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d A large clinico-genomic database to study metastatic

patterns across 50 tumor types

d Oncogenic alteration frequency and chromosomal instability

are increased in metastases

d Correlations between chromosomal instability and

metastatic burden depend on cancer type

d Genomic features associated with metastasis are identified

for specific target organs
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In brief

Clinico-genomic analysis of MSK-MET, a

cohort of over 25,000 patients with

metastasis across 50 cancer types,

identifies somatic alterations associated

with organ-specific metastasis and

highlights that chromosomal instability

correlates with metastatic burden in a

cancer type-dependent manner.
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SUMMARY
Metastatic progression is themain cause of death in cancer patients, whereas the underlying genomicmech-
anisms driving metastasis remain largely unknown. Here, we assembled MSK-MET, a pan-cancer cohort of
over 25,000 patients with metastatic diseases. By analyzing genomic and clinical data from this cohort, we
identified associations between genomic alterations and patterns of metastatic dissemination across 50
tumor types. We found that chromosomal instability is strongly correlated with metastatic burden in some
tumor types, including prostate adenocarcinoma, lung adenocarcinoma, and HR+/HER2+ breast ductal
carcinoma, but not in others, including colorectal cancer and high-grade serous ovarian cancer, where
copy-number alteration patterns may be established early in tumor development. We also identified somatic
alterations associated with metastatic burden and specific target organs. Our data offer a valuable resource
for the investigation of the biological basis for metastatic spread and highlight the complex role of chromo-
somal instability in cancer progression.
INTRODUCTION

Although most cancer deaths are due to metastatic spread, little

is known about the genomic determinants of cancer metastasis.

Oncemetastatic cancer cells have detached from the primary tu-
mor site, they can invade all parts of the body (Lambert et al.,

2017; Massagué and Obenauf, 2016). However, the distribution

of metastatic sites for a given primary tumor is not random and is

dictated by factors such as anatomical location, cell of origin,

and molecular subtype, among others (Gao et al., 2019; Nguyen
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et al., 2009). Furthermore, tumor-cell-extrinsic factors such as

treatment, target-organ microenvironment, and other systemic

factors such as circulating chemokines and cytokines can also

influence the pattern of metastatic progression (Massagué and

Ganesh, 2021). The classical seed-and-soil hypothesis, accord-

ing to which disseminated cancer cells preferentially colonize or-

gans that enable and are compatible with their own growth, has

been explored for more than a century (Paget, 1889). Yet much

remains unknown about the interplay between tumor genomic

features and metastatic potential, as well as organ-specific pat-

terns of metastasis.

Molecular profiling of tumors coupled with clinical annotation

of metastatic events could help provide insight into this question.

However, large-scale cancer sequencing efforts have so far

focused on primary, untreated tumors (e.g., The Cancer Genome

Atlas [Sanchez-Vega et al., 2018]), or they have characterized the

overall genomic landscape of metastatic disease without explic-

itly interrogating specific metastatic organotropism (Priestley

et al., 2019; Robinson et al., 2017; Zehir et al., 2017). Other

studies have investigated the genomic complexity of cancer

metastasis by reconstructing tumor evolution across different

organs at varying levels of resolution, but they have been limited

by small sample sizes (Brastianos et al., 2015; Brown et al., 2017;

Eckert et al., 2016; Hu et al., 2020; Jiménez-Sánchez et al., 2017;

Makohon-Moore et al., 2017; Naxerova et al., 2017; Noorani

et al., 2020; Reiter et al., 2020; Shih et al., 2020). Identifying as-

sociations between genomic features and specific patterns of

metastatic spread is an active area of research, and several land-

mark studies on this topic have been published during the past

few years (Birkbak and McGranahan, 2020). In particular, richly

annotated datasets combining genomic features and detailed

clinical history of metastases for individual patients have been

made available through large collaborative efforts such as

METABRIC in breast cancer (Rueda et al., 2019) and TRACERx

in clear-cell renal cell carcinoma (Turajlic et al., 2018). However,

a study involving thousands of participants across multiple tu-

mor types in which clinical and genomic data have been homo-

geneously processed through a unified computational pipeline is

still lacking.

We assembled a pan-cancer cohort of >25,000 patients with

tumor genomic profiling and clinical information on metastatic

events and outcomes, which we designate MSK-MET (Memorial

Sloan Kettering - Metastatic Events and Tropisms). All samples

were profiled using the MSK-IMPACT targeted sequencing plat-

form (Cheng et al., 2015), which identifies somatic mutations, re-

arrangements, and copy-number alterations in 341–468 cancer

genes as well as tumor mutational burden (TMB), chromosomal

instability, and microsatellite instability. Metastatic events were

extracted from the electronic health records (EHRs) andmapped

to a reference set of 21 anatomic locations. We analyzed

genomic differences between primary and metastatic samples

and between primary tumors from metastatic and non-metasta-

tic patients, stratified by tumor type andmolecular subtypes. Our

analysis identified associations between metastatic burden

(defined as the number of distinct organs affected bymetastases

throughout a patient’s clinical course) and specific genomic

features, including TMB, chromosomal instability, and somatic

alterations in individual cancer genes. We also identified associ-
564 Cell 185, 563–575, February 3, 2022
ations between genomic alterations and organ-specific patterns

of metastatic dissemination and progression. The clinical and

genomic data used in our study have been made publicly avail-

able and constitute a valuable resource that will help further our

understanding of metastatic disease.

RESULTS

Overview of the MSK-MET cohort
A total of 25,775 patients were included in the present study, con-

sistingof15,632 (61%)primaryand10,143 (39%)metastaticspec-

imens spanning 50 different tumor types (Figures S1A–S1D; Table

S1A). To ensure that samples are independent of each other, a

unique representative sample was selected for the analysis of pa-

tients with multiple available sequenced samples (see Methods).

The median interval between sample acquisition and sequencing

was 62 days (interquartile range [IQR] = 0–287 days). The median

sequencing coveragewas 653x (IQR = 525–790x) and themedian

tumor purity assessed by pathologists was 40% (IQR = 20%–

50%) (Figure S1B). The majority of sequenced samples obtained

frommetastatic siteswere from lymphnodes (n=2305, 23%), liver

(n=2289, 23%), lung (n=982,10%), orbone (n=726,7%).Among

primary tumors, 11,741 (75%) were from patients with metastatic

disease at the time of sequencing or at a later time (Figure S1D).

Overall, metastatic samples were more pre-treated than primary

samples (39% versus 15%) with some cancer types showing a

larger difference (prostate cancer, 72% versus 10%) than others

(lung adenocarcinoma, 32% versus 24%) (Figure S1E; Table

S1B). Over the entire course of the disease, a total of 99,419met-

astatic events from21,546metastaticpatientswere retrieved from

the EHR and mapped to 21 organ sites. The most common target

organ sites were lung, liver, and bone (Figure S1F). The fre-

quencies of organ-specific metastasis of individual tumor types

were similar to previous reports (Budczies et al., 2015; Gao

et al., 2019) (Figure S1G). Internal validation using 4,859 (22.5%)

patients included in previous studies with available metastatic

events extracted through manual chart review (Abida et al.,

2017; Jones et al., 2021; Razavi et al., 2018; Shoushtari et al.,

2021; Yaeger et al., 2018) revealed a high concordance and sensi-

tivity with metastatic events extracted from the EHR (Figures S1H

andS1I).We used this data tomap patterns ofmetastatic dissem-

ination from50 tumor types to 21metastatic organ sites (Figure 1).

