
The American Journal of Pathology, Vol. 191, No. 10, October 2021
ajp.amjpathol.org
Artificial Intelligence and Deep Learning in Pathology Theme Issue
MINI-REVIEW

Searching Images for Consensus
Can AI Remove Observer Variability in Pathology?
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One of the major obstacles in reaching diagnostic consensus is observer variability. With the recent
success of artificial intelligence, particularly the deep networks, the question emerges as to whether
the fundamental challenge of diagnostic imaging can now be resolved. This article briefly reviews
the problem and how eventually both supervised and unsupervised AI technologies could help to
overcome it. (Am J Pathol 2021, 191: 1702e1708; https://doi.org/10.1016/j.ajpath.2021.01.015)
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This article is part of a mini-review series on the applications of artificial

intelligence and deep learning in advancing research and diagnosis in
pathology.
Observer variability in pathology is described as the degree
of variation between the diagnostic interpretations when a
set of cases are examined by two or more independent cli-
nicians. While there are many ways to estimate these errors,
in most circumstances, this estimation requires large-scale
case reviews by two or more blinded pathologists exam-
ining the same cases independently. While straightforward
in theory, this quantification has proven difficult, as it is a
costly and time-consuming process and appears to vary
across different sample types and pathologists. Overall,
cancer diagnoses tend to be more highly variable than non-
neoplastic cases, especially as the number of diagnostic
criteria continues to evolve in the era of molecular di-
agnostics.1,2 Variability also appears to depend on specific
tumor type and tumor frequency, with breast and gyneco-
logic malignancies and less common atypical tumor types
showing higher observer variability than skin and gastro-
intestinal lesions and more common tumor types,
respectively.2e5 Similarly, observer factors are an important
consideration. Specific training and disease distribution may
substantially change from a pathologist’s original training or
working environment, leading to specific diagnostic biases.6

In some studies in which pathologists shared difficult cases
with intradepartmental colleagues, the diagnosis was
changed in as many as 13% of cases.5,7
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The overall reported error rates in pathology are relatively
low and are currently of little clinical significance at a
population level.8,9 However, the transition to more
personalized care and the reliance on more precise di-
agnostics for guiding patient management will likely make
previously inconsequential errors more crucial, especially
for individual patients.10 Therefore, subtle differences be-
tween diagnostic considerations currently too subjective for
consistent agreement between independent pathologists may
soon lead to life-saving decisions in personalized medicine.
A false positive diagnosis could result in a patient receiving
inappropriate or unnecessary toxic chemotherapy in
oncology. Conversely, false negative results may delay or
deny the benefit of effective therapy in another patient.
Unfortunately, many errors appear to be the result of pa-
thologists missing a pathologic finding on a slide or not
.
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considering an alternative diagnosis (false negative), and
may be related to distracting factors that are increasing in
modern clinical practice.3,8,11,12 Recently, several potential
diagnostic misinterpretations in expert-annotated cohorts
have been highlighted, suggesting that interobserver vari-
ability may be an under-reported issue that requires
addressing modern informatic solutions.13 As new tools for
addressing interobserver variability are designed, an un-
derstanding of why and where most variability exists can
help in prioritizing the development of context-specific
informatics tools to improve quality assurance in pathology.

Interobserver variability also remains problematic in a
major field of pathology, hematopathology, specifically in
myelodysplastic syndromes (MDSs). Diagnosing MDSs is
one of the most challenging areas in hematopathology and
involves multiple clinical and pathologic components.14 The
central and most important aspect in making a diagnosis of
MDSs is cytomorphology (visual features of bone marrow
cells).14,15 In suspected cases of MDS, individual bone
marrow cells are assessed by a hematopathologist for subtle
and nuanced variations of normal cytomorphologic features
known as myelodysplasias.16 While the World Health Or-
ganization has attempted to standardize the assessment of
myelodysplasias in MDS15, significant interobserver varia-
tion remains.16e20 Up to 12% of MDS cases might be
misdiagnosed in smaller, less experienced centers due to a
failure to recognize morphologic dysplasias.21 Conse-
quently, there is a recognized need for standardization in the
assessment of cytomorphologic features in MDS.16,22,23

Given the success of machine learning in the analysis of
histomorphologic features in many nonhematopoietic pa-
thology domains,24e26 there is a clear opportunity to
develop machine learningebased approaches to support
standardized cytomorphology in MDS.

