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Prostate cancer treatment planning is largely dependent upon
examination of core-needle biopsies. The microscopic architecture
of the prostate glands forms the basis for prognostic grading by
pathologists. Interpretation of these convoluted three-dimensional
(3D) glandular structures via visual inspection of a limited number
of two-dimensional (2D) histology sections is often unreliable,
which contributes to the under- and overtreatment of patients. To
improve risk assessment and treatment decisions, we have devel-
oped a workflow for nondestructive 3D pathology and computa-
tional analysis of whole prostate biopsies labeled with a rapid and
inexpensive fluorescent analogue of standard hematoxylin and
eosin (H&E) staining. This analysis is based on interpretable
glandular features and is facilitated by the development of image
translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a
generalizable deep learning-based strategy that enables tissue
microstructures to be volumetrically segmented in an annotation-

Introduction

Prostate cancer is the most common cancer in men and the second
leading cause of cancer-related death for men in the United States (1).
Currently, prostate cancer management is largely dependent upon
examination of prostate biopsies via two-dimensional (2D) histopa-
thology (2), in which a set of core-needle biopsies is formalin-fixed and
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free and objective (biomarker-based) manner without requiring
immunolabeling. As a preliminary demonstration of the transla-
tional value of a computational 3D versus a computational 2D
pathology approach, we imaged 300 ex vivo biopsies extracted from
50 archived radical prostatectomy specimens, of which, 118 biopsies
contained cancer. The 3D glandular features in cancer biopsies were
superior to corresponding 2D features for risk stratification of
patients with low- to intermediate-risk prostate cancer based on
their clinical biochemical recurrence outcomes. The results of this
study support the use of computational 3D pathology for guiding
the clinical management of prostate cancer.

Significance: An end-to-end pipeline for deep learning-assisted
computational 3D histology analysis of whole prostate biopsies
shows that nondestructive 3D pathology has the potential to enable
superior prognostic stratification of patients with prostate cancer.

paraffin-embedded (FFPE) to allow thin sections to be cut, mounted
on glass slides, and stained for microscopic analysis. To quantify the
aggressiveness of the cancer, the Gleason grading system is used, which
relies entirely upon visual interpretation of prostate gland morphology
as seen on a few histology slides (thin 2D tissue sections) that only
“sample” approximately 1% of the whole biopsy. Gleason grading of
prostate cancer is associated with high levels of interobserver vari-
ability (3, 4) and is only moderately correlated with outcomes,
especially for patients with intermediate-grade prostate cancer (5).
This contributes to the undertreatment of patients with aggressive
cancer (e.g., with active surveillance; ref. 6), leading to preventable
metastasis and death (7), and the overtreatment of patients with
indolent cancer (e.g., with surgery or radiotherapy; ref. 8), which can
lead to serious side effects, such as incontinence and impotence (9).

Motivated by recent technological advances in optical clearing to
render tissue specimens transparent to light [ie., iDISCO (10),
CUBIC (11) etc] in conjunction with high-throughput three-
dimensional (3D) light-sheet microscopy, a number of groups have
been exploring the value of nondestructive 3D pathology of clinical
specimens for diagnostic pathology (12-17). Compared with conven-
tional slide-based histology, nondestructive 3D pathology can achieve
vastly greater sampling of large specimens along with volumetric
visualization and quantification of diagnostically significant micro-
structures, all while maintaining intact specimens for downstream
molecular assays (18). Like others before us (12, 19, 20), we hypoth-
esized that 3D versus 2D pathology datasets could allow for improved
characterization of the convoluted glandular structures that patholo-
gists currently rely on for prostate cancer risk stratification. However,
since the associated information content of a 3D pathology dataset of a
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biopsy is >100x larger than a 2D whole-slide image representation (in
terms of total number of pixels), computational tools are necessary to
analyze these large datasets efficiently and reproducibly for diagnostic
and prognostic determinations.

For computational analysis of 3D pathology datasets, a multistage
pipeline was chosen for classifying patient outcomes based on inter-
pretable “hand-crafted” features (i.e., glandular features; refs. 21-23)
rather than an end-to-end deep learning (DL) strategy for risk
classification based directly on the imaging data (24-26). This was
motivated by: (i) the attractiveness of an intuitive feature-based
approach as an initial strategy to facilitate hypothesis testing and
clinical adoption of an emerging modality in which datasets are
currently limited and poorly understood (18, 27), and (ii) the obser-
vation that when case numbers are limited, a hand-crafted feature-
based approach can be more reliable than an end-to-end DL
classifier (28, 29).

