.31 gives the estimated quartic, quintic, and hexic polynomials. Note that the scale on
the y axis has changed drastically from Figure 7.30. Qualitatively, the fitted polynomials behave like
the cubic except their behavior is even worse. These polynomials do very strange things everywhere
except near the observed data.
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Figure 7.31: Plots of quartic (solid), quintic (long dashes), and hexic (short dashes) regression curves.

Another phenomenon that sometimes occurs when fitting large models to data is that the mean
squared error gets unnaturally small. Table 7.9 gives the analysis of variance tables for all of the
polynomial models. Our original data were a sample from a N(0,1) distribution. The data were
constructed with no regression structure so the best estimate of the variance comes from the total
line and is 7.353/6 = 1.2255. This value is a reasonable estimate of the true value 1. The MSE from
the simple linear regression model also provides a reasonable estimate of σ2 = 1. The larger models
do not work as well. Most have variance estimates near .5, while the hexic model does not even
allow an estimate of σ2 because it fits every data point perfectly. By fitting models that are too large
one can often make the MSE artificially small. For example, the quartic model has a MSE of .306
and an F statistic of 5.51; if it were not for the small value of d fE, such an F value would be highly
significant. If you find a large model that has an unnaturally small MSE with a reasonable number
of degrees of freedom, everything can appear to be significant even though nothing you look at is
really significant.

Just as the mean squared error often gets unnaturally small when fitting large models, R2 gets
unnaturally large. As we have seen, there can be no possible reason to use a larger model than the
quadratic with its R2 of .71, but the cubic, quartic, quintic, and hexic models have R2s of .78, .92,
.93, and 1, respectively. 2
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Table 7.9: Analysis of variance tables

Simple linear regression
Source d f SS MS F P
Regression 1 0.457 0.457 0.33 0.59
Error 5 6.896 1.379
Total 6 7.353

Quadratic model
Source d f SS MS F P
Regression 2 5.185 2.593 4.78 0.09
Error 4 2.168 0.542
Total 6 7.353

Cubic model
Source d f SS MS F P
Regression 3 5.735 1.912 3.55 0.16
Error 3 1.618 0.539
Total 6 7.353

Quartic model
Source d f SS MS F P
Regression 4 6.741 1.685 5.51 0.16
Error 2 0.612 0.306
Total 6 7.353

Quintic model
Source d f SS MS F P
Regression 5 6.856 1.371 2.76 0.43
Error 1 0.497 0.497
Total 6 7.353

Hexic model
Source d f SS MS F P
Regression 6 7.353 1.2255 — —
Error 0 0.000 —
Total 6 7.353
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Minitab commands

Below we illustrate Minitab commands for fitting quadratic, cubic, and quartic models. These in-
clude the prediction subcommand used with the quadratic model for x = 205. Note that the pre-
diction subcommand requires us to enter both the value of x and the value of x2 when using the
quadratic model.

MTB > names c1 ’y’ c2 ’x’

MTB > note FIT QUADRATIC MODEL

MTB > let c22=c2**2

MTB > regress c2 on 2 c2 c22;

SUBC> pred 205 42025.

MTB > note FIT CUBIC MODEL

MTB > let c23=c2**3

MTB > regress c1 on 3 c2 c22 c23

MTB > note FIT QUARTIC MODEL

MTB > let c24=c2**4

MTB > regress c1 on 4 c2 c22-c24

7.12 Polynomial regression and one-way ANOVA

The main reason for introducing polynomial regression at this point is to exploit its relationships
with analysis of variance. In some analysis of variance problems, the treatment groups are deter-
mined by quantitative levels of a factor. For example, one might take observations on the depth of
hole made by a drill press in a given amount of time with 20, 30, or 40 pounds of downward thrust
applied. The groups are determined by the quantitative levels, 20, 30, and 40. In such a situation we
could fit a one-way analysis of variance with three groups, or we could fit a simple linear regres-
sion model. Simple linear regression is appropriate because all the data come as pairs. The pairs are
(xi,yi j), where xi is the numerical level of thrust and yi j is the depth of the hole on the jth trial with
xi pounds of downward thrust. Not only can we fit a simple linear regression, but we can fit poly-
nomials to the data. In this example, we could fit no polynomial above second degree (quadratic),
because three points determine a parabola and we only have three distinct x values. If we ran the ex-
periment with 20, 25, 30, 35, and 40 pounds of thrust, we could fit at most a fourth degree (quartic)
polynomial because five points determine a fourth degree polynomial and we would only have five
x values.

In general, some number a of distinct x values allows fitting of an a− 1 degree polynomial.
Moreover, fitting the a−1 degree polynomial is equivalent to fitting the one-way ANOVA with groups
defined by the a different x values. However, as discussed in the previous section, fitting high degree
polynomials is often a very questionable procedure. The problem is not with how the model fits
the observed data but with the suggestions that a high degree polynomial makes about the behavior
of the process for x values other than those observed. In the example with 20, 25, 30, 35, and 40
pounds of thrust, the quartic polynomial will fit as well as the one-way ANOVA model but the
quartic polynomial may have to do some very weird things in the areas between the observed x
values. Of course, the ANOVA model gives no indications of behavior for x values other than those
that were observed. When performing regression, we usually like to have some smooth fitting model
giving predictions that, in some sense, interpolate between the observed data points. High degree
polynomials often fail to achieve this goal.

EXAMPLE 7.12.1. Beineke and Suddarth (1979) and Devore (1991, p. 380) consider data on roof
supports involving trusses that use light gauge metal connector plates. Their dependent variable is
an axial stiffness index (ASI) measured in kips per inch. The predictor variable is the length of the
light gauge metal connector plates. The data are given in Table 7.10 in a format consistent with
performing a regression analysis on the data.
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Table 7.10: Axial stiffness index data

Plate ASI Plate ASI Plate ASI Plate ASI Plate ASI
4 309.2 6 402.1 8 392.4 10 346.7 12 407.4
4 409.5 6 347.2 8 366.2 10 452.9 12 441.8
4 311.0 6 361.0 8 351.0 10 461.4 12 419.9
4 326.5 6 404.5 8 357.1 10 433.1 12 410.7
4 316.8 6 331.0 8 409.9 10 410.6 12 473.4
4 349.8 6 348.9 8 367.3 10 384.2 12 441.2
4 309.7 6 381.7 8 382.0 10 362.6 12 465.8

Table 7.11: ASI summary statistics

Plate N ȳi· s2
i si

4 7 333.2143 1338.6981 36.59
6 7 368.0571 816.3629 28.57
8 7 375.1286 433.7990 20.83

10 7 407.3571 1981.1229 44.51
12 7 437.1714 675.8557 26.00

The data could also be considered as an analysis of variance with plate lengths being different
treatments and with seven observations on each treatment. Table 7.11 gives the usual summary
statistics for a one-way ANOVA.

Viewed as regression data, we might think of fitting a simple linear regression model

yh = β0 +β1xh + εh,

h= 1, . . . ,35. Note that while h varies from 1 to 35, there are only five distinct values of xh that occur
in the data. As an analysis of variance, we usually use two subscripts to identify an observation: one
to identify the treatment group and one to identify the observation within the group. The ANOVA
model would often be written as

yi j = µi + εi j (7.12.1)

where i = 1,2,3,4,5 and j = 1, . . . ,7. We can also rewrite the regression model using the two
subscripts i and j in place of h,

yi j = β0 +β1xi + εi j,

where i = 1,2,3,4,5 and j = 1, . . . ,7. Note that all of these models account for exactly 35 observa-
tions.

Figure 7.32 contains a scatter plot of the data. With multiple observations at each x value, the
regression is really only fitted to the mean of the y values at each x value. The means of the ys are
plotted against the x values in Figure 7.33. The overall trend of the data is easier to evaluate in this
plot than in the full scatter plot. We see an overall increasing trend which is very nearly linear except
for a slight anomaly with 6 inch plates. We need to establish if these visual effects are real or just
random variation. We would also like to establish whether there is a simple regression model that is
appropriate for any trend that may exist. With only five distinct x values, we can fit at most a quartic
(fourth degree) polynomial, say,

yi j = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi j, (7.12.2)

so a simple model should be something smaller than a quartic, i.e., either a cubic, quadratic, or a
linear polynomial.

Table 7.12 contains ANOVA tables for fitting the linear, quadratic, cubic, and quartic polynomial
regressions and for fitting the one-way ANOVA model. From our earlier discussion, the F test in
the simple linear regression ANOVA table strongly suggests that there is an overall trend in the
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Table 7.12: Analysis of variance tables for ASI data

Analysis of variance: simple linear regression
Source d f SS MS F P
Regression 1 42780 42780 43.19 0.000
Error 33 32687 991
Total 34 75468

Analysis of variance: quadratic polynomial
Source d f SS MS F P
Regression 2 42894 21447 21.07 0.000
Error 32 32573 1018
Total 34 75468

Analysis of variance: cubic polynomial
Source d f SS MS F P
Regression 3 43345 14448 13.94 0.000
Error 31 32123 1036
Total 34 75468

Analysis of variance: quartic polynomial
Source d f SS MS F P
Regression 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

Analysis of variance: one-way ANOVA
Source d f SS MS F P
Trts(plates) 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

data. From Figure 7.33 we see that this trend must be increasing, i.e., as lengths go up, by and large
the ASI readings go up. ANOVA tables for higher degree polynomial models have been discussed
briefly in the previous section but for now the key point to recognize is that the ANOVA table for
the quartic polynomial is identical to the ANOVA table for the one-way analysis of variance. This
occurs because models (7.12.1) and (7.12.2) are equivalent.

The first question of interest is whether a quartic polynomial is needed or whether a cubic model
would be adequate. This is easily evaluated from the table of estimates and standard errors for the
quartic fit. For computational reasons, the results reported are for a polynomial involving powers of
x− x̄· rather than powers of x, cf. Section 7.6. This has no effect on our subsequent discussion, see
Exercise 7.13.15.

Predictor β̂k SE(β̂k) t P
Constant 375.13 12.24 30.64 0.000
(x− x̄·) 8.768 5.816 1.51 0.142
(x− x̄·)2 3.983 4.795 0.83 0.413
(x− x̄·)3 0.2641 0.4033 0.65 0.517
(x− x̄·)4 −0.2096 0.2667 −0.79 0.438

There is little evidence (P = .438) that β4 6= 0, so a cubic polynomial seems to be an adequate
explanation of the data.

The table of estimates given above is inappropriate for evaluating β3 in the cubic model (even
the cubic model based on x− x̄·). To evaluate β3, we need to fit the cubic model. If we then decide
that a parabola is an adequate model, evaluating β2 in the parabola requires one to fit the quadratic
model. In general, regression estimates are only valid for the model fitted. A new model requires
new estimates.
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In Section 5.5, we discussed comparing models as a way of arriving at the F test in a one-way
analysis of variance. Comparing a submodel against a larger model to determine the adequacy of the
submodel is a key method in regression analysis. Recall that model comparisons are based on the
difference between the sums of squares for error of the submodel and the sums of squares for error
of the larger model. Obviously, the simple linear regression model is a submodel of the quadratic
model which is a submodel of the cubic model, which is a submodel of the quartic model, and we
have seen that the quartic model is equivalent to the one-way ANOVA model. Given below are the
degrees of freedom and sums of squares for error for the four polynomial regression models and the
model with only an intercept β0 (grand mean). (See Section 5.5 for discussion of the grand mean
model.) The differences in sums of squares error for adjacent models are also given; the differences
in degrees of freedom error are just 1.

Model comparisons
Model d fE SSE Difference
Intercept 34 75468 —-
Linear 33 32687 42780
Quadratic 32 32573 114
Cubic 31 32123 450
Quartic 30 31475 648

Note that the d fE and SSE for the intercept model are those from the corrected Total lines in the
ANOVAs of Table 7.12. The d fEs and SSEs for the other models also come from Table 7.12.

To test the quartic model against the cubic model we take

F =
648/1

31475/30
= .62.

This is just the square of the t statistic for testing β4 = 0 in the quartic model. The reference distri-
bution for the F statistic is F(1,30) and the P value is .44, as it was for the t test.

If we decide that we do not need the quartic term, we can test whether we need the cubic term.
We can test the quadratic model against the cubic model with

F =
450/1

32123/31
= 0.434.

The reference distribution is F(1,31). This test is equivalent to the t test of β3 = 0 in the cubic
model. The t test of β3 = 0 in the quartic model is inappropriate. An alternative to this F test can
also be used. The denominator of this test is 32123/31, the mean squared error from the cubic
model. If we accepted the cubic model only after testing the quartic model, the result of the quartic
test is open to question and thus the estimate of σ2 from the cubic model, i.e., the MSE from the
cubic model, is open to question. It might be better just to use the estimate of σ2 from the quartic
model, which is the mean squared error from the one-way ANOVA. If we do this, the test statistic
for the cubic term becomes

F =
450/1

31475/30
= 0.429.

The reference distribution for the alternative test is F(1,30). In this example the two F tests give
essentially the same answers. This should, by definition, almost always be the case. If, for example,
one test were significant at .05 and the other were not, they are both likely to have P values near .05
and the fact that one is a bit larger than .05 and the other is a bit smaller than .05 should not be a
cause for concern.
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If we decide that neither the quartic nor the cubic terms are important, we can test whether we
need the quadratic term. Testing the quadratic model against the simple linear model gives

F =
114/1

32573/32
= 0.112

which is compared to an F(1,32) distribution. This test is equivalent to the t test of β2 = 0 in
the quadratic model. Again, an alternative test can also be used. The denominator of this test is
32573/32, the mean squared error from the quadratic model. If we accepted the quadratic model
only after testing the cubic and quartic models, this estimate of σ2 may be biased and it might be
better to use the estimate of σ2 from the quartic model, i.e., the one-way ANOVA model. If we do
this, the test statistic for the quadratic term becomes

F =
114/1

31475/30
= 0.109

and the reference distribution is F(1,30).
If we decide that we need none of the higher order terms, we can test whether we need the linear

term. Testing the intercept model against the simple linear model gives

F =
42780/1

32687/33
= 43.190.

This is just the test for zero slope in the simple linear model. Again, the alternative test can be
used. The denominator of this test is the mean squared error from the linear model, 32687/33. If
we accepted the linear model only after testing the higher order models, it may be better to use the
mean squared error from the one-way ANOVA model. The alternative F test for the linear term has

F =
42780/1

31475/30
= 40.775.

The model comparison tests just discussed can be reconstructed from contrasts in the one-way
ANOVA. Below are given some simple contrasts that correspond to the differences in sums of squares
error for the model comparisons.

Orthogonal
polynomial contrasts

Plate Linear Quadratic Cubic Quartic ȳi·
4 −2 2 −1 1 333.2143
6 −1 −1 2 −4 368.0571
8 0 −2 0 6 375.1286

10 1 −1 −2 −4 407.3571
12 2 2 1 1 437.1714
Est 247.2142 15.1000 25.3571 −80.4995
SS 42780.4 114.0 450.1 648.0

Recall that the estimate of, say, the linear contrast is

(−2)(333.2143)+(−1)(368.0571)+(0)(375.1286)+(1)(407.3571)
+(2)(437.1714) = 247.2142

and that with seven observations on each plate length, the sum of squares for the linear contrast is

SS(linear) =
(247.2142)2

[(−2)2 +(−1)2 +02 +12 +22]/7
= 42780.4.
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Table 7.13: Analysis of variance for ASI data

Source d f SS MS F P
Treatments 4 43993 10998 10.48 0.000
(linear) (1) (42780) (42780) (40.78)
(quadratic) (1) ( 114) ( 114) (0.11)
(cubic) (1) ( 450) ( 450) (0.43)
(quartic) (1) ( 648) ( 648) (0.62)
Error 30 31475 1049
Total 34 75468

This is precisely the difference in error sums of squares between the intercept and straight line
models. Similar results hold for the other contrasts.

These contrasts are called orthogonal polynomial contrasts because they are orthogonal in bal-
anced ANOVAs and reproduce the sums of squares for comparing different polynomial regression
models. We leave it to the reader to verify that the contrasts are orthogonal, cf. Section 5.4, but recall
that with orthogonal contrasts we have the identity

SSTrts = 43992.5 = 42780.4+114.0+450.1+648.0.

Table 7.13 contains an expanded analysis of variance table for the one-way ANOVA that incor-
porates the information from the contrasts. Using the orthogonal polynomial contrasts allows us to
make all of the model comparisons by using simple analysis of variance computations rather than
fitting polynomial regression models.

From Table 7.13, the P value of .000 indicates strong evidence that the five groups are different,
i.e., there is strong evidence for the quartic polynomial. The results from the contrasts are so clear
that we did not bother to report P values for them. There is a huge effect for the linear contrast. The
other three F statistics are all much less than 1, so there is no evidence of the need for a quartic,
cubic, or quadratic polynomial. As far as we can tell, a line fits the data just fine. For completeness,
some residual plots are presented as Figures 7.34 through 7.38. Note that the normal plot for the
simple linear regression in Figure 7.35 is less than admirable, while the normal plot for the one-way
ANOVA in Figure 7.38 is only slightly better. It appears that one should not put great faith in the
normality assumption. 2

The linear, quadratic, cubic, and quartic contrasts for the ASI data are simple only because the
ANOVA is balanced and the treatment groups are equally spaced. The treatments occur at 4, 6, 8, 10,
and 12 inches. Thus the treatments occur at intervals of 2 inches. If the treatments were at irregular
intervals or if the group sample sizes were unequal, orthogonal linear, quadratic, cubic, and quartic
contrasts still exist, but they are difficult to find. With either unequal spacings or unequal numbers,
it is easier just to do the appropriate regressions. With a balanced ANOVA and regularly spaced
intervals, the orthogonal polynomial contrasts can be determined from the number of treatment
groups and thus they can be tabled. Such a table is given in Appendix B.4 for linear, quadratic, and
cubic contrasts.

Comparing one of the reduced polynomial models against the one-way ANOVA model is often
referred to as a test of lack of fit. This is especially true when the reduced model is the simple linear
regression model. In these tests, the degrees of freedom, sums of squares, and mean squares used
in the numerator of the tests are all described as being for lack of fit. The denominator of the test
is based on the error from the one-way ANOVA. The mean square, sum of squares, and degrees of
freedom for error in the one-way ANOVA are often referred to as the mean square, sum of squares,
and degrees of freedom for pure error. This lack of fit test can be performed whenever the data
contain multiple observations at any x values. Often the appropriate unbalanced one-way ANOVA
includes treatments with only one observation on them. These treatments do not provide an estimate
of σ2, so they simply play no role in obtaining the mean square for pure error.
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Figure 7.38: ASI ANOVA residuals normal plot, W ′ = .966.

For testing lack of fit in the simple linear regression model with the ASI data, the numerator
sum of squares can be obtained either by differencing the sums of squares for error in the simple
linear regression model and the one-way ANOVA model or by adding up the sums of squares for the
quadratic, cubic, and quartic contrasts. Here the sum of squares for lack of fit is 32687− 31475 =
1212 = 114+450+648 and the degrees of freedom for lack of fit are 33−30 = 3. The mean square
for lack of fit is 1212/3 = 404. The pure error comes from the one-way ANOVA table. The lack of
fit test F statistic for the simple linear regression model is

F =
404
1049

= .39

which is less than 1, so there is no evidence of a lack of fit in the simple linear regression model. If
an α = .05 test were desired, the test statistic would be compared to F(.95,3,30).

Appendix: simple linear regression proofs

PROOF OF UNBIASEDNESS FOR THE REGRESSION ESTIMATES.
To begin, The β s and xis are all fixed numbers so

E(yi) = E(β0 +β1xi + εi) = β0 +β1xi +E(εi) = β0 +β1xi .

Also note that ∑
n
i=1 (xi− x̄·) = 0, so ∑

n
i=1 (xi− x̄·) x̄· = 0. It follows that

n

∑
i=1

(xi− x̄·)
2
=

n

∑
i=1

(xi− x̄·)xi−
n

∑
i=1

(xi− x̄·) x̄· =
n

∑
i=1

(xi− x̄·)xi .

Now consider the slope estimate.

E
(

β̂1

)
= E

(
∑

n
i=1 (xi− x̄·)yi

∑
n
i=1 (xi− x̄·)

2

)
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=
∑

n
i=1 (xi− x̄·)E(yi)

∑
n
i=1 (xi− x̄·)

2

=
∑

n
i=1 (xi− x̄·)(β0 +β1xi)

∑
n
i=1 (xi− x̄·)

2

= β0
∑

n
i=1 (xi− x̄·)

∑
n
i=1 (xi− x̄·)

2 +β1
∑

n
i=1 (xi− x̄·)xi

∑
n
i=1 (xi− x̄·)

2

= β0
0

∑
n
i=1 (xi− x̄·)

2 +β1
∑

n
i=1 (xi− x̄·)

2

∑
n
i=1 (xi− x̄·)

2

= β1

The proof for the intercept goes as follows:

E
(

β̂0

)
= E

(
ȳ·− β̂1x̄·

)
= E

(
1
n

n

∑
i=1

yi

)
−E
(

β̂1

)
x̄·

=
1
n

n

∑
i=1

E(yi)−β1x̄·

=
1
n

n

∑
i=1

(β0 +β1xi)−β1x̄·

= β0 +β1
1
n

n

∑
i=1

(xi)−β1x̄·

= β0 +β1x̄·−β1x̄·
= β0 .

PROOF OF VARIANCE FORMULAE.
To begin,

Var(yi) = Var(β0 +β1xi + εi) = Var(εi) = σ
2.

Now consider the slope estimate. Recall that the yis are independent.

Var
(

β̂1

)
= Var

(
∑

n
i=1 (xi− x̄·)yi

∑
n
i=1 (xi− x̄·)

2

)

=
1[

∑
n
i=1 (xi− x̄·)

2
]2 Var

(
n

∑
i=1

(xi− x̄·)yi

)

=
1[

∑
n
i=1 (xi− x̄·)

2
]2

n

∑
i=1

(xi− x̄·)
2 Var(yi)

=
1[

∑
n
i=1 (xi− x̄·)

2
]2

n

∑
i=1

(xi− x̄·)
2

σ
2

=
σ2

∑
n
i=1 (xi− x̄·)

2

=
σ2

(n−1)s2
x
.
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Rather than establishing the variance of β̂0 directly, we find Var(β̂0 + β̂1x) for an arbitrary value
x. The variance of β̂0 is the special case with x = 0. A key result is that ȳ· and β̂1 are independent.
This was discussed in relation to the alternative regression model of Section 7.6. The independence
of these estimates is based on the errors having independent normal distributions with the same
variance. More generally, if the errors have the same variance and zero covariance, we still get
Cov(ȳ·, β̂1) = 0, see Exercise 7.13.14.

