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Overall Survival with Adjuvant Pembrolizumab
in Renal-Cell Carcinoma
Choueiri TK etal. DOL 10.1056/NEJMoa2312695

CUNKCAL PROBLEM

The anti-programmed death 1 antibody pembrolizemab
was approved by the Food and Drug Administration as
adjuvamt therapy after surgery for renal-cell carcinoma on
the basis of improvements in disease-free survival observed
in the KEYNOTE-564 trial. Data on overall survival are
needed,

CUNICAL TRIAL
Design: The phase 3, double-blind, randomized, placebo-
controlled KEYNOTE-564 trial examined the efficacy and
uiﬂyd'pemhnizm im patients who were discase-

free g to after surgery MR for death, 062 5% C10.64-03
for clear-cell renal-cell carcinoma. iiaa
100 D —
tion: 994 p who had und sur- 2

suymlbcpmhnl!w«knudhdanuxm«l ‘é ® H
risk of recurrence were assigned to receive intravenous ¢ H
pembrolizumab (200 mg) or placebo every 3 weeks for J e
up to 17 cycles. The key secondary end point was overall k- H
survival. (As noted, discase-free survival, the primary end B @1
peint, was reported previously) £ !

i » !
" °6 n B » :l “w n
Efficacy: At the third interim analysis, after 2 median fol- Monhe
low-up of 57.2 menths, overall survival was significantly

improved with pembeoli b as compared with placebo, Adverse Events

Safety: Serious adverse events, grade 3 or 4 adverse events
related 1o pembrolizamab or placebo, and discontinua-
tions of pembrolizumab or placebo due to adverse events
occurred more often in the pembreolizumab grosp.

\ AND @

® Some key subgroups (e.g., participants with high-risk
stage MO discase) had small sample sizes and num-
bers of deaths. In addition, subgroup analyses were
hypothesis-generating, given that no formal statistical
testing was planned. Adverse Lvert

® Additional data are needed to determine key consider-
ations for the selection of subsequent systemic therapy
in patients who have recurrence with distant metasta:
sis after receiving adjuvant p li b

Percentage of Paticpants

I - I I =)

Dricontevuston Due to S«m\ Adverse Grade 3 or 4 Adverse
Lvent Related 10 Regimen

Links: Full Article | NEJM Quick Take | Ediorial

Data Sharing Statement

Choueiri TK, Tomczak P, Park SH, et al. Overall Survival with Adjuvant Pembrolizumab in Renal-
Cell Carcinoma. N Engl J Med. DOI: 10.1056/NEJM0a2312695.

Question

Authors’ Response

Will the data collected for your
study be made available to others?

Yes

Would you like to offer context for
your decision?

Which data?

Complete de-identified patient data set. Other (eg,
partial data sets) — please describe

Additional information about data

How or where can the data be
obtained?

Merck & Co., Inc.’s data sharing policy, including
restrictions is available at :
http://engagezone.merck.com/ds_documentation.php.
Requests for access to the clinical study data can be
submitted thru the Engage Zone site or via email to:
dataaccess@merck.com

When will data availability begin?

Beginning Date: After product approval in US and EU or
after product development is discontinued

When will data availability end?

End Date:

Will any supporting documents be
available?

Which supporting documents?

Additional information about
supporting documents

How or where can supporting
documents be obtained?

When will supporting documents
availability begin?

Beginning Date:

When will supporting documents
availability end?

End Date:

To whom will data be available?

Qualified scientific researchers

For what type of analysis or
purpose?

Scientific purpose outlined in a proposal

By what mechanism?

After researcher enters into a standard data sharing
agreement and the proposal is approved.

Any other restrictions?

Researchers must commit to transparency in
publication
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ARTICLE OPEN

Deep representation learning of tissue metabolome and
computed tomography annotates NSCLC classification and
prognosis

Marc Boubnovski Martell’, Kristofer Linton-Reid’, Sumeet Hindocha®, Mitchell Chen (3, Paula Moreno™”, Marina Alvarez-Benito™’,
Angel Salvatierra®®, Richard Lee (7, Joram M. Posma (', Marco A. Calzado™™ and Eric O. Aboagye ('™

The rich chemical information from tissue metabolomics provides a p: il means to elab ﬁssue logy or lunor
characteristics at cellular and tumor mic i levels. Hi the process of obtainmg suchi

biopsies, is costly, and can delay dinical pati g G ly, ¢ graphy (CT) is a clinical standatd of cate
but does not intuitively harbor histological or prognostic inf ion. Furth , the ability to embed metaboll

into CT to subsequently use lhe leamed reptesentatlon for classification or prognosis has yet to be described. This study develops a
deep | based fr. ic-radiomic-CT (TMR-CT) by combining 48 paired CT images and tumor/normal
tissue metaholite intensities to genetate ten image gs to infer bolite-derived rep i from CI' alone In
clinical NSCLC settings, we ascertain whether TMR-CT results in an enhanced f g i model lving
dassaﬁcaﬁon/ptognosns tasks in an unseen international CT d of 742 p TMR-CT nor ively d h:suologncd
classes - ad arc q cell carcinoma with an F1-score = 0.78 and further asserts patlents’ prognosis with a ¢
index = 0.72, surpassing the performance of radiomics models and deep | g on single modality CT feature extraction.
Additionally, our work shows the p ial to g infi ive biology-i .,,' d CT-led fi to explore connections
between hard-to-obtain tissue metabolic profiles and routine lesion-derived image data.

