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SUMMARY

A schematic of a biological system, i.e., a representation of its pieces, how they are combined, and what they
do, would facilitate understanding its essential organization and alteration in pathogenesis or evolution. We
present a computational approach for constructing tissue schematics (TSs) from high-parameter imaging
data and a biological model for interpreting them. TSs map the spatial assembly of cellular neighborhoods
into tissue motifs, whose modular composition, we propose, enables the generation of complex outputs.
We developed our approach in human lymphoid tissue (HLT), identifying the follicular outer zone as a poten-
tial relay between neighboring zones and a core lymphoid assembly with modifications characteristic of each
HLT type. Applying the TS approach to the tumor microenvironment in human colorectal cancer identified a
higher-order motif, whosemutated assembly was negatively associatedwith patient survival. TSsmay there-
fore elucidate how immune architectures can be specialized and become vulnerable to reprogramming by
tumors.

INTRODUCTION

It is a tenet of evolution that prior evolutionary success can be re-

purposed for variations on function or for the creation of new

functions. Thus, one expects there to be repeating units of archi-

tecture serving similar purposes in multiple tissue types and dis-

ease contexts. However, it is less clear the extent to which such

units combine to generate more complex ones and how this

assembly contributes to tissue biology and pathology.

We present here ‘‘tissue schematics’’ (TSs), a conceptual and

algorithmic framework for defining and quantifying a tissue’s

architectural units and assembly from high-parameter imaging

data (Angelo et al., 2014; Ståhl et al., 2016; Agasti et al., 2017;

Wei et al., 2017; Goltsev et al., 2018; Lin et al., 2018; Saka

et al., 2019; Vickovic et al., 2019). In our framework, a TS of an

organ consists of three components (which are detailed and bio-

logically interpreted in the results section): (1) the collection of

cellular neighborhoods (CNs) (each defined by a characteristic

local composition of cell types), (2) a map of distinct microenvi-

ronments formed by CNs that are co-localized (termed ‘‘spatial

contexts’’ [SCs]), and (3) a map of hierarchically formed collec-

tions of CN regions with specific SCs between them (which we

term ‘‘motifs’’) and the rules governing their formation (termed

assembly rules [ARs]). We have compiled a glossary of the con-

cepts utilized herein (Table 1).

One uniquely diverse family of tissues with a common general

purpose is human lymphoid tissue (HLT) which includes tonsils,

lymph nodes, spleens, and others. These are tissues wherein the

immune system carries out critical behaviors that depend on co-

ordinated interactions occurring between specialized cell types.

While different types of lymphoid tissue share some common

functions (e.g., antigen presentation and antibody production),

they each are specialized for certain tasks (e.g., the spleen is

better suited to respond to blood-borne pathogens than lymph

nodes). This family of tissues therefore provides an ideal system

for exploring how units of architecture are utilized in multiple

contexts and how complex immune functions are achieved by

composing them to generate more complex functional units at

the tissue level.

We developed and validated the TS concepts and algorithms

on a CODEX dataset of two tonsils, a spleen, and a lymph node

(Kennedy-Darling et al., 2021). First, we identified a collection of

CNs for HLT and validated their suitability for constructing TS, in

accordance with the TS’s underlying biological model. Next, we
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Table 1. Glossary of terms

Term Abbreviation Definition

Cell type CT A CT is a set of cells in the imaging data defined by clustering cells with

respect to their expression of phenotypic markers.

Window of size k The window of a cell is the set of its k-nearest neighbors (in terms of

spatial distance) in the imaging data.

Cellular neighborhood CN, cnX A CN is a region of the tissue with a homogeneous local composition of

CTs and approximated by clustering cells with respect to the cell type

composition of their windows.

Spatial context SC(cnX,cnY,cnY,.) A spatial context is a region of the tissue where the local processes of

different CNs could be interacting. We approximate them as CN-

combinations, regions where cells assigned to multiple CNs are in close

proximity. These are labeled by a set of CNs. A cell is assigned to a SC for

a set of CNs, say CN1,., CNn if more than 90% of the cells in its window

of size 100 are assigned to one of those n CNs and if it is theminimal set of

CNs that has this property (i.e., removing any CNi from the combination,

the total number of cells in its window assigned to any of the CNs except

from CNi is less than 90%).

CN instance A CN, being a region of the tissue, need not be connected as a spatial

domain. We refer to its connected components as its instances. These

are identified by constructing the 10-nearest neighbor graph between

cells and identifying its connected components in the CRC dataset or

using image-processing libraries for identifying connected components

of Boolean images in the HLT dataset.

Tissue graph This is a colored graph formed for each tissue, in which the vertices

represent instances of CNs, vertex colors represent the CN, and edges

represent spatial proximity (defined by having neighboring cells).

Motif A, B, C, . A motif is a (typically small) colored graph whose vertices are labeled by

CN names and is the basic repeated structure we search for in the tissue

graph. We have only considered motifs in which a single CN can appear

only once.

Two-chain cnX-cnY a motif consisting of two CNs with one edge.

Triangle Triangle(cnX,cnY,cnZ) a motif consisting of three CNs all connected.

Motif instance Amotif instance is a subgraph of a tissue graph isomorphic to amotif (i.e.,

a collection of CN instances and adjacency relationships that agree with

the edges of the motif).

Submotif Viewing a motif as a colored graph, a colored subgraph of it is referred to

as a submotif.

Extension of a motif instance Given a motif A and a submotif B, we say that an instance of A extends to

an instance of B if the instance of A is a colored subgraph of the instance

of B in the tissue graph. Note that an instance of a given motif could

extend to an instance of another in multiple ways.

Assembly rule AR, A / B An AR specifies that all (approximated here by a high proportion of) the

instances of a motif A extend to instances of another motif B where A is a

submotif of B.

Basic rule Given a motif B, and a submotif A, if there is an AR A/ C, meaning that

instances of the motif A can be extended to instances of the motif C, we

can infer that an instance of B can always be extended to the motif

formed by adding on the piece to A that extends it to C. Basic rules are

ARs that cannot be inferred from simpler rules in this way.

Rule graph Given the collection of ARs, we construct a graph that represents these

rules, wherein paths in the graph correspond to composite inferences.

Maximum entropy null distribution Given a tissue graph, we consider the level 0 null set of its CN

assignments obtained by arbitrary transpositions of vertex colors, and

the level 1 null set obtained by transpositions between vertices whose

neighboring vertices have the same CN assignments. The maximum

entropy null distribution is the uniform distribution on these null sets of

colorings.

(Continued on next page)
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developed an algorithm to identify SCs—tissue regions, in which

local processes of different CNs could be interacting and a visu-

alization termed a ‘‘CN combination map’’ (CNM). The CNM of

HLT revealed structures consistent with the known function of

immune architecture as well as suggested that interactions be-

tween local processes of CNs in SCs could be identified by

phenotypic changes in cell types. In the biological model under-

lying TS, motifs (collections of CN regions with specific SCs be-

tween them), could have emergent functionality arising from

signal propagation between CNs. We therefore identified the

motifs in HLT and the rules governing their assembly in each tis-

sue type. We used these rules to align the architectures of the

tonsil, lymph node, and spleens and to quantify their complexity.

Our analyses of HLT revealed a core lymphoid motif and its

specialization by each tissue type. We also found that the

tonsillar architecture was most complicated, followed by lymph

node and then spleen. In addition, the assembly of the tonsil

and lymph nodewasmore similar than either’s was to the spleen.

We had yet to establish whether the SCs and motifs as we had

defined could have a functional role, which we could infer if spe-

cific SCs and motifs were statistically associated with disease

outcome. Therefore, we applied the TS analysis approach to a

previously reported CODEX dataset of the immune-tumormicro-

environment (iTME) of human colorectal cancer (CRC) (Sch€urch

et al., 2020). In this dataset, which captures two extremes of the

CRC iTME spectrum, patients can be stratified by two character-

istic types of immune infiltrate in their iTMEs. One patient group,

termed Crohn’s-like reaction (CLR) have iTMEs in which tertiary

lymphoid structures (TLSs, resembling the follicles of lymphoid

organs) form and who have significantly better survival out-

comes than patients of the diffuse inflammatory infiltration (DII)

patient group, whose iTMEs do not have TLS.

The first ingredient of a TS, identification of CNs, had been pre-

viously performed (Sch€urch et al., 2020). Next, we not only map-

ped the SCs formed by these CNs (and thus, which local pro-

cesses could be interacting) as we had in the HLT dataset, but

also assessed what the result of these local interactions could

be by identifying which SCs were associated with changes in

expression levels of functional markers on key immune subsets.

Depicting these results on the CNM for the CRC iTME revealed a

rich map highlighting potential functional roles of its CNs and

their local interactions. For example, it suggested that, similar

to HLT, the TLS could likely be involved in antigen-dependent,

helper-T-cell-mediated proliferation of B cells and a potential

interaction between the characteristic local processes of the tu-

mor and tumor boundary that leads macrophage to proliferate.

We next turned to the assembly of motifs in the CRC iTME. We

mapped its CNs to those shared with HLT, finding conserved as-

sembly rules there. We developed a statistical way to quantify

motifs that were ‘‘higher-order,’’ i.e., actively assembled by bio-

logical programs counteracting entropy. This revealed a higher-

order tissue motif of 3 CNs—consisting of contiguously assem-

bled regions of the T cell enriched, macrophage enriched, and

vasculature neighborhoods assembled, into which the tumor

CN was inserted, exclusively in the high-risk DII patient group.

The insertion of the tumor into this motif was associated with

worsened survival outcomes within the high-risk patient group.

Crucially, its submotifs were not associated with survival. Thus,

our results confirm that the TS approach provides a way to iden-

tify and dissect emergent tissue functions from modular con-

struction of complex tissue structures from simpler interacting,

multicellular components to gain potential mechanistic insights

into antitumoral immunity.