For the whole cohort, the median age at sequencing was 64

years, ranging from a median of 33 years for patients with testic-

ular non-seminoma to amedian of 70 years for patientswith cuta-

neous squamous cell carcinoma. Overall, the median follow-up

time was 30 months, and the 5-year survival rate was 40%,

ranging from 90% in testicular seminoma to 10% in pancreatic

adenocarcinoma. There was a median of four metastatic events

per patient, ranging from one in hypermutated colorectal cancer

to eight in high-grade serous ovarian carcinoma. Metastatic pat-

terns differed by tumor types and histological subtypes. For

example, compared to lung adenocarcinoma, lung neuroendo-

crine cancer had a higher prevalence of liver metastasis (42%

versus 22%) but a lower prevalence of CNS/brain metastasis

(19% versus 34%). Similarly, compared to ductal breast cancer,

lobular breast cancer had a lower prevalence of lung metastasis

(10% versus 30%) but a higher prevalence of ovary (15% versus
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Figure 1. Overview of the MSK-MET cohort

Metastatic patterns of 50 tumor types. For each tumor type, the following attributes are shown from left to right: tumor type abbreviation, number of patients,

distribution of age at sequencing (red vertical line indicates the median), overall survival in years from time of sequencing (red vertical line indicates the median

OS), sex ratio (female = gold, male = gray), distribution ofmetastatic burden across all patients (ranging from 0 toR6 distinctmetastatic sites), and a heatmapwith

the percentage ofmetastatic patients withmetastases at specificmetastatic sites (the entire clinical coursewas taken into consideration). The number in each cell

indicates the frequency of patients having at least one reported metastasis at that given site. For each tumor type, the distribution of all 21 metastatic sites is

shown as a stacked bar chart to the right of the heatmap. For eachmetastatic site, the distribution of all 50 tumor types is shown as a stacked bar chart below the

heatmap. For each metastatic site, the number of patients with at least one metastasis is indicated in parentheses. Frequencies for sex-specific target organs

(female genital, ovary, and male genital) were calculated using patients of the corresponding sex.

See also Tables S1A–S1C and Figure S1.
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4%) and peritoneum metastasis (30% versus 10%), as reported

before (Borst and Ingold, 1993).Differences inmetastatic patterns

were also observedacrossmolecular subtypesof the same tumor

type. For example, and in line with a previous study (Kennecke

et al., 2010), HR�/HER2+ductal breast cancer had a higher prev-

alence of CNS/brain metastasis than the HR+/HER2� subtype

(38% versus 20%), while the latter had a higher prevalence of

bone metastasis (67% versus 49%).

Detailed time stamps for eachmetastatic event in 21,058meta-

static patients with available annotations were extracted from the

EHR and are provided in Table S1B.While the order of metastatic

colonization for individual organs varies widely across cancer

types,we found thatovaryand livermetastasesweregenerallyde-

tected early, whereas CNS/brain and peripheral nervous system

metastasis tend to be detected later (Figure S1J). Similarly,

whenweusedaBradley-Terrymodel toderivea temporal ordering
of target organs for each specific tumor type,weobserved that the

order of metastatic colonization is not consistent across cancer

types, likely influenced by a combination of anatomical, genomic,

and clinicopathological factors (Figure S1K).

Genomic differences between primary and metastatic
tumors
To determine sample-type-specific genomic differences across

50 tumor types, we compared the genomic features of primary

(n = 15,632) and metastatic tumors (n = 10,143) (independent

of the metastatic status of the patients). The number of

sequenced primaries was higher than the number of sequenced

metastases for most tumor types, with some exceptions, such

as cutaneous melanoma, high-grade serous ovarian cancer,

and adenoid cystic carcinoma. In 16 tumor types, metastases

were significantly more chromosomally unstable, as inferred by
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a higher fraction of genome altered (FGA), compared to primary

tumors, consistent with previous findings (Bakhoum et al., 2018;

Ben-David and Amon, 2020; Hieronymus et al., 2018; Shukla

et al., 2020; Stopsack et al., 2019; Watkins et al., 2020) (Figures

2A and 2B; Table S2A). The difference in tumor purity- and

ploidy-adjusted FGA (adjusted FGA) was confirmed in 11 tumor

types using a subset of samples analyzed with the fraction and

allele-specific copy-number estimates from tumor sequencing

(FACETS) tool (n = 17,224) (Table S2A). FACETS allowed us to

estimate the frequency of whole-genome duplication (WGD)

and assess the clonality of individual variants. As previously re-

ported, WGD frequencies varied across tumor types (Bielski

et al., 2018). In seven tumor types, we observed a significantly

higher frequency ofWGD inmetastases compared to primary tu-

mors (Figures 2A and 2B; Table S2A). The higher chromosomal

instability (0% versus 14%) and higher frequency of WGD (4%

versus 16%) were particularly marked in uterine endometrioid,

which can be explained by differences in the distribution of

genomic subtypes within these two groups (Kandoth et al.,

2013). TMB was significantly higher in metastases from ten tu-

mor types, while TMB was lower only in metastases from hyper-

mutated uterine cancer (Figures 2A and 2B; Table S2A). Consis-

tent with the evolutionary bottleneck hypothesis (Birkbak and

McGranahan, 2020), metastases from 12 tumor types were

significantly more homogeneous, with a higher fraction of clonal

mutations compared to primary tumors.

We further explored the clinical significance of TMB by

comparing the percentage of patients with a high TMB (R10

mut/Mb) and observed a higher percentage of TMB-high tumors

in metastases from lung adenocarcinoma (19% versus 27%,

q < 0.001), HR+/HER2� ductal breast cancer (2% versus 7%,

q < 0.001) and lobular breast cancer patients (5% versus 19%,

q < 0.001). In six tumor types, we detected a significantly higher

proportion of any actionable mutations (OncoKB levels 1 to 3,

Methods) in metastases compared to primary tumors, but these

differences were not significant after adjusting for differences in

FGA and TMB (Figure 2B; Table S2A). Next, we investigated dif-

ferences in the frequency of arm-level copy-number alterations

between primary tumors and metastases. Because FGA was

generally higher in metastases, we used a multivariable model

to adjust for FGA and found 26 statistically significant differences

(Figure 2B; Table S2A). For example, in pancreatic adenocarci-

noma, gain of chromosome 12p gain, where the oncogene

KRAS is located, was more frequent in metastases than in pri-

mary tumors (17% versus 4%, q = 0.002). In HR+/HER2� ductal

and lobular breast cancer, loss of chromosome 16q, a feature of

low-grade breast cancer (Natrajan et al., 2009), was more

frequent in primary tumors than in metastases (41% versus

30%, q < 0.001 and 68% versus 56%, q = 0.002, respectively).

Finally, we investigated the frequency of recurrent oncogenic al-

terations between primary tumors andmetastases and identified

a total of 67 statistically significant differences across 17 tumor

types. We also investigated the frequency of oncogenic path-

ways and identified 47 statistically significant differences across

11 tumor types (Figure 2C; Table S2A). Among the statistically

significant alterations, 53 were more frequent in metastases,

while only 14 alterations were more frequent in primary tumors.