Looking at the immensity of observer variability as a
pervasive source of error and ineffectiveness, the question
becomes pressing: Which artificial intelligence (AI) para-
digm, and to what extent, can bring about a real solution?
Supervised versus Unsupervised Solutions

In AI, different learning algorithms can be utilized, depending
on the available data and the research problem at hand. The
level of "supervision" used for solving the problem is certainly
a key factor in categorizing AI methods. Supervised, semi-
supervised, and unsupervised learning can generally be
distinguished. When there is a labeled data set in which each
sample is tagged/delineated either quantitatively or qualita-
tively, supervised learning is often a reasonable candidate so-
lution. The goal of supervised learning is to use inputs for
predicting the matching outputs. According to the output type,
the prediction task can be called regression or classification for
qualitative and quantitative outputs.

Supervised-learning applications in computational pa-
thology can fall into several categories: classification,27
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segmentation,28 detection,29 immunostaining scoring,30

cancer staging,31 and survival prediction.32,33 Although
supervised-learning approaches sometimes achieve and
even surpass human-level precision, the required labor-
intensive and costly manual annotation and delineation
procedures hinder the utilization of such methods in clinical
practice. In addition, any annotated and delineated data set
used for supervised learning is subject to observer vari-
ability, limiting its practical generalization beyond the
experimental setting.

On the other hand, in unsupervised learning, the goal is to
identify and infer salient patterns and underlying structure
from the input, without a supervisor (ie, the experienced
pathologist) to provide a correct answer. In other words, un-
supervised learning attempts to transform the complexity of
data into low-dimensional spaces that capture prominent in-
formation about the histopathologic findings. Given that there
is no straightforward measure of success in unsupervised
learning, it is not easy to validate the unsupervised predictions.
Clustering and anomaly detection,34 data compression, and
dimensionality reduction techniques are examples of the uti-
lization of unsupervised learning in pathology.35

Semi-supervised learning falls between supervised and
unsupervised learning, as it combines a small amount of
labeled data with a large amount of unlabeled data. Simi-
larly, semi-supervised learning benefits from the advantages
of both supervised and unsupervised learning. The labeled
data are used for identifying specific groups present in the
data. In contrast, the unlabeled data are used for boundary
definition between the latter groups and to help identify
unspecified data. Similar to supervised and unsupervised
learning, semi-supervised learning is also used as a tool for
representation learning in pathology.36 However, in case of
any labeled data use, observer variability biases and limits
learning scope, regardless of the degree of supervision.

Considering central challenges in computational pathol-
ogy, such as the insufficient amount of labeled data, ground-
truth errors due to observer variability, and weak data
labeling due to expensive annotation and delineation pro-
cesses and privacy and confidentiality concerns, semi-
supervised and unsupervised learning methods hold more
promise for the future. It is still not known exactly how
unsupervised learning can be employed to overcome
observer variability for building consensus, but it is more
aligned with the philosophy of "strong AI" to be rather free
from supervision. Both paradigms may be subject to biases
of the AI expert/developer who selects a specific algo-
rithmdsupervised or notdto perform the desired task.
However, user involvement would mostly put a cap on the
performance and not introduce a new source of inconsis-
tency, as computer algorithms are generally consistent.

Image Search

Advances in AI research have shown great promise in
assisting health care professionals. However, innovative
1703
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Table 1 Commonly Used Deep Networks for Extracting Features for Image Search and Retrieval

Network Training Network size

DenseNet-12139,44e46 Pre-trained 7 million weights
ResNet-5047,48 Pre-trained 24 million weights
NasNet-A-Large49 Pre-trained 85 million weights
Fully Connected Network45 Fine-tuned using Motic and

CAMELYON16 data sets (separate
experiments)

1 million weights

Customized 16-layer CNN50 Trained using 5256 skeletal muscle
images from MCWNL and 2904 lung
cancer images from TCGA

3 million weights

Deep Ranking Model40 Trained on 500,000,000 natural images
from 18,000 distinct classes.

Unavailable

Graph Neural Networks44,46 Trained using ACDC-LungHP in [B] and
TCGA in [H]

1 million weights

ACDC, Automatic Cancer Detection and Classification; CAMELYON, Cancer Metastases in Lymph Nodes Challenge; CNN, convolutional neural networks; MCWNL,
Medical College of Wisconsin Neuromuscular Laboratory; TCGA, The Cancer Genome Atlas.
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algorithms with reliable performance are necessary for
gaining trust and adoption in clinical settings. Histopathol-
ogy is the gold standard for the diagnosis of many diseases
such as cancer, inflammations, and infections. With the
widespread adoption of digital pathology, histopathology
can greatly benefit from the applications of AI. When pa-
thologists diagnose a difficult case, or when a new pathol-
ogist is in training, the identification and description of
histologic features in images may become a common source
of uncertainty. The conventional solutions are for patholo-
gists to ask colleagues or to laboriously browse reference
textbooks, hoping to find an image with similar visual
characteristics. The general computer vision solution to
similar problems is content-based image retrieval (CBIR), a
research field with almost three decades of research.