Ours is not the only possible notion of a tissue’s ‘‘schematic’’

that might be applied. Multiple notions of tissue component and

corresponding notion of interaction have yielded insights into tis-

sue function from high-parameter imaging data (such as cells

Schapiro et al., 2017; Goltsev et al., 2018; Keren et al., 2018; Ar-

nol et al., 2019, i-niches Goltsev et al., 2018, cellular neighbor-

hoods [CNs] Sch€urch et al., 2020; Stoltzfus et al., 2020, and com-

munities Jackson et al., 2020). However, the primary findings as

outlined above and herein were enabled by and hence justify our

TS formalization. These results highlight the utility of quantita-

tively exploring compositional tissue assembly with TS for both

basic and translational insights into tissue function and

malfunction.

RESULTS

CNs as primitive components for tissue schematics
In our framework, a TS is a computational description of how a

tissue is built from its components. Abstractly, any schematic

of a tissue can be thought of as a description of a tissue with

respect to a model for (1) what the components of a tissue can

be, (2) how more complex components are formed from simpler

components, and accordingly, (3) how these more complex

components achieve biological functions through interactions

between those of their subcomponents. The components we

focus on range in complexity; they include cell types and cell

structures such as vessels, but also include more complex ob-

jects such as follicles and follicle super-structures. We focus

on spatial contact as the means by which the components

form more complex components. The details of the compo-

nents, as well as the method by which tissue components

achieve complex functions through interactions between those

of their subcomponents are depicted in Figure 1A and detailed

presently.

To start, we assumed that tissues would be comprised of

distinct types of regions, each defined by ongoing characteristic

local, molecular processes (Figure 1A, left column). This means

that in the vicinity of a given point in such a region, characteristic

biological signals can be generated, sent, received, and then

processed to an outcome (for example, cells might differentiate

in response to a ligand, or molecules might be secreted). As

Table 1. Continued

Term Abbreviation Definition

Higher-order motif A higher-order motif is one whose count in a tissue is significantly (after

correction for multiple hypothesis testing) higher than expected would

arise in colorings obtained from a maximum entropy null distribution.
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Figure 1. Cellular neighborhoods are building blocks for tissue schematics

(A) Cell neighborhood model of tissue behavior underlying TSs. Left column: tissues comprised of different types of regions, each with characteristic local

processes ongoing. Middle column, top: these local processes of CNs can interact, giving rise to new signals where they do. Middle column, bottom: local

processes can propagate signals, for example by cellular movement followed by secretion, direct diffusion or cell-cell signaling. Right column: assemblies of

connected tissue regions of different types can generate complex outputs by combining signal propagation by and interactions between the characteristic local

processes of each region (meaning that a given such region can act as a relay between others).

(B) Computational representation utilized by tissue schematics to map cellular architecture in accordance with model in (A). Top row: cell neighborhoods are

identified. Bottom row, left: the regions where CNs are in contact are termed ‘‘spatial contexts’’ and represented as a CN combination map (CNM). Bottom row,

right: assembly rules (ARs) describing how collections of CN regions form assemblies are mapped.

(legend continued on next page)
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such, at given points in a tissue, in whose vicinity there are mul-

tiple local processes ongoing, these processes could interact to

generate additional distinct biological signals (Figure 1A, middle

column, top row). Such signals could be propagated, for

example, by direct molecular diffusion, cellular movement fol-

lowed by secretion, or cell-cell signaling (Figure 1A, middle col-

umn, bottom row). Consequentially, an ‘‘assembly’’ of regions—

multiple connected regions in spatial proximity—would generate

complex outputs by coupling signal propagation and processing

by local processes, as well as the interactions between local pro-

cesses around points where regions are in close proximity (Fig-

ure 1A, right column). For example, the green region in (Figure 1A,

right column), acts as a relay, propagating the yellow signal

through it from the interface with the blue region (where it is

generated by interactions between the local processes of the

green region and blue region) to the red region (where there is

a local interaction corresponding to the yellow signal triggering

activation of the red cells). Thus, it is the premise here that by

identifying such regions (and potential signals generated when

they are in local proximity), as well as identifying how related as-

semblies are associated with distinct outcomes, we would

obtain a map of the different component regions and derive

how they might interact to generate complex functions. How

then can a tissue be computationally described with respect to

the outlined biological model for a tissue schematic?

Since the local processes in our biological model would likely

bemediated by cells and cell-cell interactions, we approximated

the regions with such processes as those regions that had a

characteristic local composition of cell types, termed CNs (Fig-

ure 1B, top row) as previously defined and applied (Sch€urch

et al., 2020). In the pseudo-tissue of the diagram, there are

four CNs: cnGreen, cnRed, cnBlue, and cnPurple. As noted

above, we termed regions where there are local spatial contacts

between CNs as ‘‘spatial contexts’’ (SCs), since these are likely

to be the sites where the characteristic local processes of each

CN interact. As such, the nature of these interactions can be in-

ferred from the phenotypes of cells within these regions. In a TS,

we describe the collection of SCs in a tissue with a CNM (Fig-

ure 1B, bottom row, left column). The borders of CNs are inher-

ently challenging to define. While we had to delineate CNs with

discrete boundaries for computational purposes, describing

the tissue with respect to SCs enables explicitly defining the dy-

namic regions in which such interactions could occur, thereby

providing one approach to solve this problem.

In accordance with the model above, it would be expected

that a collection of connected CN regions, with specific SCs

forming between them (which we term an ‘‘assembly’’), would

be poised to generate unique biological signals by coupling the

ability of the local processes of each CN to interact and propa-

gate signals. Assuming that evolution repurposes common ele-

ments to achieve diverse function, a given CN (or sub-assembly)

could be expected to be used in multiple distinct assemblies.

Thus, we would expect there to be an underlying order to how

the CNs form assemblies, with variations of this order utilized,

or altered, by functionally similar tissues in different contexts

(such as in different lymph nodes or various pathologies).

Accordingly, in a TS, we identify ‘‘motifs,’’ which are certain as-

semblies present in multiple locations in the tissue and a collec-

tion of ‘‘assembly rules’’ (ARs) capturing how motifs are assem-

bled (Figure 1B, bottom row, right column). Thus, a TS describes

how a tissue is built, by identifying CNs, the SCs they form, and

the rules governing their assembly. While all the concepts we

introduce will be fully explained and developed below, we have

compiled in Table 1, for conciseness and reference, a glossary

of all the terms and their abbreviations used.

TSs of HLT were constructed from 46-parameter images of

two tonsils, a lymph node, and a spleen, with data collected us-

ing the imaging technology co-detection by indEXing (CODEX;

Kennedy-Darling et al., 2021). These images captured large

areas of the tissue samples (tonsil #1: 32 mm2, tonsil #2:

34 mm2, lymph node: 26 mm2, spleen: 49 mm2), providing a

comprehensive view of the architecture of HLT.

Using approaches as previously described (Goltsev et al.,

2018; Sch€urch et al., 2020), 25 cell types were identified in HLT

following single-cell segmentation and clustering according to

marker expression (Figure S1A, cell types in heatmap). Next,

CNs were identified as previously reported (Sch€urch et al.,

2020; Stoltzfus et al., 2020). For each cell, a ‘‘window’’ of size

20 was extracted consisting of a cell and its 19 nearest neighbor

cells, defined by Euclidean distance between cell centroids in X,

Y space (a window size of 20 was chosen since a trial of the pro-

cess below with a window size of 10 or 30 did not substantially

alter the observed CNs [Figure S2], confirming that the CNs

were persistent across small changes in length scale). Windows

were next clustered with respect to the frequencies of these 25

cell types. The clusters resulting were validated as follows. First,

to determine whether there was substructure within these CNs

that had not been identified by the clustering algorithm, we

examined the distribution of cell-type density per window in

the windows assigned to each CN within each tissue

(Figure S1B).

None of the CNs exhibited multi-modal distributions, demon-

strating that each cell type was relatively evenly distributed

throughout the region assigned to a given CN. Second, the clus-

ters were manually inspected by overlaying the cells allocated to

them over select channels from the raw tissue images, for each

tissue individually, to ensure that they captured distinguishable

tissue regions defined by their corresponding local composition

of cell types (Figure S3), and clusters were merged accordingly.

This resulted in 11 clusters with distinct cell-type compositions

comprising the collection of CNs in HLT (Figures 1C and S1A).

Each CN was named with a one or two letter acronym that rep-

resented the characteristic cellular composition of that CN and

was assigned a color that remains consistent throughout the fig-

ures. The cellular compositions per tissue for each of the 11 CNs

are displayed alongside their color assignment and name. For

(C) Heatmap of average window compositions of CNs in each tissue sample, normalized across columns. Red indicates enrichment of a cell type in windows

assigned to a CN in a given tissue. Heatmaps are shown only for tissues in which a given CN was observed.

(D) Images of each tissue sample showing T cells (CD3, red), B cells (CD19, blue), epithelial cells (cytokeratin, white), and proliferative cells (Ki67, green). Scale

bars indicated for each tissue.

(E) Cells in each tissue colored by CN assignment.
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Figure 2. Spatial contexts are sites of functional interactions between local processes of CNs

(A) Cells in a follicle from tonsil 1 colored by CN assignment (see legend to the right of G). Cells (indicated by +) and their windows (boxed regions) highlight

different SCs.

(B) Barycentric coordinate projection of windows with greater than 90% of cells assigned to CNs B, LZ, or DZ. Outlined regions on edges and vertices indicate

abundant SCs (compartmentalized regions of CN and interfaces).

(C) Barycentric coordinate projection of windows with greater than 90% of cells assigned to CNs BT, T, or V (compartmentalized regions of CN and interfaces).

(legend continued on next page)
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clarity, cell types that were not enriched in any CN were omitted

from the heatmap in Figure 1C, but the full heatmap is shown in

Figure S1A. We acknowledge and expect that their presence

could have meaning in a yet to be defined context beyond the

scope of this report. In Figure 1C, each CN is broken into rows

corresponding to cellular composition in each tissue, showing

that each CN has a similar cellular composition in all HLT types.