Multistage feature-based classification approaches rely on the accu-
rate segmentation of morphologic structures such as nuclei (30-32),
collagen fibers (33, 34), vessels (14, 35), or in our case, prostate
glands (21, 36). This is typically achieved in one of two ways: (i) direct
DL-based segmentation methods (37-40) that require manually anno-
tated training datasets, which are especially tedious and difficult to
obtain in 3D (Fig. 1A; ref. 41); or (ii) traditional computer vision (CV)
approaches based on intensity and morphology, provided that tissue
structures of interest can be stained/labeled with high specificity
(Fig. 1B; refs. 19, 42, 43). While immunolabeling can confer a high
degree of specificity for traditional CV-based segmentation, it is not an
attractive strategy for clinical 3D pathology assays due to the high cost
of antibodies to stain large tissue volumes, and the slow diffusion times
of antibodies in thick tissues (up to several weeks; refs. 10, 44).

To address these challenges, we developed a generalizable anno-
tation-free 3D segmentation method, hereafter referred to as
“image-translation-assisted segmentation in 3D (ITAS3D).” In our
specific implementation of ITAS3D (Fig. 1C), 3D hematoxylin and
eosin (H&E) analogue images of prostate tissues are synthetically
converted in appearance to mimic 3D immunofluorescence (IF)
images of cytokeratin 8 (CK8) - a low molecular weight keratin
expressed by the luminal epithelial cells of all prostate glands — thereby
facilitating the objective (biomarker-based) segmentation of the glan-
dular epithelium and lumen spaces using traditional CV tools. The DL
image translation algorithm is trained with a generative adversarial
network (GAN), which has been previously used for 2D virtual staining
applications (45-47). However, unlike those prior 2D image transla-
tion efforts, we developed a “2.5D” virtual-staining approach based on
a specialized GAN that was originally designed to achieve video
translation with high spatial continuity between frames, but which
has been adapted within our ITAS3D framework to ensure high spatial
continuity as a function of depth (see Results; ref. 48).

As a preliminary study to investigate the value of a computational
3D pathology workflow versus a computational 2D pathology work-
flow, 300 ex vivo biopsies were extracted from archived radical
prostatectomy (RP) specimens obtained from 50 patients who under-
went surgery over a decade ago. We stained the biopsies with an
inexpensive small-molecule (i.e., rapidly diffusing) fluorescent ana-
logue of H&E, optically cleared the biopsies with a simple dehydration
and solvent-immersion protocol to render them transparent to light,
and then used an open-top light-sheet (OTLS) microscopy platform to
obtain whole-biopsy 3D pathology datasets. The prostate glandular
network was then segmented using ITAS3D, from which 3D glandular
features (i.e., histomorphometric parameters) and corresponding 2D
features were extracted from the 118 biopsies that contained prostate
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cancer. These 3D and 2D features were evaluated for their ability to
stratify patients based on clinical biochemical recurrence (BCR) out-
comes, which serve as a proxy endpoint for aggressive versus indolent
prostate cancer.

Materials and Methods

Key methodologic information is provided below for our prelim-
inary clinical demonstration. The Supplementary Methods contain
technical details on the training and validation of ITAS3D, as well as
computational details for the clinical study, such as a description of
gland features.

Collection and processing of archived tissue to obtain simulated
biopsies for the clinical study

The following study was approved by the institutional review board
(IRB) of the University of Washington (Seattle, WA; Study 00004980),
where research specimens were previously obtained from patients with
informed consent. Archived FFPE prostatectomy specimens were
collected from 50 patients with prostate cancer (see Supplementary
Table S1 for clinical data), of which, 46 cases were initially graded
during post-RP histopathology as having Gleason scores of 3+3, 3+4
or 443 (Grade Group 1-3). All patients were followed up for at least
5 years post-RP as part of a prior study (Canary TMA; ref. 49). FFPE
tissue blocks were identified from each case corresponding to the six
regions of the prostate targeted by urologists when performing stan-
dard sextant and 12-core (2 cores per sextant region) biopsy proce-
dures. The identified FFPE blocks were first deparaffinized by heating
them at 75°C for 1 hour until the outer paraffin wax was melted, and
then placing them in 65°C xylene for 48 hours. Next, one simulated
core-needle biopsy (~1-mm in width) was cut from each of the six
deparaffinized blocks (per patient case), resulting in a total of n = 300
biopsy cores. All simulated biopsies were then fluorescently labeled
with the To-PRO-3 and eosin (T&E) version of our H&E analogue
staining protocol (Supplementary Fig. S1).

The T&E staining protocol (H&E analogue) for the clinical study

Biopsies were first washed in 100% ethanol twice for 1 h each to
remove any excess xylene, then treated in 70% ethanol for 1 hour to
partially rehydrate the biopsies. Each biopsy was then placed in an
individual 0.5 mL Eppendorf tube (catalog no. 14-282-300, Thermo
Fisher Scientific), stained for 48 hours in 70% ethanol at pH 4 with a
1:200 dilution of Eosin-Y (catalog no. 3801615, Leica Biosystems) and
a 1:500 dilution of To-PRO-3 Iodide (catalog no. T3605, Thermo
Fisher Scientific) at room temperature with gentle agitation. The
biopsies were then dehydrated twice in 100% ethanol for 2 hours.
Finally, the biopsies were optically cleared (n = 1.56) by placing them
in ethyl cinnamate (catalog no. 112372, Sigma-Aldrich) for 8 hours
before imaging them with open-top light-sheet (OTLS) microscopy.