CBIR systems use a search engine to retrieve similar
images when the pathologist provides a query image,
instead of using text for search in an archive. CBIR systems
of medical images have been well researched.37 Only with
the emergence of digital pathology and deep learning,
research has begun to focus on image search and analysis
for histopathological images.38e41 There are two major
hurdles in the extensive usage of CBIR systems for digital
pathology. First, pathology images exhibit an intractable
level of variability in visual features which makes their
identification, compared with natural images, much more
challenging. The computational representation of histo-
pathologic images for search purposes requires capturing the
sematic high-level patterns of whole slide images (WSIs).
Second, WSIs are gigapixel images of huge dimensionality
(ie, larger than 50,000 � 50,000 pixels). Most research is
focused on resolving these issues to make CBIR systems
feasible for use in digital pathology.

Recent digital pathology studies have reported the success
of supervised AI algorithms for use in classification and
segmentation.42 Compared to other AI algorithms, this suc-
cess is related to the ease of design and in-laboratory
1704
validation in generating highly accurate results. However,
compared to other methods of computer-vision algorithms,
CBIR offers a new approach to computational pathology. To
facilitate image search, CBIR algorithms essentially describe
the image content with nontextual attributes, generally with a
vector of real numbers known as a feature vector. A set of AI
algorithms can be trained to transform an image into a feature
vector to serve as its representation. If a feature vector en-
compasses the descriptive visual properties of an image, then
searching for similar images becomes a "nearest-neighbor"
problem, that is, a matching task to find similar histologic
features. Images with similar content can be retrieved based
on a comparison of their feature vectors and not on the
associated textual metadata or manual delineations subject to
observer variability, and often come from a small number of
pathologists. Image comparison is generally possible if a
feature vector encodes the semantic structures of an image
invariant to scale, rotation, translation, and deformation to
some degree. Such rich and descriptive features, identified in
an unsupervised manner, represent images for comparison
and matching, which is the core task of any CBIR system.
Recently, the search engine Yottixel was proposed,

enabling image search in large archives of histopathology
images at both the patch/tile and WSI levels.39 The under-
lying technology behind Yottixel consists of a series of
unsupervised AI algorithms, including clustering tech-
niques, deep networks, and gradient barcoding. Yottixel
indexes a WSI by converting tissue patterns into a set of
barcodes, a process that is both storage friendly and
computationally efficient. Every WSI is then represented as
a bunch of barcodes (BoB), and thereby the image search
can be performed by simpler and fast binary matching. After
a large-scale validation of the search engine, the Yottixel
results demonstrated that the image archives size and di-
versity play a role in image search.38 The largest public
repository of WSIs, The Cancer Genome Atlas43 (provided
by the National Cancer Institute/NIH) has been used for a
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 The top 50 key words in a report were identified using simple
natural language processing methods. The key words are color-coded as per
the abstract "topics." Each topic is given a separate color scheme.71

AI in Pathology
first validation. Almost 30,000 WSI files of 25 primary
anatomic sites and 32 cancer subtypes were processed by
dismantling of the large slides into almost 20 million image
patches/tiles that were then individually indexed by
employing approximately 3 million barcodes. The valida-
tion results show that image search can indeed provide a
base for computational consensus. The primary diagnoses of
evidently diagnosed cases can be used after they are iden-
tified by the search engine and listed as the best matches for
the query WSI to decide based on the majority vote. Finding
similar images opens the way for the development of new
approaches to resolving observer variability through what
might be called virtual peer review: Image search provides
access to the reports of evidently diagnosed cases with
similar histopathologic features.

The Google team recently published another search tool
for use in digital pathology, similar image search for his-
topathology (SMILY).40 SMILY uses a deep-learning
model, trained using 500 million natural, nonpathology
images (dogs, trees, human-made objects, etc.), to compress
images into a feature vector. During the training process, the
network learned to distinguish similar images from dis-
similar ones by computing and to compare their embed-
dings. This model is then used for generating a database of
image patches and their associated features using a subset of
The American Journal of Pathology - ajp.amjpathol.org
WSIs from The Cancer Genome Atlas data set. SMILY uses
a dense sampling, which may be advantageous in some
situations, such as mitotic counting or finding some specific
lesion within the same WSI, but is quite computationally
expensive.

Any search framework depends on robust and expressive
image representation, which are called deep features.
Hence, extracting these deep features is the main step to-
ward capable image search engines. Table 1 provides an
overview of the most commonly used deep networks for this
purpose.