npj Precision Oncology (2024)8:28; https://doi.org/10.1038/541698-024-00502-3

~ Build RF for classification
9 of subtype and
 survival

Generating Deep Features 9
Paired CT sz2ns and tssue Test stability nadule

metzbolo |r.s(lramenr.ndcr} . o L beddi
W HiH mm T @
e O
i 11| @

fUNRS n-la]

Feature stability n El‘?g‘
Test stability nodule embedding = N

RIDEX (r=32)

Nodule
embedding

-...

IO v.§

5..04.0

" l

Tasks

LI AD Sw 1} Subtype
i i I ‘/ 2} Survival

Inter-readur
wariztion

Tust-retest

Histology subtype & Prognosis
CT seans and clinical (Lrain + wa| AT| @

mE--
@)

CT scans and clinical (tast RF)

REN (n=3210)
+ (CTH = 203)
() Gstrin-125) T

B i

Fig. 1 Study workflow. a Dataset collection for g g deep fi | g feature stability, histology subtype classification and
prognosis. b The DPCCA model is used to find a Shared latent space between the CT scans and metabolomics. An enlarged version of this
mndal ic chaum with tha numla hav hinhlinhtina tha cartinn inm TMRCT In thic madal ¥ ¥ ic tha arininal




Cancer Treatment Reviews 125 (2024) 102721
Contents lists available at ScienceDirect

Cancer Treatment Reviews

ELSEVIER

journal homepage: www.alsevier.com/locate/ctrv

Controversy
If it's a target, it's a pan-cancer target: Tissue is not the issue

Jacob J. Adashek ™, Shumei Kato ", Jason K. Sicklick "“*“, Scott M. Lippman ",
Razelle Kurzrock "%~

* Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital Baltimore, MD, USA
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Risk-benefit trade-offs and precision

Article reuse guidelines:

utilities in phase |-l clinical trials tx9pb comfournalearmssions

DOL 10 1IT7/17407745231214750
jourmly. sagepub comomelcty

S Sage

Pavlos Msaouel''23, Juhee Lee® and Peter F Thall*

FAUDLT aLL

Background: |dentifying optimal doses in early-phase clinical trials is critically important. Therapies administered at doses
that are either unsafe or biologically ineffective are unlikely to be successful in subsequent clinical trials or to obtain regula-
tory approval. Identifying appropriate doses for new agents is a complex process that involves balancing the risks and bene-
fits of outcomes such as biological efficacy, toxicity, and patient quality of life. Purpose: While conventional phase | trials
rely solely on toxicity to determine doses, phase I-ll trials explicitly account for both efficacy and toxicity, which enables
them to identify doses that provide the most favorable risk-benefit trade-offs. It is also important to account for patient
covariates, since one-size-fits-all treatment decisions are likely to be suboptimal within subgroups determined by prognos-
tic variables or biomarkers. Notably, the selection of estimands can influence our conclusions based on the prognostic sub-
group studied. For example, assuming monotonicity of the probability of response, higher treatment doses may yield more
pronounced efficacy in favorable prognosis compared to poor prognosis subgroups when the estimand is mean or median
survival. Conversely, when the estimand is the 3-month survival probability, higher treatment doses produce more
pronounced efficacy in poor prognosis compared to favorable prognosis subgroups. Methods and Conclusions: Herein,
we first describe why it is essential to consider clinical practice when designing a clinical trial and outline a stepwise process
for doing this. We then review a precision phase I-ll design based on utilities tailored to prognostic subgroups that
characterize efficacy-toxicity risk-benefit trade-offs. The design chooses each patient’s dose to optimize their expected
utility and allows patients in different prognostic subgroups to have different optimal doses. We illustrate the design with a
dose-finding trial of a new therapeutic agent for metastatic clear cell renal cell carcinoma.
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Single Cell Atlas: a single-cell multi-omics 2

human cell encyclopedia

Lu Pan’, Paolo Parini®?, Roman Tremmel*®, Joseph Loscalzo®, Volker M. Lauschke®*”,
Bradley A. Maron®, Paola Paci®, Ingemar Ernberg®, Nguan Soon Tan'®'", Zehuan Liao'%?, Weiyao Yin',
Sundararaman Rengarajan’? and Xuexin Li'*'*'® on behalf of The SCA Consortium
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Single-cell sequencing datasets are key in biology and medicine for unraveling insights
into heterogeneous cell populations with unprecedented resolution. Here, we con-
struct a single-cell multi-omics map of human tissues through in-depth characteriza-
tions of datasets from five single-cell omics, spatial transcriptomics, and two bulk omics
across 125 healthy adult and fetal tissues. We construct its complement web-based
platform, the Single Cell Atlas (SCA, wwwisinglecellatlas.org), to enable vast interactive
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data exploration of deep multi-omics signatures across human fetal and adult tissues. $ O i
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PERCEPTION predicts patient response and
resistance to treatment using single-cell
transcriptomics of their tumors