The 11 CNs in HLT are described here and shown consecu-

tively in Figure 1C by row. Seven of the CNs are found in all tis-

sues and consist of the following: (1) cnGr, which is enriched in

granulocytes; (2) cnBT, which is enriched in primarily B cells

and CD4+ T cells; (3) cnT, which is strongly enriched in CD4+

T cells; (4) cnV, which is enriched in blood vessels; (5) cnB, which

is enriched in CD22+ B cells; (6) cnPl, which is similar to cnBT in

that it is enriched in both B cells and CD4+ T cells but distinct in

that it is also enriched in plasma cells and blood vessels; and (7)

cnLZ, which is enriched in CD19+/CD21+ B cells and is recogniz-

able as the follicular light zone. Four CNs were only found in a

subset of the HLT samples. cnMS was found only in the lymph

node and corresponds to the medullary sinus. cnMF was only

found in spleen and is enriched in macrophages. Note that

cnGr in the spleen also involves macrophages, thus cnMF is

distinct in the spleen from cnGr in part due to its lack of granulo-

cytes. cnEp contains epithelial cells and was found only in the

tonsils. cnDZ contains a high frequency of CD19+ B cells and

Ki67+ (proliferating) B cells and is recognizable as the follicular

dark zone. cnDZ is found in the lymph node and tonsils but not

in the spleen sample that was imaged.

In the raw tissue images, the B cell follicles, germinal centers,

and T cell zones are visible in each tissue from the CD19, Ki67,

and CD3 staining, respectively (Figure 1D). Visualization of the

CNs by plotting cell centers as points colored by their CN assign-

ment demonstrated that the CNs capture and represent tissue re-

gions recognized in classical hematopathology (Figure 1E). Seven

out of eleven CNs were found in all four tissues whereas cnEp,

cnMS, and cnMFwere specific to tonsil, lymph node, and spleen,

respectively. Therefore, theseCNs are a suitable approximation to

regions of HLTwith characteristic local processes thatwe can use

to initiate the construction of TSs of HLT. How are CNs composed

to generate the complex functions of HLT?

Spatial contexts as sites of possible interactions
between local tissue processes
We reasoned that the regions of the tissue where CNs are in

close contact would be the locations where the characteristic

local processes of each CN could interact through local molec-

ular reactions. Such interactions might be reflected in special-

ized biological processes arising exclusively in such regions.

For example, interfaces betweenCNs are sites where amolecule

from one CN might contact cells from another CN that enables

unique proliferation events or other cell activation processes

(Figure 1A, middle column). As per above, we termed such re-

gions SCs. Assuming that the signals generated in individual

CNs played a role in complex tissue outputs, the SCs that are

present, as well as the specialized local processes occurring

within them, could act as the ‘‘relays’’ linking together the individ-

ual components in our tissue schematic. How, therefore, might

we systematically identify and represent the SCs in each tissue?

We began by investigating the SCs formed by the CNs of B cell

follicles, which are dense regions of B cells and supporting cells

that are critical for B cell activation and antibody production. In

many ways, such follicle-like structures are a signature compo-

nent of lymph node function and structure. Follicular structures

are found in most lymphoid organs and arise in peripheral sites

such as inflamed tumors (Binnewies et al., 2018) and sites of

autoimmunity (Pipi et al., 2018). Accordingly, all tissues in our da-

taset contained follicles with characteristic CD19 staining (Fig-

ure 1D). The main CNs of the follicles are cnB, cnDZ, and cnLZ

as illustrated by a representative follicle (Figure 2A). Some cells

in cnLZ are located at an interface of cnLZ and cnDZ (Figure 2A,

e.g., cell #1), other cells in cnLZ contact several other CNs (Fig-

ure 2A, e.g., cell #2 contacting cells in cnLZ, cnB, cnBT, cnDZ,

and cnPl), and some are surrounded by only cnLZ cells (Fig-

ure 2A, e.g., cell #3). This example illustrates that a given collec-

tion of CNs does not form all possible SCs that could be but

instead forms a characteristic collection reflective of the require-

ments of the tissue. Traditionally, the borders of CNs have been

inherently hard to define but these initial analyses suggested that

these regions could be biologically significant. Therefore, the

question of to which CN the cells of a given SC should be allo-

cated could be subverted by assessing the unique processes

occurring therein.

The composition of a cell’s nearest neighbors (with respect to

their CN assignments) should reflect the SC within which it is

located. We used this to identify the SCs across all follicles in

our dataset. Specifically, windows containing the 100 nearest

spatial neighbor cells around a given index cell were extracted.

This window size—corresponding to a radius of approximately

5 cells—was used as a conservative length scale on which bio-

logically relevant cues could be shared between CNs (based

(D) Legend of components of CNM. Size of black circle indicates abundance of combination. Colors of squares indicate the CNs in combination. Edges indicate

the child combination is obtained from the parent combination by adding one CN.

(E) CNM of follicle region.

(F) CNM of T cell zone region.

(G) CNM of combinations comprising greater than 0.001% of total cells. Red rectangles indicate SC containing cnT but not cnBT. Orange rectangles indicate SC

that contain co-localized combinations of cnT and cnBT with a third CN. (cnBT, cnT, cnMF, and cnGr) is included in this set to facilitate comparing its abundance

with that of (cnT, cnMF, and cnGr). Columns are overlaid to facilitate reference in the main text.

(H) Tissue images of follicle to illustrate SCs from CNM. (H.1) CD21, Ki67, and CD38 expression in follicle region. (H2) Ki67 and PD-1 in region. (H.3) Cells colored

by CN assignment in same region as shown in images H.1 and H.2. Black points indicate cells assigned to the combinations (cnBT, cnPl, cnDZ, and cnB), (cnBT,

cnPl, cnLZ, and cnB), or (cnBT, cnPl, cnLZ, cnDZ, and cnB). These combinations are indicated with black boxes in (G). (H.4) CD38 and PD-1 are expressed on

different cell types within region outlined in white box in H.1 and H.2. Co-staining of two cells outlined in white boxes demonstrate CD38+ staining is restricted to

CD19+ B cells and PD-1 is restricted to CD4+ T cells.

(I) CN plots of two other follicles from the same patient showing that the same contexts (bottom row) do not have enriched CD38 expression within them as seen in

corresponding tissue image (top row). (J) Schematic illustrating location of outer zone in follicle.
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on, for example, that intercellular IL-2 signaling occurs between

immune cells situated at distances ranging from 1 to 10 cell di-

ameters apart; Oyler-Yaniv et al., 2017). Next, cells whose win-

dows were comprised of predominantly (>90%) of cells allo-

cated to cnB, cnDZ, or cnLZ were selected (excluding, for

example, cell #2 from Figure 2A). Finally, the CN compositions

of the windows of these cells were projected into the barycentric

coordinate system (Figure 2B, the window of each cell repre-

sented by a point in the triangle).

The distribution of cells in this coordinate system highlights

which SCs are formed by the CNs that are indicated at each ver-

tex. A cell is close to a vertex if its window is comprised of pre-

dominantly cells assigned to theCN indicated by that vertex (Fig-

ure 2A, e.g., cell #3 surrounded only by cells assigned to cnLZ).

Therefore, increased density around a vertex indicates the

presence of an SC that corresponds to a population of cells

‘‘compartmentalized’’ within that CN—i.e., those which are sur-

rounded by cells only of the same CN. Accordingly, a cell is

close to an edge of the triangle if its window is predominantly

comprised of cells allocated to the two CNs connected by that

edge (Figure 2A, e.g., cell #1 with a window containing 75% cells

assigned to cnLZ and 25% cells assigned to cnDZ). Thus, the

density of points along an edge indicates the presence of an

SC corresponding to a population of cells at the interface be-

tween those two CNs. Cells in the center of the triangle have

windows comprised of cells assigned to all three CNs.

The SCs of the follicles consisted of three compartmentalized

regions (black circles around vertices labeled ‘‘Comp. LZ,’’

‘‘Comp. DZ,’’ and ‘‘Comp. B’’) and two interface regions (black

rectangles labeled ‘‘LZ-DZ Interface’’ and ‘‘LZ-B Interface’’)

(Figure 2B). Comparison of the observed SCs to the estab-

lished behavior of the GC during antibody affinity maturation

highlights the important biological information present within

the SCs formed by a collection of CNs. First, CNs LZ and DZ

being compartmentalized reflects how the tissue segregates

proliferating B cells in the dark zone and T cells in the light

zone to increase the likelihood of finding a higher affinity clone

by allowing B cell clones to expand briefly without selective

pressure, while maintaining the stringent selection in the light

zone (Kepler and Perelson, 1993). Second, a large SC with

these two CNs reflects how the tissue efficiently cycles B cells

between the selection and expansion stages in the light zone

and dark zone. The fact that the SC formed by cnDZ and

cnB was small could interpreted either that their direct contact

is less critical to HLT function or that their active separation is

critical to the outputs of HLT.

Another important region in HLT, the T cell zone, where anti-

gen-presenting cells prime T and B cell responses, was similarly

analyzed for its SCs. The T cell zone is well described by cnBT,

cnT, and cnV. We selected cells, as we had with the follicular re-

gion, whose windows were comprised predominantly (>90%) of

cells assigned to cnBT, cnT, or cnV to describe the T cell zone.

Here, the cells were sparse near the vertices corresponding to

CNs V and B—but were dense near the vertex corresponding

to cnT (Figure 2C). Furthermore, the only edge that had density

along it was that between CNs BT and T (Figure 2C, black rect-

angle labeled ‘‘BT-T Interface’’). A higher density of cells was

distributed within the volume (off the vertices and edges) of the

T cell zone’s triangle than within the area of the follicles’ trian-

gle—indicating substantial co-localization of all three cnT,

cnBT, and cnV (Figure 2C, black triangle labeled ‘‘BT-T-V Inter-

mixing’’). The SCs found within the follicle and T cell zone cap-

ture two types of local interaction structure possible with three

CNs: the diffuse nature of cnT, cnV, and cnBT forming a part

of the T cell zone, and the coalescent nature of cnB, cnDZ,

and cnLZ forming a follicle. These are both visible in Figure 2A

(orange/purple/red regions and green/cyan/brown regions).