The most commonly observed significant alteration was TP53
566 Cell 185, 563–575, February 3, 2022
mutation, whichwasmore frequent inmetastases in seven tumor

types (lung adenocarcinoma, prostate adenocarcinoma, HR+/

HER2� ductal breast, microsatellite stable [MSS] colorectal,

lobular breast cancer, pancreatic neuroendocrine, and uterine

endometrioid). A possible explanation is that TP53 mutation is a

later event in some of these tumor types; in others, it may simply

be a hallmark ofmore aggressive disease. The notable exception

was head and neck cancer, where TP53 mutations were more

frequent in primary tumors (62% versus 45%, q = 0.01). Other

genomic alterations that weremost often enriched inmetastases

includedCDKN2A deletion (significant in five tumor types),PTEN

mutation and deletion (four tumor types) and MYC amplification

(four tumor types). The most common significantly enriched

oncogenic pathways in metastases were p53, cell cycle, and

DNA damage repair. The most significant differences were

observed for alterations known to be associated with resistance

to hormonal therapy in hormone-sensitive tumors. For example,

AR amplification and AR mutations were significantly more

frequent in prostate cancer metastases (1% versus 30% and

0% versus 6%, q < 0.001), and ESR1 mutations were more

frequent in HR+/HER2� ductal breast cancer (2% versus 19%,

q < 0.001), lobular breast cancer (2% versus 13%, q < 0.001),

and endometrioid uterine cancer metastases (3% versus 10%,

q = 0.002). These differences can likely be attributed to positive

selection due to therapy sincemost patientswith prostate cancer

and ER+ breast cancer receive hormone therapy. TERT muta-

tions were more frequent in metastases from papillary thyroid

cancer and cutaneous melanoma patients (46% versus 69%,

q = 0.001 and 70% versus 81%, q = 0.02), but higher in primary

tumors from head and neck squamous cell carcinoma patients

(41% versus 25%, q = 0.02). ALK fusions, a predictive biomarker

for the use of ALK inhibitors, were slightly more frequent in lung

adenocarcinoma metastases (3% versus 6%, q < 0.001). KRAS

mutations were more frequent in metastases from pancreatic

neuroendocrine patients (1% versus 10%, q = 0.03) as was the

overall frequency of RTK/RAS pathway alteration in this tumor

type (7% versus 21%, q = 0.03). While KRAS mutation is a hall-

mark of pancreatic adenocarcinoma, this could suggest the exis-

tence of a transdifferentiation mechanism from neuroendocrine

toanadenocarcinomaphenotypeduringmetastatic progression.

The results from our comparison of primaries versus metastatic

samples were largely replicated using an independent cohort of

9,215 patients sequenced with MSK-IMPACT since the data

freeze date (Figure S2; Table S2B). Collectively, these data indi-

cate thatmetastases have higher chromosomal instability across

many tumor typesand thatmutations in amultitudeof driver alter-

ations occur at different frequencies in primary and metastatic

tumors.

Genomic differences between primary samples from
metastatic and non-metastatic patients
Many of the primary tumors included in the previous analysis

were from patients with metastatic disease. To identify genomic

determinants of metastatic disease present in primary tumors,

we compared the genomic features of primary tumors frommet-

astatic patients (n = 11,942) to primary tumors from non-meta-

static patients (n = 3,690). The median follow-up time for these

two groups was 33 months and 27 months, respectively. In ten
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Figure 2. Genomic differences between primary tumors and metastases

(A) Comparisons of the median fraction genome altered (FGA), median whole-genome duplication (WGD) frequency, median tumor mutation burden (TMB), and

median clonal fraction for each tumor type in metastatic versus primary tumors. Tumor types with statistically significant differences are labeled. For TMB, both

axes were limited to 10 mut/Mb.

(B) The following clinical and genomic features are shown side by side for primary (top row within each cancer type) and metastatic (bottom row) sequenced

samples using a combination of bar charts and violin plots. From left to right: sample counts, FGA, fraction of samples with WGD, TMB, clonality, fraction of

samples with high TMB, and distribution of the highest actionable alteration levels. The vertical line in each violin plots represents themedian. The heatmap shows

the frequency of individual arm level alterations in primary tumors and metastases (only the frequency of the more frequent event, gain or loss, is shown). Tumor

types are ordered from top to bottom by decreasing FGA inmetastasis and grouped by organ systems. *q < 0.05.WGD and clonality were available for a subset of

17,224 samples with FACETS data.

(C) Statistically significant differences in the frequency of oncogenic alterations and pathways between primary tumors andmetastases in individual tumor types.

Triangles summarize oncogenic alteration frequencies in primary tumors versus metastases and are colored according to alteration type. Gene names in italics

refer to specific genes, those in regular font refer to pathways.

See also Tables S2A–S2C and Figures S2 and S3.
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tumor types, FGAwas significantly higher in primary tumors from

metastatic patients as compared to primary tumors from pa-

tients without metastases. Compared to non-metastatic pa-

tients, TMB was significantly higher in seven tumor types but

lower in head and neck squamous cell carcinoma (Figures S3;

Table S2C). When interrogating the frequencies of recurrent

oncogenic alterations, we identified statistically significant fre-

quency differences in 32 genes across 12 tumor types and 21

oncogenic pathways across 9 tumor types (Figure S3C; Table

S2C), with the majority of events observed at higher frequencies

in primary tumors from metastatic patients. Compared to non-

metastatic patients, TP53 mutations were significantly more

frequent in metastatic patients with lung adenocarcinoma

(28% versus 45%, q < 0.001), HR+/HER2� ductal breast cancer

(17% versus 29%, q < 0.001), urothelial bladder cancer (31%

versus 53%, q < 0.001), prostate adenocarcinoma (16% versus

23%, q < 0.001), and endometrioid uterine cancer (9% versus

20%, q = 0.01). TERT promoter mutations were more frequent

in metastatic patients with papillary thyroid cancer (20% versus

56%, q = 0.004). The frequency of MYC amplification was

significantly higher in metastatic patients with prostate adeno-

carcinoma (1% versus 4%, q = 0.03), MSS colorectal cancer

(1% versus 4%, q = 0.03), and triple negative (TN) ductal breast

cancer (3% versus 17%, q = 0.03). On the other hand, SPOPmu-

tations were less frequent in primary tumors from metastatic

prostate adenocarcinoma patients (18% versus 12%, q =

0.03), PIK3CA mutations were less frequent in the primary tu-

mors of HR+/HER2� ductal breast cancer metastatic patients

(49% versus 38%, q = 0.003), and CDKN2A mutations were

less frequent in the primary tumors of pancreatic cancer meta-

static patients (17% versus 7%, q = 0.02). These findings sup-

port the hypothesis that a higher chromosomal instability is

associated with metastatic progression in multiple tumor types

and that several individual driver mutations might inform meta-

static risk. Only a few of these, such as SPOPmutations in pros-

tate cancer, which have been previously reported to be more

frequent in primary tumors (Armenia et al., 2018), are associated

with decreased metastatic potential. The comparative analysis

of genomic features differing between primary tumors versus

metastases (‘‘P vs M’’) and genomic features differing between

primary tumors from non-metastatic patients versus metastatic

patients (‘‘P-noM vs P-M’’) can help to identify alterations that

occur earlier or later in metastasis (Figures S3D and S3E). How-

ever, a detailed analysis of the timing of somatic events involved

in metastatic progression will require additional data sources

(such as comprehensive characterization of multiple lines of

treatment, including surgical interventions) and is beyond the

scope of our study.