OTLS microscopy and preprocessing

We utilized a previously developed OTLS microscope (15) to image
tissues slices (for training data) and simulated biopsies (for the clinical
study). For this study, ethyl cinnamate (n = 1.56) was used as the
immersion medium, and a custom-machined HIVEX plate (n = 1.55)
was used as a multibiopsy sample holder (12 biopsies per holder).
Multichannel illumination was provided by a four-channel digitally
controlled laser package (Skyra, Cobolt Lasers). Tissues were imaged at
near-Nyquist sampling of approximately 0.44 um/pixel. The volumet-
ric imaging time was approximately 0.5 minute per mm?® of tissue for
each wavelength channel. This allowed each biopsy (~1 x 1 x 20 mm),
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Method 1: Single-step deep-learning (DL) based segmentation

DL 3D segmentation

Method 2: Immunolabeling-based 3D segmentation
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Figure 1.

General methods for 3D gland segmentation. A, A single-step DL segmentation model can be trained with imaging datasets of tissues labeled with a fluorescent
analogue of H&E paired with manually annotated ground-truth segmentation masks. While H&E analogue staining is low-cost and rapid, manual annotations are
labor-intensive (especially in 3D) and based on subjective human judgements. B, By immunolabeling a tissue microstructure with high specificity, 3D segmentations
can be achieved with traditional CV methods without the need for manual annotations. While this is an objective segmentation method based on a chemical
biomarker, immunolabeling large intact specimens is expensive and time-consuming due to the slow diffusion of antibodies in thick tissues. C, With ITAS3D,
H&E-analogue datasets are computationally transformed in appearance to mimic immunofluorescence datasets, which enables the synthetically labeled tissue
structures to be segmented with traditional CV methods. The image-sequence translation model is trained with a GAN based on paired H&E-analogue and
immunofluorescence datasets. ITAS3D is rapid and low-cost (in terms of staining) as well as annotation-free and objective (i.e., biomarker-based).

stained with two fluorophores (T&E), to be imaged in approximately
20 minutes.

Statistical analysis of the correlation between glandular
features and BCR outcomes

Patient-level glandular features were obtained by averaging the
biopsy-level features from all cancer-containing biopsies from a single
patient. Patients who experienced BCR within 5 years post-RP are
denoted as the “BCR” group, and all other patients are denoted as
“non-BCR.” BCR was defined here as a rise in serum levels of prostate-
specific antigen (PSA) to 0.2 ng/mL after 8 weeks post-RP (49). The
box plots indicate median values along with interquartile ranges (25%-
75% of the distribution). The whiskers extend to the furthest data
points excluding outliers defined as points beyond 1.5x the inter-
quartile range. The P values for the BCR group versus non-BCR group
are calculated using the two-sided Mann-Whitney U test (50). To
assess the ability of different 3D and 2D glandular features to distin-
guish between BCR versus non-BCR groups, we applied ROC curve
analysis, from which an area-under-the-curve (AUC) value could be
extracted. The t-SNE (51) analyses were performed with 1000 itera-
tions at a learning rate of 100.

To develop multiparameter classifiers to stratify patients based on
5-year BCR outcomes, a least absolute shrinkage and selection oper-
ator (LASSO) logistic regression model was developed (22) using the
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binary 5-year BCR category as the outcome endpoint. LASSO is a
regression model that includes a L1 regularization term to avoid
overfitting and to identify a subset of features that are most predictive.
Here, the optimal LASSO tuning parameter, A, was determined with
3-fold cross validation (CV), where the dataset was randomly parti-
tioned into three equal-sized groups: two groups to train the model
with a specific A, and one group to test the performance of the model.
Along the LASSO regularization path, the A with the highest R
(coefficient of determination) was defined as the optimal A. Because
of the lack of an external validation set, a nested CV schema was used to
evaluate the performance of the multivariable models without any bias
and data leakage between parameter estimation and validation
steps (52). The aforementioned CV used for hyperparameter tuning
was performed in each iteration of the outer CV. LASSO regression was
applied on the training set of the outer CV once an optimal A was
identified in the inner CV. AUC values were then calculated from the
testing group of the outer CV (Supplementary Fig. S2). This nested CV
was performed 200 times to determine an AUC (average and SD). The
exact same pipeline was used to develop multiparameter classifiers
based on 3D and 2D features.