Var
(

β̂0 + β̂1x
)

= Var
(

ȳ·− β̂1x̄·+ β̂1x
)

= Var
(

ȳ·+ β̂1(x− x̄·)
)

= Var(ȳ·)+Var
(

β̂1

)
(x− x̄·)2−2(x− x̄·)Cov

(
ȳ·, β̂1

)
=

1
n2

n

∑
i=1

Var(yi)+Var
(

β̂1

)
(x− x̄·)2

=
1
n2

n

∑
i=1

σ
2 +

σ2(x− x̄·)2

(n−1)s2
x

= σ
2
[

1
n
+

(x− x̄·)2

(n−1)s2
x

]
.

In particular, when x = 0 we get

Var
(

β̂0

)
= σ

2
[

1
n
+

x̄2
·

(n−1)s2
x

]
.
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Table 7.14: Age and maintenance costs of truck tractors

Age Cost Age Cost Age Cost
0.5 163 4.0 495 5.0 890
0.5 182 4.0 723 5.0 1522
1.0 978 4.0 681 5.0 1194
1.0 466 4.5 619 5.5 987
1.0 549 4.5 1049 6.0 764

4.5 1033 6.0 1373

Table 7.15: Angle between the plane of the equator and the plane of rotation about the sun

Year Angle Year Angle Year Angle Year Angle
−229 51.333̄ 880 35.000 1500 28.400 1600 31.000
−139 51.333̄ 1070 34.000 1500 29.266̄ 1656 29.033̄

140 51.166̄ 1300 32.000 1570 29.916̄ 1672 28.900
390 30.000 1460 30.000 1570 31.500 1738 28.333̄

7.13 Exercises

EXERCISE 7.13.1. Draper and Smith (1966, p. 41) considered data on the relationship between
the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six month
period. The data are given in Table 7.14. Plot cost versus age and fit a regression of cost on age.
Give 95% confidence intervals for the slope and intercept. Give a 99% confidence interval for the
mean cost of maintaining tractors that are 2.5 years old. Give a 99% prediction interval for the cost
of maintaining a particular tractor that is 2.5 years old.

Reviewing the plot of the data, how much faith should be placed in these estimates for tractors
that are 2.5 years old?

EXERCISE 7.13.2. Stigler (1986, p. 6) reported data from Cassini (1740) on the angle between
the plane of the equator and the plane of the earth’s revolution about the sun. The data are given in
Table 7.15. The years −229 and −139 indicate 230 B.C. and 140 B.C. respectively. The angles are
listed as the minutes above 23 degrees.

Plot the data. Are there any obvious outliers? If outliers exist, compare the fit of the line with
and without the outliers. In particular, compare the different 95% confidence intervals for the slope
and intercept.

EXERCISE 7.13.3. Mulrow et al. (1988) presented data on the calibration of a differential scan-
ning calorimeter. The melting temperatures of mercury and naphthalene are known to be 234.16
and 353.24 Kelvin, respectively. The data are given in Table 7.16. Plot the data. Fit a simple linear
regression y = β0 +β1x+ ε to the data. Under ideal conditions, the simple linear regression should
have β0 = 0 and β1 = 1; test whether these hypotheses are true using α = .05. Give a 95% confi-
dence interval for the population mean of observations taken on this calorimeter for which the true
melting point is 250. Give a 95% prediction interval for a new observation taken on this calorimeter
for which the true melting point is 250.

Is there any way to check whether it is appropriate to use a line in modeling the relationship
between x and y? If so, do so.

EXERCISE 7.13.4. Using the complete data of Exercise 7.13.2, test the need for a transformation
of the simple linear regression model. Repeat the test after eliminating any outliers. Compare the
results.
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Table 7.16: Melting temperatures

Chemical x y
Naphthalene 353.24 354.62

353.24 354.26
353.24 354.29
353.24 354.38

Mercury 234.16 234.45
234.16 234.06
234.16 234.61
234.16 234.48

Table 7.17: IQs and achievement scores

IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev.
100 49 105 50 134 78 107 43 122 66
117 47 89 72 125 39 121 75 130 63

98 69 96 45 140 66 90 40 116 43
87 47 105 47 137 69 132 80 101 44

106 45 95 46 142 68 116 55 92 50
134 55 126 67 130 71 137 73 120 60
77 72 111 66 92 31 113 48 80 31

107 59 121 59 125 53 110 41 117 55
125 27 106 49 120 64 114 29 93 50

EXERCISE 7.13.5. Dixon and Massey (1969) presented data on the relationship between IQ
scores and results on an achievement test in a general science course. Table 7.17 contains a subset
of the data. Fit the simple linear regression model of achievement on IQ and the quadratic model of
achievement on IQ and IQ squared. Evaluate both models and decide which is the best.

EXERCISE 7.13.6. Snedecor and Cochran (1967, Section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of acres
planted in corn. The data are given in Table 7.18.

Plot the data. Fit a simple linear regression to the data. Examine the residuals and discuss what
you find. Test the need for a power transformation. Is it reasonable to examine the square root or log
transformations? If so, do so.

EXERCISE 7.13.7. In Exercises 5.7.2 and 7.13.6 we considered data on the relationship between
farm sizes and the acreage in corn. Fit the linear, quadratic, cubic, and quartic polynomial models to
the logs of the acreages in corn. Find the model that fits best. Check the assumptions for this model.

Table 7.18: Acreage in corn for different farm acreages

Farm Corn Farm Corn Farm Corn
x y x y x y

80 25 160 45 320 110
80 10 160 40 320 30
80 20 240 65 320 55
80 32 240 80 320 60
80 20 240 65 400 75

160 60 240 85 400 35
160 35 240 30 400 140
160 20 320 70 400 90

400 110
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Table 7.19: Weights for various heights

Ht. Wt. Ht. Wt.
65 120 63 110
65 140 63 135
65 130 63 120
65 135 72 170
66 150 72 185
66 135 72 160

Compute the sums of squares for the following contrasts using the means of the logs of the corn
acreages:

Farm acreages
Contrast 80 160 240 320 400
Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1
Quartic 1 −4 6 −4 1
Means 2.9957 3.6282 4.1149 4.0904 4.4030

Compare the contrast sums of squares to the polynomial model fitting procedure.

EXERCISE 7.13.8. Repeat Exercise 7.13.6 but instead of using the number of acres of corn as
the dependent variable, use the proportion of acreage in corn as the dependent variable. Compare
the results to those given earlier.

EXERCISE 7.13.9. In Exercises 7.13.1 and 5.7.10, we performed a simple linear regression and
a one-way ANOVA on the data of Table 7.14. Test for lack of fit, i.e., whether the simple linear
regression is an adequate reduced model as compared to the one-way ANOVA model.

EXERCISE 7.13.10. The analysis of variance in Exercise 5.7.3 was based on the height and
weight data given in Table 7.19. Fit a simple linear regression of weight on height for these data
and check the assumptions. Give a 99% confidence interval for the mean weight of people with a
72 inch height and compare it to the interval from Exercise 5.7.3. Test the lack of fit of the simple
linear regression model compared to the larger one-way ANOVA model.

EXERCISE 7.13.11. Jensen (1977) and Weisberg (1985, p. 101) considered data on the outside
diameter of crank pins that were produced in an industrial process. The diameters of batches of
crank pins were measured on various days; if the industrial process is ‘under control’ the diameters
should not depend on the day they were measured. A subset of the data is given in Table 7.20 in a
format consistent with performing a regression analysis on the data. The diameters of the crank pins
are actually .742+ yi j10−5 inches, where the yi js are reported in Table 7.20. Perform an analysis
of variance and polynomial regressions on the data. Give the lack of fit test for the simple linear
regression.

EXERCISE 7.13.12. Exercise 7.13.3 involves the calibration of a measuring instrument. Often,
calibration curves are used in reverse, i.e., we would use the calorimeter to measure a melting point
y and use the regression equation to give a point estimate of x. If a new substance has a measured
melting point of 300 Kelvin, using the simple linear regression model what is the estimate of the true
melting point? Use a prediction interval to determine whether the measured melting point of y= 300
is consistent with the true melting point being x = 300. Is an observed value of 300 consistent with
a true value of 310?
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Table 7.20: Jensen’s crank pin data

Days Diameters Days Diameters Days Diameters Days Diameters
4 93 10 93 16 82 22 90
4 100 10 88 16 72 22 92
4 88 10 87 16 80 22 82
4 85 10 87 16 72 22 77
4 89 10 87 16 89 22 89

EXERCISE 7.13.13. Working-Hotelling confidence bands are a method for getting confidence
intervals for every point on a line with a guaranteed simultaneous coverage. The method is essen-
tially the same as Scheffé’s method for simultaneous confidence intervals discussed in Section 6.4.
For estimating the point on the line at a value x, the endpoints of the (1−α)100% simultaneous
confidence intervals are

(β̂0 + β̂1x)±
√

2F(1−α,2,d fE)SE(β̂0 + β̂1x).

Using the Coleman Report data of Table 7.1, find 95% simultaneous confidence intervals for the
values x = −17,−6,0,6,17. Plot the estimated regression line and sketch the Working-Hotelling
confidence bands. We are 95% confident that the entire line β0 +β1x lies between the confidence
bands. Compute the regular confidence intervals for x =−17,−6,0,6,17 and compare them to the
results of the Working-Hotelling procedure.

EXERCISE 7.13.14. Use part (4) of Proposition 1.2.11 to show that Cov(ȳ·, β̂1) = 0 whenever
Var(εi) = σ2 for all i and Cov(εi,ε j) = 0 for all i 6= j. Hint: write out ȳ· and β̂1 in terms of the yis.

EXERCISE 7.13.15. Using the axial stiffness index data of Table 7.10, fit linear, quadratic, cubic,
and quartic polynomial regression models using powers of x, the plate length, and using powers of
x− x̄·, the plate length minus the average plate length. Compare the results of the two procedures.
If your computer program will not fit some of the models, report on that in addition to comparing
results for the models you could fit.





Chapter 8

The analysis of count data

For the most part, this book concerns itself with measurement data and the corresponding analyses
based on normal distributions. In this chapter we consider data that consist of counts. We begin
in Section 8.1 by examining a set of data on the number of females admitted into graduate school
at the University of California, Berkeley. A key feature of these data is that only two outcomes
are possible: admittance or rejection. Data with only two outcomes are referred to as binary (or
dichotomous) data. Often the two outcomes are referred to generically as success and failure. In
Section 8.2, we expand our discussion by comparing two sets of dichotomous data; we compare
Berkeley graduate admission rates for females and males. Section 8.3 examines polytomous data,
i.e., count data in which there are more than two possible outcomes. For example, numbers of
Swedish females born in the various months of the year involve counts for 12 possible outcomes.
Section 8.4 examines comparisons between two samples of polytomous data, e.g., comparing the
numbers of females and males that are born in the different months of the year. Section 8.5 looks at
comparisons among more than two samples of polytomous data. The penultimate section considers
a method of reducing large tables of counts that involve several samples of polytomous data into
smaller more interpretable tables. The final section deals with a count data analogue of simple linear
regression.

Sections 8.1 and 8.2 involve analogues of Chapters 2 and 4 that are appropriate for dichotomous
data. The basic analyses in these sections simply involve new applications of the ideas in Chapter 3.
Analyzing polytomous data requires techniques that are different from the methods of Chapter 3.
Sections 8.3, 8.4, and 8.5 are polytomous data analogues of Chapters 2, 4, and 5. Everitt (1977)
and Fienberg (1980) give more detailed introductions to the analysis of count data. Sophisticated
analyses of count data frequently use analogues of ANOVA and regression called log-linear models.
Christensen (1990b) provides an intermediate level account of log-linear models.

8.1 One binomial sample

The few distributions that are most commonly used in statistics arise naturally. The normal distri-
bution arises for measurement data because the variability in the data often results from the mean
of a large number of small errors and the central limit theorem indicates that such means tend to be
normally distributed.

The binomial distribution arises naturally with count data because of its simplicity. Consider
a number of trials, say n, each a success or failure. If each trial is independent of the other trials
and if the probability of obtaining a success is the same for every trial, then the random number of
successes has a binomial distribution. The beauty of discrete data is that the probability models can
often be justified solely by how the data were collected. This does not happen with measurement
data. The binomial distribution depends on two parameters, n, the number of independent trials,
and the constant probability of success, say p. Typically, we know the value of n, while p is the
unknown parameter of interest. Binomial distributions were examined in Section 1.4.

Bickel et al. (1975) report data on admissions to graduate school at the University of California,

225



226 8. THE ANALYSIS OF COUNT DATA

Berkeley. The numbers of females that were admitted and rejected are given below along with the
total number of applicants.

Graduate admissions at Berkeley
Admitted Rejected Total

Female 557 1278 1835

It seems reasonable to view the 1835 females as a random sample from a population of potential
female applicants. We are interested in the probability p that a female applicant is admitted to
graduate school. A natural estimate of the parameter p is the proportion of females that were actually
admitted, thus our estimate of the parameter is

p̂ =
557
1835

= .30354.

We have a parameter of interest, p, and an estimate of that parameter, p̂. If we can identify a standard
error and an appropriate distribution, we can use the methods of Chapter 3 to perform statistical
inferences.

The key to finding a standard error is to find the variance of the estimate. As we will see later,

Var(p̂) =
p(1− p)

n
. (8.1.1)

To estimate the standard deviation of p̂, we simply use p̂ to estimate p in (8.1.1) and take the square
root. Thus the standard error is

SE(p̂) =

√
p̂(1− p̂)

n
=

√
.30354(1− .30354)

1835
= .01073.

The final requirement for using the results of Chapter 3 is to find an appropriate reference dis-
tribution for

p̂− p
SE(p̂)

.

We can think of each trial as scoring either a 1, if the trial is a success, or a 0, if the trial is a failure.
With this convention p̂, the proportion of successes, is really the average of the 0–1 scores and since
p̂ is an average we can apply the central limit theorem. (In fact, SE(p̂) is very nearly s/

√
n, where s

is computed from the 0–1 scores.) The central limit theorem simply states that for a large number of
trials n, the distribution of p̂ is approximately normal with a population mean that is the population
mean of p̂ and a population variance that is the population variance of p̂. We have already given the
variance of p̂ and we will see later that E(p̂) = p. Thus for large n we have the approximation

p̂∼ N
(

p,
p(1− p)

n

)
.

The variance is unknown but by the law of large numbers it is approximately equal to our estimate
of it, p̂(1− p̂)/n. Standardizing the normal distribution (cf. Exercise 1.6.2) gives the approximation

p̂− p
SE(p̂)

∼ N(0,1). (8.1.2)

This distribution requires a sample size that is large enough for both the central limit theorem ap-
proximation and the law of large numbers approximation to be reasonably valid. For values of p
that are not too close to 0 or 1, the approximation works reasonably well with sample sizes as small
as 20.

We now have Par = p, Est = p̂, SE(p̂) =
√

p̂(1− p̂)/n and the distribution in (8.1.2). As in
Chapter 3, a 95% confidence interval for p has limits

p̂±1.96

√
p̂(1− p̂)

n
.
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Here 1.96 = z(.975) = t(.975,∞). Recall that a (1−α)100% confidence interval requires the (1−
α/2) percentile of the distribution. For the female admissions data, the limits are

.30354±1.96(.01073)

which gives the interval (.28, .32). We are 95% confident that the population proportion of females
admitted to Berkeley’s graduate school is between .28 and .32. (As is often the case, it is not exactly
clear what population these data relate to.)

We can also perform, say, an α = .01 test of the null hypothesis H0 : p = 1/3 versus the alter-
native HA : p 6= 1/3. The test rejects H0 if

p̂−1/3
SE(p̂)

> 2.58

or if
p̂−1/3
SE(p̂)

<−2.58.

Here 2.58 = z(.995) = t(.975,∞). An α level two-sided test requires the (1− α

2 )100% point of the
distribution. The Berkeley data yield the test statistic

.30354− .33333
.01073

=−2.78

which is smaller than −2.58, so we reject the null hypothesis of p = 1/3 with α = .01. In other
words, we can reject, with strong assurance, the claim that one third of female applicants are ad-
mitted to graduate school at Berkeley. Since the test statistic is negative, we have evidence that the
true proportion is less than one third. The test as constructed here is equivalent to checking whether
p = 1/3 is within a 99% confidence interval.

There is an alternative, slightly different, way of performing tests such as H0 : p = 1/3 versus
HA : p 6= 1/3. The difference involves using a different standard error. The variance of the estimate
p̂ is p(1− p)/n. In obtaining a standard error, we estimated p with p̂ and took the square root of
the estimated variance. Recalling that tests are performed assuming that the null hypothesis is true,
it makes sense in the testing problem to use the assumption p = 1/3 in computing a standard error
for p̂. Thus an alternative standard error for p̂ in this testing problem is√

1
3

(
1− 1

3

)/
1835 = .01100.

The test statistic now becomes
.30354− .33333

.01100
=−2.71.

Obviously, since the test statistic is slightly different, one could get slightly different answers for
tests using the two different standard errors. Moreover, the results of this test will not always agree
with a corresponding confidence interval for p because this test uses a different standard error than
the confidence interval.

We should remember that the N(0,1) distribution being used for the test is only a large sample
approximation. (In fact, all of our results are only approximations.) The difference between the two
standard errors is often minor compared to the level of approximation inherent in using the standard
normal as a reference distribution. In any case, whether we ascribe the differences to the standard
errors or to the quality of the normal approximations, the exact behavior of the two test statistics
can be quite different when the sample size is small. Moreover, when p is near 0 or 1, the sample
sizes must be quite large to get a good normal approximation.

The main theoretical results for a single binomial sample are establishing that p̂ is a reasonable
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Table 8.1: Graduate admissions at Berkeley

Admitted Rejected Total
Females 557 1278 1835
Males 1198 1493 2691

estimate of p and that the variance formula given earlier is correct. The data are y ∼ Bin(n, p). As
seen in Section 1.4, E(y) = np and Var(y) = np(1− p). The estimate of p is p̂ = y/n. The estimate
is unbiased because

E(p̂) = E(y/n) = E(y)/n = np/n = p.

The variance of the estimate is

Var(p̂) = Var(y/n) = Var(y)/n2 = np(1− p)/n2 = p(1− p)/n.

8.1.1 The sign test

We now consider an alternative analysis for paired comparisons based on the binomial distribution.
Consider Burt’s data on IQs of identical twins raised apart from Exercise 4.5.7 and Table 4.9. The
earlier discussion of paired comparisons involved assuming and validating the normal distribution
for the differences in IQs between twins. In the current discussion, we make the same assumptions as
before except we replace the normality assumption with the weaker assumption that the distribution
of the differences is symmetric. In the earlier discussion, we would test H0 : µ1− µ2 = 0. In the
current discussion, we test whether there is a 50 : 50 chance that y1, the IQ for the foster parent
raised twin, is larger than y2, the IQ for the genetic parent raised twin. In other words, we test
whether Pr(y1− y2 > 0) = .5. We have a sample of n = 27 pairs of twins. If Pr(y1− y2 > 0) = .5,
the number of pairs with y1− y2 > 0 has a Bin(27, .5) distribution. From Table 4.9, 13 of the 27
pairs have larger IQs for the foster parent raised child. (These are the differences with a positive
sign, hence the name sign test.) The proportion is p̂ = 13/27 = .481. The test statistic is

.481− .5√
.5(1− .5)/27

=−.20

which is nowhere near significant.
A similar method could be used to test, say, whether there is a 50 : 50 chance that y1 is at least 3

IQ points greater than y2. This hypothesis translates into Pr(y1−y2 ≥ 3) = .5. The test is then based
on the number of differences that are 3 or more.

The point of the sign test is the weakening of the assumption of normality. If the normality
assumption is appropriate, the t test of Section 4.1 is more powerful. When the normality assumption
is not appropriate, some modification like the sign test should be used. In this book, the usual
approach is to check the normality assumption and, if necessary, to transform the data to make the
normality assumption reasonable. For a more detailed introduction to nonparametric methods such
as the sign test, see, for example, Conover (1971).

8.2 Two independent binomial samples

In this section we compare two independent binomial samples. Consider again the Berkeley admis-
sions data. Table 8.1 contains data on admissions and rejections for the 1835 females considered in
Section 8.1 along with data on 2691 males. We assume that the sample of females is independent
of the sample of males. Throughout, we refer to the females as the first sample and the males as the
second sample.

We consider being admitted to graduate school a ‘success’. Assuming that the females are a
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binomial sample, they have a sample size of n1 = 1835 and some probability of success, say, p1.
The observed proportion of female successes is

p̂1 =
557

1835
= .30354.

Treating the males as a binomial sample, the sample size is n2 = 2691 and the probability of success
is, say, p2. The observed proportion of male successes is

p̂2 =
1198
2691

= .44519.

Our interest is in comparing the success rate of females and males. The appropriate parameter
is the difference in proportions,

Par = p1− p2.

The natural estimate of this parameter is

Est = p̂1− p̂2 = .30354− .44519 =−.14165.

With independent samples, we can find the variance of the estimate and thus the standard error.
Since the females are independent of the males,

Var(p̂1− p̂2) = Var(p̂1)+Var(p̂2).

Using the variance formula in equation (8.1.1),

Var(p̂1− p̂2) =
p1(1− p1)

n1
+

p2(1− p2)

n2
. (8.2.1)

Estimating p1 and p2 and taking the square root gives the standard error,

SE(p̂1− p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

=

√
.30354(1− .30354)

1835
+

.44519(1− .44519)
2691

= .01439.

For large sample sizes n1 and n2, both p̂1 and p̂2 have approximate normal distributions and they
are independent, so p̂1− p̂2 has an approximate normal distribution and the appropriate reference
distribution is approximately

(p̂1− p̂2)− (p1− p2)

SE(p̂1− p̂2)
∼ N(0,1).