Genomic features associated with metastatic burden
To explore the genomic determinants of metastatic burden, we

analyzed the relationship between genomic alterations and the

number of metastatic sites per patient (n = 21,546). Not surpris-

ingly, a higher metastatic burden was significantly associated

with shorter overall survival in most (39/50, 78%) tumor types

(Table S3A). We observed that chromosomal instability, as in-

ferred by FGA, was positively correlated with metastatic burden

on a pan-cancer level and in 11 individual tumor types. TMB, on
568 Cell 185, 563–575, February 3, 2022
the other hand, was not associated with metastatic burden on a

pan-cancer level; it was positively correlated with metastatic

burden in three tumor types and negatively associated with met-

astatic burden in endometrioid and hypermutated uterine cancer

(Figures 3A and 3B; Table S3B). One of the strongest correlations

between FGA and metastatic burden was observed in prostate

cancer (rho = 0.33, q < 0.001), which is in line with previous

studies (Hieronymus et al., 2018; Taylor et al., 2010). Conversely,

we did not observe such association in many tumor types,

including MSS colorectal cancer, where chromosomal instability

is already high in patients with low metastatic burden.

Next, we investigated the association between recurrent

oncogenic alterations and metastatic burden and identified a to-

tal of 24 statistically significant associations across eight tumor

types. We also investigated the association with oncogenic

pathways and identified 16 statistically significant differences

across seven tumor types (Figure 3C; Table S3B). We observed

a significant positive correlation between TP53 mutations and

metastatic burden in prostate adenocarcinoma, lung adenocar-

cinoma, and HR+/HER2� ductal breast cancer, consistent with

its role as a gatekeeper against chromosomal instability (Bieging

et al., 2014). There was also a significant positive correlation be-

tween p53 pathway alterations and metastatic burden in endo-

metrioid uterine cancer. In metastatic prostate adenocarcinoma,

AR amplifications were positively associated with metastatic

burden. The frequency of ESR1 mutation increased with meta-

static burden in HR+/HER2� ductal and lobular breast cancer.

CDKN2A deletion frequency was positively correlated with met-

astatic burden in bladder urothelial cancer, lung adenocarci-

noma, and papillary thyroid cancer, whileMYC amplification fre-

quency was associated with increasing metastatic burden in

lung adenocarcinoma and prostate adenocarcinoma. Of note,

the frequency of four oncogenic alterations and one oncogenic

pathway were negatively correlated with metastatic burden;

FOXA1 in prostate adenocarcinoma, CBFB in HR+/HER2�
ductal breast cancer, CDH1 in lobular breast cancer, ERCC2 in

urothelial bladder cancer, and the epigenetic pathway in MSS

colorectal cancer (Figure 3C; Table S3B). These results demon-

strate that the relationship between higher chromosomal

instability and increasing metastatic burden is tumor-lineage

dependent and that several driver mutations are associated

with metastatic burden in both directions.

Genomic differences of metastases according to their
organ location
Next, we investigated the genomic characteristics of metastases

(n = 10,143) according to their organ location. As expected, the

location of the sequenced metastases differed by tumor type

(Figure S4A). We found 17 significant associations between

FGA and the metastatic site in six tumor types, ten of which

were also significant when using adjusted FGA (Figure S4B; Ta-

ble S4A). CNS/brain metastases from patients with lung adeno-

carcinoma, MSS colorectal cancer, and cutaneous melanoma

had a significantly higher FGA, while lymph node metastases

from patients with lung adenocarcinoma, pancreatic adenocarci-

noma, bladder urothelial, and cutaneous melanoma had a signif-

icantly lower FGA. There were seven significant associations

between TMB and the metastatic site. A total of 31 genomic
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Figure 3. Genomic features associated with metastatic burden

(A) Spearman’s correlation coefficient between FGA (circle) and TMB (diamond) with metastatic burden. Associations without a significant trend are shown in

gray, and the lines indicate 95% confidence interval (CI).

(B) Correlation between FGA and TMBwith metastatic burden in the entire dataset, prostate adenocarcinoma, hypermutated uterine cancer, andMSS colorectal

cancer. Boxplots display median point, IQR boxes and 1.5 3 IQR whiskers for all samples. Split violin plots show the distribution of FGA and TMB in primary

tumors (left, not filled) and metastases (right, filled).

(C) Statistically significant oncogenic alterations and pathways associated with metastatic burden in individual tumor types. Spearman’s correlation coefficient is

shown for each event, and the lines indicate 95% CI. Gene names in italics refer to specific genes; those in regular font refer to pathways.

See also Tables S3A and S3B.
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Figure 4. Genomic features associated with metastasis to specific target organs

(A) Statistically significant oncogenic alterations and pathways associated with organ-specific patterns of metastatic spread. Gene names in italics refer to

specific genes; those in regular font refer to pathways.

(B) Schematic drawing summarizing the main findings from (A).

See also Tables S4A and S4B and Figure S4.

ll
Resource
alterations in nine tumor types were significantly associated with

specific metastatic sites and 25 oncogenic pathways across six

tumor types (Figure S3C; TableS4A).TP53mutationswere signif-

icantly more frequent in CNS/brain metastasis from lung adeno-

carcinoma (55% versus 66%, q = 0.002) and liver metastasis

from pancreatic adenocarcinoma (63% versus 84%, q < 0.001)

but less frequent in lung metastasis from urothelial bladder can-

cer (57% versus 29%, q = 0.04) and liver metastasis from neuro-

endocrine lung cancer (83% versus 25%, q = 0.005) as well as in

intra-abdominal metastasis from pancreatic adenocarcinoma

(79% versus 58%, q = 0.003). In HR+/HER2� ductal breast can-

cer, ESR1 mutations were significantly more frequent in liver

metastasis (79% versus 58%, q = 0.003). In lobular breast can-

cer, RHOAmutations were significantly more frequent in ovarian

metastasis (3% versus 36%, q = 0.02), and FOXA1 mutations

were enriched in liver metastasis (3% versus 33%, q = 0.02). In

lung adenocarcinoma, CDKN2A deletion was more frequent in

skin (16% versus 60%, q = 0.03) and liver metastases (16%

versus 27%, q = 0.03) but less frequent in lymph nodes (19%

versus 12%, q = 0.002). PTENmutation, as well as PI3K pathway

alterations, were higher in brain metastases frommelanoma (7%

versus 23%, q = 0.01 and 19% versus 39%, q = 0.02, respec-

tively), which is in line with a previous melanoma-specific study

(Bucheit et al., 2014). Among others, we found that ERG fusions

were less frequent in bonemetastasis of prostate cancer patients

(30% versus 15%, q = 0.002), that NF1 mutations were more

frequent in lung metastasis of melanoma patients (20% versus

38%, q = 0.003), and that FGFR3 mutations were more frequent

in lung metastasis of bladder urothelial patients (11% versus
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39%, q = 0.005). Taken together, our results show that metasta-

ses from different organs can have different genomic makeup.