Received: 20 June 2023

Accepted: 8 March 2024

Published online: 18 April 2024

® Check for updates

Sanju Sinha®'"*” , Rahulsimham Vegesna'”, Sumit Mukherjee @',

Ashwin V. Kammula ®'?, Saugato Rahman Dhruba®’, Wei Wu®”,

D. Lucas Kerr @, Nishanth Ulhas Nair @', Matthew G. Jones***’, Nir Yosef**,
Oleg V. Stroganov®, lvan Grishagin®’, Kenneth D. Aldape ®*°,

Collin M. Blakely ®*", Peng Jiang @', Craig J. Thomas ®*?, Cyril H. Benes ®*,
Trever G. Bivona ®*"'**, Alejandro A. Schiffer ®' & Eytan Ruppin®’

Tailoring optimal treatment for individual cancer patients remainsa

fi chall Toadd thisissue, we developed PERCEPTION
(PERsonalized Single-Cell Expression-Based Planning for Treatments In
ONcology), a precision oncology computational pipeline. Our approach
uses publicly available matched bulk and single-cell (sc) expression profiles
from large-scale cell-line drug screens. These profiles help build treatment
response models based on patients’ sc-tumor transcriptomics. PERCEPTION
di success inpredicting resp totargetedth iesin
cultured and patient-tumor-derived primary cells, as well as in two clinical
trials for multiple myeloma and breast cancer. It also captures the resistance
developmentin patients with lung cancer treated with tyrosine kinase
inhibitors. PERCEPTION outperforms published state-of-the-art sc-based
and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible
athttps://github.com/ruppinlab/PERCEPTION. Our work, showcasing
patient stratification using sc-expression profiles of their tumors, will
encourage the adoption of sc-omics profiling in clinical settings, enhancing
precision oncology tools based on sc-omics.
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IN FOCUS

- - . - . -
A Vision for Democratizing Next-Generation _\} :
Oncology Clinical Trials 2 —
Vivek Subbiah!, Denis Horgan?, and Ishwaria M. Subbiah’?

Summary: Revoluticnary advancements in oncelogy have transformed lives, but the clinical trials ecosystem
encounters challenges, including restricted access to innovative therapies and a lack of diversity in participant
representation. A vision emerges for democratized, globally accessible oncology trials, necessitating collabora-

tion ameng researchers, clinicians, patients, and policymakers to shift from converting complex, exclusive trials
into a dynamic, inclusive force against cancer.

Researchers Regulatory agencies Patients & caregivers

Clinicians Other health care Governments
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B 'Tc
Clinical trialists Patient advocates
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-
Accelerating Drug Development Using ‘_}> >
Spatial Multi-omics 2 ~
Richard J.A. Goodwin', Stefan J. Platz?, Jorge S. Reis-Filho?, and Simon T. Barry*

Summary: Spatial biclogy approaches enabled by innovations in imaging biomarker platforms and artificial intel-
ligence-enabled data integration and analysis provide an assessment of patient and disease heterogeneity at
ever-increasing resolution. The utility of spatial biology data in accelerating drug programs, however, requires
balancing exploratory discovery investigations against scalable and clinically applicable spatial biomarker analysis.
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Radiology

Data Extraction from Free-Text Reports on Mechanical
Thrombectomy in Acute Ischemic Stroke Using ChatGPT:
A Retrospective Analysis

Nils C. Lelmen, MD * Franziska Dorn, MD * ILabella C. Wiest, MD, MSc * Hanna Zimmermann, MD *
Alexander Radbruch, MD, JD + Jakob Nikolas Kather, MD, MSc * Daniel Paech, MD, PhD
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M Pr dural details of AT I E 1 ,in_ : with isch ic stroke are i p P 1 of dinical

and are collected for ive studies or national stroke registries. To date, these data are collected lly by h
md:n.:hhorinmlveuﬂtémhpmnwmn.

Purpose: Toenluautheunoﬁhzluplmemodds(llhb)GI’T—‘deP’TSSmamdanﬁomneumdiulosy
stroke.

p on fy m'hl 1 1
lﬁﬂdlﬁ 'ﬂm pective study included i from patients with ischemic stroke who underwent
3 2l oy N, 1 man‘l' 1 ms“ | o) 1andl < 1 2016“'4

December 2019 at i

" 2 Amofﬂmpomwdmopdmhduwﬂ&eabﬂhyofdu%mmpmodmﬂ

data from the reports was compared using the McNemar test. Data y d by an inter diologist served as
the reference standard.
Resslts: A total of 100 internal from 100 § (mean age, 74.7 years 2 13.2 [SDJ; 53 female) and 30 1 from