Thus, the different types of local interaction structure indicate

that there are differences in the mechanisms by which signals

are generated and propagated through the CNs of the T cell

zone and follicle.

The barycentric coordinate projections showed that SCs

formed by CNs could be described by co-localized combina-

tions of CNs, i.e., the vertices and edges of the triangle which

had many cells assigned. We extended this approach to

describe the SCs in HLT formed by all the CNs versus only three

at a time (as we had in Figures 2B and 2C).

We assigned each cell to the minimal combination of CNs,

such that 90% of the cells within its 100 nearest neighbors

were assigned to those CNs. This corresponds to explaining

themajor CNs represented in awindow (and thus themajor sour-

ces of signals to that cell), using as few CNs as possible and the

90% threshold was selected to limit the complexity of the result-

ing SCs. Thus, this approach corresponds to the generalization

of assigning cells to edges and vertices of the triangle in the

case of three CNs (i.e., assigning cells to faces of a simplex,

the higher-dimensional analog of a triangle, whose vertices

each corresponded to a CN). For example, if a cell’s window

had 80 cells of cnX, 15 of cnY, and 5 of the remaining CNs, it

would be assigned to the combination (cnX and cnY). Neither

which SCs were identified, or their relative abundances was

affected by small variations in the window size or the threshold

(Figures S4A and S4B) showing that this approachwas a suitable

strategy for describing SCs of a tissue despite the parameter

choices.

We visualized the follicular and T cell zone regions’ abundant

SCs (Figures 2B and 2C) as graphs that we termed CNMs (Fig-

ure 2D, non-inset). A CNM summarizes the information present

in the barycentric coordinate plots and enables visualization

and quantification of additional key features. Each node of a

CNMcorresponds to the SCdefined by co-localization of exactly

the CNs indicated by the node’s label (Figure 2D, inset, single

and stacked squares). The size of the node reflects the number

of cells assigned to that SC (Figure 2D, inset, black circles). An

edge in the CNM indicates that the combination of CNs at the

child node is obtained by adding one CN to the combination of

CNs of the parent (Figure 2D, inset, vertical arrow). Therefore,

the CNMs of the follicular and T cell zone regions explicitly visu-

alize the SCs that are abundant (Figures 2E and 2F, nodes), the

CNs participating in each SC (Figures 2E and 2F, colored stacks

of squares at each vertex), the number of co-localizing CNs (Fig-

ures 2E and 2F, row number and number of squares in stack),

and the abundance of each SC (Figures 2E and 2F, size of no-

des). The ‘‘BT-T-V Intermixing’’ SC is in the same row as the

‘‘B-T Interface’’ SC rather than on a row below due to limitations

on figure space (Figure 2F). The fact that cnDZ-cnB is not

included in Figure 2E, and cnBT alone, cnV alone, cnBT-cnV,

and cnT-cnV are not included in Figure 2F indicates that there
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are not many cells present in those combinations. CNMs there-

fore provide a description of the SCs present in a tissue.

The CNM for the combined HLT samples and the eleven CNs

is presented in Figure 2G with those SCs containing more than

0.001% of total cells shown. The colored groupings of columns

and nodes are manually added to illustrate aspects of it that we

presently describe. In the following, we denote the SC with, for

example, CNs A, B, and C as SC(A, B, and C). Different graphical

structures present in the CNM provide different insights into the

nature of and interactions between the characteristic local pro-

cesses of the CNs of HLT.

First, CNs can be found restricted, together, to regions of the

CNM, with a small number of edges connecting them with the

rest of the CNM. For example, cnLZ and cnDZ (Figure 2G, Col-

umn 10) and cnGr and cnMF (Figure 2G, Columns 1–2). Such

CNs being restricted together suggests that their role in tissue

outputs is achieved through signals propagating primarily

among themselves. Conversely, other CNs are found in SCs

with many other CNs, for example, cnV and cnBT (Figure 2G,

purple and orange squares, respectively), and so signal propa-

gation to or from many other CNs could be important for their

output. This is consistent with cnV (blood vessels) supplying cells

with oxygen or metabolites or enabling cell entry/exit into or from

the vascular system.

Second, the tissue was comprised of abundant compartmen-

talized regions of some CNs (i.e., SCs containing only one CN),

and abundant SCs of CNs whose compartmentalized regions

were not abundant. For example, cnT and cnB had large, com-

partmentalized regions (Figure 2G, first row, red and brown

squares, respectively), whereas cnPl and cnBT had small, com-

partmentalized regions but were albeit abundant across the tis-

sue (Figure 2G, gray and orange squares, respectively). A CN

having a large, compartmentalized region could be explained

by its contribution to tissue output depending on the isolation

of its local processes from signals outside of it, either to enrich

internal interactions or to avoid interference from external sig-

nals. Likewise, a CN with a small (relative to other SCs that CN

belongs to), compartmentalized region that is albeit abundant

could indicate that its contribution to tissue output does not

require isolation of its local processes to the same extent.

Thirdly, the CNM highlights examples where the presence of a

CN in SCs with other CNs necessitates the presence of another.

For example, CNs T and BT were commonly co-localized

together as part of different SCs. SCs were present involving

these two CNs co-localized with all other CNs individually,

except cnLZ and cnEp (Figure 2G, orange boxes around SCs).

The three abundant SCs in which cnT co-localizes without

cnBT are SC(V,T) (column 4, row 2), SC(T,MS) (column 4, row

2), and SC(T,Gr, MF)) (column 1, row 3) (Figure 2G, red boxes

around SCs). However, these three SCs are less abundant

than the corresponding combinations in which cnBT is present:

SC(BT,T,V) (column 4, row 3,), SC(BT,T,MS) (column 4, row 3),

and SC(BT,T,Gr,MF) (column 1, row 4) (Figure 2G). This analysis

captures the fact that B cells are typically found in SCs where

both cells of cnT and other CNs are present. In our biological

model, this means both that local interactions between the pro-

cesses of cnT and other CNs could play a role in recruiting B cells

and that signals propagating between cnT and other CNs could

be transformed by B cells. Thus, specific relationships between

CNs in how they form SCs are indicative of the underlying mech-

anisms by which signals are generated and propagated be-

tween CNs.

Finally, the CNM highlighted certain CN combinations that

were unexpected. For example, we noticed combinations

involving cnBT and cnPl with both cnB and cnDZ or both cnB

and cnLZ (Figure 2G, black boxes around SCs, column 9, row

4). This was unexpected because we had not initially noticed

cnBT or cnPl in the germinal center when visualizing the CNs

on the tissues. However, upon closer inspection, these SCs

made up a small but definitive region at the interface between

cnLZ and cnB (Figure 2H.1, black points). In some follicles, there

was an increased frequency of CD38 expression (Figure 2H.2,

white staining) and PD-1 expression (Figure 2H.3, green staining)

in this region. Upon closer inspection of a representative area

(Figures 2H.1–2H.3, white boxes) from this region, the PD-1

expression was restricted to CD4+ cells (Figure 2H.4, box #1,

column #1), and the CD38 expression was restricted to CD19+

B Cells (Figure 2H.4, box #2; column #2). In other follicles, these

SCs were present (Figure 2I, black points, top row) but were not

enriched in CD38+ staining (Figure 2I, bottom row). A thin gap be-

tween the germinal center and the mantle zone present in some

follicles has been previously defined as the outer zone (Hardie

et al., 1993) (Figure 2J, black points); the outer zone contains

finer follicular dendritic cell processes than those of the light

zone (Steiniger et al., 2011). Thus, the regions where we

observed CD38+/CD19+ B cells co-localized with cnBT and

cnPl, and cnB, cnDZ, or cnLZ correspond to outer zones (Fig-

ure 2J). The outer zone has also been reported to contain a

reduced frequency of CD57+/CD4+ T cells relative to those in

the light zone, but our images of CD57+ staining were not defin-

itive with respect to this observation (Figure S5). Our observa-

tions are consistent with the previously reported finding that

the outer zone is present only in a minority of follicles (Steiniger

et al., 2011) and is also a niche within the follicle for plasma cells

(Steiniger et al., 2020). These data are consistent with the possi-

bilities that the SCs identified from the CNM are dynamic during

germinal center development or that they are spatially heteroge-

neous with respect to the three-dimensional orientation of

follicles.

In sum, these findings demonstrate that SCs—complexmicro-

environments defined by co-localization of CNs—are sites

where interactions between the local processes of their constit-

uent CNs could occur and that such interactions might be map-

ped by unique cellular phenotypes. In addition, these data show

that simultaneously assessing which SCs as formed as well as

the local interactions occurring within each SC in a CNM facili-

tates understanding of how the tissue achieves complex

outputs.

Modular assembly of CN instances differs across
HLT types
What role could the interactions between the local processes of

CNs occurring in SCs have in facilitating complex tissue

behavior? We reasoned that interactions (if they were occurring)

in SCs could correspond to the translation of signals so that they

could be propagated from one CN to another. For example, a

given molecule or cell type produced in one CN might be phys-

ically restricted from moving between CNs, or the cells of the
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Figure 3. Modular assembly of CN instances differs across HLT

(A) Schematic of analytical approach.

(A.1) Tissues have CNs assembled in different arrangements.

(A.2) CNs have connected components, which are referred to as ‘‘instances.’’

(A.3) Instances in tissue are related by spatial adjacency forming a graph.

(A.4) Motifs in the graph are repeated colored subgraphs and architectural rules correspond to a motif always found as part of a larger one.

(A.5) The overall collection of rules is generated from basic rules by entailment.

(B) Table showing the number of basic rules in each tissue. Basic rules are separated by the topology of the rule. Green edge corresponds to edge added to amotif

indicating CNs and adjacencies. Black brackets group rules with same initial motif structure.