We now have all the requirements for applying the results of Chapter 3. A 95% confidence
interval for p1− p2 has endpoints

(p̂1− p̂2)±1.96

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

where the value 1.96 = z(.975) is obtained from the N(0,1) distribution. For comparing the female
and male admissions, the 95% confidence interval for the population difference in proportions has
endpoints

−.14165±1.96(.01439).
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The interval is (−.17,−.11). Thus we are 95% confident that the proportion of women being ad-
mitted to graduate school at Berkeley is between .11 and .17 less than that for men.

To test H0 : p1 = p2, or equivalently H0 : p1− p2 = 0, against HA : p1− p2 6= 0, reject an α = .10
test if

(p̂1− p̂2)−0
SE(p̂1− p̂2)

> 1.645

or if
(p̂1− p̂2)−0
SE(p̂1− p̂2)

<−1.645.

Again, the value 1.645 is obtained from the N(0,1)≡ t(∞) distribution. With the Berkeley data, the
observed value of the test statistic is

−.14165−0
.01439

=−9.84.

This is far smaller than −1.645, so the test rejects the null hypothesis of equal proportions at the
.10 level. The test statistic is negative, so there is evidence that the proportion of women admitted
to graduate school is lower than the proportion of men.

Once again, an alternative standard error is often used in testing problems. The test assumes that
the null hypothesis is true and under the null hypothesis p1 = p2, so in constructing a standard error
for the test statistic it makes sense to pool the data into one estimate of this common proportion.
The pooled estimate is a weighted average of the individual estimates,

p̂∗ =
n1 p̂1 +n2 p̂2

n1 +n2

=
1835(.30354)+2691(.44519)

1835+2691

=
557+1198

1835+2691
= .38776 .

Using p̂∗ to estimate both p1 and p2 in equation (8.2.1) and taking the square root gives the alterna-
tive standard error

SE(p̂1− p̂2) =

√
p̂∗(1− p̂∗)

n1
+

p̂∗(1− p̂∗)
n2

=

√
p̂∗(1− p̂∗)

[
1
n1

+
1
n2

]

=

√
.38776(1− .38776)

[
1

1835
+

1
2691

]
= .01475

The alternative test statistic is
−.14165−0

.01475
=−9.60.

Again, the two test statistics are slightly different but the difference should be minor compared to
the level of approximation involved in using the normal distribution.

A final note. Before you conclude that the data in Table 8.1 provide evidence of sex discrimina-
tion, you should realize that females tend to apply to different graduate programs than males. A more
careful examination of the complete Berkeley data shows that the difference observed here results
from females applying more frequently than males to highly restrictive programs, cf. Christensen
(1990b, p. 96).
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Table 8.2: Swedish female births by month

Month Females p̂ Probability E (O−E)/
√

E
January 3537 .083 1/12 3549.25 −0.20562
February 3407 .080 1/12 3549.25 −2.38772
March 3866 .091 1/12 3549.25 5.31678
April 3711 .087 1/12 3549.25 2.71504
May 3775 .087 1/12 3549.25 3.78930
June 3665 .086 1/12 3549.25 1.94291
July 3621 .085 1/12 3549.25 1.20435
August 3596 .084 1/12 3549.25 0.78472
September 3491 .082 1/12 3549.25 −0.97775
October 3391 .080 1/12 3549.25 −2.65629
November 3160 .074 1/12 3549.25 −6.53372
December 3371 .079 1/12 3549.25 −2.99200
Total 42591 1 1 42591.00

8.3 One multinomial sample

In this section we investigate the analysis a single polytomous variable, i.e., a count variable with
more than two possible outcomes. In particular, we assume that the data are a sample from a multi-
nomial distribution, cf. Section 1.5. The multinomial distribution is a generalization of the binomial
that allows more than two outcomes. We assume that each trial gives one of, say, q possible out-
comes. Each trial must be independent and the probability of each outcome must be the same for
every trial. The multinomial distribution gives probabilities for the number of trials that fall into each
of the possible outcome categories. The binomial distribution is a special case of the multinomial
distribution in which q = 2.

The first two columns of Table 8.2 give months and numbers of Swedish females born in each
month. The data are from Cramér (1946) who did not name the months. We assume that the data
begin in January.

With polytomous data such as those listed in Table 8.2, there is no one parameter of primary
interest. One might be concerned with the proportions of births in January, or December, or in any
of the twelve months. With no one parameter of interest, the methods of Chapter 3 do not apply.
Column 3 of Table 8.2 gives the observed proportions of births for each month. These are simply the
monthly births divided by the total births for the year. Note that the proportion of births in March
seems high and the proportion of births in November seems low.

A simplistic, yet interesting, hypothesis is that the proportion of births is the same for every
month. To test this null hypothesis, we compare the number of observed births to the number of
births we would expect to see if the hypothesis were true. The number of births we expect to see in
any month is just the probability of having a birth in that month times the total number of births. The
equal probabilities are given in column 4 of Table 8.2 and the expected values are given in column 5.
The entries in column 5 are labeled E for expected value and are computed as (1/12)42591 =
3549.25. It cannot be overemphasized that the expectations are computed under the assumption
that the null hypothesis is true.

Comparing observed values with expected values can be tricky. Suppose an observed value is
2145 and the expected value is 2149. The two numbers are off by 4; the observed value is pretty
close to the expected. Now suppose the observed value is 1 and the expected value is 5. Again
the two numbers are off by 4 but now the difference between observed and expected seems quite
substantial. A difference of 4 means something very different depending on how large both numbers
are. To account for this phenomenon, we standardized the difference between observed and expected
counts. We do this by dividing the difference by the square root of the expected count. Thus, when
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we compare observed counts with expected counts we look at

O−E√
E

(8.3.1)

where O stands for the observed count and E stands for the expected count. The values in (8.3.1)
are called Pearson residuals, after Karl Pearson.

The Pearson residuals for the Swedish female births are given in column 6 of Table 8.2. As
noted earlier, the two largest deviations from the assumption of equal probabilities occur for March
and November. Reasonably large deviations also occur for May and to a lesser extent December,
April, October, and February. In general, the Pearson residuals can be compared to observations
from a N(0,1) distribution to evaluate whether a residual is large. For example, the residuals for
March and November are 5.3 and−6.5. These are not values one is likely to observe from a N(0,1)
distribution; they provide strong evidence that birth rates in March are really larger than 1/12 and
that birth rates in November are really smaller than 1/12.

Births seem to peak in March and they, more or less, gradually decline until November. After
November, birth rates are still low but gradually increase until February. In March birth rates in-
crease markedly. Birth rates are low in the fall and lower in the winter; they jump in March and
remain relatively high, though decreasing, until September. This analysis could be performed using
the monthly proportions of column 2 but the results are clearer using the residuals.

A statistic for testing whether the null hypothesis of equal proportions is reasonable can be
obtained by squaring the residuals and adding them together. This statistic is known as Pearson’s
χ2 (chi-squared) statistic and is computed as

X2 = ∑
all cells

(O−E)2

E
.

For the female Swedish births,
X2 = 121.24.

Note that small values of X2 indicate observed values that are similar to the expected values, so
small values of X2 are consistent with the null hypothesis. Large values of X2 occur whenever one
or more observed values are far from the expected values. To perform a test, we need some idea
of how large X2 could reasonably be when the null hypothesis is true. It can be shown that for
a problem such as this with 1) a fixed number of cells q, here q = 12, with 2) a null hypothesis
consisting of known probabilities such as those given in column 4 of Table 8.2, and with 3) large
sample sizes for each cell, the null distribution of X2 is approximately

X2 ∼ χ
2(q−1).

The degrees of freedom are only q−1 because the p̂s must add up to 1. Thus, if we know q−1 = 11
of the proportions, we can figure out the last one. Only q−1 of the cells are really free to vary. From
Appendix B.2, the 99.5th percentile of a χ2(11) distribution is χ2(.995,11) = 26.76. The observed
X2 value of 121.24 is much larger than this, so the observed value of X2 could not reasonably come
from a χ2(11) distribution. In particular, an α = .005 test of the null hypothesis is rejected easily,
so the P value for the test is ‘much’ less than .005. It follows that there is overwhelming evidence
that the proportion of female Swedish births is not the same for all months.

In this example, our null hypothesis was that the probability of a female birth was the same
in every month. A more reasonable hypothesis might be that the probability of a female birth is
the same on every day. The months have different numbers of days so under this null hypothesis
they have different probabilities. For example, assuming a 365 day year, the probability of a female
birth in January is 31/365 which is somewhat larger than 1/12. Exercise 8.8.4 involves testing this
alternative null hypothesis.

We can use results from Section 8.1 to help in the analysis of multinomial data. If we consider
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Table 8.3: Swedish births: monthly observations (Oi js) and monthly proportions by sex

Observations Proportions
Month Female Male Total Female Male
January 3537 3743 7280 .083 .082
February 3407 3550 6957 .080 .078
March 3866 4017 7883 .091 .088
April 3711 4173 7884 .087 .091
May 3775 4117 7892 .089 .090
June 3665 3944 7609 .086 .086
July 3621 3964 7585 .085 .087
August 3596 3797 7393 .084 .083
September 3491 3712 7203 .082 .081
October 3391 3512 6903 .080 .077
November 3160 3392 6552 .074 .074
December 3371 3761 7132 .079 .082
Total 42591 45682 88273 1.000 1.000

only the month of December, we can view each trial as a success if the birth is in December and a
failure otherwise. Writing the probability of a birth in December as p12, from Table 8.2 the estimate
of p12 is

p̂12 =
3371

42591
= .07915

with standard error

SE(p̂12) =

√
.07915(1− .07915)

42591
= .00131

and a 95% confidence interval has endpoints

.07915±1.96(.00131).

The interval reduces to (.077, .082). Tests for monthly proportions can be performed in a similar
fashion. Bonferroni adjustments can be made to all tests and confidence intervals to control the
experimentwise error rate for multiple tests or intervals, cf. Section 6.2.

8.4 Two independent multinomial samples

Table 8.3 gives monthly births for Swedish females and males along with various marginal totals.
We wish to determine whether monthly birth rates differ for females and males. Denote the females
as population 1 and the males as population 2. Thus we have a sample of 42591 females and, by
assumption, an independent sample of 45682 males.

In fact, it is more likely that there is actually only one sample here, one consisting of 88273
births. It is more likely that the births have been divided into 24 categories depending on sex and
birth month. Such data can be treated as two independent samples with (virtually) no loss of gen-
erality. The interpretation of results for two independent samples is considerably simpler than the
interpretation necessary for one sample cross-classified by both sex and month. Thus we discuss
such data as though they are independent samples. The alternative interpretation involves a multi-
nomial sample with the probabilities for month and sex pairs all being independent.

The number of births in month i for sex j is denoted Oi j, where i = 1, . . . ,12 and j = 1,2. Thus,
for example, the number of males born in December is O12,2 = 3761. Let Oi· be the total for month
i, O· j be the total for sex j, and O·· be the total over all months and sexes. For example, May has
O5· = 7892, males have O·2 = 45682, and the grand total is O·· = 88273.

Our interest now is in whether the population proportion of births for each month is the same for
females as for males. We no longer make any assumption about what these proportions are, our null
hypothesis is simply that the proportions are the same in each month. Again, we wish to compare
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Table 8.4: Estimated expected Swedish births by month (Êi js) and pooled proportions

Expectations Pooled
Month Female Male Total proportions
January 3512.54 3767.46 7280 .082
February 3356.70 3600.30 6957 .079
March 3803.48 4079.52 7883 .089
April 3803.97 4080.03 7884 .089
May 3807.83 4084.17 7892 .089
June 3671.28 3937.72 7609 .086
July 3659.70 3925.30 7585 .086
August 3567.06 3825.94 7393 .084
September 3475.39 3727.61 7203 .082
October 3330.64 3572.36 6903 .078
November 3161.29 3390.71 6552 .074
December 3441.13 3690.87 7132 .081
Total 42591.00 45682.00 88273 1.000

the observed values, the Oi js with expected values, but now, since we do not have hypothesized
proportions for any month, we must estimate the expected values.

Under the null hypothesis that the proportions are the same for females and males, it makes
sense to pool the male and female data to get an estimate of the proportion of births in each month.
Using the column of monthly totals in Table 8.3, the estimated proportion for January is the January
total divided by the total for the year, i.e.,

p̂0
1 =

7280
88273

= .0824714.

In general, for month i we have

p̂0
i =

Oi·

O··
where the superscript of 0 is used to indicate that these proportions are estimated under the null
hypothesis of identical monthly rates for males and females. The estimate of the expected number of
females born in January is just the number of females born in the year times the estimated probability
of a birth in January,

Ê11 = 42591(.0824714) = 3512.54.

The expected number of males born in January is the number of males born in the year times the
estimated probability of a birth in January,

Ê12 = 45682(.0824714) = 3767.46.

In general,

Êi j = O· j p̂0
i = O· j

Oi·

O··
=

Oi·O· j
O··

.

Again, the estimated expected values are computed assuming that the proportions of births are the
same for females and males in every month, i.e., assuming that the null hypothesis is true. The
estimated expected values under the null hypothesis are given in Table 8.4. Note that the totals for
each month and for each sex remain unchanged.

The estimated expected values are compared to the observations using Pearson residuals, just as
in Section 8.3. The Pearson residuals are

r̃i j ≡
Oi j− Êi j√

Êi j

.
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Table 8.5: Pearson residuals for Swedish birth months, (r̃i js)

Month Female Male
January 0.41271 −0.39849
February 0.86826 −0.83837
March 1.01369 −0.97880
April −1.50731 1.45542
May −0.53195 0.51364
June −0.10365 0.10008
July −0.63972 0.61770
August 0.48452 −0.46785
September 0.26481 −0.25570
October 1.04587 −1.00987
November −0.02288 0.02209
December −1.19554 1.15438

A more apt name for the Pearson residuals in this context may be crude standardized residuals. It
is the standardization here that is crude and not the residuals. The standardization in the Pearson
residuals ignores the fact that Ê is itself an estimate. Better, but considerably more complicated,
standardized residuals can be defined for count data, cf. Christensen (1990b, Section IV.9). For the
Swedish birth data, the Pearson residuals are given in Table 8.5. Note that when compared to a
N(0,1) distribution, none of the residuals is very large; all are smaller than 1.51 in absolute value.

As in Section 8.3, the sum of the squared Pearson residuals gives Pearson’s χ2 statistic for
testing the null hypothesis of no differences between females and males. Pearson’s test statistic is

X2 = ∑
i j

(Oi j− Êi j)
2

Êi j
.

For the Swedish birth data, computing the statistic from the 24 cells in Table 8.5 gives

X2 = 14.9858.

For a formal test, X2 is compared to a χ2 distribution. The appropriate number of degrees of
freedom for the χ2 test is the number of cells in the table adjusted to account for all the parameters
we have estimated as well as the constraint that the sex totals sum to the grand total. There are
12×2 cells but only 12−1 free months and only 2−1 free sex totals. The appropriate distribution
is χ2((12−1)(2−1)) = χ2(11). The degrees of freedom are the number of data rows in Table 8.3
minus 1 times the number of data columns in Table 8.3 minus 1. The 90th percentile of a χ2(11)
distribution is χ2(.9,11) = 17.28, so the observed test statistic X2 = 14.9858 could reasonably
come from a χ2(11) distribution. In particular, the test is not significant at the .10 level. Moreover,
χ2(.75,11) = 13.70, so the test has a P value between .25 and .10. There is no evidence of any
differences in the monthly birth rates for males and females.

Another way to evaluate the null hypothesis is by comparing the observed monthly birth propor-
tions by sex. These observed proportions are given in Table 8.3. If the populations of females and
males have the same proportions of births in each month, the observed proportions of births in each
month should be similar (except for sampling variation). One can compare the numbers directly in
Table 8.3 or one can make a visual display of the observed proportions as in Figure 8.1.

The methods just discussed apply equally well to the binomial data of Table 8.1. Applying the
X2 test given here to the data of Table 8.1 gives

X2 = 92.2.

The statistic X2 is equivalent to the test statistic given in Section 8.2 using the pooled estimate p̂∗
to compute the standard error. The test statistic in Section 8.2 is −9.60, and if we square this we get

(−9.60)2 = 92.2 = X2.
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Figure 8.1: Monthly Swedish birth proportions by sex: solid line, female; dashed line, male.

The −9.60 is compared to a N(0,1), while the 92.2 is compared to a χ2(1) because Table 8.1 has 2
rows and 2 columns. A χ2(1) distribution is obtained by squaring a N(0,1) distribution, so P values
are identical and critical values are equivalent.

Minitab commands

Minitab commands for generating the analysis of Swedish birth rates are given below. Column c1
contains the observations, the Oi js. Column c2 contains indices from 1 to 12 indicating the month of
each observation and c3 contains indices for the two sexes. The subcommand ‘colpercents’ provides
the proportions discussed in the analysis. The subcommand ‘chisquare 3’ gives the observations,
estimated expected values, and Pearson residuals along with the Pearson test statistic.

MTB > read ’swede2.dat’ c1 c2 c3

MTB > table c2 c3;

SUBC> frequencies c1;

SUBC> colpercents;

SUBC> chisquare 3.

8.5 Several independent multinomial samples

The methods of Section 8.4 extend easily to dealing with more than two samples. Consider the data
in Table 8.6 that was extracted from Lazerwitz (1961). The data involve samples from three religious
groups and consist of numbers of people in various occupational groups. The occupations are labeled
A, professions; B, owners, managers, and officials; C, clerical and sales; and D, skilled. The three
religious groups are Protestant, Roman Catholic, and Jewish. This is a subset of a larger collection
of data that includes many more religious and occupational groups. The fact that we are restricting
ourselves to a subset of a larger data set has no effect on the analysis. As discussed in Section 8.4, the
analysis of these data is essentially identical regardless of whether the data come from one sample of
1926 individuals cross-classified by religion and occupation, or four independent samples of sizes
348, 477, 411, and 690 taken from the occupational groups, or three independent samples of sizes
1135, 648, and 143 taken from the religious groups. We choose to view the data as independent
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Table 8.6: Religion and occupations

Occupation
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

samples from the three religious groups. The data in Table 8.6 constitutes a 3× 4 table because,
excluding the totals, the table has 3 rows and 4 columns.

We again test whether the populations are the same. In other words, the null hypothesis is that the
probability of falling into any occupational group is identical for members of the various religions.
Under this null hypothesis, it makes sense to pool the data from the three religions to obtain esti-
mates of the common probabilities. For example, under the null hypothesis of identical populations,
the estimate of the probability that a person is a professional is

p̂0
1 =

348
1926

= .180685.

For skilled workers the estimated probability is

p̂0
4 =

690
1926

= .358255.

Denote the observations as Oi j with i identifying a religious group and j indicating occupation.
We use a dot to signify summing over a subscript. Thus the total for religious group i is

Oi· = ∑
j

Oi j,

the total for occupational group j is
O· j = ∑

i
Oi j,

and
O·· = ∑

i j
Oi j

is the grand total. Recall that the null hypothesis is that the probability of being in an occupation
group is the same for each of the three populations. Pooling information over religions, we have

p̂0
j =

O· j
O··

as the estimate of the probability that someone in the study is in occupational group j. This estimate
is only appropriate when the null hypothesis is true.

The estimated expected count under the null hypothesis for a particular occupation and religion
is obtained by multiplying the number of people sampled in that religion by the probability of
the occupation. For example, the estimated expected count under the null hypothesis for Jewish
professionals is

Ê31 = 143(.180685) = 25.84.

Similarly, the estimated expected count for Roman Catholic skilled workers is

Ê24 = 648(.358255) = 232.15.
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Table 8.7: Estimated expected counts (Êi js)

Religion A B C D Total
Protestant 205.08 281.10 242.20 406.62 1135
Roman Catholic 117.08 160.49 138.28 232.15 648
Jewish 25.84 35.42 30.52 51.23 143
Total 348.00 477.00 411.00 690.00 1926

Table 8.8: Residuals (r̃i js)

Religion A B C D
Protestant 0.34 −0.24 0.76 −0.63
Roman Catholic −1.39 −1.62 −0.96 3.07
Jewish 2.00 4.13 −0.09 −4.78

In general,

Êi j = Oi· p̂0
j = Oi·

O· j
O··

=
Oi·O· j

O··
.

Again, the estimated expected values are computed assuming that the null hypothesis is true. The
expected values for all occupations and religions are given in Table 8.7.

The estimated expected values are compared to the observations using Pearson residuals. The
Pearson residuals are

r̃i j =
Oi j− Êi j√

Êi j

.

These crude standardized residuals are given in Table 8.8 for all occupations and religions. The
largest negative residual is −4.78 for Jewish people with occupation D. This indicates that Jew-
ish people were substantially underrepresented among skilled workers relative to the other two
religious groups. On the other hand, Roman Catholics were substantially overrepresented among
skilled workers, with a positive residual of 3.07. The other large residual in the table is 4.13 for
Jewish people in group B. Thus Jewish people were more highly represented among owners, man-
agers, and officials than the other religious groups. Only one other residual is even moderately large,
the 2.00 indicating a high level of Jewish people in the professions. The main feature of these data
seems to be that the Jewish group was different from the other two. A substantial difference appears
in every occupational group except clerical and sales.

As in Sections 8.3 and 8.4, the sum of the squared Pearson residuals gives Pearson’s χ2 statistic
for testing the null hypothesis that the three populations are the same. Pearson’s test statistic is

X2 = ∑
i j

(Oi j− Êi j)
2

Êi j
.

Summing the squares of the values in Table 8.8 gives

X2 = 60.0.

The appropriate number of degrees of freedom for the χ2 test is the number of data rows in Ta-
ble 8.6 minus 1 times the number of data columns in Table 8.6 minus 1. Thus the appropriate
reference distribution is χ2((3−1)(4−1)) = χ2(6). The 99.5th percentile of a χ2(6) distribution is
χ2(.995,6) = 18.55 so the observed statistic X2 = 60.0 could not reasonably come from a χ2(6) dis-
tribution. In particular, the test is significant at the .005 level, clearly indicating that the proportions
of people in the different occupation groups differ with religious group.