Genomic features associated with metastasis to
specific target organs
We analyzed the relationship between genomic features of met-

astatic patients and their organ-specific patterns of metastasis

(n = 21,546). We found 13 significant associations between

FGA and organotropisms in 11 tumor types, 7 of which were

also significant when using adjusted FGA (Table S4B). We

observed a significant positive association between FGA and

patients with liver metastasis in four tumor types (HR+/HER2�
ductal breast, prostate adenocarcinoma, pancreatic adenocar-

cinoma, and head and neck squamous), patients with lung

metastasis in two tumor types (endometrioid uterine and cuta-

neous melanoma), and bone metastasis in two tumor types

(HR+/HER2� ductal breast and prostate adenocarcinoma). For

TMB, we found eight significant associations between TMB

and organ-specific patterns of metastasis in six tumor types,

including four positive associations (lung adenocarcinoma to

brain and adrenal gland, pancreatic adenocarcinoma to liver,

head and neck squamous to head and neck) and four negative

associations (prostate adenocarcinoma to bone, cutaneousmel-

anoma to intra-abdominal, lung adenocarcinoma to pleura, and

lung neuroendocrine to liver).

We found 57 significant recurrent oncogenic alterations asso-

ciated with specific patterns of metastasis in ten tumor types.

When interrogating oncogenic pathway alterations, we found

48 significant associations in 12 tumor types (Figure 4A; Table
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S4B). Lung adenocarcinoma, MSS colorectal cancer, and pros-

tate cancer were associated with the highest number of signifi-

cant associations. These results are summarized in Figure 4B.

For example, lung adenocarcinoma patients with CNS/brain

metastasis had a higher frequency of TP53 mutations, TERT

amplification, and EGFR mutations but a lower frequency of

RBM10 mutations. MSS colorectal cancer patients with lung

metastasis had a higher frequency of KRAS mutations (39%

versus 52%, q < 0.001), as previously reported (Cejas et al.,

2009; Pereira et al., 2015; Tie et al., 2011), but a lower frequency

of SRC amplification (7% versus 3%, q < 0.001). Prostate cancer

patients with bone metastasis had a higher frequency of AR

amplification (5% versus 21%, q < 0.001) and PTEN deletion

(9%versus 19%, q < 0.001) but a lower frequency ofERG fusions

(29% versus 24%, q = 0.04); those with liver metastasis had a

higher frequency of PTEN loss (11% versus 30%, q < 0.001),

RB1 loss (3% versus 10%, q < 0.001), and APC mutations (5%

versus 11%, q = 0.001); those with brain metastasis had a higher

frequency of AR amplification (14% versus 34%, q < 0.001) and

NOTCH pathway alterations (5% versus 12%, q = 0.02); and

those with lung metastasis had a higher frequency of APCmuta-

tions (5% versus 12%, q < 0.001) and CTNNB1 mutations (3%

versus 8%, q = 0.007). Experimental work has revealed the

role ofWNT pathway activation in driving prostate cancer metas-

tasis (Leibold et al., 2020) and discovered a vulnerability to

tankyrase inhibition in WNT altered prostate cancer. When inter-

rogating the association between oncogenic pathways and or-

ganotropisms, we found that 26% of prostate cancer patients

with lung metastasis had WNT pathway alterations, compared

to 13%of patients without lungmetastasis (q < 0.001, Figure 4A).

As previously reported (Gerratana et al., 2021), ESR1 mutations

were more frequent in HR+/HER2� ductal breast cancer pa-

tients with liver metastasis (5% versus 16%, q < 0.001). CBFB

mutations were less frequent in HR+/HER2� ductal breast can-

cer patients with bone metastasis (5% versus 1%, q = 0.009),

which was demonstrated in a mouse model (Ran et al., 2020),

while alterations in the PI3K pathway were more frequent in pa-

tients with bone metastasis (44% versus 56%, q = 0.003). HR+/

HER2� ductal breast cancer patients with brain metastasis had

a lower frequency of MAP3K1 mutations (9% versus 3%, q =

0.02), which was recently shown to be a surrogate for the less

aggressive luminal A breast cancer subtype (Nixon et al.,

2019). In line with a previous study (Bucheit et al., 2014), PTEN

mutations were more frequent in cutaneous melanoma patients

with brain metastases (7% versus 14%, q = 0.04), while TP53

mutations were less frequent in those patients (28% versus

17%, q = 0.04). Thyroid papillary cancer patients with bone

metastasis had a lower frequency of BRAF mutations (73%

versus 53%, q = 0.02), and esophageal cancer patients with

lung metastasis had a higher frequency of ERBB2 amplification

(16% versus 37%, q < 0.001). Our analysis of arm-level events

also revealed that that chromosome 22q loss was more frequent

in thyroid papillary patients with bone metastasis (13% versus

40%, q < 0.001), even though broader chromosomal instability

was not significantly different in those patients (median FGA;

32% versus 45%, q = 0.07, Table S4B). In sum, while we did

not observe gene or pathway alterations associatedwith specific

target organs that were shared consistently across different tu-
mor types at a pan-cancer level (Figure S4), our analysis revealed

specific genomic alterations linked to specific organotropisms in

individual tumor types.

DISCUSSION

We present MSK-MET, a unique, curated cohort of cancer

patients with available genomic sequencing data and clinical in-

formation on metastatic disease and cancer outcome. Our study

expands a previous pan-cancer dataset (Zehir et al., 2017) by

including a larger number of patients with longer follow-up and

by including a comprehensive description of metastatic events

at the patient level. We demonstrate that mining of electronic

health recordscanbeused to extract relevant clinical information,

and we present a pan-cancer map of metastasis in a contempo-

rary cohort of patients treated at a single tertiary referral center.

Our analysis of genomic alterations from unpaired primary and

metastatic samples revealed that metastases generally have a

higher level of chromosomal instability, along with a higher fre-

quency ofWGD and TP53mutations. These results are consistent

with previous studies that have shown an association between

chromosomal instability and cancer progression (Bakhoum

et al., 2018; Ben-David and Amon, 2020; Hieronymus et al.,

2018; Shukla et al., 2020; Stopsack et al., 2019; Watkins et al.,

2020). Our results also suggest that metastases generally have a

higher fraction of clonal mutations. This lower intra-tumor hetero-

geneity could be attributed to clonal selection and selective pres-

sure from cancer therapy (Birkbak and McGranahan, 2020). We

also identifiedseveral genomic alterations andsignalingpathways

enriched in metastatic samples. As described before (Hu et al.,

2020; Pareja et al., 2020; Razavi et al., 2018), the most significant

enrichments were associated with known drug-resistance mech-

anisms (e.g., AR alterations in prostate cancer and ESR1 muta-

tions in breast cancer).We also compared primary tumor samples

from metastatic and non-metastatic patients. In several tumor

types, we observed a higher chromosomal instability and a higher

frequency of TP53mutations among other drivers in primary sam-

ples from metastatic patients, whereas the clonal fraction was

generally similar.

In an analysis aimed at identifying genomic alterations associ-

ated with metastatic burden, we found that higher chromosomal

instability was correlatedwithmetastatic burden in several tumor

types. This association, however, was absent in many other tu-

mor types, including colorectal cancer, where copy-number

alteration patterns may be established early in tumor develop-

ment. Several mechanisms can explain the pro-metastatic ef-

fects of chromosomal instability and have been reviewed before

(Ben-David and Amon, 2020). It is believed that chromosomal

instability can promote tumor progression by increasing subclo-

nal diversity and tumor evolution (Watkins et al., 2020), but aneu-

ploidy itself is not a universal promoter of transformation, and

recent studies suggest that aneuploidy is cancer-type specific

(Ben-David and Amon, 2020), which is in line with our observa-

tions. Beyond global chromosomal instability, we also identified

several specific genomic alterations and signaling pathways

associated with metastatic burden. The majority, including alter-

ations associated with drug resistance, were enriched in sam-

ples from patients with higher metastatic burden. Few were
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associated with lower metastatic burden, including FOXA1 mu-

tations in prostate cancer and CBFBmutations in breast cancer.