30pnbmts(mean%z.727ye=n:l§5.l8mak)m‘ duded. All reports were
2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8); permegory 61%—1%)&::poinnmcnnedyﬂn=a:d by GPT4
without the need for further postp With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than
did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%-99%; P < .001). For the external GPT-4 1760 of
840 (90.5% (95% ClI: 88.3, 92.4]) correct data entries, GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4; P < .001).

d by GPT-4 and GPT-3.5. Of

Geadusion:  Compared with GPT-3.5, GPT-4 more frequently d correct dural data from free-text reports on mechanical
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-~ patient age > 18 years
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Radiologist Workforce Changes: Going
Remote or Hybrid

Madison R. Kocher, MD, MBA, Christoph |. Lee, MD, MS, MBA



Advancing Precision Medicine: Algebraic Topology and Differential Geometry in
Radiology and Computational Pathology

Richard M Levenson'’, Yashbir Singh®", Bastian Rieck’, Quincy A. Hathaway®, Colleen
Farrelly®, Jennifer Rozenblit®, Prateek Prasanna’, Bradley Erickson®, Ashok Choudhary®,

Gunnar Carlsson’, Deepa Deepa'”
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CAP Laboratory Improvement Programs

Programmed Death Ligand-1 and Tumor Mutation
Burden Testing of Patients With Lung Cancer for
Selection of Immune Checkpoint Inhibitor Therapies

Guideline From the College of American Pathologists, Association for Molecular
Pathology, International Association for the Study of Lung Cancer, Pulmonary
Pathology Society, and LUNGevity Foundation

Lynette M. Sholl, MD; Mark Awad, MD, PhD; Upal Basu Roy, PhD, MS, MPH; Mary Beth Beasley, MD;
Richard Walter Cartun, PhD, MS; David M. Hwang, MD, PhD; Gregory Kalemkerian, MD; Fernando Lopez-Rios, MD, PhD;
Mari Mino-Kenudson, MD; Ajit Paintal, MD; Kearin Reid, MLS(ASCP), MUS; Lauren Ritterhouse, MD, PhD;
Lesley A. Souter, PhD; Paul E. Swanson, MD; Christina B. Ventura, MPH, MT(ASCP); Larissa V. Furtado, MD

Results.—Six recommendation statements
were developed.

Conclusions.—This guideline summarizes the
current understanding and hurdles associated
with the use of PD-L1 expression and TMB
testing for immune checkpoint inhibitor
therapy selection in patients with advanced
non—small cell lung cancer and presents
evidence-based recommendations for PD-L1
and TMB testing in the clinical setting.

Table 2. Summary of Guideline Statements

Guideline Statement

Strength of Recommendation

for treatment with ICls.

1. In patients with advanced NSCLC, pathologists should use a validated PD-L1 IHC expression assay, Strong recommendation
in conjunction with other targetable genomic biomarker assays where appropriate, to optimize selection

. Pathologists should ensure appropriate validation has been performed on all specimen types and fixatives.

Note: Specific validation requirements are out of the scope of this guideline, and laboratories should refer
to the Principles of Analytic Validation of Immunohistochemical Assays Guideline®” for details on how to
validate IHC specimens.

. When feasible, pathologists should use clinically validated PD-L1 IHC assays as intended.

. Pathologists who choose to use LDTs for PD-L1 expression should validate according to the requirements
of their accrediting body.

. Pathologists should report PD-L1 IHC results using a percentage expression score.

. Clinicians should not use tumor mutation burden alone to select patients with advanced NSCLC for
ICls, based on insufficient evidence in this population.

Conditional recommendation

Conditional recommendation
Strong recommendation

Conditional recommendation
Conditional recommendation

Abbreviations: ICls, immune checkpoint inhibitors; IHC, immunohistochemistry; LDTs, laboratory-developed tests; NSCLC, non-small cell lung
cancer; PD-L1, programmed death ligand-1.
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Tumor histoculture captures the dynamic
interactions between tumor and immune
components in response to anti-PD1 in
head and neck cancer
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Dynamic interactions within the tumor micro-environment drive patient
response to immune checkpoint inhibitors. Existing preclinical models lack
true representation of this complexity. Using a Head and Neck cancer patient
derived TruTumor histoculture platform, the response spectrum of 70
patients to anti-PD1 treatment is investigated in this study. With a subset of 55
patient samples, multiple assays to characterize T-cell reinvigoration and
tumor cytotoxicity are performed. Based on levels of these two response
parameters, patients are stratified into five sub-cohorts, with the best
responder and non-responder sub-cohorts falling at extreme ends of the
spectrum. The responder sub-cohort exhibits high T-cell reinvigoration, high
tumor cytotoxicity with T-cells homing into the tumor upon treatment
whereas immune suppression and tumor progression pathways are pre-
dominant in the non-responders. Some moderate responders benefit from
combination of anti-CTLA4 with anti-PD1, which is evident from better cyto-
toxic T-cell: T-regulatory cell ratio and enhancement of tumor cytotoxicity.
Baseline and on-treatment gene expression signatures from this study stratify
responders and non-responders in unrelated clinical datasets.
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DATASETS, BENCHMARKS, AND PROTOCOLS

CORAL: Expert-Curated Oncology Reports to
Advance Language Model Inference
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No current information representation schema fully
encapsulates the diversity of oncology information within
clinical notes, and no compre- hensively annotated oncology
notes exist publicly, thereby limiting a thorough evaluation.