As in the previous section, we can informally evaluate the null hypothesis by examining the
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Table 8.9: Observed proportions by religion

Occupation
Religion A B C D Total
Protestant .185 .244 .224 .347 1.00
Roman Catholic .157 .216 .196 .431 1.00
Jewish .252 .420 .210 .119 1.00
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Figure 8.2 Occupational proportions by religion: solid – protestant, long dashes – catholic, short dashes –
jewish.

observed proportions for each religious group. The observed proportions are given in Table 8.9.
Under the null hypothesis, the observed proportions in each occupation category should be the
same for all the religions (up to sampling variability). Figure 8.2 displays the observed proportions
graphically. The Jewish group is obviously very different from the other two groups in occupations
B and D and is very similar in occupation C. The Jewish proportion seems somewhat different for
occupation A. The Protestant and Roman Catholic groups seem similar except that the Protestants
are a bit underrepresented in occupation D and therefore are overrepresented in the other three
categories. (Remember that the four proportions for each religion must add up to one, so being
underrepresented in one category forces an overrepresentation in one or more other categories.)

8.6 Lancaster–Irwin partitioning

Lancaster–Irwin partitioning is a method for breaking a table of count data into smaller tables.
When used to its maximum extent, partitioning is similar in spirit to looking at contrasts in analysis
of variance. The basic idea is that a table of counts can be broken into two component tables, a
reduced table and a collapsed table. Table 8.10 illustrates such a partition for the data of Table 8.6. In
the reduced table, the row for the Jewish group has been eliminated, leaving a subset of the original
table. In the collapsed table, the two rows in the reduced table, Protestant and Roman Catholic, have
been collapsed into a single row.

In Lancaster–Irwin partitioning, we pick a group of either rows or columns, say rows. The
reduced table involves all of the columns but only the chosen subgroup of rows. The collapsed table
involves all of the columns and all of the rows not in the chosen subgroup, along with a row that
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Table 8.10: A Lancaster–Irwin partition of Table 8.6

Reduced table
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Total 312 417 381 673 1783

Collapsed table
Religion A B C D Total
Prot. & R.C. 312 417 381 673 1783
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

combines (collapses) all of the subgroup rows into a single row. In Table 8.10 the chosen subgroup
of rows contains the Protestants and Roman Catholics. The reduced table involves all occupational
groups but only the Protestants and Roman Catholics. In the collapsed table the occupational groups
are unaffected but the Protestants and Roman Catholics are combined into a single row. The other
rows remain the same; in this case the other rows consist only of the Jewish row. As alluded to
above, rather than picking a group of rows to form the partitioning, we could select a group of
columns.

Lancaster–Irwin partitioning is by no means a unique process. There are as many ways to parti-
tion a table as there are ways to pick a group of rows or columns. In Table 8.10 we made a particular
selection based on the residual analysis of these data from the previous section. The main feature we
discovered in the residual analysis was that the Jewish group seemed to be different from the other
two groups. Thus it seemed to be of interest to compare the Jewish group with a combination of
the others and then to investigate what differences there might be among the other religious groups.
The partitioning of Table 8.10 addresses precisely these questions.

Tables 8.11 and 8.12 provide statistics for the analysis of the reduced table and collapsed table.
The reduced table simply reconfirms our previous conclusions. The X2 value of 12.3 indicates sub-
stantial evidence of a difference between Protestants and Roman Catholics. The percentage point
χ2(.995,3) = 12.84 indicates that the P value for the test is a bit greater than .005. The resid-
uals indicate that the difference was due almost entirely to the fact that Roman Catholics have
relatively higher representation among skilled workers. (Or equivalently, that Protestants have rela-
tively lower representation among skilled workers.) Overrepresentation of Roman Catholics among
skilled workers forces their underrepresentation among other occupational groups but the level of
underrepresentation in the other groups was approximately constant as indicated by the approxi-
mately equal residuals for Roman Catholics in the other three occupation groups. We will see later
that for Roman Catholics in the other three occupation groups, their distribution among those groups
was almost the same as those for Protestants. This reinforces the interpretation that the difference
was due almost entirely to the difference in the skilled group.

The conclusions that can be reached from the collapsed table are also similar to those drawn
in the previous section. The X2 value of 47.5 on 3 degrees of freedom indicates overwhelming
evidence that the Jewish group was different from the combined Protestant–Roman Catholic group.
The residuals can be used to isolate the sources of the differences. The two groups differed in
proportions of skilled workers and proportions of owners, managers, and officials. There was a
substantial difference in the proportions of professionals. There was almost no difference in the
proportion of clerical and sales workers between the Jewish group and the others.

The X2 value computed for Table 8.6 was 60.0. The X2 value for the collapsed table is 47.5 and
the X2 value for the reduced table is 12.3. Note that 60.0 .

= 59.8 = 47.5+12.3. It is not by chance
that the sum of the X2 values for the collapsed and reduced tables is approximately equal to the X2

value for the original table. In fact, this relationship is a primary reason for using the Lancaster–
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Table 8.11: Reduced table

Observations
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Total 312 417 381 673 1783

Estimated expected counts
Religion A B C D Total
Protestant 198.61 265.45 242.53 428.41 1135
Roman Catholic 113.39 151.55 138.47 244.59 648
Total 312.00 417.00 381.00 673.00 1783

Pearson residuals
Religion A B C D
Protestant 0.81 0.71 0.74 −1.66
Roman Catholic −1.07 −0.94 −0.97 2.20

X2 = 12.3, d f = 3

Table 8.12: Collapsed table

Observations
Religion A B C D Total
Prot. & R.C. 312 417 381 673 1783
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

Estimated expected counts
Religion A B C D Total
Prot. & R.C. 322.16 441.58 380.48 638.77 1783
Jewish 25.84 35.42 30.52 51.23 143
Total 348.00 477.00 411.00 690.00 1926

Pearson residuals
Religion A B C D
Prot. & R.C. −0.57 −1.17 0.03 1.35
Jewish 2.00 4.13 −0.09 −4.78

X2 = 47.5, d f = 3

Irwin partitioning method. The approximate equality 60.0 .
= 59.8 = 47.5+ 12.3 indicates that the

vast bulk of the differences between the three religious groups is due to the collapsed table, i.e., the
difference between the Jewish group and the other two. Roughly 80% (47.5/60) of the original X2

value is due to the difference between the Jewish group and the others. Of course the X2 value 12.2
for the reduced table is still large enough to strongly suggest differences between Protestants and
Roman Catholics.

Not all data will yield an approximation as close as 60.0 .
= 59.8 = 47.5+12.3 for the partition-

ing. The fact that we have an approximate equality rather than an exact equality is due to our choice
of the test statistic X2. Pearson’s statistic is simple and intuitive; it compares observed values with
expected values and standardizes by the size of the expected value. An alternative test statistic also
exists called the likelihood ratio test statistic. The motivation behind the likelihood ratio test statistic
is not as transparent as that behind Pearson’s statistic, so we will not discuss the likelihood ratio test
statistic in any detail. However, one advantage of the likelihood ratio test statistic is that the sum of
its values for the reduced table and collapsed table gives exactly the likelihood ratio test statistic for
the original table. For more discussion of the likelihood ratio test statistic, see Christensen (1990b,
chapter II).
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Table 8.13:

Observations
Religion A B C Total
Protestant 210 277 254 741
Roman Catholic 102 140 127 369
Total 312 417 381 1110

Estimated expected counts
Religion A B C Total
Protestant 208.28 278.38 254.34 741
Roman Catholic 103.72 138.62 126.66 369
Total 312.00 417.00 381.00 1110

Pearson residuals
Religion A B C
Protestant 0.12 −0.08 0.00
Roman Catholic −0.17 0.12 0.03

X2 = .065, d f = 2

Further partitioning

We began this section with the 3×4 data of Table 8.6 that has 6 degrees of freedom for its X2 test.
We partitioned the data into two 2× 4 tables, each with 3 degrees of freedom. We can continue to
use the Lancaster–Irwin method to partition the reduced and collapsed tables given in Table 8.10.
The process of partitioning previously partitioned tables can be continued until the original table
is broken into a collection of 2× 2 tables. Each 2× 2 table has one degree of freedom for its chi-
squared test, so partitioning provides a way of breaking a large table into one degree of freedom
components. This is similar in spirit to looking at contrasts in analysis of variance. Contrasts break
the sum of squares for treatments into one degree of freedom components.

What we have been calling the reduced table involves all four occupational groups along with
the two religious groups Protestant and Roman Catholic. The table was given in both Table 8.10 and
Table 8.11. We now consider this table further. It was discussed earlier that the difference between
Protestants and Roman Catholics can be ascribed almost entirely to the difference in the proportion
of skilled workers in the two groups. To explore this we choose a new partition based on a group of
columns that includes all occupations other than the skilled workers. Thus we get the ‘reduced’ table
in Table 8.13 with occupations A, B, and C and the ‘collapsed’ table in Table 8.14 with occupation
D compared to the accumulation of the other three.

Table 8.13 allows us to examine the proportions of Protestants and Catholics in the occupational
groups A, B, and C. We are not investigating whether Catholics were more or less likely than
Protestants to enter these occupational groups; we are examining their distribution within the groups.
The analysis is based only on those individuals that were in this collection of three occupational
groups. The X2 value is exceptionally small, only .065. There is no evidence of any difference
between Protestants and Catholics for these three occupational groups.

Table 8.13 is a 2× 3 table. We could partition it again into two 2× 2 tables but there is little
point in doing so. We have already established that there is no evidence of differences.

Table 8.14 has the three occupational groups A, B, and C collapsed into a single group. This
table allows us to investigate whether Catholics were more or less likely than Protestants to enter
this group of three occupations. The X2 value is a substantial 12.2 on one degree of freedom, so we
can tentatively conclude that there was a difference between Protestants and Catholics. From the
residuals, we see that among people in the four occupational groups, Catholics were more likely
than Protestants to be in the skilled group and less likely to be in the other three.

Table 8.14 is a 2×2 table so no further partitioning is possible. Note again that the X2 of 12.3
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Table 8.14:

Observations
Religion A & B & C D Total
Protestant 741 394 1135
Roman Catholic 369 279 648
Total 1110 673 1783

Estimated expected counts
Religion A & B & C D Total
Protestant 706.59 428.41 1135
Roman Catholic 403.41 244.59 648
Total 1110.00 673.00 1783

Pearson residuals
Religion A & B & C D
Protestant 1.29 −1.66
Roman Catholic −1.71 2.20

X2 = 12.2, d f = 1

Table 8.15:

Observations
Religion A & B & D C Total
Prot. & R.C. 1402 381 1783
Jewish 113 30 143
Total 1515 411 1926

Estimated expected counts
Religion A & B & D C Total
Prot. & R.C. 1402.52 380.48 1783
Jewish 112.48 30.52 143
Total 1515.00 411.00 1926

Pearson residuals
Religion A & B & D C
Prot. & R.C. −0.00 0.03
Jewish 0.04 −0.09

X2 = .01, d f = 1

from Table 8.11 is approximately equal to the sum of the .065 from Table 8.13 and the 12.2 from
Table 8.14.

Finally, we consider additional partitioning of the collapsed table given in Tables 8.10 and 8.12.
It was noticed earlier that the Jewish group seemed to differ from Protestants and Catholics in every
occupational group except C, clerical and sales. Thus we choose a partitioning that isolates group
C. Table 8.15 gives a collapsed table that compares C to the combination of groups A, B, and D.
Table 8.16 gives a reduced table that involves only occupational groups A, B, and D.

Table 8.15 demonstrates no difference between the Jewish group and the combined Protestant–
Catholic group. Thus the proportion of people in clerical and sales was the same for the Jewish group
as for the combined Protestant and Roman Catholic group. Any differences between the Jewish
and Protestant–Catholic groups must be in the proportions of people within the three occupational
groups A, B, and D.

Table 8.16 demonstrates major differences between occupations A, B, and D for the Jewish
group and the combined Protestant–Catholic group. As seen earlier and reconfirmed here, skilled
workers had much lower representation among the Jewish group, while professionals and especially
owners, managers, and officials had much higher representation among the Jewish group.
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Table 8.16:

Observations
Religion A B D Total
Prot. & R.C. 312 417 673 1402
Jewish 36 60 17 113
Total 348 477 690 1515

Estimated expected counts
Religion A B D Total
Prot. & R.C. 322.04 441.42 638.53 1402
Jewish 25.96 35.58 51.47 113
Total 348.00 477.00 690.00 1515

Pearson residuals
Religion A B D
Prot. & R.C. −0.59 −1.16 1.36
Jewish 1.97 4.09 −4.80

X2 = 47.2, d f = 2

Table 8.17:

Observations
Religion B D Total
Prot. & R.C. 417 673 1090
Jewish 60 17 77
Total 477 690 1167

Estimated expected counts
Religion B D Total
Prot. & R.C. 445.53 644.47 1090
Jewish 31.47 45.53 77
Total 477.00 690.00 1167

Pearson residuals
Religion B D
Prot. & R.C. −1.35 1.12
Jewish 5.08 −4.23

X2 = 46.8, d f = 1

Table 8.16 can be further partitioned into Tables 8.17 and 8.18. Table 8.17 is a reduced 2× 2
table that considers the difference between the Jewish group and others with respect to occupational
groups B and D. Table 8.18 is a 2×2 collapsed table that compares occupational group A with the
combination of groups B and D.

Table 8.17 shows a major difference between occupational groups B and D. Table 8.18 may or
may not show a difference between group A and the combination of groups B and D. The X2 values
are 46.8 and 5.45 respectively. The question is whether an X2 value of 5.45 is suggestive of a dif-
ference between religious groups when we have examined the data in order to choose the partitions
of Table 8.6. Note that the two X2 values sum to 52.25, whereas the X2 value for Table 8.16, from
which they were constructed, is only 47.2. The approximate equality is a very rough approximation.
Nonetheless, we see from the relative sizes of the two X2 values that the majority of the difference
between the Jewish group and the other religious groups was in the proportion of owners, managers,
and officials as compared to the proportion of skilled workers.

Ultimately, we have partitioned Table 8.6 into Tables 8.13, 8.14, 8.15, 8.17, and 8.18. These
are all 2× 2 tables except for Table 8.13. We could also have partitioned Table 8.13 into two 2×
2 tables but we chose to leave it because it showed so little evidence of any difference between
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Table 8.18:

Observations
Religion A B & D Total
Prot. & R.C. 312 1090 1402
Jewish 36 77 113
Total 348 1167 1515

Estimated expected counts
Religion A B & D Total
Prot. & R.C. 322.04 1079.96 1402
Jewish 25.96 87.04 113
Total 348.00 1167.00 1515

Pearson residuals
Religion A B & D
Prot. & R.C. −0.56 0.30
Jewish 1.97 −1.08

X2 = 5.45, d f = 1

Protestants and Roman Catholics for the three occupational groups considered. The X2 value of
60.0 for Table 8.6 was approximately partitioned into X2 values of .065, 12.2, .01, 46.8, and 5.45
respectively. Except for the .065 from Table 8.13, each of these values is computed from a 2× 2
table, so each has 1 degree of freedom. The .065 is computed from a 2×3 table, so it has 2 degrees
of freedom. The sum of the five X2 values is 64.5 which is roughly equal to the 60.0 from Table 8.6.

The five X2 values can all be used in testing. Not only does such testing involve the usual
problems associated with multiple testing but we even let the data suggest the partitions. It is inap-
propriate to compare these X2 values to their usual χ2 percentage points to obtain tests. A simple
way to adjust for both the multiple testing and the data dredging (letting the data suggest partitions)
is to compare all X2 values to the percentage points appropriate for Table 8.6. For example, the
α = .05 test for Table 8.6 uses the critical value χ2(.95,6)= 12.58. By this standard, Table 8.17 with
X2 = 46.8 shows a significant difference between religious groups and Table 8.14 with X2 = 12.2
nearly shows a significant difference between religious groups. The value of X2 = 5.45 for Ta-
ble 8.18 gives no evidence of a difference based on this criterion even though such a value would
be highly suggestive if we could compare it to a χ2(1) distribution. This method is similar in spirit
to Scheffé’s method from Section 6.4 and suffers from the same extreme conservatism.

8.7 Logistic regression

Logistic regression is a method of modeling the relationships between probabilities and predictor
variables. We begin with an example.

EXAMPLE 8.7.1. Woodward et al. (1941) reported data on 120 mice divided into 12 groups of
10. The mice in each group were exposed to a specific dose of chloracetic acid and the observations
consist of the number in each group that lived and died. Doses were measured in grams of acid per
kilogram of body weight. The data are given in Table 8.19, along with the proportions of mice who
died at each dose. We could analyze these data using the methods discussed earlier in this chapter;
we have samples from twelve populations and we could test to see if the populations are the same.
In addition though, we can try to model the relationship between dose level and the probability of
dying. If we can model the probability of dying as a function of dose, we can make predictions
about the probability of dying for any dose levels that are similar to those in the original data. 2

Logistic regression as applied to this example is somewhat like fitting a simple linear regression
to one-way ANOVA data as discussed in Section 7.12. In Section 7.12 we considered data on the
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Table 8.19: Lethality of chloracetic acid

Dose Group Died Survived Total p̂i
.0794 1 1 9 10 .1
.1000 2 2 8 10 .2
.1259 3 1 9 10 .1
.1413 4 0 10 10 .0
.1500 5 1 9 10 .1
.1588 6 2 8 10 .2
.1778 7 4 6 10 .4
.1995 8 6 4 10 .6
.2239 9 4 6 10 .4
.2512 10 5 5 10 .5
.2818 11 5 5 10 .5
.3162 12 8 2 10 .8

ASI indices given in Table 7.10. These data have seven observations on each of five plate lengths.
The data can be analyzed as either a one-way ANOVA or as a simple linear regression, and in
Section 7.12 we examined relationships between the two approaches. In particular, we mentioned
that the estimated regression line could be obtained by fitting a line to the sample means for the five
groups. The analysis of the lethality data takes a similar approach. Instead of fitting a line to sample
means, we perform a regression on the observed proportions. Unfortunately, a standard regression
is inappropriate because the observed proportions do not have constant variance. For i = 1, . . . ,q,
p̂i is the observed proportion from Ni binomial trials, so as discussed in Section 8.1, Var(p̂i) =
pi(1− pi)/Ni. One approach is to use the variance stabilizing transformation from Sections 2.3 and
7.10 on the p̂is and then apply standard regression methods. As alluded to in Section 2.3, there are
better methods available and this section briefly introduces some of them.

We begin with a reasonably simple analysis of the chloracetic acid data. This analysis involves
not only a transformation of the p̂is but incorporating weights into the simple linear regression
procedure. Weighted regression is a method for dealing with nonconstant variances in the observa-
tions. If the variances are not constant, observations with large variances should be given relatively
little weight, while observations with small variances are given increased weight. The details of
weighted regression are discussed in Section 15.7. The discussion given there requires one to know
the material in Chapter 13 and the first five sections of Chapter 15, but considerable insight can be
obtained from Examples 15.7.1 and 15.7.2. These examples merely require the background from
Section 7.12.

In weighted regression for binomial data we take the observations on the dependent variable as

log[p̂i/(1− p̂i)].

We then fit the model
log[p̂i/(1− p̂i)] = β0 +β1xi + εi

with weights
wi = Ni p̂i(1− p̂i).

The regression estimates from this method minimize the weighted sum of squares

q

∑
i=1

wi (log[p̂i/(1− p̂i)]−β0−β1xi)
2
.

There are a couple of serious drawbacks to this procedure. First, the weights are really only
appropriate if all the samples sizes Ni are large. The weights rely on large sample variance formulae
and the law of large numbers. Second, the values log[p̂i/(1− p̂i)] are not always defined. If we have
an observed proportion with p̂i = 0 or 1, log[p̂i/(1− p̂i)] is undefined. Either we are trying to take
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the log of zero or we are trying to divide by zero. With p̂i = yi/Ni, so that yi is the number of
‘successes,’ this problem occurs whenever yi equals 0 or Ni. The problem is often dealt with by
adding or subtracting a small number to yi. Generally, the size of the small number should be chosen
to be small in relation to the size of Ni. In many applications, all of the Nis are 1. In any case with
Ni = 1, p̂i is always either 0 or 1, so log[p̂i/(1− p̂i)] is always undefined. These drawbacks are not
as severe with another method of analysis that we will examine later.

EXAMPLE 8.7.1 CONTINUED. We now return to the chloracetic acid data. In this example Ni =
10 for all i, so the sample sizes are all reasonably large. For dose x = .1413, the number of deaths
was 0, so the observed proportion was zero. We handle this problem by treating the observed count
as .5, so the observed proportion is taken as .5/10 = .05. A computer program for regression analysis
will typically give output such as the following tables.

Raw parameter table
Predictor β̂k SE(β̂k) t P
Constant −3.1886 0.5914 −5.39 0.000
Dose 13.181 2.779 4.74 0.000

Analysis of variance: weighted simple linear regression
Source d f SS MS F P
Regression 1 15.282 15.282 22.50 0.000
Error 10 6.791 0.679
Total 11 22.074

The estimates of the regression parameters are appropriate but everything involving variances in
these tables is wrong! The problem is that with binomial data the variance depends solely on the
probability and we have already accounted for the variance in defining the weights. Thus there is no
separate parameter σ2 to deal with but standard regression output is designed to adjust for such a
parameter. To obtain appropriate standard errors, we need to divide the reported standard errors by√

MSE. The adjusted table is given below.

Adjusted parameter table
Predictor β̂k SE(β̂k) t P
Constant −3.1886 0.7177 −4.44 0.000
Dose 13.181 3.373 3.91 0.000

The table provides clear evidence of the need for both parameters. To predict the probability of
death for rats given a dose x, the predicted probability p̂ satisfies

log[p̂/(1− p̂)] = β̂0 + β̂1x =−3.1886+13.181x.

Solving for p̂ gives

p̂ =
exp(β̂0 + β̂1x)

1+ exp(β̂0 + β̂1x)
=

exp(−3.1886+13.181x)
1+ exp(−3.1886+13.181x)

.