Lastly, we investigated associations between genomic alter-

ations and metastatic colonization of specific target organs. We

compared independentmetastatic samples according to their or-

gan sites, andweobserved that thegenomic landscapeofmetas-

tasis differed according to their target organs. Previous studies

have also interrogated the differences between primary tumors

and metastatic sites using either independent samples (Armenia

et al., 2018; Priestley et al., 2019; Robinson et al., 2017; Shih

et al., 2020) or paired samples (Brastianos et al., 2015; Brown

et al., 2017; Eckert et al., 2016; Hu et al., 2020; Jiménez-Sánchez

et al., 2017; Makohon-Moore et al., 2017; Naxerova et al., 2017;

Noorani et al., 2020; Reiter et al., 2020). Clinical data extraction

from the EHR allowed us to explore the genomic alterations of

metastatic patients by taking into consideration a greater part of

the metastatic events occurring in a patient’s clinical course.

We have generated a variety of hypotheses linking specific

genomic alterations to specific organotropisms occurring in a

cancer-specific manner. Future functional characterization of

these alterations could result in the identification of novel bio-

markers and therapeutic approaches that will have the potential

to influence the clinicalmanagement of patients. Our results high-

light the importanceof chromosomal instability inprogressionand

metastasis, and drugs targeting this hallmark could represent an

attractive strategy in several tumor types. MSK-MET is publicly

available via the cBioPortal for Cancer Genomics (https://www.

cbioportal.org/study?id=msk_met_2021) (Cerami et al., 2012;

Gao et al., 2013). We hope that it will be a valuable resource for

the community and will stimulate further research and applica-

tions in cancer care.

Limitations of the study
Our study has several limitations. First, while the overall cohort is

large, samplesizevariedsignificantlybetween tumor types,which

preventedus fromdrawing robust conclusions in lesscommon tu-

mor types. Therefore, the lack of significant differences in those

tumor typesmight be due to a lack of statistical power and should

be interpreted with caution. Also, our definition of tumor types

could be further refined in some cases, to account, for example,

for different predominant histologic subtypes in lung adenocarci-

nomas (Caso et al., 2020). This might provide additional valuable

insightsbutwouldalso result indecreasedsamplesizesand lower

statistical power for those refined groups. Second, the ICD billing

codes used in our study likely do not fully capture all metastatic

events and may be affected by inter-physician variability. Future

improvements to the clinical data extraction process could

come from the use of natural-language processing and machine

learning approaches, which will be required to mine the wealth

of data contained in EHR systems at scale. Third, because of

our use of a targeted sequencing panel, we may be missing bio-

logically or clinically relevant signals that could be discovered

using alternative approaches such as whole-exome or whole-

genome sequencing. Finally, all analyses presented here have

beenperformedusing a single representative sample for eachpa-

tient. In the future, longitudinal sampling ofmultiple anatomical lo-

cations at different time points from the same patient will allow us

to investigate additional questions about the timing of genomic
572 Cell 185, 563–575, February 3, 2022
events and the genomic heterogeneity across different organs

throughout metastatic progression. Although this study repre-

sents a first step toward understanding how genomic alterations

shape tumor progression, metastatic burden and organotrop-

isms, more integrated studies are needed to fully investigate the

impact of tumor cell-extrinsic effects, such as cancer therapy,

target-organ microenvironment, and systemic factors. These

studieswill require comprehensiveclinical timelineswith accurate

information about all lines of therapy andmetastatic events. Addi-

tionally, single-cell profiling methods may be required to fully

understand the crosstalk between tumor cells and themetastatic

niche.
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(schultzn@mskcc.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The raw sequencing data for the MSK-IMPACT cohort are protected and are not broadly available due to privacy laws. Raw data

may be requested from schultzn@mskcc.org with appropriate institutional approvals.

d Our full dataset including clinical and genomic data is publicly available at Zenodo: https://doi.org/10.5281/zenodo.5801902 and

through the cBioPortal for Cancer Genomics: https://www.cbioportal.org/study?id=msk_met_2021.

d Original code to do the organ site mapping for metastatic cancer is available at https://github.com/clinical-data-mining/

organ-site-mapping and has been deposited at figshare. DOIs is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
This study was approved by the Memorial Sloan Kettering Cancer Center Institutional review board and all patients provided written

informed consent for tumor sequencing and review of patient medical records for detailed demographic, pathologic, and treatment

information (NCT01775072). Characteristics of each subject, including age and sex, are available in Table S1B.

METHOD DETAILS

Samples and patients
A total of 43,400 solid tumor samples from 38,933 patients sequenced at Memorial Sloan Kettering Cancer Center from 2013-11-18

to 2020-01-06 (6.1y) and included in the AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE) (AACR Project

GENIE Consortium 2017) 9.0-public database were considered for this study. A total of 9,215 samples sequenced at Memorial Sloan

Kettering Cancer Center from 2020-01-07 to 2021-08-18 (1.6y) were used for validation. All tumors were profiled using the Memorial

Sloan Kettering Integrated Molecular Profiling of Actionable Cancer Targets (MSK-IMPACT) clinical sequencing assay, a hybridiza-

tion capture-based, next-generation sequencing platform (Cheng et al., 2015). Tumor types were defined using a unique cancer type

and one or more cancer type detailed (Table S1A). For endometrial and colorectal cancers, we defined a subset of hypermutated

(HM) tumors as those having an oncogenic POLE mutation or exhibiting more than 25 mutations/Mb or having MSIsensor score

(Niu et al., 2014) > 10. Exclusion criteria were as follows: unavailable matched normal; low sequencing coverage (< 100x); low tumor

purity as defined by the absence of somatic alterations (including silent); pediatric patients (< 18y at time of sequencing); patients with

more than one unique sequenced tumor type; cancer of unknown primary; tumor type in which metastasis are rare (e.g., Gliomas);

breast cancer with unavailable molecular subtype information; tumor types with small sample size (i.e., n < 80 and either primary

n < 30 or metastasis n < 30). Finally, one sample per patient was selected using a set of priority rules as follows: the presence of

a FACETS fit that passed qc > highest purity > highest sample coverage > most recent gene panel. A total of 25,775 samples span-

ning 50 tumor types were used for analysis (Figures S1A–S1D; Tables S1A and S1B). This set included samples that were sequenced

with three generations of theMSK-IMPACT panel, containing 341 genes (n = 1,801 samples), 410 genes (n = 6,372 samples), and 468

genes (n = 17,602 samples).