One should bear in mind that the purpose of the image
search as an unsupervised framework is not to get pathol-
ogists to agree on individual case diagnoses through in-
teractions with each other (although this may very well be a
possible and promising venue to investigate). Rather, the
goal of any computer-driven solution is to maximize diag-
nostic accuracy. Whereas the high accuracy of supervised
AI is subject to limited generalization due to the scarcity and
variability-prone nature of labels, it is expected that unsu-
pervised AI offers a more reliable path toward high accuracy
by acting as a mediator for building computational
consensus using evidently diagnosed cases from large-scale
archives.
NLP and Pathology

Using a sophisticated CBIR system to search for similar
histopathologic features in a large-scale archive may be an
impressive task demonstrating the human-like ability of AI
to identify images. However, it is of little value if the
software shows the pathologist only similar images
retrieved. The histologic matching results contribute to
consensus and higher accuracy only if pathology reports and
treatment outcomes accompany retrieved images of
evidently diagnosed cases. Such information may not be
stored where images are stored but elsewhere (eg, in labo-
ratory information systems). These metadata are generally
available in the form of text documents. Another set of AI
algorithms, natural language processing (NLP), is required
for processing the textual metadata.

Nowadays, NLP is no longer about translating or inter-
preting text or speech based on some key words, but about
understanding its meaning. The first steps in this path were
taken by using convolutional neural networks,51e53 recur-
rent neural networks,54,55 graph-based neural
networks,56e58 and attention models.59,60 Using these deep
neural models helps resolve the handcrafted-features prob-
lem by making this step automated, which is necessary for
eliminating another aspect of observer variability in AI
research. These features are learned in specific NLP tasks.
Despite all of these improvements, the data used for training
models were lacking, which forced networks to use shal-
lower architectures (ie, smaller number of weights to adjust)
to avoid the necessity of large data sets.
1705
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Recent work has shown that pre-trained models on a
large amount of text data can be beneficial for many
types of downstream NLP tasks. Deep models (ie, trans-
formers60) alongside improvement in training skills have
helped to generate a better pre-trained model. In this
context, pre-trained means that an NLP method is trained
with nonmedical text (abundantly available) and then used
for medical cases, perhaps with a reduced need for a
large-scale archive of clinical text, such as pathology
reports.

The first generation of these pre-trained models, such
as Skip-Gram and Glove, tried to capture the semantic
meanings of words. Despite some advantages, these
models failed to capture higher-level concepts in a text,
such as disambiguation and syntactic structures. In the
second-generation pre-trained models, such as embed-
dings from language models ( ELMo),61 generative pre-
trained transformer (OpenAI GPT),62 bidirectional
encoder representations from transformers (BERT),63

OpenAI GPT-2,64 language models (Megatron-LM)65

and OpenAI GPT-3,66 researchers tried to overcome
this problem by using learning of contextual word em-
beddings. Although these models have mostly been used
for general domain text, of late they have been increas-
ingly used for the biomedical domain. For instance,
ClinicalBert67 trained the BERT model with clinical re-
cords to predict the probability of patient readmission.
Reports and clinical notes contain valuable information
that can help unsupervised search to offer a baseline for
consensus.

BioBert68 attempted to fine-tune the BERT model with
varied medical corpora types such as PubMed abstracts,
PubMed Central full-text articles, and other general corpora
to be used in downstream NLP tasks such as entity recog-
nition, relation extraction, and image search. Si et al 69

compared different NLP methods for clinical concept ex-
tractors. Text and image are two significant resources of
data. Therefore, many methods use these two types of data
together. Image captioning and visual question answering
are two examples. This combination can have far-reaching
effects in digital pathology. MDNet70 is one of these AI
models that can generate a pathology report for image
patches that have been retrieved by symptoms descriptions
and visual attention to provide justification for a diagnosis.

Using NLP models in a specific domain can be chal-
lenging. The medical domain, especially pathology, is one
of them. Pathologists can use different words to describe the
same observation or use rare words, making it difficult to
train an AI model to represent the images correctly. Key-
word and topic selection are readily available for pathology
reports (Figure 1). Moreover, a lack of a clean, large-scale,
and universal data set for this domain is another challenge in
using NLP methods for digital pathology.

The availability of NLP systems like BioBERT and
MDNet is quite promising. Assuming that a pathologist is
looking at the retrieved images through a capable CBIR
1706
system, the NLP can be applied to retrieved metadata of
evidently diagnosed patients, that is, reports, to build an
amalgamated caption or summarized description of the input
image for the undiagnosed patient. This would be a
computational consensus that can reduce observer vari-
ability if trusted by the pathologist.
Summary and Conclusion

Observer variability is not only difficult to quantify but also
a major challenge in establishing diagnostic consensus. The
progress and the astonishing success of AI in recent years
provides a new paradigm for addressing this challenge.
Unsupervised AI methods may be proven to be the solution
if combined with the existing evidence in both images and
reports in hospitals and laboratories. However, the unsu-
pervised linkage of images and reports is impeded by a lack
of access by the research community to large-scale clinical
archives for exploiting the potentials of both image search
and natural language processing.
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