For example, if x = .3, −3.1886+13.181(.3) = .7657 and p̂ = e.7657/(1+ e.7657) = .68.
The only interest in the ANOVA table is in the error line. As we have seen,

√
MSE is needed

to adjust the standard errors. In addition, the SSE provides a lack of fit test similar in spirit to that
discussed in Section 7.12. To test for lack of fit compare SSE to a χ2(d fE) distribution. Large values
of SSE indicate lack of fit. In this example SSE = 6.791, which is smaller than d fE = 10, so the χ2

test gives no evidence of lack of fit. A line seems to fit these data adequately. 2
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Minitab commands

In Minitab let c1 contain the doses, c2 contain the number of deaths, and c3 contain the number of
trials (10 in each case). The commands for this analysis are given below.

MTB > let c5=c2/c3

MTB > let c6=1-c5

MTB > let c7=loge(c5/c6)

MTB > let c8=c3*c5*c6

MTB > regress c7 on 1 c1;

SUBC> weights c8.

The logistic model and maximum likelihood

When we have a one-way ANOVA with treatments that are quantitative levels of some factor, we
can fit either the one-way ANOVA model

yi j = µi + εi j

or the simple linear regression model

yi j = β0 +β1xi + εi j.

We can think of the regression as a model for the µis, i.e.,

µi = β0 +β1xi.

Logistic regression uses a very similar idea. The binomial situation here has ‘observations’
p̂i = yi/Ni where yi ∼ Bin(Ni, pi), i = 1, . . . ,q. In logistic regression, we model the parameters pi.
In particular, the model is

log[pi/(1− pi)] = β0 +β1xi. (8.7.1)

The question is then how to fit this model. The weighted regression approach was discussed earlier.
The weighted regression estimates are the values of β0 and β1 that minimize the function

q

∑
i=1

wi (log[p̂i/(1− p̂i)]−β0−β1xi)
2
.

An alternative method for estimating the parameters is to maximize something called the likelihood
function.

Recall from Section 1.4 that the probability function for an individual binomial, say, yi ∼
Bin(Ni, pi) is

Pr(yi = ri) =

(
Ni

ri

)
pri

i (1− pi)
Ni−ri .

We are dealing with q independent binomials, so probabilities for the entire collection of random
variables are obtained by multiplying the probabilities for the individual events.

One of the things that students initially find confusing about statistical theory is that we often
use the same symbols for random variables and for observations from those random variables. I am
about to do the same thing. I want to write down the probability of the data that we actually saw. If
we saw yi, the probability of seeing that is(

Ni

yi

)
pyi

i (1− pi)
Ni−yi .



8.7 LOGISTIC REGRESSION 249

If all together we saw y1, . . . ,yq, the probability of obtaining all those values is the product of the
individual probabilities, i.e.,

q

∏
i=1

(
Ni

yi

)
pyi

i (1− pi)
Ni−yi . (8.7.2)

This probability of getting the observed data is called the likelihood function. In the likelihood
function we know all of the Nis and yis but we do not know the pis. Thus the likelihood is a function
of the pis. It is not too difficult to show that the maximum value of the likelihood function is obtained
by taking pi = p̂i = yi/Ni for all i. The observed proportions p̂i are the values of the parameters
that maximize the probability of getting the observed data. We say that such values are maximum
likelihood estimates (mles) of the parameters pi.

The model (8.7.1) specifies the pis in terms of β0 and β1. We can solve (8.7.1) for pi by writing

pi =
exp(β0 +β1xi)

1+ exp(β0 +β1xi)
. (8.7.3)

If we now substitute this formula for pi into equation (8.7.2) we get the likelihood as a function
of β0 and β1. The maximum likelihood estimates of β0 and β1 are simply the values of β0 and β1
that maximize the likelihood function. Equations (8.7.1) and (8.7.3) are equivalent ways of writing
the model. Equation (8.7.3) is actually the logistic regression model and equation (8.7.1) is the
corresponding logit model.

Computer programs are available for finding maximum likelihood estimates. Such programs
typically give standard errors that are valid for large samples. If the large sample approximations
are appropriate, the parameters, estimates, and standard errors can be used as in Chapter 3 with a
N(0,1) reference distribution. For the approximations to be valid, it is typically enough that the total
number of trials in the entire data be large; the individual sample sizes Ni need not be large.

Maximum likelihood theory also provides a test of lack of fit similar to the weighted regression
χ2 test using the SSE. In maximum likelihood theory the test examines the value of the likelihood
(8.7.2) when using the mles of β0 and β1 in equation (8.7.3) to determine the pis, and compares
that value to the likelihood when using the observed proportions p̂i as the pis. Using the observed
proportions involves less structure so the likelihood value will be greater using them. The lack of fit
test statistic is−2 times the log of the ratio of the likelihood using the estimated βks to the likelihood
using the p̂is. This test statistic is properly called the (generalized) likelihood ratio test statistic but
is often simply called the deviance. (The likelihood ratio test was also mentioned in the previous
section.) The deviance is compared to a χ2(q−2) distribution where q is the number of independent
binomials and 2 is the number of regression parameters in the logistic model. Unlike the standard
errors for the βis, all the sample sizes Ni must be large for the lack of fit test to be valid!

EXAMPLE 8.7.2. Maximum likelihood for the chloracetic acid data gives the following results.

Predictor β̂k SE(β̂k) t P
Constant −3.570 0.7040 −5.07 0.000
Dose 14.64 3.326 4.40 0.000

These are similar to the weighted regression results. The deviance of the maximum likelihood fit
is 10.254 with 12− 2 = 10 degrees of freedom for the lack of fit test. The sample sizes are all
reasonably large, so a χ2 test is appropriate. The test statistic is approximately equal to the degrees
of freedom, so a test would not be rejected. A simple line seems to fit the data adequately. The
maximum likelihood results were obtained using the computer program GLIM. 2

We will not analyze more sophisticated count data in this book but we should mention that both
the maximum likelihood methods and the weighted regression methods extend to much more general
models, such as those treated in the remainder of the book. Both methods work when there are many
predictors, so we can perform multiple logistic regression which is similar in spirit to multiple
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Table 8.20: French convictions

Year Convictions Accusations
1825 4594 7234
1826 4348 6988
1827 4236 6929
1828 4551 7396
1829 4475 7373
1830 4130 6962

regression as treated in Chapters 13, 14, and 15. By modifying the matrix approach to ANOVA
problems discussed in Section 16.5, the methods introduced here can be applied to models that are
structured like analysis of variance and even analysis of covariance. Christensen (1990b) contains
a more complete discussion of logistic regression and logit models. It also contains references to
additional work.

8.8 Exercises

EXERCISE 8.8.1. Reiss et al. (1975) and Fienberg (1980) reported that 29 of 52 virgin female
undergraduate university students who used a birth control clinic thought that extramarital sex is not
always wrong. Give a 99% confidence interval for the population proportion of virgin undergraduate
university females who use a birth control clinic and think that extramarital sex is not always wrong.

In addition, 67 of 90 virgin females who did not use the clinic thought that extramarital sex is
not always wrong. Give a 99% confidence interval for the difference in proportions between the two
groups and give a .05 level test that there is no difference.

EXERCISE 8.8.2. Pauling (1971) reports data on the incidence of colds among French skiers
who where given either ascorbic acid or a placebo. Of 139 people given ascorbic acid, 17 devel-
oped colds. Of 140 people given the placebo, 31 developed colds. Do these data suggest that the
proportion of people who get colds differs depending on whether they are given ascorbic acid?

EXERCISE 8.8.3. Quetelet (1842) and Stigler (1986, p. 175) report data on conviction rates in
the French Courts of Assize (Law Courts) from 1825 to 1830. The data are given in Table 8.20. Test
whether the conviction rate is the same for each year. Use α = .05. (Hint: Table 8.20 is written in a
nonstandard form. You need to modify it before applying the methods of this chapter.) If there are
differences in conviction rates, use residuals to explore these differences.

EXERCISE 8.8.4. Use the data in Table 8.2 to test whether the probability of a birth in each month
is the number of days in the month divided by 365. Thus the null probability for January is 31/365
and the null probability for February is 28/365.

EXERCISE 8.8.5. Snedecor and Cochran (1967) report data from an unpublished report by E.
W. Lindstrom. The data concern the results of cross-breeding two types of corn (maize). In 1301
crosses of two types of plants, 773 green, 231 golden, 238 green-golden, and 59 golden-green-
striped plants were obtained. If the inheritance of these properties is particularly simple, Mendelian
genetics suggests that the probabilities for the four types of corn may be 9/16, 3/16, 3/16, and 1/16,
respectively. Test whether these probabilities are appropriate. If they are inappropriate, identify the
problem.

EXERCISE 8.8.6. In France in 1827, 6929 people were accused in the courts of assize and 4236
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Table 8.21: Occupation and religion

Religion A B C D E F G H
White Baptist 43 78 64 135 135 57 86 114
Black Baptist 9 2 9 23 47 77 18 41
Methodist 73 80 80 117 102 58 66 153
Lutheran 23 36 43 59 46 26 49 46
Presbyterian 35 54 38 46 19 22 11 46
Episcopalian 27 27 20 14 7 5 2 15

Table 8.22: Heights and chest circumferences

Heights
Chest 64–65 66–67 68–69 70–71 71–73 Total
39 142 442 341 117 20 1062
40 118 337 436 153 38 1082
Total 260 779 777 270 58 2144

were convicted. In 1828, 7396 people were accused and 4551 were convicted. Give a 95% confi-
dence interval for the proportion of people convicted in 1827. At the .01 level, test the null hypoth-
esis that the conviction rate in 1827 was greater than or equal to 2/3. Does the result of the test
depend on the choice of standard error? Give a 95% confidence interval for the difference in con-
viction rates between the two years. Test the hypothesis of no difference in conviction rates using
α = .05 and both standard errors.

EXERCISE 8.8.7. Table 8.21 contains additional data from Lazerwitz (1961). These consist of a
breakdown of the Protestants in Table 8.6 but with the addition of four more occupational categories.
The additional categories are E, semiskilled; F, unskilled; G, farmers; H, no occupation. Analyze
the data with an emphasis on partitioning the table.

EXERCISE 8.8.8. Stigler (1986, p. 208) reports data from the Edinburgh Medical and Surgical
Journal (1817) on the relationship between heights and chest circumferences for Scottish militia
men. Measurements were made in inches. We concern ourselves with two groups of men, those
with 39 inch chests and those with 40 inch chests. The data are given in Table 8.22. Test whether
the distribution of heights is the same for these two groups.

EXERCISE 8.8.9. Use weighted least squares to fit a logistic model to the data of Table 8.20 that
relates probability of conviction to year. Is there evidence of a trend in the conviction rates over
time? Is there evidence for a lack of fit?

EXERCISE 8.8.10. Is it reasonable to fit a logistic regression to the data of Table 8.22? Why
or why not? Explain what such a model would be doing. Whether reasonable or not, fitting such
a model can be done. Use weighted least squares to fit a logistic model and discuss the results. Is
there evidence for a lack of fit?





Chapter 9

Basic experimental designs

In this chapter we examine the three most basic experimental designs: completely randomized de-
signs (CRDs), randomized complete block (RCB) designs, and Latin square designs. Completely
randomized designs are the simplest of these and have been used previously without having been
named. Also, we have previously performed an analysis for a randomized complete block design.

The basic object of experimental design is to construct an experiment that allows for a valid
estimate of σ2, the variance of the observations. Obtaining a valid estimate of error requires appro-
priate replication of the experiment. Having one observation on each treatment is not sufficient. All
three of the basic designs considered in this chapter allow for a valid estimate of the variance.

A second important consideration is to construct a design that yields a small variance. A smaller
variance leads to sharper statistical inferences, i.e., narrower confidence intervals and more powerful
tests. A fundamental tool for reducing variability is blocking. The basic idea is to examine the
treatments on homogeneous experimental material. With four drug treatments and observations on
eight animals, a valid estimate of the error can be obtained by randomly assigning each of the
drugs to two animals. If the treatments are assigned completely at random to the experimental units
(animals), the design is a completely randomized design. Generally, a smaller variance for treatment
comparisons is obtained when the eight animals consist of two litters of four siblings and each
treatment is applied to one randomly selected animal from each litter. With each treatment applied
in every litter, all comparisons among treatments can be performed within each litter. Having at
least two litters is necessary to get a valid estimate of the variance of the comparisons. Randomized
complete block designs: 1) identify blocks of homogeneous experimental material (units) and 2)
randomly assign each treatment to an experimental unit within each block. The blocks are complete
in the sense that each block contains all of the treatments.

Latin squares use two forms of blocking at once. For example, if we suspect that birth order
within the litter might also have an important effect on our results, we continue to take observations
on each treatment within every litter, but we also want to have each treatment observed in every
birth order. This is accomplished by having four litters with treatments arranged in a Latin square
design.

Another fundamental concept in experimental design is the idea that the experimenter has the
ability to randomly assign the treatments to the experimental material available. This is not always
the case.

EXAMPLE 9.0.1. In Chapter 5, we considered two examples of one-way analysis of variance;
neither were designed experiments. For the suicide ages, a designed experiment would require that
we take a group of people who we know will commit suicide and randomly assign one of the ethnic
groups, non-Hispanic Caucasian, Hispanic, or Native American, to the people. Obviously a difficult
task. With the electrical characteristic data, rather than having ceramic sheets divided into strips, a
designed experiment would require starting with different pieces of ceramic material and randomly
assigning the pieces to have come from a particular ceramic strip. 2

Random assignment of treatments to experimental units allows one to infer causation from a

253
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designed experiment. If treatments are randomly assigned to experimental units, then the only sys-
tematic differences between the units are the treatments. Barring an unfortuitous randomization,
such differences must be caused by the treatments because they cannot be caused by anything else.
However, as discussed below, the ‘treatments’ may be more involved than the experimenter realizes.

Random assignment of treatments does not mean haphazard assignment. Haphazard assignment
is subject to the (unconscious) biases of the person making the assignments. Random assignment
uses a reliable table of random numbers or a reliable computer program to generate random num-
bers. It then uses these numbers to assign treatments. For example, suppose we have four experi-
mental units labeled u1, u2, u3, and u4 and four treatments labeled A, B, C, and D. Given a program
or table that provides random numbers between 0 and 1 (i.e., random samples from a uniform(0,1)
distribution), we associate numbers between 0 and .25 with treatment A, numbers between .25 and
.50 with treatment B, numbers between .50 and .75 with treatment C, and numbers between .75 and
1 with treatment D. The first random number selected determines the treatment for u1. If the first
number is .6321, treatment C is assigned to u1 because .50 < .6321 < .75. If the second random
number is .4279, u2 gets treatment B because .25 < .4279 < .50. If the third random number is
.2714, u3 would get treatment B, but we have already assigned treatment B to u2, so we throw out
the third number. If the fourth number is .9153, u3 is assigned treatment D. Only one unit and one
treatment are left, so u4 gets treatment A. Any reasonable rule (decided ahead of time) can be used
to make the assignment if a random number hits a boundary, e.g., if a random number comes up,
say, .2500.

In cases such as those discussed previously, i.e., in observational studies where the treatments
are not randomly assigned to experimental units, it is much more difficult to infer causation. If we
find differences, there are differences in the corresponding populations, but it does not follow that
the differences are caused by the labels given to the populations. If the average suicide age is lower
for Native Americans, we know only that the phenomenon exists, we do not know what aspects
of being Native American cause the phenomenon. Perhaps low socioeconomic status causes early
suicides and Native Americans are over represented in the low socioeconomic strata. We don’t know
and it will be difficult to ever know using the only possible data on such matters, data that come
from observational studies.

One also needs to realize that the treatments in an experiment may not be what the experimenter
thinks they are. Suppose you want to test whether artificial sweeteners made with a new chemical
cause cancer. You get some rats, randomly divide them into a treatment group and a control. You
inject the treatment rats with a solution of the sweetener combined with another (supposedly benign)
chemical. You leave the control rats alone. For simplicity you keep the treatment rats in one cage
and the control rats in another cage. Eventually, you find an increased risk of cancer among the
treatment rats as compared to the control rats. You can reasonably conclude that the treatments
caused the increased cancer rate. Unfortunately, you do not really know whether the sweetener or
the supposedly benign chemical or the combination of the two caused the cancer. In fact, you do
not really know that it was the chemicals that caused the cancer. Perhaps the process of injecting
the rats caused the cancer or perhaps something about the environment in the treatment rats’s cage
caused the cancer. A treatment consists of all the ways in which a group is treated differently from
other groups. It is crucially important to treat all experimental units as similarly as possible so that
(as nearly as possible) the only differences between the units are the agents that were meant to be
investigated.

Ideas of blocking can also be useful in observational studies. While one cannot really create
blocks in observational studies, one can adjust for important groupings.

EXAMPLE 9.0.2. If we wish to study whether cocaine users are more paranoid than other peo-
ple, we may decide that it is important to block on socioeconomic status. This is appropriate if the
underlying level of paranoia in the population differs by socioeconomic status. Conducting an ex-
periment in this setting is difficult. Given groups of people of various socioeconomic statuses, it is
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a rare researcher who has the luxury of deciding which subjects will ingest cocaine and which will
not. 2

The seminal work on experimental design was written by Fisher (1935). It is still well worth
reading. My favorite source on the ideas of experimentation is Cox (1958). The books by Cochran
and Cox (1957) and Kempthorne (1952) are classics. Cochran and Cox is more applied. Kempthorne
is more theoretical. There is a huge literature in both journal articles and books on the general subject
of designing experiments. The article by Coleman and Montgomery (1993) is interesting in that it
tries to formalize many aspects of planning experiments that are often poorly specified.

9.1 Completely randomized designs

In a completely randomized design, a group of experimental units are available and the experimenter
randomly assigns treatments to the experimental units. The data consist of a group of observations
on each treatment. These groups of observations are subjected to a one-way analysis of variance.

EXAMPLE 9.1.1. In Example 6.0.1, we considered data from Mandel (1972) on the elasticity
measurements of natural rubber made by 13 laboratories. While Mandel did not discuss how the data
were obtained, it could well have been the result of a completely randomized design. For a CRD,
we would need 52 pieces of the type of rubber involved. These should be randomly divided into
13 groups (using a table of random numbers or random numbers generated by a reliable computer
program). The first group of samples is then sent to the first lab, the second group to the second lab,
etc. For a CRD, it is important that a sample is not sent to a lab because the sample somehow seems
appropriate for that particular lab.

Personally, I would also be inclined to send the four samples to a given lab at different times. If
the four samples are sent at the same time, they might be analyzed by the same person, on the same
machines, at the same time. Samples sent at different times might be treated differently. If samples
are treated differently at different times, this additional source of variation should be included in
any predictive conclusions we wish to make about the labs.

When samples sent at different times are treated differently, sending a batch of four samples at
the same time constitutes subsampling. There are two sources of variation to deal with: variation
from time to time and variation within a given time. The values from four samples at a given time
help reduce the effect on treatment comparisons due to variability at a given time, but samples
analyzed at different times are still required to obtain a valid estimate of the error. In fact, with
subsampling, a perfectly valid analysis can be based on the means of the four subsamples. In our
example, such an analysis gives only one ‘observation’ at each time, so the need for sending samples
at more than one time is obvious. If the four samples were sent at the same time, there would be
no replication, hence no estimate of error. Subsection 12.4.1 and Christensen (1987, section XI.4)
discuss subsampling in more detail. 2

9.2 Randomized complete block designs

In a randomized complete block design the experimenter obtains (constructs) blocks of homoge-
neous material that contain as many experimental units as there are treatments. The experimenter
then randomly assigns a different treatment to each of the units in the block. The random assign-
ments are performed independently for each block. The advantage of this procedure is that treatment
comparisons are subject only to the variability within the blocks. Block to block variation is elimi-
nated in the analysis. In a completely randomized design applied to the same experimental material,
the treatment comparisons would be subject to both the within block and the between block vari-
ability.

The key to a good blocking design is in obtaining blocks that have little within block variability.
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Table 9.1: Spectrometer data

Block Trt.
Treatment 1 2 3 means
New-clean 0.9331 0.8664 0.8711 0.89020̄
New-soiled 0.9214 0.8729 0.8627 0.88566̄
Used-clean 0.8472 0.7948 0.7810 0.80766̄
Used-soiled 0.8417 0.8035 0.8099 0.81836̄
Block means 0.885850 0.834400 0.831175 0.850475

Often this requires that the blocks be relatively small. A difficulty with RCB designs is that the
blocks must be large enough to allow all the treatments to be applied within each block. This can be
a serious problem if there is a substantial number of treatments or if maintaining homogeneity within
blocks requires the blocks to be very small. If the treatments cannot all be fitted into each block, we
need some sort of incomplete block design. Such designs will be considered in Chapters 16 and 17.

The analysis of a randomized complete block design is a two-way ANOVA without replication
or interaction. The analysis is illustrated below and discussed in general in the following subsection.

EXAMPLE 9.2.1. Inman, Ledolter, Lenth, and Niemi (1992) studied the performance of an optical
emission spectrometer. Table 9.1 gives some of their data on the percentage of manganese (Mn) in
a sample. The data were collected using a sharp counterelectrode tip with the sample to be analyzed
partially covered by a boron nitride disk. Data were collected under three temperature conditions.
Upon fixing a temperature, the sample percentage of Mn was measured using 1) a new boron ni-
tride disk with light passing through a clean window (new-clean), 2) a new boron nitride disk with
light passing through a soiled window (new-soiled), 3) a used boron nitride disk with light passing
through a clean window (used-clean), and 4) a used boron nitride disk with light passing through
a soiled window (used-soiled). The four conditions, new-clean, new-soiled, used-clean, used-soiled
are the treatments. The temperature was then changed and data were again collected for each of
the four treatments. A block is always made up of experimental units that are homogeneous. The
temperature conditions were held constant while observations were taken on the four treatments so
the temperature levels identify blocks.

In analyzing a one-way ANOVA, the analysis of variance table is of little direct importance. For
a randomized complete block design the analysis of variance table is crucial. Before we can proceed
with any analysis of the treatments, we need an estimate of the variance σ2. In one-way ANOVA,
the MSE is simply a pooled estimate obtained from group sample variances. In a RCB design, the
replications of the experiment occur in different blocks and the effect of these blocks must be taken
into account. In particular, the three observations on each treatment do not form a random sample
from a population, so it is inappropriate to compute the sample variance within each treatment group
and it is totally inappropriate to pool such variance estimates. Instead, we expand the analysis of
variance table by accounting for both treatments and blocks and estimate σ2 with the leftover sum
of squares.