Clinical data extraction procedures for the identification and mapping of metastatic events
Clinical data were retrieved from the institutional electronic health records (EHR) database on 2020-11-05. Metastatic events were

extracted from the pathology report of the sequenced samples and patients’ electronic health records. The anatomic location of the

sequenced samples is described in the sample pathology reports as a free-text description by pathologists. The EHR includes In-

ternational Classification of Diseases (ICD) billing codes which classify a comprehensive list of diseases, disorders, injuries and other

health conditions includingmetastatic events. Metastatic events from the sample pathology report and the ICD billing codes from the

EHR were systematically mapped to a curated list of 21 organs (Table S1C). Lymph nodes were also classified as distant or regional

given the anatomic location of the primary tumor (https://github.com/clinical-data-mining/organ-site-mapping). Of note, the classi-

fication of distant versus regional was not possible for tumor types in which the anatomic location of the primary tumor is not well

defined (e.i. melanoma cutaneous, cutaneous squamous cell, sarcoma lipo and sarcomaUPS/MXF). The organ sitemapping for met-

astatic cancer is available at https://github.com/clinical-data-mining/organ-site-mapping. For a user providing a table of organ site

descriptions or ICD Billing codes, annotations of the 21 organ sites will be generated. Furthermore, additional annotations

recognizing local extension and distant lymph node spread can be created. Metastatic burden was defined as the number of distinct

organs (excluding regional lymph nodes) affected by metastases throughout a patient’s clinical course (ranging from 1 to 15 in the

present study). Patients with more than six affected organ sites were grouped for analyses of metastatic burden.

Comparison of metastatic sites automatically extracted from electronic health records versus manual chart review
A total of 4,859 patients (22.5%) withmetastatic sites extracted throughmanual chart review and previously published were available

(Abida et al., 2017; Jones et al., 2021; Razavi et al., 2018; Shoushtari et al., 2021; Yaeger et al., 2018). Ten tumor types were repre-

sented including the most frequent (prostate, lung, breast, colorectal, and melanoma). There was a strong correlation between the

number of metastatic sites retrieved frommanual chart review and the number of metastatic sites automatically extracted from elec-

tronic health records (Figure S1H). For colorectal hyper mutant and MSS only the first metastatic events were reported so we

restricted the comparison to the first metastatic event extracted from EHR. It is also important to note that the manual chart review

was done before this study. Therefore, the present study has a longer follow-up which resulted in a higher number of metastatic sites.

We also calculated the sensitivity for each metastatic site and each tumor type (Figure S1I). The median sensitivity was 77% across

tumor types and metastatic sites.

Genomic analysis
Tumor mutational burden (TMB) was calculated for each sample as the total number of nonsynonymous mutations, divided by the

number of bases sequenced. Fraction of genome altered (FGA) was calculated for each sample as the percentage of the genomewith
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absolute log2 copy ratios > 0.2. Log2 copy-number ratios were derived as previously described (Cheng et al., 2015). Chromosome

arm-level copy number alterations were computed using the ASCETS tool (Spurr et al., 2020) using default parameters. Allele-spe-

cific analyses of copy number alterations were performed using the FACETS tool (Shen and Seshan, 2016), which infers purity- and

ploidy-corrected integer DNA copy number calls from sequencing data. The quality of FACETS fits was determined using a set of

criteria as described in facets-preview (https://github.com/taylor-lab/facets-preview). To estimate a tumor purity- and ploidy-

adjusted version of the FGA, we defined ‘‘adjusted FGA’’ as the fraction of the genome different from the major integer copy number

(Mcn), where Mcn is defined as the integer total copy number spanning the largest portion of the genome. Tumor samples were

considered to have undergone whole-genome doubling (WGD) if more than 50% of their autosomal genome had Mcn > 2. The clon-

ality of each mutation (clonal or subclonal or indeterminate) was determined as described in facets-suite (https://github.com/mskcc/

facets-suite). For each tumor sample, the fraction of clonal mutations (clonal fraction) was determined by dividing the total number of

clonal mutations by the sum of clonal and subclonal mutations. MSI-H status was defined by an MSIsensor score > 10 (Niu et al.,

2014). Somatic alterations were annotated using OncoKB for oncogenicity and clinical actionability (Chakravarty et al., 2017)

(Data version: v2.8, released on 2020-09-17). For hypermutated colorectal and hypermutated uterine cancer, only genes that

were recurrently mutated based onMutSig-CV (q-value < 0.1) were considered for association analyses. For each tumor type, recur-

rent oncogenic alterations were defined as those considered oncogenic or likely oncogenic by OncoKB and present in at least 5% of

either primary or metastatic samples (median of 15 per tumor type, Table S1A). Canonical oncogenic pathway-level alterations were

computed using curated pathway templates as previously reported (Ding et al., 2018; Sanchez-Vega et al., 2018). Segmented copy-

number data were processed using the CNtools package v1.4.

QUANTIFICATION AND STATISTICAL ANALYSIS

The relative temporal order of target organs for each tumor type was assessed using a Bradley-Terry model. For each tumor type, we

included patients with at least two metastases in different organs. For each patient, metastases can be timed relative to one another

and these pairwise comparisons were aggregated (as implemented by the R package BradleyTerryScalable) to give an overall

ordering of metastasis per tumor type. Comparisons between groups (primary versus metastatic tumors, primary samples frommet-

astatic versus non-metastatic patients, and metastases according to their organ location) were performed using the non-parametric

Mann-Whitney U test for continuous variables or the Fisher’s exact test for categorical variables. Differences in the frequency of

actionable mutations (Levels 1 to 3, as defined by OncoKB) between groups (primary tumors versus metastases and primary tumors

frommetastatic versus non-metastatic patients) were further tested using a multivariable logistic regression model adjusted for TMB

and FGA. Differences in the frequency of arm-level copy number alterations between groups (primary versus metastatic tumors and

primary samples from metastatic versus non-metastatic patients) were tested using a multivariable logistic regression model

adjusted for FGA. A genomic feature was considered to be significantly correlated with metastatic burden if (a) the Spearman’s cor-

relation between the two variables was statistically significant (q-value < 0.05) and (b) the coefficient associated with the genomic

feature as a predictive variable in a multivariable linear regression model adjusted for sample type (metastatic versus primary tumor)

was statistically significant (p value < 0.05). The second condition was required because the ratio of metastatic samples to primary

samples was associated with metastatic burden and could otherwise act as a confounding factor. We assessed genomic features

associated with the presence or absence of metastasis in a target organ using only target organs present in at least 5% of the pa-

tients. A genomic feature was considered to be significantly associated withmetastasis to specific target organs if (a) theMann-Whit-

ney U test for continuous variables or the Fisher’s exact test for categorical variables was statistically significant (q-value < 0.05) and

(b) the coefficient associated with the genomic feature as a predictive variable in amultivariable logistic regressionmodel adjusted for

sample type (metastatic versus primary tumor, categorical) and metastatic burden (1 to 6, numerical) was statistically significant (p

value < 0.05). The second condition was required because the ratio of metastatic samples to primary samples andmetastatic burden

were associatedwithmetastasis to specific target organs and could otherwise act as a confounding factor.When TMB and FGAwere

used in a generalized linear model (linear and logistic model), their distributions were harmonized using a normal transformation as

described before (Vokes et al., 2019) then scaled from 0 to 1 by subtracting the minimum and dividing by the maximum. Logistic

regression was performed using Firth’s bias-reduction method as implemented in the R package brglm (Kosmidis and Firth,

2020). Overall survival (OS) was measured from the time of sequencing to death and was censored at the last time the patient

was known to be alive. If a patient had more than one sequenced sample, the first time of sequencing was used. Median follow-

up time was calculated using the reverse Kaplan-Meier method. Median overall survival and five-year survival rate were calculated

by the Kaplan-Meier method. The association between metastatic burden and overall survival was assessed using univariable Cox

proportional hazards regression models. All reported p values are two-tailed. Multiple testing correction was applied within each tu-

mor type using the false discovery rate (q-value) method and q-value < 0.05 was considered significant. All analyses were performed

using R v3.5.2 (www.R-project.org) and Bioconductor v3.4.
e3 Cell 185, 563–575.e1–e3, February 3, 2022
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Figure S1. Study design and characteristics of the patients and samples included in MSK-MET, related to Figure 1

(A) CONSORT flow diagram of the study.