(C) The number of basic rules conserved between each pair of tissue types.

(D) Tissue assembly of spleen.

(legend continued on next page)
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other CNmight lack the appropriate receptors to respond to said

molecule or cell. However, the signal could trigger the produc-

tion of a different molecule to which the cells of the receiving

CN could respond. Regardless of whether signals were propa-

gated directly between CNs or translated in SCs, we therefore

expected that a connected region of one CN could act as a relay,

propagating specific signals between other, neighboring CN re-

gions (Figure 1A, right column, cnGreen acting as a relay be-

tween cnBlue and cnRed). It would therefore be expected that

a collection of connected CN regions, with specific SCs formed

between them (which we termed an ‘‘assembly’’), would be

poised to generate unique biological signals by coupling the pro-

cesses occurring in each individual CN participating in the as-

sembly. If this were the case, there should be an underlying order

to how a given tissue type’s CNs are assembled, and this order

should reflect how relatively simple processes occurring in con-

nected CN regions are chained together to generate complex

biological signals.

We developed a systematized approach to explicitly describe

the assembly of CNs in tissues such as HLT. We observed that

each tissue contained multiple connected components of each

CN (and were therefore likely regions through which its charac-

teristic local processes could propagate signals). In an example

pseudo-tissue, cnRed is found in five different locations, cnBlack

is found in two locations, and cnBlue and cnGreen are each

found once (Figure 3A.1). We termed each connected compo-

nent an ‘‘instance.’’ In this model, the CN instances in the tissue

are computationally determined (Figure 3A.2). These instances

each have their own SCs, and for simplicity, we restricted

description of the SCs between instances to pairwise adja-

cencies (i.e., one instance was either in contact with another,

or not). Thus, mapping all the pairwise adjacencies between

CN instances results in a graph of the tissue where colored

vertices correspond to CN instances and edges correspond to

adjacency (Figure 3A.3). We could have incorporatedmore com-

plex SCs relating instances and that would have resulted in a

corresponding tissue hypergraph, but we restricted our attention

to the pairwise case. Accordingly, each tissue’s graph had in-

stances of ‘‘motifs’’—repeated subgraphs corresponding to

specific combinations of CN instances and spatial relationships.

In the example tissue, there are three instances of the cnRed-

cnBlue motif and two instances of the cnBlack-cnRed motif (Fig-

ure 3A.3). Motifs offered a simple approximation for CN assem-

blies that required minimal assumptions on signal propagation

within a CN and on how CNs were connected in three-dimen-

sional space.

If CN assemblies had been evolutionarily selected, we would

expect there to be a collection of ‘‘ARs’’ governing how CN in-

stances are assembled into motifs, that is characteristic of a

given tissue type, but also would hold in tissues that carried

out similar functions. Moreover, we would expect this evolu-

tionary process to have given rise tomodularity within a given tis-

sue type (i.e., ARs dictating instances of a given CN being found

in multiple distinct motifs) and across distinct tissue types (i.e.,

conservation and repurposing of ARs across distinct HLTs). An

AR present in the example tissue is that in every instance of

cnBlue-cnBlack, cnBlack is adjacent to cnRed (Figure 3A.4,

top row). This could indicate that that an instance of cnBlue-

cnBlack-cnRed is required for an instance of the cnBlue-cnBlack

to develop and would also suggest that adjacency to cnRed is

important for the functional role of the cnBlue-cnBlack in the tis-

sue. Another example that is not present in the example tissue is,

only when an instance of a CN is adjacent to a second CN, is it

adjacent to an instance of a third CN. This rule could indicate

that instances of the first and second CNs provide complemen-

tary factors that interact to generate an instance of the third. The

overall collection of ARs for a tissue type was defined as the

collection of rules that specify that an instance of a motif is al-

ways part of an instance of a larger motif (Figure 3A.4, four

ARs from the overall collection are indicated with blue arrows).

Given the overall collection of ARs, we reasoned that there

would be a subset of rules that generated the overall collection

of architectural rules and were ‘basic,’ in the sense that they

could not be inferred from simpler rules (Figure 3A.5). For

example, the rule introduced above (i.e., in every instance of

cnBlue-cnBlack, cnBlack is adjacent to cnRed), is entailed by

a simpler rule that cnBlack is always adjacent to cnRed (Fig-

ure 3A.5, rule indicated by blue arrow labeled ‘‘basic’’). By

capturing redundancy in the overall collection of ARs, the basic

ones provide a parsimonious approach to represent and interro-

gate the architecture. Moreover, a given basic rule indicates an

emergent architectural constraint, i.e., when a motif is always

extended in a certain way, but its submotifs are not constrained

in that same manner. The basic ARs thus highlight likely exam-

ples of motifs that can produce signals in coordinate which its

submotifs cannot.

We approximately identified the basic ARs for each type of

lymphoid tissue (see STAR Methods) and quantified the number

of such rules in each tissue, partitioning them by the type of motif

featuring in the rule (Figure 3B, green edge indicates added adja-

cency for that type of rule). For example, three types of extension

are possible from a motif consisting of three CNs (X-Y-Z) in a

chain: adjacency between cnX and cnZ, addition of a cnW on to

cnY, and lengthening to a chain of length four by adding cnW

on to cnZ or cnX (Figure 3B, left most bracket). The spleen had

the fewest basic rules involving more than two CNs, whereas

(D.1) Graph of basic rules in spleen. Orange highlighted arrows indicate conserved AR.

(D.2) Basic rules describing topology of CNs LZ and B in spleen.

(D.3) Realization of rules of (D.2) with tissue CN plot for spleen.

(E) Tissue assembly of lymph node.

(E.1) Graph of basic rules in lymph node. Orange highlighted arrows indicate conserved assembly rules.

(E.2) Basic rules describing organization of CNs LZ, DZ, and B in lymph node.

(E.3) Realization of rules of (E.2) in tissue CN plot for lymph node.

(F) Tissue assembly of tonsil.

(F.1) Graph of basic rules in tonsil. Orange highlighted arrows indicate conserved assembly rules.

(F.2) Basic and inferred rules describing context of cnGr in tonsil.

(F.3) Realization of rules of (F.2) in tissue CN plot for tonsil 1.
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the two tonsils each had a larger number of such rules (Figure 3B).

Under this regime, the spleen therefore has a simpler architecture

than tonsil (and potentially participates in fewer immune outputs

diversified through repurposing architectural programs). The

type of motif with the largest number of basic rules across all tis-

sues were those involving four CNs in a chain (Figure 3B, third

bracket from left). Chains minimally constrain the instances within

them so there aremany rules involving four CNs.We found that 76

basic rules of this naturewere sharedby tonsil and lymph node, 10

by spleen and tonsil, and 15 by spleen and lymph node. Thus, the

basic rules provide automated quantification of how, as has been

long described, the tonsil and lymph node are architecturallymore

similar to each other than either is to the spleen (Figure 3C).

We visualized the rules for each tissue that involved a single

CN instance being adjacent to a second CN instance graphically

(Figures 3D.1, 3E.1, and 3F.1).We validated that these rules were

not sensitive to the exact threshold on the frequencies that each

instance of a CN extended to the larger motif used to define them

(Figure S6). Such rules are necessarily basic because they relate

motifs containing only one and two CNs (and thus cannot be any

simpler). The vertices in each graph indicatemotifs. Gray and red

edges describe properties of the motif at each vertex. Gray

edges between CNs indicate an instance of a CN adjacent to

an instance of another CN. Red edges between CNs indicate

an instance of a CN not adjacent to an instance of another CN

and are abbreviated in the text as ‘‘cnXnotY.’’ Blue and black

edges indicate ARs. Blue edges indicate ARs of the form: ‘‘given

an instance of themotif at the source of the arrow, there exists an

extension of that instance to the motif at the target.’’ We refer to

such a rule in text as cnX/(cnX-cnY) (i.e., given an instance of

cnX, it is found as part of an instance of the motif with cnX adja-

cent to cnY). Black edges indicate when the target is a submotif

of the source (i.e., (cnX-cnY)/cnX). Therefore, traversing the

graph corresponds to modeling more complicated ARs by

combining basic ones.

Five basic rules involving two CNs were conserved in tonsil,

lymph node, and spleen: (1) cnT/(cnBT-cnT), (2) cnV/(cnV-

cnPl), (3) cnLZ/(cnB-cnLZ), (4) cnB/(cnB-cnPl), and (5)

cnB/(cnB-cnBT) (Figures 3D.1, 3E.1, and 3F.1, orange high-

lighted arrows numbered 1–5). These rules are therefore the

core lymphoid ARs. The latter three rules entail that cnLZ is al-

ways assembled into the larger motif (cnLZ-cnB-(cnPl,cnBT)),

where the ‘‘,’’indicates that cnB is adjacent to both cnPl and

cnBT in the rule. Moreover, cnB/(cnLZ-cnB) is not a rule in

any tissue. This suggests that interactions between signals prop-

agating in cnLZ and those processed by the cnB-(cnBT,cnPl)

motif could be essential for the role of cnLZ in lymphoid tissue.

There were also architectural rules unique to each tissue. In

the spleen, cnLZ/(cnLZnotX) (wherein ‘‘not’’ is a designator

indicating that an instance of LZ is not adjacent to any instance

of cnX) is a basic rule for all CNs X present in the spleen with the

exception of cnB (Figure 3D.2), meaning that cnLZ instances are

all surrounded by cnB (Figure 3D.3). As such, all signals propa-

gating between cnLZ and other CNs pass through and are

potentially transformed by the local processes of cnB. This is

in contrast with the tonsil and lymph node wherein cnLZ/

cnLZ-cnPl is a basic rule (Figures 3E.1 and 3F.1, edges from

cnLZ to cnLZ-cnPl in each tissue), indicating that cnLZ instances

are not surrounded only by cnB in these tissues.