The sum of squares total (corrected for the grand mean) is computed just as in one-way ANOVA;
it is the sample variance of all 12 observations multiplied by the degrees of freedom 12−1, e.g.,

SSTot = (12−1)s2
y = (11).002277797 = .025055762.

The mean square and sum of squares for treatments are also computed as in one-way ANOVA.
Using Table 9.1, the treatment means are averages of 3 observations and the sample variance of the
treatment means is .001893343, so

MSTrts = 3(.001893343) = .005680028 .

There are 4 treatments, so the sum of squares is the mean square multiplied by the degrees of
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Table 9.2: Analysis of variance for spectrometer data

Source d f SS MS F P
Trts 3 0.0170401 0.0056800 70.05 0.000
Blocks 2 0.0075291 0.0037646 46.43 0.000
Error 6 0.0004865 0.0000811
Total 11 0.0250558

freedom (4−1),
SSTrts = (4−1).005680028 = .017040083 .

The mean square and sum of squares for blocks are also computed as if they were treatments in
a one-way ANOVA. The block means are averages of 4 observations and the sample variance of the
block means is .000941143, so

MSBlocks = 4(.000941143) = .003764572 .

There are 3 blocks, so the sum of squares is the mean square times the degrees of freedom (3−1),

SSBlocks = (3−1).003764572 = .007529145 .

The sum of squares error is obtained by subtraction,

SSE = SSTot−SSTrts−SSBlocks

= .025055762− .017040083− .007529145
= .000486534 .

Similarly,

d fE = d f Tot−d f Trts−d f Blocks

= 11−3−2
= 6 .

The estimate of σ2 is
MSE =

SSE
d fE

=
.000486534

6
= .000081089 .

Given the definitions of SSE and d fE, it is tautological that the sums of squares for treatments,
blocks, and error add up to the sum of squares total, and similarly for the degrees of freedom.

All of the calculations are summarized in the analysis of variance table, Table 9.2. Table 9.2 also
gives the analysis of variance F test for the null hypothesis that the effects are the same for each
treatment. By definition the F statistic is MSTrts/MSE and in this example it is huge, 70.05. The P
value is infinitesimal, so there is clear evidence that the 4 treatments do not behave the same.

Table 9.2 also contains an F test for blocks. In a true blocking experiment, there is not much
interest in testing whether block means are different. After all, one chooses the blocks so that they
have different means. Nonetheless, the F statistic MSBlks/MSE is of some interest because it in-
dicates how effective the blocking was, i.e., it indicates how much the variability was reduced by
blocking. For this example, MSBlks is 46 times larger than MSE, indicating that blocking was def-
initely worthwhile. In the model for RCB designs presented in the following subsection, there is
no reason not to test for blocks, but some models used for RCBs do not allow a test for blocks.
Regardless of the particular model, the analysis of treatments works in the same way.

Now that we have an estimate of the variance, we can proceed with the more interesting ques-
tions about how the treatments differ. We begin by examining pairwise differences. The multiple
comparison methods of Chapter 6 all apply in the usual way after adjusting for the difference in
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Table 9.3: Contrasts for the spectrometer data

Contrast labels Trt.
Treatment D W DW means
New-clean 1 1 1 0.89020̄
New-soiled 1 −1 −1 0.88566̄
Used-clean −1 1 −1 0.80766̄
Used-soiled −1 −1 1 0.81836̄
Est .149833 −.006167 .015233
SS .0168375 .0000285 .0001740

d fE. For example, there are 4 treatment means, each based on 3 observations, and the MSE is
0.0000811 with 6 degrees of freedom, so for α = .05 the honest significant difference is

HSD = Q(.95,4,6)
√

0.0000811/3 = 4.90(.00519936) = .02548 .

The differences between the treatments are illustrated below.

Treatment Used-clean Used-soiled New-soiled New-clean
Mean 0.80766̄ 0.81836̄ 0.88566̄ 0.89020̄

We have no evidence of an effect due to the condition of the window when considering used boron
nitride disks. The higher yields occur for soiled windows, but they are not significantly different. We
also have no evidence of an effect due to the condition of the window for new boron nitride disks.
The higher yields occur for clean windows but again the difference is not significant. Evidence does
exist that the two means for used disks are different (less than) the two means for new disks.

The structure of the treatments suggests particular orthogonal contrasts that are of interest. Con-
trast coefficients, estimated contrasts, and sums of squares for the contrasts are given in Table 9.3.

The contrast labeled D looks at the difference in disks by averaging over windows. This involves
averaging the two means for new disks, say, µNC and µNS, and contrasting this average with the
average of the two means for used disks, say, µUC and µUS. The contrast examining the difference
in disks averaging over windows is (µNC +µNS)/2− (µUC +µUS)/2 or

1
2

µNC +
1
2

µNS−
1
2

µUC−
1
2

µUS.

As discussed earlier, multiplying a contrast by a constant does not really change the contrast, so to
eliminate the fractional multiplications and make the contrast a bit easier to work with, we multiply
this contrast by 2 and make it

µNC +µNS−µUC−µUS.

This is the contrast D reported in Table 9.3. Recall that the estimate of the D contrast is computed
as

D̂ = (1)0.89020̄+(1)0.88566̄+(−1)0.80766̄+(−1)0.81836̄ = .149833

and the sum of squares is computed as

SS(D) =
(.149833)2

[12 +12 +(−1)2 +(−1)2]/3
= .0168375.

We define the contrast W similarly; it looks at the difference in windows by averaging over disks.
Again, we multiplied the averages by 2 to simplify the contrast.

Contrast DW looks at the interaction between disks and windows, i.e., how the difference be-
tween disks changes as we go from a clean window to a soiled window. The difference between new
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and used disks with a clean window is (µNC−µUC) and the difference between new and used disks
with a soiled window is (µNS− µUS). The change in the disk difference between clean and soiled
windows is (µNC−µUC)− (µNS−µUS), or equivalently

µNC−µNS−µUC +µUS.

This is the DW contrast. Note that the DW contrast coefficients in Table 9.3 can be obtained by
multiplying the corresponding D and W contrast coefficients. This procedure for obtaining interac-
tion contrast coefficients by multiplying main effect contrast coefficients works quite generally. Note
that the DW contrast can also be obtained by looking at (µNC− µNS)− (µUC− µUS), which is the
change in the difference between clean and soiled windows as we go from new disks to used disks.

The analysis of variance is balanced; there are three observations on each treatment and four
observations on each block. Thus, using the definition of orthogonality for a balanced one-way
ANOVA, the treatment contrasts are orthogonal. It follows, both numerically and theoretically, that

SS(D)+SS(W )+SS(DW ) = SSTrts.

From Table 9.3 we see that the vast majority of the sum of squares for treatments is due to the
difference between disks averaged over windows (the D contrast). In particular, SS(D)/SSTrts =
.0168375/.0170401, so 99% of the sum of squares for treatments is due to the D contrast. We also
see that there is relatively little effect due to windows averaged over disks (the W contrast) and little
effect due to the change in the disk differences due to windows (the DW contrast). In particular, the
unadjusted F statistic for testing whether the DW contrast is zero is

F =
SS(DW )

MSE
=

.0001740
0.0000811

= 2.15

which has a P value of .193. Recall that a contrast has one degree of freedom, so SS(DW ) =
MS(DW ) in constructing the F statistic. Similarly, the test for contrast W has F = .35 and P = .575.

While there is no statistical evidence for the existence of an interaction in the example, this
does not prove that interaction does not exist. For example, if MSE had turned out to be one-third
of its actual value, the F test for interaction would have been significant. When interactions exist,
it is important to explore their nature. We now discuss some methods and ideas for examining
interactions. This discussion is merely a precursor of the more extensive examination of interaction
in Chapter 11. The difference between clean and soiled windows for new disks is .004533 and the
difference for used disks is−.010700. These effects are actually in different directions! In one case,
clean windows give higher readings and in the other case clean windows give lower readings. This
seems to indicate that the effect of windows changes depending on the type of disk used, but in
this example the MSE is large enough that the difference can reasonably be ascribed to random
variation. In other words, this change in effect is not statistically significant because the interaction
contrast is not statistically significant.

The contrast examining the different windows averaged over disks (the W contrast) was in-
significant. However, if the DW interaction existed, the windows would still have a demonstrable
effect on yields. The windows would have an effect because the disks behave differently for clean
windows than for soiled windows. Additionally, the large effect for D would be of less interest if
interaction were present because D is obtained by averaging over windows even though we would
know that the disk effect depends on the window used.

Figure 9.1 contains a plot of the treatment means. There are two curves, one for new disks and
another for used disks. The differences between disks is indicated by the separation between the
two lines. The differences in the windows are indicated visually by the slopes of the new and used
disk lines. If the effect of windows was the same regardless of disk condition, these slopes would
be the same and the line segments would be parallel up to sampling error. With these data the lines
are reasonably parallel. When interaction exists, the plot indicates the nature of the interaction.
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Figure 9.1: Disk–window interaction plot for spectrometer data.
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Figure 9.2: Disk–window interaction plot for spectrometer data.

Rather than describing the interaction as a difference in how the windows react to disks, we
can describe the interaction in terms of how the effect of disk changes with type of window. As
mentioned earlier, the two approaches are equivalent. Figure 9.2 contains another plot of the treat-
ment means. There are two curves, one for clean windows and another for soiled windows. In this
plot, the slopes indicate the differences due to disks and the separation of the lines indicates the
differences due to windows. If there is no interaction, the curves should be parallel up to sampling
variation. In this example, the curves intersect, suggesting that the curves are not parallel. However,
after considering the level of sampling error, there is no evidence that the curves are not parallel.

Residual plots for the data are given in Figures 9.3 through 9.6. The residuals now must adjust
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Figure 9.3: Plot of residuals versus predicted values, spectrometer data.

for both the treatments and the blocks. The residual for an observation yi j with treatment i in block
j is defined as

ε̂i j = yi j− ȳi·− ȳ· j + ȳ··,

where ȳi· is the ith treatment mean, ȳ· j is the jth block mean, and ȳ·· is the grand mean of all 12
observations. By subtracting out both the treatment and block means, we have over adjusted for
the overall level of the numbers, so the grand mean must be added back in. In balanced analysis of
variance problems all the residuals have the same variance, so it is not necessary to standardize the
residuals.

Figure 9.3 is a plot of the residuals versus the predicted values. The predicted values are

ŷi j = ȳi·+ ȳ· j− ȳ·· .

Figure 9.4 plots the residuals versus indicators of the treatments. While the plot looks something
like a bow tie, I am not overly concerned. Figure 9.5 contains a plot of the residuals versus indicators
of blocks. The residuals look pretty good. From Figure 9.6, the residuals look reasonably normal.
In the normal plot there are 12 residuals but the analysis has only 6 degrees of freedom for error. If
you want to do a W ′ test for normality, you might use a sample size of 12 and compare the value
W ′ = .970 to W ′(α,12), but it may be appropriate to use the d fE as the sample size for the test and
use W ′(α,6). 2

Minitab commands

The following Minitab commands generate the analysis of variance. Column c1 contains the spec-
trometer data, while column c2 contains integers 1 through 4 indicating the appropriate treatment,
and c3 contains integers 1 through 3 that indicate the block. The predicted values are given by the
‘fits’ subcommand.

MTB > names c1 ’y’ c2 ’Trts’ c3 ’Blks’

MTB > anova c1 = c2 c3;
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Figure 9.4: Plot of residuals versus treatment groups, spectrometer data.
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Figure 9.5: Plot of residuals versus blocks, spectrometer data.
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Figure 9.6: Normal plot of residuals, spectrometer data, W ′ = 0.970.

SUBC> means c2 c3;

SUBC> resid c10;

SUBC> fits c11.

Balanced two-way analysis of variance

The model for a randomized complete block design is a two-way analysis of variance,

yi j = µ +αi +β j + εi j, εi js independent N(0,σ2), (9.2.1)

i = 1, . . . ,a, j = 1, . . . ,b. There are b blocks with a treatments observed within each block. The
parameter µ is viewed as a grand mean, αi is an unknown fixed effect for the ith treatment, and β j is
an unknown fixed effect for the jth block. The necessary summary statistics are the sample variance
of all ab observations and the means for each treatment and block. It is frequently convenient to
display the data as follows.

Block
Treatment j Trt.
i 1 2 · · · b means
1 y11 y12 · · · y1b ȳ1·
2 y21 y22 · · · y2b ȳ2·
...

...
...

. . .
...

...
a ya1 ya2 · · · yab ȳa·
Blk. means ȳ·1 ȳ·2 · · · ȳ·b ȳ··

The predicted values from this model are

ŷi j ≡ ȳi·+ ȳ· j− ȳ··
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Table 9.4: Analysis of variance

Source d f SS MS F

Trts(α) a−1 b∑
a
i=1 (ȳi·− ȳ··)2 SS(α)/(a−1) MS(α)

MSE

Blks(β ) b−1 a∑
b
j=1
(
ȳ· j − ȳ··

)2 SS(β )/(b−1) MS(β )
MSE

Error (a−1)(b−1) ∑i, j ε̂
2
i j SSE/d fE

Total ab−1 ∑
a
i=1 ∑

b
j=1
(
yi j − ȳ··

)2

and the residuals are
ε̂i j ≡ yi j− ŷi j = yi j− ȳi·− ȳ· j + ȳ·· .

The computations involved in estimating σ2 can be summarized in an analysis of variance table.
The commonly used form for the analysis of variance table is given in Table 9.4. The degrees of
freedom and sums of squares for treatments, blocks, and error add up to the degrees of freedom and
sums of squares total (corrected for the grand mean). Note that the mean square for treatments is
just the sample variance of the ȳi·s times b and that the mean square for blocks is just the sample
variance of the ȳ· js times a.

The F statistic MS(α)/MSE is the ratio of the mean square treatments to the mean square error.
It is used to test whether there are treatment effects, i.e., it is used to test

H0 : α1 = · · ·= αa.

Note that if all the αis are equal, we cannot distinguish between the effects of different treatments.
In other words, we cannot isolate anything that can be identified as the effect of a treatment. H0 does
not imply that the treatments have no effect, it implies that they have the same effect. Generally, the
effect of a treatment (an αi) is impossible to isolate (or estimate) because we cannot distinguish it
from the overall effect of running the experiment (µ) or indeed from any effect common to every
block. The same thing is true of the block effects β j; they cannot be isolated from µ or common
effects of the treatments. What we can isolate are comparative differences in the effects of treat-
ments (and blocks). The F statistic provides a test of whether there are differences in the treatment
effects and not whether any treatment effects exist. The only way you can test whether treatment
effects exist is to redefine what you mean by treatment effects, so that they only exist when they are
different.

The treatments are dealt with exactly as in a one-way ANOVA. For known λis that sum to zero,
a contrast in the treatment effects is

Par =
a

∑
i=1

λiαi

with

Est =
a

∑
i=1

λiȳi· .

Each treatment mean is the average of b observations, so

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

/
b.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
a

∑
i=1

λiαi

)
=

[
a

∑
i=1

λiȳi·

]2/[ a

∑
i=1

λ
2
i
/

b

]
.
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If of interest, similar results hold for the block effects. For known ξ js that add to zero,

Par =
b

∑
j=1

ξ jβ j

with

Est =
b

∑
j=1

ξ j ȳ· j .

The block means are the average of a observations, so

SE

(
b

∑
j=1

ξ j ȳ· j

)
=

√√√√MSE
b

∑
j=1

ξ 2
j

/
a.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
b

∑
j=1

ξ jβ j

)
=

[
b

∑
j=1

ξ j ȳ· j

]2/[ b

∑
j=1

ξ
2
j
/

a

]
.

The F statistic MS(β )/MSE is the ratio of the mean square blocks to the mean square error. It is
used to test whether there are block effects, i.e., it is used to test

H0 : β1 = · · ·= βb.

Again, if all the βis are equal we cannot distinguish between the effects of different blocks, so the
F statistic provides a test of whether we can isolate comparative differences in the block effects. As
discussed earlier, some models for RCB designs do not allow testing for block effects, but in any
case, the ratio MS(β )/MSE is of interest in that large values indicate that blocking was a worthwhile
exercise.

The theoretical basis for this analysis of model (9.2.1) is precisely as in the balanced one-way
ANOVA. Consider the analysis of treatment effects. (The analysis for block effects is similar.) The
only thing random about a yi j is the corresponding εi j. The εi js are independent, so the yi js are in-
dependent. If follows that the ȳi·s are independent because they are computed from distinct groups
of observations. Since yi j = µ +αi + β j + εi j, obviously ȳi· = µ +αi + β̄· + ε̄i·. Using Proposi-
tion 1.2.11,

E(ȳi·) = µ +αi + β̄·+E(ε̄i·) = µ +αi + β̄·

and

Var(ȳi·) = Var(ε̄i·) =
σ2

b
.

More directly, the equalities follow because ε̄i· is the sample mean from a random sample of b vari-
ables each with population mean 0 and population variance σ2. If the errors are normally distributed,
the ȳi·s are independent N(µ +αi+ β̄·,σ

2/b) random variables. In any case, if b is reasonably large,
the normal distribution holds approximately because of the central limit theorem.

As in a balanced one-way ANOVA, the estimated contrast ∑
a
i=1 λiȳi· is an unbiased estimate of

the parameter

E

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λi(µ +αi + β̄·) =
a

∑
i=1

λiαi .

This follows because ∑
a
i=1 λi = 0. A derivation that is identical to the derivation used for a balanced

one-way ANOVA gives

Var

(
a

∑
i=1

λiȳi·

)
= σ

2 ∑
a
i=1 λ 2

i
b

,
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from which the standard error follows. The reference distribution for tests and confidence intervals
relies on the fact that for normal errors,

SSE
σ2 ∼ χ

2(d fE)

with MSE independent of the ȳi·s and the ȳ· js.
Also as in a balanced one-way ANOVA, the ȳi·s are a random sample from a normal population

with variance σ2/b if and only if the ȳi·s have the same means, i.e., if and only if all the αis are
equal. When the αis are all equal, the sample variance of the ȳi·s is an estimate of σ2/b and the
MSTrts is an estimate of σ2. In general, MSTrts estimates

E(MSTrts) = σ
2 +

b
a−1

a

∑
i−1

(αi− ᾱ·)
2

which is much larger than σ2 if the treatment effects are very different relative to the size of σ2 or
if the number of blocks b is large. Moreover, the structure of the treatment means implies that all of
the multiple comparison methods of Chapter 6 can continue to be applied.

Proposition 1.2.11 also shows that the predicted values have

E(ŷi j) = µ +αi +β j = E(yi j),

that the residuals have
E(ε̂i j) = 0,

and that the MSE is unbiased for σ2, i.e.,

E(MSE) = σ
2.

(Showing the last of these is much the most complicated.)

Paired comparisons

An interesting special case of complete block data is paired comparison data as discussed in Sec-
tion 4.1. In paired comparison data, there are two treatments to contrast and each pair constitutes a
complete block.

EXAMPLE 9.2.2. Shewhart’s hardness data
In Section 4.1, we examined Shewhart’s data on hardness of two items that were welded together. In
this case, it is impossible to group arbitrary formless pairs of parts and then randomly assign a part
to be either part 1 or part 2, so the data do not actually come from an RCB experiment. Nonetheless,
the two-way ANOVA model remains reasonable with pairs playing the role of blocks.

The data were given in Section 4.1 along with the means for each of the two parts. The two-way
ANOVA analysis also requires the mean for each pair of parts. The analysis of variance table for the
blocking analysis is given in Table 9.5. In comparing the blocking analysis to the paired comparison
analysis given earlier, allowance for round-off errors must be made. The MSE is exactly half the
value of s2

d = 17.77165 given in Section 4.1. The two-way ANOVA t test for differences between
the two parts has

tobs =
47.552−34.889√

8.8858 [(1/27)+(1/27)]
= 15.61 .

This is exactly the same t statistic as used in Section 4.1. The reference distribution is t(26), again
exactly the same. The analysis of variance F statistic is just the square of the tobs and gives equivalent
results for two-sided tests. Confidence intervals for the difference in means are also exactly the same
in the blocking analysis and the paired comparison analysis. The one real difference between this
analysis and the analysis of Section 4.1 is that this analysis provides an indication of whether pairing
was worthwhile. 2
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Table 9.5: Analysis of variance for hardness data

Source d f SS MS F P
Pairs(Blocks) 26 634.94 24.42 2.75 0.006
Parts(Trts) 1 2164.73 2164.73 243.62 0.000
Error 26 231.03 8.89
Total 53 3030.71

Table 9.6: Mangold root data

Columns Row
Rows 1 2 3 4 5 means
1 D(376) E(371) C(355) B(356) A(335) 358.6
2 B(316) D(338) E(336) A(356) C(332) 335.6
3 C(326) A(326) B(335) D(343) E(330) 332.0
4 E(317) B(343) A(330) C(327) D(336) 330.6
5 A(321) C(332) D(317) E(318) B(306) 318.8
Col. means 331.2 342.0 334.6 340.0 327.8 335.12

Treatments A B C D E
Trt. means 333.6 331.2 334.4 342.0 334.4

9.3 Latin square designs

Latin square designs involve two simultaneous but distinct definitions of blocks. The treatments are
arranged so that every treatment is observed in every block for both kinds of blocks.

EXAMPLE 9.3.1. Mercer and Hall (1911) and Fisher (1925, section 49) consider data on the
weights of mangold roots. They used a Latin square design with 5 rows, columns, and treatments.
The rectangular field on which the experiment was run was divided into five rows and five columns.
This created 25 plots, arranged in a square, on which to apply the treatments A, B, C, D, and E.
Each row of the square was viewed as a block, so every treatment was applied in every row. The
unique feature of Latin square designs is that there is a second set of blocks. Every column was
also considered a block, so every treatment was also applied in every column. The data are given
in Table 9.6, arranged by rows and columns with the treatment given in the appropriate place and
the observed root weight given in parentheses. The table also contains the means for rows, columns,
and treatments. In each case, the mean is the average of 5 observations.