By developing a comprehensive schema and benchmark of
oncology- specific information in oncology notes, we uncovered
both the strengths and the limitations of LLMs. Our evaluation
showed variable zero-shot extraction capability among the GPT-
3.5-turbo, GPT-4, and FLAN-UL2 models and highlighted a need
for further improvements, particularly in complex medical
reasoning, before perform- ing reliable information extraction
for clinical research and complex population management and
documenting quality patient care
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The clinician-Al interface: intended use

and explainability in FDA-cleared Al

devices for medical image interpretation

" Check for updates

Stephanie L. McNamara', Paul H. Yi®* & William Lotter @ ***

As applications of Al in medicine continue to expand, there is an increasing focus on integration into
clinical practice. An underappreciated aspect of this clinical translation is where the Al fits into the
clinical workflow, and in turn, the outputs generated by the Al to facilitate clinician interaction in this
workflow. For instance, in the canonical use case of Al for medical image interpretation, the Al could
prioritize cases before clinician review or even autonomously interpret the images without clinician
review. A related aspect is explainability — does the Al generate outputs to help explain its predictions
to clinicians? While many clinical Al workflows and explainability techniques have been proposed, a
summative assessment of the current scope in clinical practice is lacking. Here, we evaluate the
current state of FDA-cleared Al devices for medical image interpretation assistance in terms of
intended clinical use, outputs generated, and types of explainability offered. We create a curated
database focused on these aspects of the clinician-Al interface, where we find a high frequency of
“triage” devices, notable variability in output characteristics across products, and often limited
explainability of Al predictions. Altogether, we aimto increase transparency of the current landscape of
the clinician-Al interface and highlight the need to rigorously assess which strategies ultimately lead to
the best clinical outcomes.

Fig. 1 | Overview of types of FDA-cleaared CAD
products and their integration into medical image
interpretation workflows. CAD types vary
according to their outputs and place within the
clinical workflow. CAD! (triage) devices are
designed to flag cases for prioritized review and do
not place marks on the image. CADe (detection)
devices mark regions of interest to aid in the detec-
tion of lesions as a dlinician is interpreting an exam.
CADx (diagnosis) devices are designed to aid in
diagnosis, such as by outputting a score or category,
bat do not explicitly detect lesions across the exam.
CADe/x {detection & diagnosis) devices provide
both detection and diagnosis support. Finally, an
autonomous system, which we denote as CADa,
aims to automatically interpret the exam without
dlinician input.
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Interpretation
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Description
Flag suspicious cases for prioritized review
Mark suspicious regions to aid in detection
Score or categorize to aid in diagnosis
Mark and scorel/categorize to aid in detection and diagnosis
Automatically interpret image without cliniclan input
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Guardrails for the use of

generalist Alin cancer care

Stephen Gilbert & Jakob Nikolas Kather

Artificial narrow intelligence models, trained
forspecificintended purposes, have gained
approval and recommendation for cancer
treatment. Generalist medicial artificial
intelligence (GMAI) models are now being
developed for cancer treatment. Policy makers
have astark choice: radically adapt frameworks,
block generalist approaches or force themonto
narrower tracks.
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Fig. 1| The spectrum of technologies for clinical decision support, classified
as device or non-device for regulatory purposes. The spectrum displayed

as a horizontal bar shows the range of approaches from pre-machine learning
toartificial narrow intelligence, and finally to generalist medical artificial
intelligence (GMAI). Approaches possible within current compliance frameworks
areshowningrey and those that are likely excluded are shownin red. Al, artificial
intelligence; CDS, clinical decision support. L. Crow/Springer Nature Limited.
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The antibody-drug conjugate
landscape

By Patrick Flynn, Smruthi Suryaprakash, Dan Grossman, Val Panier & John Wu &
vy f

To explore the impact of next-generation ADC
technology on these challenges, we
investigated innovation in the ADC clinical
pipeline across five design levers — target,
payload MoA, antibody, linker and conjugation
method — and assessed the likelihood for
expanding the addressable indications or
widening the therapeutic window of ADCs.
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Fig. 1| Assessment of ADCs in clinical development. Innovation across specific design levers used
in clinical assets. The top 10 targets and technologies for each lever are shown. Ab, antibody; ADC,
antibody-drug conjugate; IgG, immunoglobulin. See Supplementary information for details and an
expanded version.