In both the tonsil and lymph node cnDZ/cnLZ-cnDZ is an

architectural rule. However, cnLZ/cnDZ-cnLZ is not a rule in

the lymph node. In other words, every germinal center in the

tonsil has cnDZ-cnLZ, whereas in the lymph node only a subset

of them have cnDZ (Figures S3E and 3F). These differences in the

rules could be attributed to differences in tissue type between

lymph node and tonsil, or to the individual, activation state, or

3D orientation of the individual specimens in our dataset. In addi-

tion, in the lymph node, we found a basic rule cnB-cnLZ/cnLZ-

cnBnotMS (Figure 3E.2), meaning that while there were in-

stances of cnB adjacent to cnMS, there were no instances of

cnB adjacent to both cnMS and cnLZ. These basic rules corre-

spond to two kinds of cnB instances in the lymph node: those

in the paracortex adjacent to cnLZ (i.e., mantle zone instances),

and those in the medullary sinuses that are not adjacent to cnLZ

(Figure 3E.3). However, in both cases, these instances of cnB

were adjacent to instances of cnBT and cnPl since this was

ensured by the basic rules across lymphoid tissues. Thus, these

basic rules suggest that cnB-(cnBT,cnPl) is a modular compo-

nent playing a similar role in both the paracortex and medullary

sinus, with the signals that facilitate the development of the

larger assembly with cnLZ present only in the paracortex.

In the tonsil, we inferred an architectural rule that demon-

strates the assembly of a follicular structure that involves cnGr,

wherein cnLZ and cnDZ are separated from cnEp by cnB. (Fig-

ure 3F.2, begin at cnGr in top row, farthest left, and combine

rules to the right, down to bottom row, and back to left). This

could indicate that either the complex motif indicated is neces-

sary for the development of cnGr to occur, or that the signals

generated and processed in cnGr must be processed by the

other CNs of the motif to participate in tonsillar function. These

data also indicate that cnB provides a physical bridge fromwithin

the mucosa of the epithelium to the mantle zone of the follicle

(Figure S7). The B cells in the subregion of cnBwithin themucosa

of the epithelium are likely enriched in memory B cells as previ-

ously reported (Liu et al., 1995). This suggests that CNs could

be differentiated, with respect to their functional states (as

defined in Sch€urch et al., 2020) in specific locations to enhance

signal propagation between other components of complex

assemblies.

Mapping the wiring and interactions between the local
processes of the CNs of the colorectal cancer iTME
We turned to a distinct CODEX dataset of the tumor microenvi-

ronment (iTME) in human colorectal cancer (CRC) (Sch€urch

et al., 2020) to determine if the approach used for healthy

lymphoid tissue could be applied to diseased tissue that also

contained lymphoid cells and incipient lymphoid structures.

The data came from a study that had compared the iTMEs of

two previously defined groups in the colorectal cancer spectrum:

the ‘‘CLR’’ group (17 patients) (Graham and Appelman, 1990)

and ‘‘diffuse inflammatory infiltration’’ (DII) group. The CLR group

is classically defined by the presence of TLSs (Figure 4A.1, top

left illustration, containing blue dots representing TLS), and pa-

tients in this group characteristically have good survival out-

comes as compared with those in the DII group, defined by their

lack of TLS (Figure 4A.1, left illustration, no blue dots) that have

poor survival outcomes. This study had compiled four 0.6-mm

diameter tissue cores from each patient onto two 70-core next

ll
Article

120 Cell Systems 13, 109–130, February 16, 2022



Figure 4. Mapping the interactions between the local processes of the CRC iTME

(A) (A.1) Schematic of CRC dataset, consisting of four TMA cores imaged from each of 17 CLR patients who had TLS (blue dots) and good survival outcomes and

18 DII patients, who had no TLS and poor survival outcomes. Reproduced from (Sch€urch et al., 2020) under a CC-BY 4.0 license. (A.2) CNs that had been

previously identified and validated.

(B) Volcano plot showing CN combination SCs that were present in at least 10 patients and were differentially abundant in one patient group as determined via

Mann Whitney U tests for differences in the frequency of each SC. y axis indicates �log2 Benjamini-Hochberg FDR. Line indicates FDR = 0.05.

(C) Visualizations of differentially abundant SCs in individual TMA cores. (C.1): SC(5), (C.2): SC(1,5), (C.3): SC(1,4,5), (C.4): SC(1,2,4,6).

(legend continued on next page)
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generation tissue microarrays (TMAs), enabling the analysis of

this large number of patients (Figure 4A.1, right illustration [which

was obtained from Figure 3A in the original publication; Sch€urch

et al., 2020]). The clear connection between the presence of the

follicular structure and patient survival alongside the large sam-

ple size in this dataset also afforded the opportunity not just to

construct a TS of the CRC iTMEbut also to dissect how lymphoid

architecture is deployed in newly arisen peripheral sites to com-

bat tumors.

The first ingredient of a TS—the identification of CNs and

assessment of their possible local processes—had been previ-

ously performed. The previous study had identified 9 CNs in

the CRC iTME, all of which were conserved between CLR and

DII patients (Figure 4A.2), and all of these were present at similar

frequencies in both CLR and DII patient groups except for cn5,

corresponding to the TLS. Moreover, the functional states of

the iTME’s CNs were defined and shown to be correlated, and

these correlations differed between high and lower-risk patient

groups, indicating that the local processes of eachCN interacted

and were implicated in antitumoral immunity (Sch€urch et al.,

2020). However, the role that these local processes and their in-

teractions in SCs had in antitumoral immunity was not previously

mapped at the granularity proposed here.

The SCs formed by the CNs of the CRC iTME could be differ-

entially abundant between patient groups. If so, this could sug-

gest the importance of such an SC in the more effective immune

response observed in CLR patients. We identified SCs using a

window size of 50 nearest neighbors and a threshold of 90%

when allocating CNs (see STAR Methods). We only assessed

SCs that were conserved across multiple patients, selecting

those SCs with at least 25 cells in at least 10 patients, resulting

in 55 SCs. Next, we identified SCs that were significantly en-

riched in one patient group by computing the overall frequency

of each SC in each patient (pooling together cells from each of

their 4 TMA cores) and conducting aMann-Whitney U test for dif-

ferences. Four SCs were significantly different in their abun-

dance between the two groups after adjusting for multiple hy-

pothesis testing (FDR < 0.05) (Figure 4B, labeled red points).

SC(5), corresponding to the compartmentalized region of the fol-

licle (Figure 4C.1), SC(1,5) corresponding to an interface be-

tween cn1 (T cell enriched) and cn5 (follicle) (Figure 4C.2) as

well as SC(1,4,5) corresponding to three-way combination of

cn1 (T cell enriched), cn4 (macrophage enriched), and cn5 (folli-

cle) (Figure 4C.3) were enriched in CLR patients. SC(1,2,4,6) cor-

responding to the four-way combination of cn1(T cell enriched),

cn2(bulk tumor), cn4 (macrophage enriched), and cn6(tumor

boundary) (Figure 4C.4) was enriched in DII patients. The previ-

ous study had reported the possibility of communication and

other interactions between the cellular compositions of CNs 1,

2, 4, and 6, and thus, this communication could be associated

with direct spatial contact.

What signals are generated as a result of interactions between

the local processes of CNs in the SCs that are formed? We

reasoned that signals generated by the interactions between

the local processes of each CN in any given SC would be man-

ifest as a shift in the states of the immune cells found therein,

relative to those found in iTME as a whole (Figure 4D.1, in the di-

agram, a large proportion of black cells in SC(blue,green) ex-

press the white marker and a large proportion of black cells in

SC(orange) express the red marker). The major immune subsets

(CD4+ T cells, CD8+ T cells, B cells, and macrophages) in the

CRC dataset had been previously gated for expression of func-

tional immune markers: PD-1 (activation/exhaustion), Ki67 (pro-

liferation), VISTA (immune checkpoint expressed on myeloid

cells suppressing T cell activation), and these markers were

not used in the definitions of cell types, or identification of CNs

(Figure 4D.3). Given this, we identified examples of immune cells

whose expression of a marker was significantly higher (or lower)

in each SC relative to the rest of the tissue (Figure 4D.2). Specif-

ically, for each SC, immune cell subset and functional marker, we

constructed a null distribution by sampling 30,000 random sub-

sets of immune cells of the same size as the SC, fixing the num-

ber from each TMA core and computing the frequency of cells

positive for each functional marker (Figure 4D.2, selected null

samples as well as SC sample illustrated by groupings of black

cells). Next, we compared the frequency of cells in the SC that

were positive for each marker with the corresponding null distri-

bution to obtain a p value (Figure 4D.2, distribution plot in

lower right).

This approach had the advantage that no information about

the expression of markers leaked into the CN or cell-type alloca-

tion, so significant results indicate a genuine biological associa-

tion between a given SC and the state of an immune subset.

However, the approach cannot distinguish whether migrating

cells modulate their expression upon entering these sites or

new subsets preferentially localize there (potentially through traf-

ficking biases or increased proliferation/death upon reaching the

SC). The CNM is presented in Figure 4E. The red color of the font

in the cell subset and functional markers below each node

(identified at an FDR of 0.05) indicate that the proportion of

that subset expressing the marker is higher in the SC relative

to the null distribution, and blue correspondingly lower.

(D) Schematic to illustrate approach for identifying mapping effects of and interactions between local processes of CNs.

(D.1) A schematic tissue with three CNs, their SCs, and a cell type (black) illustrated. The cell type can express the white and red functional markers. Circled

regions indicate SC(orange) and SC(green, blue).

(D.2) A sample from the null distribution is obtained by in each TMA core selecting the same number of cells as are found in the given SC, pooling the cells across

cores and computing the percentage of those cells that are positive for a given functionalmarker. These samples are comparedwith the percentage positive in the

SC to compute a p value.

(D.3) The immune subsets and functional markers available in the CRC dataset.

(D.4) Legend for CNM, visualizing SCs where a cell subset has an increased percentage expressing a functional marker are listed in red, and a decreased

percentage in blue.