Kaplan-Meier (KM) analysis was carried out to compare BCR-free
survival rates for high-risk versus low-risk groups of patients. This
analysis utilized a subset of 34 cases, for which time-to-recurrence data
is available (see Supplementary Table S1). The performance of the

CANCER RESEARCH

220z Aenugad Lz uo Jesn 31NLILSNI ¥3FONVO ¥3AGHVH YNVA Ad Jpd vE€/286810€/vEE/2/28/Pd-ajoue/Sa1180UBd/BI0"S|euINoloe.)/:d)y WOl papeojumoq



models, either based on 2D or 3D features, was quantified with P values
(by log-rank test), HRs, and concordance index (C-index) metrics. For
the multiparameter classification model used for KM analysis, the
outer CV (3-fold) in our nested CV schema was replaced by a leave-
one-out approach, where one case was left out of each iteration (50
total iterations) to calculate the probability of 5-year BCR for that
patient (53). The samples were categorized as low- or high-risk by
setting a posterior class probability threshold of 0.5. MATLAB was
used for the KM analysis and all other statistical analysis was per-
formed in Python with the “Scipy” and “Scikit-learn” packages.

Data availability

Relevant clinical data for this study are provided in Supplementary
Table S1 and Supplementary Table S5. Example prostate images for
testing ITAS3D codes and models are available in a GitHub repository
at https://github.com/WeisiX/ITAS3D. Full 3D prostate imaging data-
sets, “simulated 2D whole-slide images” extracted from those datasets
(three levels per biopsy), as well as other clinical data are available upon
reasonable request and with the establishment of a material-transfer or
data-transfer agreement.

Code availability

The Python code for the deep-learning models, and for 3D glan-
dular segmentations based on synthetic-CK8 datasets, are available on
GitHub at https://github.com/WeisiX/ITAS3D.

Results

Annotation-free 3D gland segmentation

To segment the 3D glandular network within prostate biopsies, we
first trained a GAN-based image-sequence translation model (see
Supplementary Methods) to convert 3D H&E analogue images into
synthetic CK8 IF images, which can be false colored to resemble
chromogenic IHC (Fig. 2A). As mentioned, the CK8 biomarker is
expressed by the luminal epithelial cells of all prostate glands. The
image translation model is trained in a supervised manner with images
from prostate tissues that are fluorescently tri-labeled with our H&E
analogue and a CK8-targeted mAb (Supplementary Table S2).

As shown in step 1 of Fig. 2B, for whole-biopsy H&E-to-CK8
conversion, we first sub-divide the 3D biopsy (~ 1 mm x 0.7 mm x
20 mm) datasets into ~1 mm x 0.7 mm X 1 mm (~ 1024 x 700 x 1024
pixel) blocks. Each 3D image block is treated as a 2D image sequence as
a function of depth. At each depth level, a synthetic CK8 image is
inferred from the H&E analogue image at that level while simulta-
neously utilizing the images (H&E analogue and CK8) from two
previous levels to enforce spatial continuity as a function of depth.
This “2.5D” image translation method is based on a previously
reported “vid2vid” method for video translation (time sequences
rather than depth sequences; ref. 48; see Supplementary Fig. S3;
Supplementary Methods). However, our modified model omits the
“coarse-to-fine” training strategy implemented in the original vid2vid
method because this enables training times to be minimized with
negligible performance loss (see Supplementary Note S1; Supplemen-
tary Fig. S4; Supplementary Video S1). Once the synthetic CK8 image
blocks are generated, they are mosaicked to generate a whole-biopsy
CK8 THC dataset for gland segmentation. In step 2 of Fig. 2B, the
synthetic CK8 dataset is used to segment the luminal epithelial cell
layer (“Epithelium” in Fig. 2B) via a thresholding algorithm. The
gland-lumen space, which is enclosed by the epithelium layer, can then
be segmented by utilizing both the epithelium segmentation mask and
the cytoplasmic channel (eosin-analogue images). Algorithmic details
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are provided in the Supplementary Methods and Supplementary
Fig. S5.

Evaluation of image translation and segmentation

Example 3D prostate gland-segmentation results are shown for
benign and cancerous regions in Fig. 3A. While the glands can be
delineated on the H&E analogue images by a trained observer,
automated computational segmentation of the glands remains chal-
lenging (54, 55). Here we demonstrate that 3D image translation based
on H&E analogue inputs results in synthetic CK8 outputs in which the
luminal epithelial cells are labeled with high contrast and spatial
precision. We further show that these synthetic-CK8 datasets allow
for relatively straightforward segmentation of the gland epithelium,
lumen, and surrounding stromal tissue compartments (Fig. 3A).
Glands from various prostate cancer subtypes are successfully seg-
mented as shown in Fig. 3A, including two glandular patterns that are
typically associated with low and intermediate risk, respectively: small
discrete well-formed glands (Gleason 3) and cribriform glands con-
sisting of epithelial cells interrupted by multiple punched-out lumina
(Gleason 4). Supplementary Video S2 shows depth sequences of an
H&E analogue dataset, a synthetic-CK8 dataset, and a segmentation
mask of the two volumetric regions shown in Fig. 3A. A whole-biopsy
3D segmentation is also depicted in Supplementary Video S3.