Precision needle-punch tumor
enrichment from paraffin blocks
improves the detection of
clinically actionable genomic
alterations and biomarkers
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FIGURE 1

Overview of pathologist-directed, precision needle punch enrichment (NPE), a quality-controlled process.
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Precision Enrichment Real-World Experience Pan-F1CDx. (A) Overall enrichment rates in real-world samples (NPE + RBE) for FFPE blocks received
from 2018-2022 (N = 185,203). (B) Tissue Insufficient For Analysis (TIFA) rates in real-world samples (FFPE Blocks + Slides) before and after
implementation of NPE. (C) Reporting status rates in real-world samples (FFPE Blocks + Slides) before and after implementation of NPE. Yield Loss =
Unsuccessful Samples + TIFA. Approximate date of NPE implementation is denoted by a needle icon. NPE, Needle Punch Enrichment; RBE, Razor-
Blade Macro-Enrichment.
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Extracting interpretable features
for pathologists using weakly
supervised learning to predict p16
expression in oropharyngeal cancer

Masahiro Adachi'?, Tetsuro Taki’, Naoya Sakamoto’?, Motohiro Kojima®?, Akihiko Hirao?,
Kazuto Matsuura*, Ryvichi Hayashi®, Keiji Tabuchi?, Shumpei Ishikawa**, Genichiro Ishii** &
Shingo Sakashita™*""

One drawback of existing artificial intelligence (Al)-based histopathological prediction models is the
lack of interpretability. The objective of this study is to extract p16-positive oropharyngeal squamous
cell carcinoma (OPSCC) features in a form that can be interpreted by pathologists using Al model. We
constructed a model for predicting p16 expression using a dataset of whole-slide images from 114
OPSCC biopsy cases. We used the clustering-constrained attention-based multiple-instance learning
(CLAM) model, a weakly supervised learning approach. To improve performance, we incorporated
tumor annotation into the model (Annot-CLAM) and achieved the mean area under the receiver
operating characteristic curve of 0.905. Utilizing the image patches on which the model focused,

we examined the features of model interest via histopathologic morphological analysis and cycle-
consistent adversarial network (CycleGAN) image translation. The histopathologic morphological
analysis evaluated the histopathological characteristics of image patches, revealing significant
differences in the numbers of nuclei, the perimeters of the nuclei, and the intercellular bridges
between pl16-negative and p16-positive image patches. By using the CycleGAN-converted images,
we confirmed that the sizes and densities of nuclei are significantly converted. This novel approach
improves interpretability in histopathological morphology-based Al models and contributes to the
advancement of clinically valuable histopathological morphological features.

CLAM with Annotation (Annot-CLAM) model

WSI with Tumor Annotation WSI Patching Patch Features

s —
O ) L]

Attention Backbone ‘ Attention Slide Level
+ Pooling Prediction

Attention Branches

Interpretable Feature Extraction

Pathological Reviewing CycleGAN

* EBCH

Pathological Feature Extraction  Feature Converted Image

Figure 1. Overview of the study The Annot-CLAM model, a version of the CLAM model modified to use
annotated ROIs, was applied. Two analysis approaches were used to interpret the features that the prediction
model focused on.
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Non-small cell lung carcinomas (NSCLCs) commonly present as 2 or more separate tumors. Bio-
logically, this encompasses 2 distinct processes: separate primary lung carcinomas (SPLCs), repre-
senting independently arising tumors, and intrap vy (IPMs), rep ing
intrapulmonary spread of a single tumor. The advent of ¢ hy i has sub-

ially increased the detection of multifocal NSCLCs. The strategies and approaches for dis-

Keywords:

clonality tumor relatedness
comparative molecular profiling
intrapulmonary metastasis
next-generation sequencing
separate primary lung carcinoma

tinguishing between SPLCs and [PMs have evolved significantly over the years. Recently, genomic
sequencing of somatic mutations has been widely adopted to identify targetable alterations in
NSCLC. These molecular techniques have enabled pathologists to reliably discern clonal relation-
ships among multiple NSCLCs in clinical practice. However, a standardized approach to evaluating
and staging multiple NSCLCs using molecular methods is still lacking. Here, we reviewed the his-
torical context and provided an update on the growing applications of genomic testing as a clinically
relevant benchmark for determining clonal relationships in multiple NSCLCs, a practice we have
designated “comparative molecular profiling” We examined the strengths and limitations of the
morphology-based distinction of SPLCs vs IPMs and highlighted pivotal clinical and pathologic in-
sights that have emerged from studying multiple NSCLCs using genomic approaches as a gold
standard. Lastly, we suggest a practical approach for evaluating multiple NSCLCs in the clinical
setting, considering the varying availability of molecular techniques.
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Quantitative measurement of HER2 expression to subclassify

ERBB2 unamplified breast cancer

Myrto Moutaﬁ” Charles J. Robbins', Vesal Yaghoobi', Aileen I. Fernandez', Sandra Martinez-Morilla', Vasiliki Xirou', Yalai Bai’,
Yan Song', Patricia Gaule', Joseph Krueger®, Kenneth Bloom?, Salisha Hill*, Daniel C. Liebler®, Regan Fulton® and David L. Rimm (3