The analysis of variance table is constructed like that for a randomized complete block design
except that now both rows and columns play roles similar to blocks. The sum of squares total
(corrected for the grand mean) is computed just as in one-way ANOVA, the sample variance of all
25 observations is computed and multiplied by 25−1, i.e.,

SSTot = (25−1)s2
y = (24)292.776̄ = 7026.6.

The mean square and sum of squares for treatments are also computed as in one-way ANOVA.
The treatment means are averages of 5 observations and the sample variance of the treatment means
is 16.512, so

MSTrts = 5(16.512) = 82.56 .

There are 5 treatments, so treatments have 5− 1 degrees of freedom and the sum of squares is the
mean square times (5−1) ,

SSTrts = (5−1)82.56 = 330.24 .

The mean square and sum of squares for columns are also computed as if they were treatments
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Table 9.7: Analysis of variance for mangold root data

Source d f SS MS F P
Trts 4 330.2 82.6 0.56 .696
Columns 4 701.8 175.5 1.20 .360
Rows 4 4240.2 1060.1 7.25 .003
Error 12 1754.3 146.2
Total 24 7026.6

in a one-way ANOVA. The column means are averages of 5 observations and the sample variance
of the column means is 35.092, so

MSCols = 5(35.092) = 175.46 .

There are 5 columns, so the sum of squares is the mean square times (5−1),

SSCols = (5−1)175.46 = 701.84 .

The mean square and sum of squares for rows are again computed as if they were treatments in
a one-way ANOVA. The row means are the average of 5 observations and the sample variance of
the row means is 212.012, so

MSRows = 5(212.012) = 1060.06 .

There are 5 rows, so the sum of squares is the mean square times (5−1),

SSRows = (5−1)1060.06 = 4240.24 .

The sum of squares error is obtained by subtraction,

SSE = SSTot−SSTrts−SSCols−SSRows

= 7026.6−330.2−701.8−4240.2
= 1754.3 .

Similarly,

d fE = d f Tot−d f Trts−d fCols−d f Rows

= 24−4−4−4
= 12 .

The estimate of σ2 is

MSE =
SSE
d fE

=
1754.3

12
= 146.2 .

All of the calculations are summarized in the analysis of variance table, Table 9.7. Table 9.7
also gives the analysis of variance F test for the null hypothesis that the effects are the same for
every treatment. The F statistic MSTrts/MSE is very small, 0.56, so there is no evidence that the
treatments behave differently. Blocking on columns was not very effective as evidenced by the F
statistic of 1.20, but blocking on rows was very effective, F = 7.25.

Many experimenters are less than thrilled when told that there is no evidence for their treatments
having any differential effects. Inspection of the treatment means given in Table 9.6 leads to the
obvious conclusion that most of the differences are due to the fact that treatment D is much larger
than the others, so we look at this a bit more. (Besides, this gives us an excuse to look at a contrast
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Figure 9.7: Plot of residuals versus rows.

in a Latin square design.) If we construct the sum of squares for a contrast that compares D with the
other means, say,

µA +µB +µC− (4)µD +µE ,

we get a sum of squares that contains the vast majority of the treatment sum of squares, i.e.,

SS(D vs. others) =
[333.6+331.2+334.4− (4)342.0+334.40]2

[1+1+1+(−4)2 +1]/5
= 295.84 .

However, the F ratio for the contrast is quite small,

F =
295.84
146.2

= 2.02 .

This is too small to provide any evidence for a difference between D and the average of the other
treatments, even if we had not let the data suggest the contrast. If this F test cannot be rejected at
even the unadjusted .05 level, there is no point in examining any multiple comparison methods to
see if they will detect a difference, they will not.

Standard residual plots are given in Figures 9.7 through 9.10. They look quite good. 2

Computing techniques

The following Minitab commands will give the sums of squares, means, and residuals necessary
for the analysis. Here c1 is a column containing the mangold root yields, c2 has values from 1 to 5
indicating the row, c3 has values from 1 to 5 indicating the column, and c4 has values from 1 to 5
indicating the treatment.

MTB > names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

MTB > ancova c1 = c2 c3 c4;

SUBC> means c2 c3 c4;

SUBC> resid c11.
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Figure 9.8: Plot of residuals versus columns.
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Figure 9.9: Plot of residuals versus treatment groups.
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Figure 9.10: Normal plot of residuals for mangold root data, W ′ = 0.978.

The ‘glm’ command can also be used in place of the ‘ancova’ command but gives more complicated
output.

Computer programs for doing balanced analysis of variance are frequently incapable of dealing
with Latin squares. For example, Minitab’s ‘anova’ command will not give the analysis. In such
cases, a simple trick can obtain the necessary results but the analysis must be constructed out of
pieces of the output. The commands are given below. There are many simple ways to get the correct
ANOVA table but a key aspect of these commands is that they give the correct residuals.

MTB > names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

MTB > anova c1 = c2 c3;

SUBC> means c2 c3;

SUBC> resid c10.

MTB > anova c10 = c4;

SUBC> means c4;

SUBC> resid c11.

The degrees of freedom, sums of squares, and mean squares for rows, cols, and trts in the two
ANOVA tables will be correct. The degrees of freedom total and the sum of squares total from the
first ANOVA table (the one computed on c1) will be correct. The first ANOVA is a two-way with y
as the dependent variable and rows and columns as the effects. The SSE from the second ANOVA
table (on c10) will be correct but d fE and thus MSE will be incorrect. The second ANOVA is a
one-way using the treatments as groups and the residuals from the first ANOVA as the dependent
variable. From these pieces, a correct ANOVA table can be constructed. In particular, none of the F
tests reported by these commands are appropriate. The residuals from the second ANOVA are the
appropriate residuals for the Latin square analysis. These are in column c11. The means reported
for rows and cols in the first ANOVA will be correct. The means for Trts in the second ANOVA are
adjusted for the rows and columns, so they are not the actual treatment means. However, the means
for treatments reported in the second ANOVA can be used for treatment comparisons (contrasts)
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Table 9.8: Analysis of variance

Source d f SS MS F

Trts(α) r−1 r ∑
r
i=1 (ȳi··− ȳ···)2 SS(α)/(r−1) MS(α)

MSE

Columns(κ) r−1 r ∑
r
j=1
(
ȳ· j·− ȳ···

)2 SS(κ)/(r−1) MS(κ)
MSE

Rows(ρ) r−1 r ∑
r
k=1 (ȳ··k − ȳ···)2 SS(ρ)/(r−1) MS(ρ)

MSE

Error (r−1)(r−2) ∑i, j ε̂
2
i jk SSE/(d fE)

Total r2 −1 ∑i ∑ j
(
yi jk − ȳ···

)2

just as if they were the original treatment means because the row and column adjustments cancel
out when performing contrasts. Two additional points should be made. First, the residuals used as
the dependent variable in the second ANOVA must be raw residuals, they cannot be standardized.
Second, the roles played by rows, columns, and treatments can be interchanged.

Latin square models

The model for an r× r Latin square design is a three-way analysis of variance,

yi jk = µ +αi +κ j +ρk + εi jk, εi jks independent N(0,σ2). (9.3.1)

The parameter µ is viewed as a grand mean, αi is an effect for the ith treatment, κ j is an effect
for the jth column, and ρk is an effect for the kth row. The subscripting for this model is peculiar.
All of the subscripts run from 1 to r but not freely. If you specify a row and a column, the design
tells you the treatment. Thus, if you know k and j, the design tells you i. If you specify a row and
a treatment, the design tells you the column, so k and i dictate j. In fact, if you know any two of
the subscripts, the design tells you the third. The summary statistics necessary for the analysis are
the sample variance of all r2 observations and the means for each treatment, column, and row. The
predicted values are

ŷi jk ≡ ȳi··+ ȳ· j·+ ȳ··k−2ȳ···

and the residuals are
ε̂i jk ≡ yi jk− ŷi jk = yi jk− ȳi··− ȳ· j·− ȳ··k +2ȳ··· .

The computations for the MSE can be summarized in an analysis of variance table. The com-
monly used form for the analysis of variance table is given in Table 9.8. Notice that because of the
peculiarity in the subscripting, the sums for error and total are taken over only i and j. The choice of
these two subscripts is arbitrary; summing over any two subscripts sums over all of the observations
in the Latin square. The degrees of freedom and sums of squares for treatments, columns, rows, and
error add up to the degrees of freedom and sums of squares total (corrected for the grand mean).

The F statistic MS(α)/MSE is the ratio of the mean square treatments to the mean square error.
It is used to test whether there are treatment effects, i.e., it is used to test

H0 : α1 = · · ·= αr.

Again if all the αis are equal, we cannot distinguish between the effects of different treatments, so
the treatment F statistic provides a test of whether we can isolate comparative differences in the
treatment effects.

The F statistic MS(κ)/MSE is the ratio of the mean square columns to the mean square error.
It is used to test whether there are column effects, i.e., it is used to test

H0 : κ1 = · · ·= κr.
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The F statistic provides a test of whether we can isolate comparative differences in the column ef-
fects. The ratio of the mean square rows to the mean square error gives the F statistic MS(ρ)/MSE.
This is used to test

H0 : ρ1 = · · ·= ρr.

The F statistic provides a test of whether we can isolate comparative differences in the row effects.
Some models for Latin square designs do not allow testing for row and column effects but in any case
the ratios MS(ρ)/MSE and MS(κ)/MSE are of interest in that large values indicate, respectively,
that blocking on rows and columns was worthwhile.

The treatments are dealt with exactly as in a one-way ANOVA. A contrast in the treatment
effects is, for known λis that sum to zero,

Par =
r

∑
i=1

λiαi

with

Est =
r

∑
i=1

λiȳi·· .

The treatment means are the average of r observations, so

SE

(
r

∑
i=1

λiȳi··

)
=

√
MSE

r

∑
i=1

λ 2
i

/
r.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
r

∑
i=1

λiαi

)
=

[
r

∑
i=1

λiȳi··

]2/[ r

∑
i=1

λ
2
i
/

r

]
.

If of interest, similar results hold for the row and column effects. For known ξ js that add to zero,
inferences for, say, the column effects can be based on

Par =
r

∑
j=1

ξ jκ j

with

Est =
r

∑
j=1

ξ j ȳ· j· .

The column means are averages of r observations so

SE

(
r

∑
j=1

ξ j ȳ· j·

)
=

√
MSE

r

∑
j=1

ξ 2
j

/
r.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
r

∑
j=1

ξ jκ j

)
=

[
r

∑
j=1

ξ j ȳ· j·

]2/[ r

∑
j=1

ξ
2
j
/

r

]
.

The theoretical justification for the analysis is similar to that for a balanced one-way and a
balanced two-way.
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Discussion of Latin squares

The idea of simultaneously having two distinct sets of complete blocks is quite useful. For example,
suppose you wish to compare the performance of four machines in producing something. Produc-
tivity is notorious for depending on the day of the week, with Mondays and Fridays often having
low productivity; thus we may wish to block on days. The productivity of the machine is also likely
to depend on who is operating the machine, so we may wish to block on operators. Thus we may
decide to run the experiment on Monday through Thursday with four machine operators and using
each operator on a different machine each day. One possible design is

Operator
Day 1 2 3 4
Mon A B C D
Tue B C D A
Wed C D A B
Thu D A B C

where the numbers 1 through 4 are randomly assigned to the four people who will operate the
machines and the letters A through D are randomly assigned to the machines to be examined. More-
over, the days of the week should actually be randomly assigned to the rows of the Latin square. In
general, the rows, columns, and treatments should all be randomized in a Latin square.

Another distinct Latin square design for this situation is

Operator
Day 1 2 3 4
Mon A B C D
Tue B A D C
Wed C D B A
Thu D C A B

This square cannot be obtained from the first one by any interchange of rows, columns, and treat-
ments. Typically, one would randomly choose a possible Latin square design from a list of such
squares (see, for example, Cochran and Cox, 1957) in addition to randomly assigning the numbers,
letters, and rows to the operators, machines, and days.

The use of Latin square designs can be extended in numerous ways. One modification is the
incorporation of a third kind of block; such designs are called Graeco-Latin squares. The use of
Graeco-Latin squares is explored in the exercises for this chapter. A problem with Latin squares
is that small squares give poor variance estimates because they provide few degrees of freedom
for error, cf. Table 9.8. For example, a 3× 3 Latin square gives only 2 degrees of freedom for
error. In such cases, the Latin square experiment is often performed several times, giving additional
replications that provide improved variance estimation. Section 11.4 presents an example in which
several Latin squares are used.

9.4 Discussion of experimental design

Data are frequently collected with the intention of evaluating a change in the current system of
doing things. If you really want to know the effect of a change in the system, you have to execute
the change. It is not enough to look at conditions in the past that were similar to the proposed change
because, along with the past similarities, there were dissimilarities. For example, suppose you think
that instituting a good sex education program in schools will decrease teenage pregnancies. To
evaluate this, it is not enough to compare schools that currently have such programs with schools
that do not, because along with the differences in sex education programs there are other differences
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Table 9.9: Tensile strength of uniform twill

Fabric Machines
strips m1 m2 m3 m4
s1 18 7 5 9
s2 9 11 12 3
s3 7 11 11 1
s4 6 4 10 8
s5 10 8 6 10
s6 7 12 3 15
s7 13 5 15 16
s8 1 11 8 12

in the schools that affect teen pregnancy rates. Such differences may include parents’ average socio-
economic status and education. While adjustments can be made for any such differences that can
be identified, there is no assurance that all important differences can be found. Moreover, initiating
the proposed program involves making a change and the very act of change can affect the results.
For example, current programs may exist and be effective because of the enthusiasm of the school
staff that initiated them. Such enthusiasm is not likely to be duplicated when the new program is
mandated from above.

To establish the effect of instituting a sex education program in a population of schools, you
really need to (randomly) choose schools and actually institute the program. The schools at which
the program is instituted should be chosen randomly, so no (unconscious) bias creeps in due to
the selection of schools. For example, the people conducting the investigation are likely to favor
or oppose the project. They could (perhaps unconsciously) choose the schools in such a way that
makes the evaluation likely to reflect their prior attitudes. Unconscious bias occurs frequently and
should always be assumed. Other schools without the program should be monitored to establish a
base of comparison. These other schools should be treated as similarly as possible to the schools
with the new program. For example, if the district school administration or the news media pay a lot
of attention to the schools with the new program but ignore the other schools, we will be unable to
distinguish the effect of the program from the effect of the attention. In addition, blocking similar
schools together can improve the precision of the experimental results.

One of the great difficulties in learning about human populations is that obtaining the best data
often requires morally unacceptable behavior. We object to having our lives randomly changed for
the benefit of experimental science and typically the more important the issue under study, the more
we object to such changes. Thus we find that in studying humans, the best data available are often
historical. In our example we might have to accept that the best data available will be an historical
record of schools with and without sex education programs. We must then try to identify and adjust
for all differences in the schools that could potentially affect our conclusions. It is the extreme
difficulty of doing this that leads to the relative unreliability of many studies in the social sciences.
On the other hand, it would be foolish to give up the study of interesting and important phenomena
just because they are difficult to study.

9.5 Exercises

EXERCISE 9.5.1. Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on four
different machines. Eight homogeneous strips of cloth were divided into four samples. Each sample
was tested on one of four machines. The data are given in Table 9.9.

(a) Identify the design for this experiment and give an appropriate model. List all of the assumptions
made in the model.
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Table 9.10: Dead adult flies

Units of active
ingredient

Medium 0 4 8 16
A 423 445 414 247
B 326 113 127 147
C 246 122 206 138
D 141 227 78 148
E 208 132 172 356
F 303 31 45 29
G 256 177 103 63

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using Tukey’s method with α = .05

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 9.5.2. Snedecor (1945b) presented data on a spray for killing adult flies as they
emerged from a breeding medium. The data were numbers of adults found in cages that were set
over the medium containers. The treatments were different levels of the spray’s active ingredient,
namely 0, 4, 8, and 16 units. (Actually, it is not clear whether a spray with 0 units was actually
applied or whether no spray was applied. The former might be preferable.) Seven different sources
for the breeding mediums were used and each spray was applied on each distinct breeding medium.
The data are presented in Table 9.10.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine a contrast that com-
pares the treatment with no active ingredient to the average of the three treatments that contain
the active ingredient. Ignoring the treatment with no active ingredient, the other three treatments
are quantitative levels of the active ingredient. On the log scale, these levels are equally spaced,
so the tabled polynomial contrasts can be used to examine the polynomial regression of numbers
killed on the log of the amount of active ingredient. The contrasts are given below.

Contrasts
Active vs. log(active) log(active)

Treatment inactive linear quadratic
0 3 0 0
4 −1 −1 1
8 −1 0 −2
16 −1 1 1

Examine these contrasts. Compare the results given by the LSD, Bonferroni, and Scheffé meth-
ods. Use α = .10 for LSD and Scheffé and something close to .05 for Bonferroni. Are the poly-
nomial contrasts orthogonal to the first contrast?

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 9.5.3. Cornell (1988) considered data on scaled thickness values for five formulations
of vinyl designed for use in automobile seat covers. Eight groups of material were prepared. The
production process was then set up and the five formulations run with the first group. The production
process was then reset and another group of five was run. In all, the production process was set
eight times and a group of five formulations was run with each setting. The data are displayed in
Table 9.11.
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Table 9.11: Cornell’s scaled vinyl thickness values

Production setting
Formulation 1 2 3 4 5 6 7 8
1 8 7 12 10 7 8 12 11
2 6 5 9 8 7 6 10 9
3 10 11 13 12 9 10 14 12
4 4 5 6 3 5 4 6 5
5 11 10 15 11 9 7 13 9

(a) From the information given, identify the design for this experiment and give an appropriate
model. List all the assumptions made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using the Bonferroni method with an α of about .05.

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 9.5.4. In data related to that of the previous problem, Cornell (1988) has scaled thick-
ness values for vinyl under four different process conditions. The process conditions were A, high
rate of extrusion, low drying temperature; B, low rate of extrusion, high drying temperature; C, low
rate of extrusion, low drying temperature; D, high rate of extrusion, high drying temperature. An
initial set of data with these conditions was collected and later a second set was obtained. The data
are given below.

Treatments
A B C D

Rep 1 7.8 11.0 7.4 11.0
Rep 2 7.6 8.8 7.0 9.2

Identify the design, give the model, check the assumptions, give the analysis of variance table and
interpret the F test for treatments.

The structure of the treatments suggest some interesting contrasts. These are given below.

Treatments
Contrast A B C D
Rate 1 −1 −1 1
Temp −1 1 −1 1
RT −1 −1 1 1

The rate contrast examines the difference between the two treatments with a high rate of ex-
trusion and those with a low rate. The temp contrast examines the difference between the two
treatments with a high drying temperature and those with a low temperature. The RT contrast is
an interaction contrast that examines whether the effect of extrusion rate is the same for high drying
temperatures as for low temperatures. Show that the contrasts are orthogonal and use the contrasts
to analyze the data.

EXERCISE 9.5.5. Johnson (1978) and Mandel and Lashof (1987) present data on measurements
of P2O5 (phosphorous pentoxide) in fertilizers. Table 9.12 presents data for five fertilizers, each
analyzed in five labs. Our interest is in differences among the labs. Analyze the data.

EXERCISE 9.5.6. Table 9.13 presents data on yields of cowpea hay. Four treatments are of in-
terest, variety I of hay was planted 4 inches apart (I4), variety I of hay was planted 8 inches apart
(I8), variety II of hay was planted 4 inches apart (II4), and variety II of hay was planted 8 inches
apart (II8). Three blocks of land were each divided into four plots and one of the four treatments
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Table 9.12: Phosphorous fertilizer data

Laboratory
Fertilizer 1 2 3 4 5
F 20.20 19.92 20.91 20.65 19.94
G 30.20 30.09 29.10 29.85 30.29
H 31.40 30.42 30.18 31.34 31.11
I 45.88 45.48 45.51 44.82 44.63
J 46.75 47.14 48.00 46.37 46.63

Table 9.13: Cowpea hay yields

Block Trt.
Treatment 1 2 3 means
I4 45 43 46 44.666̄
I8 50 45 48 47.666̄
II4 61 60 63 61.333̄
II8 58 56 60 58.000
Block means 53.50 51.00 54.25 52.916̄

was randomly applied to each plot. These data are actually a subset of a larger data set given by
Snedecor and Cochran (1980, p. 309) that involves three varieties and three spacings in four blocks.
Analyze the data. Check your assumptions. Examine appropriate contrasts.

EXERCISE 9.5.7. In the study of the optical emission spectrometer discussed in Example 9.2.1
and Table 9.1, the target value for readings was .89. Subtract .89 from each observation and repeat
the analysis. What new questions are of interest? Which aspects of the analysis have changed and
which have not?

EXERCISE 9.5.8. An experiment was conducted to examine differences among operators of Suter
hydrostatic testing machines. These machines are used to test the water repellency of squares of
fabric. One large square of fabric was available but its water repellency was thought to vary along
the length (warp) and width (fill) of the fabric. To adjust for this, the square was divided into four
equal parts along the length of the fabric and four equal parts along the width of the fabric, yielding
16 smaller pieces. These pieces were used in a Latin square design to investigate differences among
four operators: A, B, C, D. The data are given in Table 9.14. Construct an analysis of variance table.
What, if any, differences can be established among the operators? Compare the results of using the
Tukey, Newman–Keuls, and Bonferroni methods for comparing the operators.

EXERCISE 9.5.9. Table 9.15 contains data similar to that in the previous exercise except that in

Table 9.14: Hydrostatic pressure tests: operator, yield

A B C D
40.0 43.5 39.0 44.0

B A D C
40.0 42.0 40.5 38.0

C D A B
42.0 40.5 38.0 40.0

D C B A
40.0 36.5 39.0 38.5
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Table 9.15: Hydrostatic pressure tests: machine, yield

2 4 3 1
39.0 39.0 41.0 41.0

1 3 4 2
36.5 42.5 40.5 38.5

4 2 1 3
40.0 39.0 41.5 41.5

3 1 2 4
41.5 39.5 39.0 44.0

Table 9.16: Hydrostatic pressure tests: operator, machine

B,2 A,4 D,3 C,1
A,1 B,3 C,4 D,2
D,4 C,2 B,1 A,3
C,3 D,1 A,2 B,4

Operators are A, B, C, D.
Machines are 1, 2, 3, 4.

this Latin square differences among four machines: 1, 2, 3, 4, were investigated rather than differ-
ences among operators. Machines 1 and 2 were operated with a hand lever, while machines 3 and
4 were operated with a foot lever. Construct an analysis of variance table. What, if any, differences
can be established among the machines? To this end, construct appropriate orthogonal contrasts.