To demonstrate improved depth-wise continuity with our 2.5D
image-translation strategy versus a similar 2D image-translation
method (based on the “pix2pix” GAN), vertical cross-sectional views
of a synthetic-CK8 dataset are shown in Fig. 3B. While obvious
distortions and discontinuities are seen as a function of depth with
2D image translation, the results of our 2.5D image-sequence trans-
lation exhibit optimal continuity with depth. To further illustrate this
improved continuity with depth, Supplementary Video S4 shows a
depth sequence of en face images (z stack). Abrupt morphologic
discontinuities between levels are again obvious with 2D translation
but absent with the 2.5D translation approach. To quantify the
performance of our image-translation method, a 3D structural sim-
ilarity (SSIM) metric was calculated in which real CK8 IF datasets were
used as ground truth. For images generated with 2.5D versus 2D image
translation, the 3D SSIM (averaged over 58 test volumes that were
0.2-mm° each) was 0.41 vs. 0.37, reflecting a 12% improvement at a
P value of 7.8 x 107° (two-sided paired ¢ test). This enhanced image-
translation performance facilitates accurate 3D gland segmentations in
subsequent steps of our computational pipeline.

To assess segmentation performance, ground-truth gland-
segmentation datasets were first generated under the guidance of
board-certified genitourinary pathologists (L.D. True and N.P. Reder).
A total of 10 tissue volumes from different patients (512 x 512 x 100
pixels each, representing 0.2-mm? of tissue) were manually annotated.
We then compared the accuracy of ITAS3D with that of two common
methods: 3D watershed (as a 3D non-DL benchmark; ref. 56) and 2D
U-Net (as a 2D DL benchmark; ref. 57). ITAS3D outperforms the
two benchmark methods in terms of Dice coefficient (58) and 3D
Hausdorft distance (Fig. 3C; ref. 59). As a visual comparison
between ITAS3D and the two benchmark methods, Supplementary
Video S5 displays image-stack sequences from three orthogonal
perspectives of a representative segmented dataset, where the higher
segmentation accuracy of ITAS3D can be appreciated. Note that a
3D DL-based benchmark method is not provided since there are
currently insufficient 3D-annotated prostate gland datasets to train
an end-to-end 3D DL segmentation model (40, 60, 61); again, this is
one of the main motivations for developing the annotation-free
ITAS3D method.
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cence). See Supplementary Methods for
details.

Clinical validation study: glandular feature extraction and
correlation with BCR outcomes

Due to the slow rate of progression for most prostate cancer cases, an
initial clinical study to assess the prognostic value of 3D versus 2D
glandular features was performed with archived prostatectomy speci-
mens. Our study consisted of N = 50 patients with prostate cancer who
were followed up for a minimum of 5 years post-RP as part of the
Canary TMA case-cohort study (primarily low- to intermediate-risk
patients; ref. 49). The Canary TMA study was based on a well-curated
cohort of patients with prostate cancer in which the primary study
endpoints were 5-year BCR outcomes and time to recurrence, which
are also used as endpoints for our validation study. In the original
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Canary TMA study, approximately half of the patients experienced
BCR within 5 years of RP, making it an ideal cohort for our study. We
randomly selected a subset of 25 cases that had BCR within 5 years of
RP (“BCR” group), and 25 cases that did not have BCR within 5 years of
RP (“non-BCR” group).

FFPE tissue blocks were identified from each case corresponding to
the six regions of the prostate targeted by urologists when performing
standard sextant and 12-core (2 cores per sextant region) biopsy
procedures (Fig. 4A). Next, a simulated core-needle biopsy was
extracted from each of the six FFPE tissue blocks for each patient
(n = 300 total biopsy cores). The biopsies were deparaffinized, labeled
with a fluorescent analogue of H&E, optically cleared, and imaged
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Figure 3.

Segmentation results with ITAS3D. A, 2D cross-sections are shown (from left to right) of false-colored H&E analogue images, synthetic-CK8 IHC images generated by
image-sequence translation, and gland-segmentation masks based on the synthetic-CK8 images (yellow, epithelium; red, lumen; gray, stroma). The example images
are from large 3D datasets containing benign glands (first row) and cancerous glands (second row). Zoom-in views show small discrete well-formed glands (Gleason
pattern 3, blue box) and cribriform glands (Gleason pattern 4, red box) in the cancerous region. Three-dimensional renderings of gland segmentations for a benign
and cancerous region are shown on the far right. Scale bar, 100 um. B, Side views of the image sequences (with the depth direction oriented down) of real- and
synthetic-CK8 immunofluorescence images. The 2.5D image translation results exhibit substantially improved depth-wise continuity compared with the 2D image
translation results. Scale bar, 25 um. C, For quantitative benchmarking, Dice coefficients (larger is better) and 3D Hausdorff distances (smaller is better) are plotted for
ITAS3D-based gland segmentations along with two benchmark methods (3D watershed and 2D U-net), as calculated from 10 randomly selected test regions. Violin
plots are shown with mean values denoted by a center cross and SDs denoted by error bars. For the 3D Hausdorff distance, the vertical axis denotes physical distance
(in microns) within the tissue.