© The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2022

The efficacy of the antibody drug conjugate (ADC) Trastuzumab deruxtecan (T-DXd) in HER2 low breast cancer patients suggests
that the historical/conventional assays for HER2 may need revision for optimal patient care. Specifically, the conventional assay is
designed to distinguish amplified HER2 from unamplified cases but is not sensitive enough to stratify the lower ranges of HER2
| dy ic range for plified HER2 detection in breast cancer and then redesign an

expression. Here we determine the opti
assay to increase the resolution of the assay to stratify HER2 expression in unamplified cases. We used the AQUA™ method of

quantitative inmunofluorescence to test a range of antibody conc ions to imize the sensitivity within the lower range of
HER2 expression. Then, using a cell line microarray with HER2 protein measured by mass spectrometry we determined the amount
of HER2 protein in units of Is/mm?. Then by calculation of the limits of detection, quantification, and linearity of this assay we
determined that low HER2 range expression in unamplified cell lines is between 2 and 20 attomol/mm?. Finally, application of this
assay to a serial collection of 364 breast cancer cases from Yale shows 67% of the population has HER2 expression above the limit of
quantification and below the levels seen in HER2 amplified breast cancer. In the future, this assay could be used to determine the

levels of HER2 required for response to T-DXd or similar HER2 conjugated ADCs.

Laboratory Investigation (2022) 102:1101-1108; https://doi.org/10.1038/541374-022-00804-9
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Fig. 1 Schematic overview of the low HER2 assay. Cell lines with a range of HER2 expression, as quantified by LC-MS/MS are used to
generate a cell microarray (CMA) standard Determination of the cell area in mm?, allows the transformation of the HER2 expression from
amol/ug of total protein to amol/mmZ The CMA is stained using different primary anti-HER2 antibody concentrations and the Limit of
Detection (LOD)/ Limit of quantification (LOQ) and Limit of Linearity (LOL) are identified. Linear regressmn analysis between AQUA Score and
amol/mm? allows for the generation of a standard curve that can be used to calculate HER2 expressmn in amol/mm? on a tissue area basis.
Breast cancer tissue is stained and analyzed by AQUA. After analysis, HER2 expression/case is quantified by amol/mm?. Liquid
Chromatography (LC) with tandem mass spectrometry, LC-MS/MS; Cell MicroArray, CMA; Tissue MicroArray, TMA; Immunofluorescence, IF;
Automated Quantitative Analysis, AQUA; Cytokeratin, CK.
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Epigenetically upregulating TROP2 and SLFN11 enhances
therapeutic efficacy of TROP2 antibody drug conjugate
sacitizumab govitecan

Ming Zhao (D', Timothy P. DiPeri’, Maria Gabriela Raso (%, Xiaofeng Zheng”, Yasmeen Qamar Rizvi', Kurt W. Evans’, Fei Yang’,
Argun Akcakanat', Marco Roberto Estecio”, Debu Tripathy (2, Ecaterina E. Dumbrava', Senthil Damodaran® and
Funda Meric-Bernstam (' *

TROP2 antibody drug conjugates (ADCs) are under active development. We seek to determine whether we can enhance activity of
TROP2 ADCs by increasing TROP2 expression. In metaplastic breast cancers (MpBC), there is limited expression of TROP2, and
downregulating transcription factor ZEB1 upregulates E-cad and TROP2, thus sensitizing cancers to TROP2 ADC sacituzumab
govitecan (SG). Demethylating agent decitabine decreases DNA methyltransferase expression and TROP2 promoter methylation
and subsequently increases TROP2 expression. Decitabine treatment as well as overexpression of TROP2 significantly enhance SG
antitumor activity. Decitabine also increases SLFN11, a biomarker of topoisomerase 1 inhibitor (TOP1) sensitivity and is synergistic
with SG which has a TOP1 payload, in TROP2-expressing SLFN11-low BC cells. In conclusion, TROP2 and SLFN11 expression can be
epigenetically modulated and the combination of demethylating agent decitabine with TROP2 ADCs may represent a novel
therapeutic approach for tumors with low TROP2 or SLFN11 expression.
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Fusobacterium nucleatum (Fn), a bacterium presentin the human oral cavity and
rarely found in the lower gastrointestinal tract of healthy individuals', is enriched