(E) CNM for CRC iTME annotated with changes in expression of functional markers on key immune subsets. The p values for tests for combinations of cell types

and markers were combined and Benjamini-Hochberg FDRs were computed. Displayed changes are FDR < 0.05.

(F) Plots of SCs and macrophage phenotypes on selected TMA cores. For clarity only CNs 2 and 6 are displayed. SCs in their respective plots are backlit in dark

gray. Stars with white outlines indicate Ki67� macrophages and stars with orange outlines indicate Ki67+ macrophages.
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We first observed that the local processes of the follicle reca-

pitulated those expected to be in a healthy lymphoid organ. In

the compartmentalized follicle SC(5), we observed a significant

increase of proliferation on B cells and DCs, and a reduction of

VISTA on DCs and a decrease of PD-1 on B cells (Figure 4E,

annotations below leftmost node in top row). In addition,

SC(5) was the only CN where there was an increase of PD-1

expression on CD4+ T cells, consistent with the presence of

PD-1+ T follicular helper cells in the TLS. From this, it can be

inferred that within the follicle of the CRC iTME, the local pro-

cesses involve antigen driven activation driven interactions be-

tween these subsets. Since the only descendant of SC(5) was

SC(1,5) (Figure 4E, edge from SC(5)), the follicle could be

deduced to be generally surrounded by cn1. In SC(1), there

was an increase of PD-1 expression on B cells, along with a

reduction of proliferation. These results indicate an analogous

wiring of the iTME TLS with lymphoid organs, where B cells

are activated in the T cell zone prior to forming follicles (Nutt

and Tarlinton, 2011).

As with the follicle there was an increase in the compartmen-

talized part of the tumor, SC(2), of DC and B cell proliferation

and a reduction of DC VISTA expression (Figure 4E, rightmost

node). However, there was also an increase in proliferation of

CD8+ T cells, and PD-1 expression on both CD8+ T cells and B

cells. This indicates that the local processes of the tumor in addi-

tion to the follicle give rise to activation of immune cells that could

be antigen dependent, but with a different milieu (not giving rise

to the activated CD4+ T cells or reduction of PD-1 on B cells). As

expected from the previous study, we noticed that the tumor was

also generally surrounded by cn6 (tumor boundary, Figure 4E,

only descendant of SC(2)). We noticed that proliferation of mac-

rophages was increased in SC(2,6) as well as SC(2,3,6),

SC(1,2,4,6), and SC(2,3,4,6), but not in those SCs containing

cn6 that do not also contain cn2 (Figure 4E, compare nodes an-

notated with macrophage Ki67 with nodes with green and pink)

or in SC(2). Thus, the local processes of cn2 (bulk tumor) and cn6

(tumor boundary) could interact to generate signals that increase

macrophage proliferation (Figure 4E, red Ki67 for macrophages).

While this result was obtained pooling the data from across pa-

tient cores, we depicted the macrophages expressing and not

expressing Ki67, in SC(2) and SC(2,6) in one TMA core to illus-

trate the finding (Figure 4F).

We next examined the local processes of cn4 (macrophage

enriched). Its compartmentalized region SC(4) (Figure 4E, top

row, third from left) was the only SC which had a decrease in

VISTA expression onmacrophages, indicating that the local pro-

cesses therein might generate unique signals for regulation of

macrophage phenotypes. SC(1,3,4) had a reduction in prolifera-

tion of DCs, B cells, CD4+ T cells, and CD8+ T cells, a reduction in

expression of PD-1 on CD4+ and CD8+ T cells (Figure 4E, node in

third row with many blue annotations). Moreover, SC(1,3,4) and

SC(1,3,4,6,9) were the only SCs in which an increase in the

expression of the inhibitory marker VISTA on DCs was observed.

This indicates that the local processes of cn1 (T cell enriched),

cn3 (immune-infiltrated stroma), and cn4 (macrophage enriched)

interact in SC(1,3,4) to generate signals leading to the inhibition

of T cells that could be mediated by DCs. In SC(1,2,4,6), there

was increased PD-1 expression on CD8 T cells and proliferation

of CD8 T cells andmacrophages (Figure 4E, bottom row, second

from right), and so, the local processes of cn4 alone are not suf-

ficient for such inhibitory signals.

It was previously shown (Sch€urch et al., 2020) that an

increased frequency of CD4+ PD-1+ T cells in cn9 (granulocyte

enriched) was associated with improved survival outcomes in

DII patients. Whereas there was an increase in PD-1 expression

on DCs in three SCs involving the tumor: SC(2) and SC(2,6), as

well as the combination of the inhibitory combination of CNs

along with the tumor SC(1,3,4,6,7), there was a reduction in

PD-1 expression on DCs in SC(9) and SC(4,9). Therefore, the

local processes of cn9 (granulocyte enriched) and cn2 (tumor)

have opposing associations with DC phenotypes that could

play a role in the antitumoral immune response.

Thus, identifying the SCs formed by the CNs of the CRC iTME,

aswell as the changes in expression of functional markers on key

immune subsets is informative of the wiring of the iTME.

Higher-order tissue assembly orchestrates antitumoral
immunity in CRC
The CNM for the CRC iTMEmapped the local processes of each

CN of the iTME and how they interacted as pertained to antitu-

moral immunity. Our results suggested that, as was the case in

HLT, their CNs would form instances that could assemble into

motifs with emergent biological functions. Are these motifs

mere statistical consequences of interactions that are essentially

simpler to describe? Or are these motifs actively assembled by

the iTME in a way that drives patient outcomes?

As we had done for HLT, we segmented instances of each

CN and constructed a tissue graph for each TMA core (Fig-

ure 5A), considering only instances of any CN with more than

5 cells (see STAR Methods). We observed that the tissues of

DII patients were significantly more fragmented than those of

CLR patients, as measured by the average number of CN in-

stances (vertices) in the tissue graphs for each patient (p =

0.006) (Figure 5B, left), as well as the average degree (number

of edges emanating from a vertex) (p = 0.02) (Figure 5B, right).

This raised the question: did the fragmented tissue graphs of

the DII patients mean that the assembly of CNs into motifs

was simply in a state of disorder with individual CNs unable

to assemble into the motifs required for emergent tissue behav-

iors, or did the assembly correspond to an alternative state of

tumor-favoring order?

We began by computing the frequency that each instance of

the tissue graph was found as part of a chain of 2 CNs (hereafter

referred to as a two-chain) and identified candidate ARs as we

had done with the TS for HLT in each patient group, visualizing

combinations where this frequency was above 0.65 in either pa-

tient group (Figure 5C, color indicating frequency of extension).

We found that most of the candidate rules were common to

both patient groups, for example bulk tumor (cn2) instances

were always extended to the cn2–cn6 (bulk tumor/tumor bound-

ary) motif (Figure 5C, top row), smoothmuscle instances were al-

ways extended to the cn7-cn8 (smooth muscle/vascularized

smooth muscle) motif (Figure 5C, second row from top). The

identified cell types were qualitatively comparable between the

HLT and CRC datasets, and so we could approximately

compare certain CNs (cn1 could be mapped to either cnBT or

cnT, cn5 mapped to cnB, cn4 mapped to cnMF, and cn7 map-

ped to cnV), (Figure S8). Thus, we could map the candidate rules
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Figure 5. Higher-order tissue assembly orchestrates antitumoral immunity in the CRC iTME

(A) Example tissue graphs constructed from TMA cores by segmenting instances and connecting those that are adjacent with edges.

(B) Quantification of fragmentation of tissue in CLR and DII patients by left: number of vertices and right: average edge degree in the tissue graph of each TMA core,

separated by patient group. Mann-Whitney U test for differences in p value applied after the counts across the four cores for each patient had been averaged.

(C) Heatmap of extension-frequencies for instances of lower CN at source of arrow on each row being extended to two-chain at target. Color indicates frequency

of instances that do extend, according to scale. Labeled rows indicate approximate correspondences with HLT basic rules.

(D) Motif extensions whose frequencies were significantly different (p < 0.05 permutation test, Bonferroni corrected) between patient groups. The annotated

cnA/cnB is an abbreviation that denotes extension frequency of instances of cnA being extended to a two-chain cnA-cnB.

(E) Schematic of identifying higher-order structure relative to a maximum-entropy null distribution over colorings of tissue graph. Top row, from left: A null set is

constructed corresponding to set of all colorings with the same number of vertices of each given color, which can be viewed as generated by applying arbitrary

(legend continued on next page)
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observed in CRC to those present in the various HLTs (Figure 5C,

annotations on right).

We found two rules that were present in only the spleen that

were also rules in CRC, corresponding to cn1 (T cell enriched)

and cn4 (macrophage enriched) each being extended to the

cn1-cn4 motif (Figure 5C, 5th and 6th row from top). In CLR pa-

tients, there was a rule: cn5/cn1-cn5. The exact analog of

this under the mapping would be cnB/cnB-cnT, which was

not a core lymphoid rule. Instead, the core lymphoid rule was

cnB/cnB-cnBT (Figure 5C, 3rd row from top). These data indi-

cate that in the CRC iTME, unlike in lymphoid tissue, the TLS as-

sembles to directly contact the T cell-enriched CN, without

assembling next to an intermediate CN in which B cells and

T cells mix. At the same time, one of the splenic rules, cnV/

cnMF-cnV was a rule only in DII patients. Thus, the similarities

between the architecture of HLT and the CRC iTME extended

beyond just the existence of the follicle, but also included ARs

involving the T cell-enriched CNs and the macrophage-enriched

CNs.