nondestructively with a recently developed OTLS microscope (see  Review of the 3D pathology datasets by pathologists (L.D. True and
Materials and Methods; ref. 15). Note that we have previously shown  N.P. Reder) revealed that 118 out of the 300 biopsy cores contained
that there is no difference in the quality/appearance of our H&E-  cancer (1-5 biopsies per case). The ITAS3D pipeline was applied to all
analogue 3D pathology datasets whether the tissue is formalin-fixed  cancer-containing biopsies (see Supplementary Methods and Supple-
only versus FFPE (where de-paraffinization is necessary; refs. 15-17).  mentary Fig. S6 for cancer-region annotation). We then calculated
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Figure 4.

Clinical study comparing the performance of 3D versus 2D glandular features for risk stratification. A, Archived (FFPE) RP specimens were obtained from a well-
curated cohort of 50 patients, from which, 300 simulated (ex vivo) needle biopsies were extracted (6 biopsies per case, per sextant-biopsy protocol). The biopsies
were labeled with a fluorescent analogue of H&E staining, optically cleared to render the tissues transparent to light, and then comprehensively imaged in 3D with
OTLS microscopy. Prostate glands were computationally segmented from the resultant 3D biopsy images using the ITAS3D pipeline. Three-dimensional glandular
features were extracted from tissue volumes containing prostate cancer. Two-dimensional glandular features were extracted from three levels per volume and
averaged. B and C, Violin and box plots are shown for two examples of 3D glandular features, along with analogous 2D features, for cases in which BCR was observed
within 5 years of RP (“BCR”) and for cases with no BCR within 5 years of RP (“non-BCR™). For both sets of example features, “lumen boundary curvature” in B and
“gland-to-convex hull ratio” (G/H) in C, the 3D version of the feature shows improved stratification between BCR and non-BCR groups. D and E, ROC curves also show
improved risk stratification with the 3D features versus corresponding 2D features, with considerably higher AUC values. F, Violin and box plots are shown of
representative gland-skeleton features (average branch length and branch length variance), which can only be accurately derived from the 3D pathology
datasets, showing significant stratification between BCR and non-BCR groups. G, ROC curves are shown, along with AUC values, for average branch length
and branch length variance. H, ROC curves are shown of various multiparameter models, including those trained with 2D glandular features, 3D glandular
features excluding skeleton features, and 3D glandular features including skeleton features. I, KM curves are shown for BCR-free survival, showing that a
multiparameter model based on 3D glandular features is better able to stratify patients into low-risk and high-risk groups with significantly different
recurrence trajectories (P = 6.6 x 107°, HR = 11.2, C-index = 0.84).
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histomorphometric features from the 3D gland segmentations, and
from individual 2D levels from the center region of the biopsy cores,
which were then analyzed in terms of their association with BCR
outcomes. For 2D analysis, average values from a total of 3 levels were
calculated, in which the three levels were separated by 20 um (mimicking
clinical practice at many institutions) as shown in Fig. 4A.

We compared multiple 3D and 2D glandular histomorphometric
features (see Supplementary Table S3 for a detailed list). For
example, the curvature of the boundary between the lumen and
epithelium is a feature that increases as glands become smaller or
more irregular, as is often seen with aggressive prostate cancer (21).
This can be quantified in the form of the average surface curvature
of the object in 3D, or the curvature of the object’s cross-sectional
circumference in 2D (Fig. 4B). As another example (Fig. 4C), the
gland-to-convex-hull ratio (G/H) is defined as the volume ratio (in
3D) or the area ratio (in 2D) of the gland mask (epithelium +
lumen) divided by the convex hull that circumscribes the gland.
This G/H feature is inversely related to the irregularity or “wavi-
ness” of the periphery of the gland (at the scale of the gland itself
rather than fine surface texture), which is generally expected to
increase with aggressive prostate cancer (21). For various 3D and
2D features (Fig. 4D and E; Supplementary Table S3), ROC curves
were generated to quantify the ability of the features to stratify
patients based on 5-year BCR outcomes. When comparing analo-
gous 3D and 2D glandular features, the 3D features largely exhibit
an improved correlation with 5-year BCR outcomes in comparison
with their 2D counterparts. This is exemplified by the significant
P values for the 3D features showcased in Fig. 4B and C (between
BCR and non-BCR groups) and higher area-under-the-ROC-curve
(AUC) values (Fig. 4D and E).