in human colorectal cancer (CRC) tumours® °. High intratumoural Fn loads are
associated with recurrence, metastases and poorer patient prognosis' * Here, to
delineate Fn genetic factors facilitating tumour colonization, we generated closed
genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55
unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic
analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains
predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses
reveal that Fna, considered a single subspecies, isinstead composed of two distinct
clades (Fna Cland Fna C2). Of these, only Fna C2 dominates the CRC tumour niche.
Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with
increased metabolic potential and colonization of the gastrointestinal tract. In
supportof this, Fna C2-treated mice had an increased number of intestinal adenomas
and altered metabolites. Microbiome analysis of human tumour tissue from 116
patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired
specimens showed that only Fna C2 is tumour enriched compared to normal
adjacent tissue. This was further supported by metagenomic analysis of stool
samples from 627 patients with CRC and 619 healthy individuals. Collectively, our
results identify the Fna clade bifurcation, show that specifically Fna C2 drives the
reported Fn enrichment in human CRC and reveal the genetic underpinnings of
pathoadaptation of Fra C2 to the CRC niche.
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Tissue-specific genetic variation suggests distinct
molecular pathways between body shape phenotypes
and colorectal cancer
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Emma Fontvicillo’, Julian Konmk’, Kostas K. Tsilidis"', Sofia Chrishkoudi"’, Anna Jansana',
Reynalda Cordova"", Patricia Bohrnann’, Michael J. Snin’, Andrea Weber®, Stéphane Bézieau'’,
Hermann Brenner'>">'%, Andrew T. Chan'®, lona Cheng', Jane C. Figueiredo'’,
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It remains unk heth diposity subtypes are differentially associated with colorectal cancer (CRC). To
move beyond single-trait anthropometrlc indicators, we derived four multi-trait body shape phenotypes reflect-
ing adiposity subtypes from principal components analysis on body mass index, height, weight, waist-to-hip ratio,
and waist and hip circumference. A generally obese (PC1) and a tall, centrally obese (PC3) body shape were both
positively associated with CRC risk in observational analyses in 329,828 UK Biobank participants (3728 cases). In
genome-wide association studies in 460 198 UK Biobank participants, we identified 3414 genetic variants across
four body shapes and Mendeli i lyses confirmed positive associati of PC1 and PC3 with
CRC risk (52,775 cases/45,940 controls from GECCO/CORECT/CCFR). Braln tissue-specific genetic instruments,
mapped to PC1 through enrichment analysis, were responsible for the relationship between PC1 and CRC, while
the relationship between PC3 and CRC was predominantly driven by adipose tissue-specific genetic instruments.

This study suggests distinct putative causal pathways b posity subtypes and CRC.
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Figure S16. Extended directed acyclic graph (DAG) depicting the d causal relati
shape phenotypes and colorectal cancer risk with its confounding and mediating paths.
Socioeconomic factors: age, sex, recruitment center, the Townsend deprivation index, and education; ethnicity:
White, Mixed, Asian/British Asian, Black/Black British, Chincse, other; lifestyle factors: tobacco smoking, physical
activity, scdentary behavior, adherence to a healthy dict score, milk intake, alcohol intake frequency; medication
use: nonsteroidal anti-inflammatory drugs (NSAID) and hormone therapy in postmenopausal women; bowel cancer
screening, and family history of colorectal cancer (father and/or mother).

p between body

We did not adjust for comorbidities such as type 2 diabetes, because we assumed that in the pathway from body
shapes to colorectal cancer this comorbidity would rather be a mediator than a confounder.

Unmeasured (known) confounders: inflammatory bowel syndrome and Lynch syndrome. Both phenotypes are
difficult to diagnose clinically and data availability in the UK Biobank is therefore limited. However, as indicated in
the DAG, we assumed that the confounding paths for both phenotypes arc at lcast partly blocked by accounting for
family history of colorectal cancer.



Understanding the Financial Aspects of Digital Pathology: A Dynamic Customizable Return on
Investment Calculator for Informed Decision-Making

Orly Ardon*', PhD MBA; Sylvia L. Asa’ MD, Mark C. Lloyd®, Giovanni Lujan® MD, Anil Parwani' MD PhD
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Cost savings/avoidance

Cost avoidance by using digital workflow

Table 4: Categories used for return-on-investment calculations. Cost avoidance for FS digital workflow
Cost avoidance for ROSE digital workflow

Costs Cost avoidance for Consult workflow

Annual cost pathologists Cost avoidance for clinical digital workflow

. " Cost avoidance for glass slide storage
Cost to generate stained glass slides per year Vol e q

Cost avoidance glass slide retrieval

Cost for FS d'gltal workflow Cost avoidance educational recuts
Cost for ROSE digital workflow Cost savings conferences (personnel time)

Cost Pathol Ogi st workstation Cost savings Case Review & Collaboration
Cost avoidance Legal

Cost for clinical digital workflow Revenue

Costs for information technology to support digital workflow Additional consultation practice

Costs for digital storage Data commercialization

Computer assisted quantification reimbursement

Future CPT reimbursement
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Abstract

BACKGROUND Artificial intelligence (Al) is a burgeoning technological advancement,
with considerable promise for influencing the field of medicine. As a preliminary step
toward integrating Al into medical practice, it is imperative to ascertain whether model



Events

Next steering
committee
meeting

May 29t 2024
at
3:00PM
(EST)




HOW STANDARDS PROUFERATE:
(SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

14?! RIDICULOLS! SOON:
WE NEED To DEVELOP
.|| ONE UNIVERsAL STANDARD ,
SITUATION: || T covers evervongs | | STTUATION:
IHERE ARE USE CASES.  ienu THERE ARE

|4 COMPETING |5 COMPETING

STANDPRDS. \Cﬁ %) STANDPRDS.

Source: xkcd