(B) Distribution of age at time of sequencing, time interval between surgical procedure and sequencing, tumor sample coverage and tumor purity assessed by the

pathologist.

(C) Distribution of 25,775 tumors across 50 tumor types grouped by ten organ systems.

(D) Distribution of the 25,775 tumors according to the sample type (primary versus metastasis), site of metastatic sample and whether the primary sample was

from a patient with evidence of distant metastasis at the time of the study or not.

(E) Frequency of primary and metastatic samples previously exposed to any treatment for each tumor type.

(F) Distribution of the 99,419 metastatic events mapped to 21 organ sites.

(G) Comparison of the frequency of metastasis in several target organs from different tumor types reported in (Gao et al., 2019) and in (Budczies et al., 2015)

versus the present study.

(H) Comparison of the number of metastasis using data from manual chart reviews and clinical data automatically extracted from the EHR (This study).

(I) Heatmap showing the recall rate (sensitivity) across several target organs from different tumor types using patients retrieved from manual chart reviews.

(J) Median time to metastasis (months) relative to the first metastatic event. The number in each cell indicates the median time to metastasis at that given site in

months. Only metastases with at least 3 representative patients are shown here. Note that for patients with multiple metastases to the same organ only the first

one was taken into consideration. For each metastatic site, the distribution of all 50 tumor types is shown as a stacked bar chart below the heatmap.

(K) Results from the Bradley-Terry model showing the order of metastatic events observed in the top 10 most common tumor types. For each tumor type, the

order of metastasis from first to last is represented from top to bottom.
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Figure S2. Genomic differences between primary tumors and metastases using an independent cohort of 9,215 patients sequenced with

MSK-IMPACT since the data freeze date, related to Figure 2

(A) Comparisons of the median fraction genome altered (FGA), median tumor mutation burden (TMB), and median frequency of tumor mutation burden high

(TMB-hi) for each tumor type in metastatic versus primary tumors. Tumor types with statistically significant differences are labeled.

(B) The following clinical and genomic features are shown side-by-side for primary (top row within each cancer type) and metastatic (bottom row) sequenced

samples using a combination of bar charts and violin plots; from left to right: sample counts, FGA, TMB, fraction of samples with high TMB, and distribution of the

highest actionable alteration levels. The vertical line in each violin plot represents themedian. The heatmap shows the frequency of individual arm level alterations

in primary tumors and metastases (only the frequency of the more frequent event, gain or loss, is shown). Tumor types are ordered from top to bottom by

decreasing FGA in metastasis and grouped by organ systems. * indicates q-value < 0.05.

(C) Statistically significant differences in the frequency of oncogenic alterations and pathways between primary tumors andmetastases in individual tumor types.

Triangles summarize oncogenic alteration frequencies in primary tumors versus metastases and are colored according to alteration type. Gene names in italics

refer to specific genes, those in regular font refer to pathways.

(D) Comparison of the effect size of FGA and TMB between the original and the new dataset. Each point is colored according to significance (green; significant in

the new dataset only, blue; significant in the original dataset only; pink significant in both the original and the new dataset).

(E) Comparison of the effect size of the difference in oncogenic alteration between the original and the new dataset. Each point is colored according to tumor type

(left) or significance (right). The comparison was tested using a Spearman correlation.
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Figure S3. Genomic differences between primary samples from metastatic and non-metastatic patients, related to Figure 2
(A) Scatterplot showing the comparison of the median FGA, median WGD, median TMB and median clonality for each tumor type in primary samples from

metastatic and non-metastatic patients.

(B) The following clinical and genomic features are shown side-by-side for primary samples from metastatic and non-metastatic patients using a combination of

bar charts and violin plots; from left to right: sample counts, FGA, fraction of samples with WGD, TMB, clonality, fraction of samples with TMB-high status and

distribution of highest actionable alteration. The vertical line in each violin plots represents the median. Heatmap shows the frequency of arm level alterations in

primary tumors and metastases. Tumor types are ordered from top to bottom by decreasing FGA in metastasis and grouped by organ systems. * indicates q-

value < 0.05. WGD and clonality were available for a subset of 10,106 samples with FACETS data.

(C) Statistically significant differences in the frequency of oncogenic alterations between primary tumors and metastases across all tumor types. Triangles

summarize oncogenic alterations frequencies in primary samples from metastatic versus non-metastatic patients and are colored according to alteration type.

(D) Comparison of genomic features differing between primary tumors versusmetastases (‘‘P vsM’’) and genomic features differing between primary tumors from

non-metastatic versus metastatic patients (‘‘P-noM vs P-M’’). Comparison of the effect size for FGA and TMB (log2 fold change) between the two analyses. Top;

each point represents a tumor type and is color-coded according to the three statistical significance scenarios (pink; significant in both analyses, green; sig-

nificant in P versus M only, blue; significant in P-noM versus P-M only). Bottom; boxplots showing FGA and TMB according to the three sample types (primary

tumors from non-metastatic versus primary tumors from metastatic patients versus metastatic samples) for two representative tumor types and every three

scenarios.

(E) Comparison of the effect size for oncogenic alterations (log odds ratio) between the two analyses. Top; each point represents an oncogenic alteration that was

significantly different in either analysis and is color-coded according to the three statistical significance scenarios (left) (pink; significant in both analyses, green;

significant in P versus M only, blue; significant in P-noM versus P-M only) and the tumor type in which it belongs (left). Bottom; bar graphs showing the alterations

frequency according to the three sample types (primary tumors from non-metastatic versus primary tumors frommetastatic patients versus metastatic samples)

for two representative tumor types and every three scenarios. For each comparison, a Venn diagram shows the number of common and exclusive significant

associations between the two analyses (top-left corner). The comparisons were tested using a Spearman correlation.
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Figure S4. Genomic differences of metastases according to organ location, related to Figure 4

(A) Distribution of sequencedmetastasis according to organ locationwith the heatmap showing the percentage ofmetastatic sampleswhere each row represents

a tumor type and each column represents the organ location. For each tumor type, the distribution of all 21 organ locations is shown as a stacked bar chart to the

right of the heatmap. For each organ, the distribution of all 50 tumor types is shown as a stacked bar chart below the heatmap. For each tumor type, the number of

metastasis samples is indicated in parentheses. For each organ, the number of metastasis samples is indicated in parentheses.

(B) Statistically significant association between FGA (black circle) and TMB (white diamond) and specific metastatic sites.

(C) Statistically significant oncogenic alterations associated with specific metastatic sites.

(D) Heatmap showing 69 genomic features associated with metastasis to specific target organs and significant in at least two cancer types. The shade of red

represents the three significance thresholds (dark red, q-value < 0.05 & logit < 0.05; red, q-value < 0.05; light red, p value < 0.05).
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