We also extracted the 3D skeleton of the lumen network and
quantified its branching parameters (skeleton-derived features).
Here, a “gland skeleton” is defined as a collection of lines that
approximate the center axes of various glands as they propagate in
3D space (similar to a line representation of a vessel network).
Example skeleton networks for benign and cancerous glands are
shown in Supplementary Video S6. Due to the complex 3D branch-
ing-tree architecture of the gland-lumen network, there are no
straightforward 2D analogues for these skeleton-derived features.
In Fig. 4F, we show two examples of skeleton-derived features: the
average branch length and the variance of the branch lengths. Both
features are correlated with BCR outcomes based on P values and
AUC values (Fig. 4F and G). Our analysis reveals that aggressive
cancers (BCR cases) have shorter branch lengths and a smaller
variance in branch lengths, which agrees with prior observations
from 2D histology that glandular structures in higher grade prostate
cancer are smaller and more abundant (i.e., less differentiated and
varied in size). A histogram of branch lengths (Supplementary
Fig. S7) demonstrates that the vast majority of branches are
< 200-um long, which suggests that the diameter of standard
prostate biopsies (~1-mm) is sufficient for whole-biopsy 3D pathol-
ogy to quantify prostate cancer branch lengths with reasonable
accuracy.

To explore the prognostic value of combining multiple glandular
features, we used logistic regression models for feature selection and
classification based on 3D versus 2D features (see Materials and
Methods). Brief descriptions and AUC values for the 3D and 2D
glandular features involved in training the multiparameter models are
shown in Supplementary Table S3. The ROC curve of a model that
combined 12 non-skeleton 3D features (“3D nonskeleton model”)
yielded an AUC value of 0.80 £ 0.05 (average + SD; Fig. 4H), which is
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considerably higher than the AUC value (0.65 & 0.06) of the model
trained with 12 analogous 2D features (2D model). By adding five
skeleton-derived features to the 12 non-skeleton 3D features, a
retrained 3D multiparameter model (3D model) yielded a slightly
higher AUC value of 0.81 £ 0.05. The distribution of the 50 cases, based
on their glandular features, can be visualized using t-distributed
stochastic neighbor embedding (¢-SNE), where a clearer separation
between BCR and non-BCR cases is evident based on 3D versus 2D
glandular features (Supplementary Fig. S8). Multiparameter classifi-
cation models based on 3D features alone (nonskeleton) or 2D features
alone were used to divide patients into high- and low-risk groups based
on 5-year BCR outcomes (Supplementary Table S1), from which KM
curves of BCR-free survival were constructed for a subset of cases in
which time-to-recurrence (BCR) data are available (Fig. 4I). Com-
pared with the 2D model, the 3D model is associated with a higher HR
and C-index, along with a significant P value (P < 0.05), suggesting
superior prognostic stratification.

Discussion

As high-resolution biomedical imaging technologies continue to
evolve and generate increasingly larger datasets, computational tech-
niques are needed to derive clinically actionable information, ideally
through explainable approaches that generate new insights and
hypotheses. Interpretable feature-based analysis strategies in digital
pathology generally hinge upon obtaining high-quality segmentations
of key structural primitives (e.g., nuclei, glands, cells, collagen;
refs. 18, 29). However, a common bottleneck to achieving accurate
segmentations is the need for large amounts of manually annotated
datasets (41). In addition to being tedious and difficult to obtain
(especially in 3D), such annotations are often performed by one or
more individuals who are not representative of all pathologists, thereby
introducing an early source of bias. The use of simulated data has been
explored to alleviate the need for manual annotations, and has been
reported to be effective for training DL-based segmentation models for
highly conserved and predictable morphologies [e.g., ellipsoidal
nuclei (62, 63), or tubular vessel networks (63, 64)]. However, the
3D glandular networks of prostate tissues are highly irregular and
variable, making it challenging to computationally generate simulated
datasets. This complex and varied 3D morphology is also in part why
2D Gleason patterns may not be ideal for characterizing prostate
glands.

The ITAS3D pipeline is a general approach for the volumetric
segmentation of tissue structures (e.g., vasculature/endothelial cells,
neurons, collagen fibers, lymphocytes) that can be immunolabeled
with high specificity and that are also discernable to a deep-learning
model when labeled with small-molecule stains like our H&E
analogue or similar covalent stains (65). ITAS3D obviates the need
for tedious and subjective manual annotations and, once trained,
eliminates the requirement for slow/expensive antibody labeling of
thick tissues (Fig. 1). The 2.5D segmentation approach employed in
ITAS3D (i.e., image-sequence translation) offers an attractive com-
promise between computational speed/simplicity and accuracy for
3D objects that are relatively continuous in space (e.g., prostate
glands). Details regarding 2.5D versus 3D image translation are
provided in Supplementary Note S2 and Supplementary Table S4.
In addition, a video summary of our ITAS3D-enabled gland-
segmentation approach for prostate cancer assessment is provided
in Supplementary Video S7. Note that in this specific implemen-
tation of ITAS3D, intermediate images are synthetically generated
to mimic an THC stain (CK8) that is routinely used by genitourinary