EXERCISE 9.5.10. Table 9.15 is incomplete. The data were actually obtained from a Graeco-
Latin square that incorporates four different operators as well as the four different machines. The
correct design is given in Table 9.16. Note that this is a Latin square for machines when we ignore the
operators and a Latin square for operators when we ignore the machines. Moreover, every operator
works once with every machine. Using the four operator means, compute a sum of squares for
operators and subtract this from the error computed in Exercise 9.5.9. Give the new analysis of
variance table. How do the results on machines change? What evidence is there for differences
among operators. Was the analysis for machines given earlier incorrect or merely inefficient?

EXERCISE 9.5.11. Table 9.17 presents data given by Nelson (1993) on disk drives from a Graeco-
Latin square design (see Exercise 9.5.10). The experiment was planned to investigate the effect of
four different substrates on the drives. The dependent variable is the amplitude of a signal read from
the disk where the signal written onto the disk had a fixed amplitude. Blocks were constructed from
machines, operators, and day of production. (In Table 9.17, Days are indicated by lower case Latin
letters.) The substrata consist of A, aluminum; B, nickel plated aluminum; and two types of glass, C
and D. Analyze the data. In particular, check for differences between aluminum and glass, between
the two types of glass, and between the two types of aluminum. Check your assumptions.

Table 9.17: Amplitudes of disk drives

Machine
Operator 1 2 3 4
I Aa 8 Cd 7 Db 3 Bc 4
II Cc 11 Ab 5 Bd 9 Da 5
III Dd 2 Ba 2 Ac 7 Cb 9
IV Bb 8 Dc 4 Ca 9 Ad 3





Chapter 10

Analysis of covariance

Analysis of covariance incorporates one or more regression variables into an analysis of variance.
The regression variables are referred to as covariates (relative to the dependent variable), hence the
name analysis of covariance. Covariates are also known as supplementary or concomitant obser-
vations. Cox (1958, chapter 4) gives a particularly nice discussion of the ideas behind analysis of
covariance and illustrates various useful plotting techniques. In 1957 and 1982, Biometrics devoted
entire issues to the analysis of covariance. In this chapter, we only examine the use of a single co-
variate. We begin our discussion with an example that involves one-way analysis of variance and a
covariate.

In Sections 1 and 4 of this chapter, we make extensive use of model comparisons. To simplify
the discussions within these sections, we will often refer to a model such as (10.1.1) as simply model
(1).

10.1 An example

Fisher (1947) gives data on the body weights (in kilograms) and heart weights (in grams) for domes-
tic cats of both sexes that were given digitalis. A subset of the data is presented in Table 10.1. Our
primary interest is to determine whether females’ heart weights differ from males’ heart weights
when both have received digitalis.

As a first step, we might fit a one-way ANOVA model,

yi j = µi + εi j (10.1.1)
= µ +αi + εi j,

where the yi js are the heart weights, i = 1,2, and j = 1, . . . ,24. This model yields the analysis of
variance given in Table 10.2. Note the overwhelming effect due to sexes.

Table 10.1: Fisher’s data on body weights (kg) and heart weights (g) of domestic cats given digitalis

Females Males
Body Heart Body Heart Body Heart Body Heart
2.3 9.6 2.0 7.4 2.8 10.0 2.9 9.4
3.0 10.6 2.3 7.3 3.1 12.1 2.4 9.3
2.9 9.9 2.2 7.1 3.0 13.8 2.2 7.2
2.4 8.7 2.3 9.0 2.7 12.0 2.9 11.3
2.3 10.1 2.1 7.6 2.8 12.0 2.5 8.8
2.0 7.0 2.0 9.5 2.1 10.1 3.1 9.9
2.2 11.0 2.9 10.1 3.3 11.5 3.0 13.3
2.1 8.2 2.7 10.2 3.4 12.2 2.5 12.7
2.3 9.0 2.6 10.1 2.8 13.5 3.4 14.4
2.1 7.3 2.3 9.5 2.7 10.4 3.0 10.0
2.1 8.5 2.6 8.7 3.2 11.6 2.6 10.5
2.2 9.7 2.1 7.2 3.0 10.6 2.5 8.6

281
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Table 10.2: One-way analysis of variance on heart weights

Source d f SS MS F P
Sex 1 56.117 56.117 23.44 .0000
Error 46 110.11 2.3936
Total 47 166.223

Table 10.3: Analysis of variance for heart weights based on model (2)

Source d f Adj. SS MS F P
Body weights 1 37.828 37.828 23.55 0.000
Sex 1 4.499 4.499 2.80 0.101
Error 45 72.279 1.606
Total 47 166.223

Fisher provided both heart weights and body weights, so we can ask a more complex question,
‘Is there a sex difference in the heart weights over and above the fact that male cats are naturally
larger than female cats?’ To examine this we add a regression term to model (1) and fit the traditional
analysis of covariance model,

yi j = µi + γzi j + εi j (10.1.2)
= µ +αi + γzi j + εi j.

Here the zi js are the body weights and γ is a slope parameter associated with body weights. Note
that model (2) is an extension of the simple linear regression between the ys and the zs in which we
allow a different intercept µi for each sex. An analysis of variance table for model (2) is given as
Table 10.3. The interpretation of this table is different from the ANOVA tables examined earlier. For
example, the sums of squares for body weights, sex, and error do not add up to the sum of squares
total. The sums of squares in Table 10.3 are referred to as adjusted sums of squares (Adj. SS) because
the body weight sum of squares is adjusted for sexes and the sex sum of squares is adjusted for body
weights. In this section, we focus on the interpretation of Table 10.3; in Section 10.3 we discuss its
computation.

The error line in Table 10.3 is simply the error from fitting model (2). The body weights line
comes from comparing model (2) with the reduced model (1). Note that the only difference between
models (1) and (2) is that (1) does not involve the regression on body weights, so by testing the two
models we are testing whether there is a significant effect due to the regression on body weights.
The standard way of comparing a full and a reduced model is by comparing their error terms. Model
(2) has one more parameter, γ , than model (1), so there is one more degree of freedom for error in
model (1) than in model (2), hence one degree of freedom for body weights. The adjusted sum of
squares for body weights is the difference between the sum of squares error in model (1) and the
sum of squares error in model (2). Given the sum of squares and the mean square, the F statistic for
body weights is constructed in the usual way, cf. Section 5.5. Examining Table 10.3, we see a major
effect due to the regression on body weights.

The sex line in Table 10.3 provides a test of whether there are differences in sexes after adjusting
for the regression on body weights. This comes from comparing model (2) to a similar model in
which sex differences have been eliminated. In model (2), the sex differences are incorporated as
µ1 and µ2 in the first version and as α1 and α2 in the second version. To eliminate sex differences
in model (2), we simply eliminate the distinctions between the µs (the αs). Such a model can be
written as

yi j = µ + γzi j + εi j.

In this example, the analysis of covariance model without treatment effects is just a simple linear
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regression of heart weight on body weight. We have reduced the two sex parameters to one overall
parameter, so the difference in degrees of freedom between this model and model (2) is 1. The
difference in the sums of squares error between this model and model (2) is the adjusted sum of
squares for sex. Examining Table 10.3 we see that the evidence for a sex effect over and above the
effect due to the regression on body weights is not great.

Our current data come from an observational study rather than a designed experiment. It is
difficult to take a group of cats and randomly assign them to sex groups. As discussed in the next
section, principles of experimental design focus attention on models such as (2). However, these
data are from an observational study, so yet another model is of interest. There is little reason to
assume that when regressing heart weight on body weight the relationships are the same for females
and males. Model (2) allows different intercepts for these regressions but uses the same slope γ .
We should test the assumption of a common slope by fitting the more general model that allows
different slopes for females and males, i.e.,

yi j = µi + γizi j + εi j (10.1.3)
= µ +αi + γizi j + εi j.

In model (3) the γs depend on i and thus the slopes are allowed to differ between the sexes. While
model (3) may look complicated, it consists of nothing more than fitting a simple linear regression to
each group: one to the female data and a separate simple linear regression to the male data. The sum
of squares error for model (3) comes from adding the error sums of squares for the two simple linear
regressions. It is easily seen that for females the simple linear regression has an error sum of squares
of 22.459 on 22 degrees of freedom and the males have an error sum of squares of 49.614 also on
22 degrees of freedom. Thus model (3) has an error sum of squares of 22.459+ 49.614 = 72.073
on 22+22 = 44 degrees of freedom. The mean squared error for model (3) is

MSE(3) =
72.073

44
= 1.638

and using results from Table 10.3, the test of model (3) against the reduced model (2) has

F =
[72.279−72.073]/ [45−44]

1.638
=

.206
1.638

= .126.

The F statistic is very small; there is no evidence that we need to fit different slopes for the two
sexes. We now return to the analysis of model (2).

Frequently, computer programs for fitting model (2) give information on the regression parame-
ter γ . Often, this is presented in the same way the program gives information on parameters in pure
regression problems, e.g.,

Covariate γ̂ SE(γ̂) t P
Body weight 2.7948 0.5759 4.853 0.000.

Note that the t statistic here is the square root of the F statistic for body weights in Table 10.3. The P
values are identical. Again, we find clear evidence for the effect of body weights. A 95% confidence
interval for γ has end points

2.7948±2.014(0.5759)

which yields the interval (1.6,4.0). We are 95% confident that, for data comparable to the data in
this study, an increase in body weight of one kilogram corresponds to a mean increase in heart
weight of between 1.6g and 4.0g.

In model (2), comparing treatments by comparing the treatment means ȳi· is inappropriate be-
cause of the complicating effect of the covariate. Adjusted means are often used to compare treat-
ments. The formula and the actual values for the adjusted means are given below along with the raw
means for body weights and heart rates.
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Figure 10.1: Residuals versus predicted values.

Adjusted means ≡ ȳi·− γ̂(z̄i·− z̄··)

Sex N Body Heart Adj. heart
Female 24 2.333 8.887 9.580
Male 24 2.829 11.050 10.357
Combined 48 2.581 9.969

We have seen previously that there is little evidence of a differential effect on heart weights due to
sexes after adjusting for body weights. Nonetheless, from the adjusted means what evidence exists
suggests that, even after adjusting for body weights, a typical heart weight for males, 10.357, is
larger than a typical heart weight for females, 9.580.

Figures 10.1 through 10.3 contain residual plots. The plot of residuals versus predicted values
looks exceptionally good. The plot of residuals versus sexes shows slightly less variability for fe-
males than for males. The difference is probably not enough to worry about. The normal plot of the
residuals is alright with W ′ above the appropriate percentile.

Minitab commands

The following Minitab commands were used to generate the analysis of these data. The means given
by the ‘ancova’ subcommand ‘means’ are the adjusted treatment means.

MTB > names c1 ’body’ c2 ’heart’ c3 ’sex’

MTB > note Fit model (1).

MTB > oneway c2 c3

MTB > note Fit model (2).

MTB > ancova c2 = c3;

SUBC> covar c1;

SUBC> resid c10;

SUBC> fits c11;

SUBC> means c3.
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Figure 10.3: Normal plot of residuals, W ′ = 0.968.
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MTB > plot c10 c11

MTB > plot c10 c3

MTB > note Split the data into females and males and

MTB > note perform two regressions to fit model (3).

MTB > copy c1 c2 to c11 c12;

SUBC> use c3=1.

MTB > regress c12 on 1 c11

MTB > copy c1 c2 to c21 c22;

SUBC> use c3=2.

MTB > regress c22 on 1 c21

10.2 Analysis of covariance in designed experiments

In designing an experiment to investigate a group of treatments, covariates are used to reduce the
error of treatment comparisons. One way to use the concomitant observations is to define blocks
based on them. For example, income, IQ, and heights can all be used to collect people into similar
groups for a randomized complete block design. In fact, any construction of blocks must be based on
information not otherwise incorporated into the ANOVA model, so any experiment with blocking
uses concomitant information. In analysis of covariance we use the concomitant observations more
directly, as regression variables in the statistical model.

Obviously, for a covariate to help our analysis it must be related to the dependent variable. Un-
fortunately, improper use of concomitant observations can invalidate, or at least alter, comparisons
among the treatments. In the example of Section 10.1, the original ANOVA demonstrated an effect
on heart weights due to sex but after adjusting for body weights, there was little evidence for a
sex difference. The very nature of what we were comparing changed when we adjusted for body
weights. Originally, we investigated whether heart weights were different for females and males.
The analysis of covariance examined whether there were differences between female heart weights
and male heart weights beyond what could be accounted for by the regression on body weights.
These are very different interpretations. In a designed experiment, we want to investigate the effects
of the treatments and not the treatments adjusted for some covariates. To this end, in a designed
experiment we require that the covariates be logically independent of the treatments. In particular,
we require that

the concomitant observations be made before assigning the treatments to the experimental units,
the concomitant observations be made after assigning treatments to experimental units but before
the effect of the treatments has developed, or
the concomitant observations be such that they are unaffected by treatment differences.

For example, suppose the treatments are five diets for cows and we wish to investigate milk
production. Milk production is related to the size of the cow, so we might pick height of the cow as
a covariate. For immature cows over a long period of time, diet may well affect both height and milk
production. Thus to use height as a covariate we should measure heights before treatments begin or
we could measure heights, say, two days after treatments begin. Two days on any reasonable diet
should not affect a cow’s height. Alternatively, if we use only mature cows their heights should be
unaffected by diet and thus the heights of mature cows could be measured at any time during the
experiment. Typically, one should be very careful when claiming that a covariate measured near
the end of an experiment is unaffected by treatments.

The requirements listed above on the nature of covariates in a designed experiment are imposed
so that the treatment effects do not depend on the presence or absence of covariates in the analysis.
The treatment effects are logically identical regardless of whether covariates are actually measured
or incorporated into the analysis. Recall that in the observational study of Section 10.1, the nature
of the treatment (sex) effects changed depending on whether covariates were incorporated in the
model. The role of the covariates in the analysis of a designed experiment is solely to reduce the
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error. In particular, using good covariates should reduce both the variance of the observations σ2

and its estimate, the MSE. On the other hand, we will see in the next section that one pays a price for
using covariates. Variances of treatment comparisons are σ2 times a constant. With covariates in the
model, the constant is larger than when they are not present. However, with well chosen covariates
the appropriate value of σ2 should be sufficiently smaller that the reduction in MSE overwhelms
the increase in the multiplier. Nonetheless, in designing an experiment we need to play off these
aspects against one another. We need covariates whose reduction in MSE more than makes up for
the increase in the constant.

The requirements imposed on the nature of the covariates in a designed experiment have lit-
tle affect on the analysis illustrated in the Section 10.1. The analysis focuses on a model such as
(10.1.2). In Section 10.1, we also considered model (10.1.3) that has different slope parameters for
the different treatments (sexes). The requirements on the covariates in a designed experiment imply
that the relationship between the dependent variable y and the covariate z cannot depend on the
treatments. Thus with covariates chosen for a designed experiment it is inappropriate to have slope
parameters that depend on the treatment. There is one slope that is valid for the entire analysis and
the treatment effects do not depend on the presence or absence of the covariates. If a model such as
(10.1.3) fits better than (10.1.2) when the covariate has been chosen appropriately, it suggests that
the effects of treatments may differ from experimental unit to experimental unit. In such cases a
treatment cannot really be said to have an effect, it has a variety of effects depending on which units
it is applied to. A suitable transformation of the dependent variable may alleviate the problem.

10.3 Computations and contrasts

Analysis of covariance begins with an analysis of variance model and adds a regressor to the model.
The original idea in computing an analysis of covariance was to use the simple computations avail-
able for one-way ANOVAs and balanced higher-way ANOVAs to expedite the computations for the
more complicated analysis of covariance model. With modern computing machines this is less cru-
cial, but the original computational methods deserve consideration. In particular, they are extremely
useful in statistical theory. To illustrate, consider a randomized complete block (RCB) experiment
with a covariate z. The model is

yi j = µ +αi +β j + γzi j + εi j (10.3.1)

with i = 1, . . . ,a indicating treatments, j = 1, . . . ,b indicating blocks, and independent N(0,σ2)
errors. The computational method involves performing RCB analyses on both the yi js and the zi js.
In addition to computing the usual sums of squares for the ys and the zs, we need to compute sums
of cross products. The formulae are given in Table 10.4. The entire analysis of covariance can be
computed from the sums of squares and cross products in Table 10.4 along with the mean values
needed to perform the two RCB analyses. In particular, the analysis focuses on the three error lines
in Table 10.4. For analysis of covariance models other than (10.3.1), similar methods applied to
the error lines yield the appropriate analysis. The analogous computations for model (10.1.2) are
illustrated at the end of the section.

From the error sums of squares and cross products in Table 10.4, compute the SSE for model
(10.3.1) as

SSE = SSEyy−
(SSEyz)

2

SSEzz
.

Model (10.3.1) has one more parameter (γ) than the corresponding RCB model, so

d fE = (a−1)(b−1)−1

and
MSE =

SSE
(a−1)(b−1)−1

.
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Table 10.4: RCB analysis of covariance, one covariate

Source d f SSyy

Trt a−1 b∑
a
i=1(ȳi·− ȳ··)2

Blocks b−1 a∑
b
j=1(ȳ· j − ȳ··)2

Error (a−1)(b−1) subtraction

Total ab−1 ∑
a
i=1 ∑

b
j=1(ȳi j − ȳ··)2

Source d f SSyz

Trt a−1 b∑
a
i=1(ȳi·− ȳ··)(z̄i·− z̄··)

Blocks b−1 a∑
b
j=1(ȳ· j − ȳ··)(z̄· j − z̄··)

Error (a−1)(b−1) subtraction

Total ab−1 ∑
a
i=1 ∑

b
j=1(ȳi j − ȳ··)(z̄i j − z̄··)

Source d f SSzz

Trt a−1 b∑
a
i=1(z̄i·− z̄··)2

Blocks b−1 a∑
b
j=1(z̄· j − z̄··)2

Error (a−1)(b−1) subtraction

Total ab−1 ∑
a
i=1 ∑

b
j=1(z̄i j − z̄··)2

The estimate of γ is computed as

γ̂ =
SSEyz

SSEzz

and the standard error is

SE(γ̂) =

√
MSE
SSEzz

.

The sum of squares for the covariate can be computed as

SS(γ̂) = γ̂
2SSEzz.

All of these formulae are very similar to formulae used in simple linear regression. In fact, if model
(10.3.1) had no treatment or block effects, it would be a simple linear regression model and these
formula would give the usual analysis for a simple linear regression.

The estimate of a contrast in the treatment effects, say ∑
a
i=1 λiαi, is

a

∑
i=1

λi (ȳi·− γ̂ z̄i·) .

The variance of the estimated contrast is

Var

(
a

∑
i=1

λi (ȳi·− z̄i·γ̂)

)
= σ

2

[
∑

a
i=1 λ 2

i
b

+
(∑

a
i=1 λiz̄i·)

2

SSEzz

]
.

Recall that in an RCB model without covariates, the variance of the estimate of ∑
a
i=1 λiαi is
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σ2
[
∑

a
i=1 λ 2

i /b
]

which is the variance given above without the term involving the zi js. The RCB
variance appears to be strictly smaller than the variance from model (10.3.1). This illusion occurs
because the variance parameters σ2 are not the same in the covariate model (10.3.1) and the RCB
model without covariates. With good covariates, the variance σ2 in the covariate model should be
much smaller than the corresponding variance in the model without covariates. In fact, the σ2 in the
covariate model should be sufficiently small to more than make up for the increase in the term that
is multiplying σ2.

The standard error of the estimated contrast is obtained immediately from the variance formula.
It is

SE

(
a

∑
i=1

λi (ȳi·− z̄i·γ̂)

)
=

√√√√MSE

[
∑

a
i=1 λ 2

i
b

+
(∑

a
i=1 λiz̄i·)

2

SSEzz

]
.

Because of the complications caused by having the regressor zi j in the model, orthogonal contrasts
are difficult to specify and of little interest.

For what they are worth, adjusted treatment means are often defined as

ȳi·− γ̂ (z̄i·− z̄··) .

These adjusted treatment means can be used in place of the values ȳi·− γ̂ z̄i· when estimating con-
trasts. Using adjusted treatment means has no affect on the standard error of the estimated contrast.

To test for the existence of treatment effects, we test model (10.3.1) against the reduced model

yi j = µ +β j + γzi j + ei j. (10.3.2)

In model (10.3.2) the treatment effects αi have been eliminated, so the sum of squares for treatments
is incorporated into the error term of model (10.3.2). To find the SSE for model (10.3.2) we combine
the treatment and error lines in Table 10.4 and use the standard formula.

SSE(2) =

[
(SSTrtyy +SSEyy)−

(SSTrtyz +SSEyz)
2

SSTrtzz +SSEzz

]
.

The sum of squares used in the numerator of the F statistic for testing treatments is

SSTrt = SSE(2)−SSE(1)

=

[
(SSTrtyy +SSEyy)−

(SSTrtyz +SSEyz)
2

SSTrtzz +SSEzz

]
−

[
SSEyy−

SSE2
yz

SSEzz

]
.

This has the standard number of degrees of freedom, a−1. The F statistic for treatments is

F =
SSTrt/(a−1)

MSE

with MSE coming from model (10.3.1).
If it is of interest to test for block effects or investigate block contrasts, the methods given above

apply with appropriate substitutions.
While the discussion in this section has been in terms of analyzing randomized complete block

designs, analogous procedures work for any analysis of covariance model in which the correspond-
ing analysis of variance computations are tractable. We illustrate the computations with the bal-
anced one-way ANOVA data of Section 10.1.

EXAMPLE 10.3.1. Table 10.1 gave Fisher’s heart and body weight data, Table 10.2 gave the one-
way analysis of variance for heart weights, and Table 10.3 gave an analysis of variance table for the
covariate model. Table 10.5 is analogous to Table 10.4; it gives the standard analysis of covariance