Cancer Res; 82(2) January 15, 2022

34

220z Aenugad Lz uo Jesn 31NLILSNI ¥3FONVO ¥3AGHVH YNVA Ad Jpd vE€/286810€/vEE/2/28/Pd-ajoue/Sa1180UBd/BI0"S|euINoloe.)/:d)y WOl papeojumoq



Xie et al.

pathologists. Therefore, it has the added advantage of enabling
intuitive troubleshooting and facilitating clinical acceptance of our
computational 3D pathology approach. A limitation of our imple-
mentation of ITAS3D is that the tissues used to train our deep-
learning image-sequence translation modules were predominantly
from Gleason pattern 3 and 4 regions, as well as benign regions. The
reason for this was that the Canary TMA case-cohort study from
which we derived our tissue specimens mainly consisted of low- to
intermediate-grade (i.e., pattern 3 and 4) patients. In the future,
improved ITAS3D performance over a wider range of prostate
cancer grades would be facilitated by a more-diverse set of training
specimens.

In this initial clinical study, we have intentionally avoided
comparing our method with extant risk classifiers or nomograms
that incorporate parameters based on human interpretation of 2D
histopathology images [e.g., Kattan (66), CAPRA (67), and Canary-
PASS (68)]. Rather, our goal has been to demonstrate the basic
feasibility and value of 3D pathology by providing a direct com-
parison of intuitive 3D versus 2D glandular features analyzed
computationally. A direct comparison of computational 3D pathol-
ogy versus computational 2D pathology allows us to avoid the
challenging variability and subjectivity of human interpretation. A
human-observer study would require much-larger patient cohorts
and a large panel of pathologist observers to account for inevitable
interobserver variabilities. Nonetheless, to encourage the clinical
adoption of 3D pathology methods, such large-scale studies will be
necessary in the future, including prospective randomized studies
on active surveillance versus curative therapies for low- to inter-
mediate-risk patients (e.g., the PROTECT study; ref. 69), as well as
studies to demonstrate the ability of computational 3D pathology to
predict the response of individual patients to specific treatments
such as androgen deprivation and both neoadjuvant and adjuvant
chemotherapy. For completeness, in Supplementary Table S5, we
provide Gleason scores for the 118 cancerous biopsies based on
single-pathologist review (N.P. Reder) of whole-biopsy 3D pathol-
ogy datasets with level-by-level examination of all 2D planes.

When trained with large numbers of images/cases and an optimal
set of histomorphometric features, computational 2D pathology
(based on whole slide images) has already been shown to be highly
prognostic (21, 70-72). The goal of our study is not to suggest
otherwise, but to provide early evidence of the additional prognostic
value that 3D pathology can provide. The metrics presented in this
study (Fig. 4) are intended to be comparative in nature (between
computational 3D vs. 2D pathology) rather than regarded as definitive
figures from a large prospective study. Our results show clear improve-
ments in risk stratification based on 3D glandular features, both
individually and in combination (Fig. 4B-I). As mentioned, the added
prognostic value of 3D pathology is due in part to the significantly
increased microscopic sampling of specimens (e.g., whole biopsies vs.
sparse tissue sections). In addition, there are a number of advantages of
3D pathology datasets for computational analyses: (i) more-reliable
segmentation of tissue structures due to the ability to leverage out-of-
plane information (e.g., through continuity constraints) (ii); the ability
to quantify tissue structures more accurately in 3D while avoiding 2D
artifacts (73, 74), and (iii) the ability to extract novel prognostic
features that cannot be derived from 2D tissue sections (e.g., gland-
skeleton features).

As future work, ITAS3D can be used for the extraction and
analysis of other 3D features (e.g., nuclear features, vascular fea-
tures, and stromal features) to develop powerful classification
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models based on multiple morphologic primitives for a variety of
tissue types. Annotation-free ITAS3D segmentation results, once
available in sufficient quantities, can also be used to train end-to-
end DL-based segmentation methods that bypass the image-
translation step within ITAS3D. In the context of prostate cancer,
studies are underway to identify additional prognostic 3D features
based on our unique 3D-pathology datasets. A tiered approach to
analyzing prostate cancer glandular features could be useful, such as
first identifying broad classes of glandular morphologies (e.g.,
cribriform glands) and then analyzing class-specific features, as
has been suggested in recent studies based on 2D whole-slide images
of prostate cancer (70). Future studies should also aim to combine
computational 3D pathology with patient metadata, such as radio-
mics, genomics, and electronic health records, to develop holistic
decision-support algorithms (18). Nonetheless, as an initial step
towards these goals, the results of this study, as enabled by the
ITAS3D computational approach, provide the strongest evidence to
date in support of the value of computational 3D pathology for
clinical decision support, specifically for patients with low- to
intermediate-risk prostate cancer.
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