We assessed whether the differences in rules that were

observed in Figure 5C were statistically significant, by

permuting patient group assignments prior to computing fre-

quencies of each extension and thus obtaining a null distribu-

tion which we could identify significant differences between pa-

tient groups (see STAR Methods). This confirmed that cn5

(follicle)/cn1 (T cell enriched)-cn5 (follicle) (analog of the

core lymphoid rule of cnB/cnB-cnBT) was only a rule in CLR

patients (Figure 5D, indicated by the cn5/cn1 marker on the

plot). In DII patients, cn5 (follicle) instances extended to a motif

with cn8 (smooth muscle), or cn7 (vasculature), or cn2 (bulk tu-

mor) significantly more frequently in DII patients (Figure 5D,

motifs above the diagonal with cn5 on left). We observed that

in cn2 (bulk tumor) instances were extended to the cn2 (bulk

tumor)-cn9 (granulocyte enriched) and cn2 (bulk tumor)-cn1

(T cell enriched) motifs in DII patients, but to the cn2 (bulk

tumor)-cn3 (immune infiltrated stroma) in DII patients (Fig-

ure 5D, motifs with cn2 on left).

The fact that both patient groups exhibited ARs that were an-

alogs of those found in the spleen, but only the CLR patients de-

ployed the core lymphoid AR (cnB/cnB-cnBT) suggests that

there were common programs of tissue assembly at play in

both patient groups but that were altered between CLR and DII

patients. Could these alterations play a role in patient survival

outcomes? Given the changes in the extension frequencies

involving tumor instances between patient groups, could the

tumor play a role in altering the assembly of the CLR pa-

tients’ iTME?

We quantitatively described the order present in the assem-

blies of each patient groups’ iTMEs. We identified motifs in

each patient group that could be considered ‘‘higher-order’’ in

the following sense: those, for which there was statistical evi-

dence that the iTMEwas actively expending energy to assemble.

We reasoned that thosemotifs would be the ones for which there

was evidence of deviation from what would be entropically ex-

pected, i.e., those whose observed count deviated from a null

distribution with high entropy, given some constraints. For

example, tissues might actively constrain just the number of

each CN instance, but the two-chains formed by them might

be expected from a high-entropy distribution given those con-

straints (and so, in that case, the two-chains would not be

higher-order motifs). Alternatively, tissues might actively

constrain the numbers of instances of CNs and two-chains,

but more complex motifs might be expected by chance. We

would expect that the motifs that were higher order, since they

are likely the ones that are actively assembled (requiring energy

to counteract entropy), would be the ones that could have impor-

tant roles in tissue outputs that are not accomplished by their

subcomponents. Therefore, if DII patients were simply more

disordered, we would expect there to be fewer higher-order

motifs in their tissue graphs.

We identified higher-order motifs by constructing a null distri-

bution of tissue graphs that was maximally entropic, once some

level of ‘‘lower-order’’ structure among these graphs had been

fixed (Figure 5E, overall panel). Motifs whose count in the original

tissue graph significantly deviated from such a maximum en-

tropy null distribution would indicate higher-order motifs being

actively assembled (Figure 5E, column headings). We tested

our approach to find two-chains that were higher-order relative

to the maximum entropy null distribution obtained when the un-

derlying graph structure and total number of each CN instance in

each TMA core had been fixed. This maximum entropy null dis-

tribution corresponds to the uniform distribution on the set of

transpositions to the original coloring. The uniform distribution over this set is directly sampled using randompermutations. The counts of two-chainswith respect

to the original coloring are compared with the counts of two-chains in the original coloring to identify significantly deviant ones. Bottom row, from left: instead of a

maximum-entropy null distribution that fixes only the number of vertices assigned to each color, the level-1 null-set additionally constrains extension frequencies

and is generated applying transpositions only between colors of vertices whose neighboring vertices have the same set of colors. The uniform distribution over

this set cannot be directly sampled, so aMonte-Carlo Markov-Chain algorithm is used to sample colorings. The counts of triangles are compared with the counts

of triangles in this null set, using hypothesis testing to identify higher-order motifs.

(F) Two-chains whose count significantly deviates from the level-0 maximum-entropy null distribution in CLR patients (left) or DII patients (right) indicated by

colored motifs on volcano plots.

(G) Triangle motifs (colored) whose count significantly deviates from the level-1 maximum-entropy null distribution in CLR (left) and DII (right) patients. In both

plots, x marker indicates not-significant motifs and colored motifs indicate those significant at FDR = 0.05.

(H) Log2 enrichment of the extensions of the (T cell enriched, macrophage enriched, and vasculature) triangle in DII patients relative to CLR patients. Numerical

annotations for enrichment whose absolute value is greater than 1 indicate number of patients with that extension in each patient group.

(I) Kaplan-Meier curves for DII patients with and without the tumor (T-cell-enriched, macrophage-enriched, and vasculature) motif. Cox proportional-hazards

regression p value = 0.006.

(J) Examples of motifs present only in patients that do not have the tumor (T-cell-enriched, macrophage-enriched, and vasculature) motif (top row) visualized in

the corresponding tissue graphs (bottom row).

(K) Submotifs of the tumor (T-cell-enriched, macrophage-enriched, and vasculature) motif arranged by extension of motifs. Color intensity of circle indicates Cox

proportional hazards p value for association with survival in DII patients. Edge weights and labels indicate number of DII patients with motif at source that also

have motif at target. Red edge color indicates tumor incorporation into the assembly of the (T-cell-enriched, macrophage-enriched, and vasculature) triangle.
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colorings of the original tissue graph with a fixed number of each

color, which we refer to as the Level-0 null set and can be viewed

as being generated by repeated swaps of the assignment of

colors (Figure 5E.1, top row) in the tissue graph within a given

TMA core. Samples from the maximum entropy null distribution

can be obtained by random sampling of permutations of CN as-

signments of the vertices for each core (Figure 5E, column 2),

and the count of a given two-chain in the original graph can be

compared with the count of that two-chain in the colored graphs

sampled from the null distribution (Figure 5E, column 3). The two-

chains that significantly deviated from the maximum entropy null

distribution after Bonferroni correction are visualized in each pa-

tient group (Figure 5F, top row, colored motifs). These show that

many of the higher-order two-chains are common to both CLR

and DII patients, including cn2-cn6 (tumor/tumor boundary),

cn7-cn8 (smooth muscle/vascularized smooth muscle and

cn1-cn4 (T cell enriched/macrophage enriched).

Instances of cn1–cn2 (T cell enriched/bulk tumor) are less

frequent than expected under the maximum entropy null distri-

bution, which can be interpreted as evidence that active tissue

processes prevent contact between these two CNs. In addition,

while the cn9 (granulocyte enriched) is present in both patient

groups at similar frequencies (Sch€urch et al., 2020), higher-order

two-chains involving it are found only in DII patients. In DII pa-

tients, two-chains involving cn8 (smooth muscle) with CNs 1,

3, 6, and 9 (T cell enriched, immune-infiltrated stroma, tumor

boundary, and granulocyte enriched, respectively) are depleted,

further adding to the evidence that some active processes could

be constraining the assembly of smooth muscle CNs adjacent to

the tumor boundary. It was previously reported that the func-

tional state of cn9 (as measured by the frequency of PD-1+CD-

4+ T cells) was associated with survival in DII patients (Sch€urch

et al., 2020), while the analysis of the SCs showed that the local

processes of cn9 could be playing a role in counteracting effects

the tumor had on DC phenotypes (Figure 4E). The fact that there

are significant two-chains involving cn9 in DII patients indicate

that its assembly into the iTME is actively specified, and thus ad-

jacencies between its instances could play a role in its antitu-

moral effect. Taken together, these data did not suggest that

the DII patients were simply more disordered, but instead that

there was a different order being imposed.

Although both patient groups had similar numbers of higher-

order two-chains, we reasoned that perhaps CLR patients would

have more triangle motifs (three instances all connected) that

were higher-order relative to amaximum entropy distribution ob-

tained by constraining the number of 2-chains. Whereas the

level-0 null set, fixing just the number of each CN instances,

was generated by arbitrary swaps of vertex CN assignments

from the original graph of each spot (Figure 5E1, upper column),

we defined the level-1 null set, generated by allowing swaps of

the CN assignments of two instances in the tissue graph of a

TMA core only if the set of CNs of their neighboring instances

is the same (Figure 5E.1, lower column, see STAR Methods).

The level-1 null set consists of colorings, which have the same

counts of two-chains as the original graph, but the counts of

more complex motifs vary. Triangles enriched relative to the uni-

form distribution on the level-1 null set are likely actively assem-

bled by the iTME and thus could play an active role in antitumoral

immunity. While this maximum entropy null distribution cannot

be directly sampled because of the complicated constraints on

swaps, we developed a Markov Chain Monte Carlo algorithm

to approximately sample from it (see STAR Methods), and we

used these samples to identify higher-order triangles. Since

these null distributions and the level-0 ones were generated rela-

tive to the starting graph, they made minimal prior assumptions

on its structure such as CN abundances, number of instances for

each CN, or number of outgoing edges.

Triangle (1,4,6) (T cell enriched, macrophage enriched, and

tumor boundary) was present significantly more often than in

the maximum-entropy null distribution only in CLR patients

(Figure 5G, left, colored triangle). Given our results from the

CNM (Figure 4E) that the local processes of cn6 (tumor

boundary) in combination with those of cn2 (bulk tumor) gen-

erates signals for macrophage proliferation, and SC(1,2,4,6) is

linked to the activation of CD8+ T cells, the fact that this trian-

gle is actively assembled only in CLR patients indicates that

formation of instances of these CNs in direct contact with

each other and the tumor could be an active component of

the antitumoral response. In contrast, triangle (1,3,4) (T cell

enriched, immune infiltrated stroma, macrophage, and en-

riched) was prevalent significantly more often than in the

maximum entropy null distribution in DII patients (Figure 5G,

right, colored triangle). The CNM had highlighted that

SC(1,3,4) was associated with inhibitions on the activation of

T cells. In summary, in DII patients, a potentially inhibitory

motif is actively formed, and in CLR patients, a potentially

effector motif is actively formed.

Triangle (1,4,7) (T cell enriched, macrophage enriched, and

vasculature) was actively assembled in CLR patients, but trian-

gle (1,3,7) (T cell enriched, stroma enriched, and vasculature)

was actively assembled in DII patients (Figure 5G, triangles in

left/right). This can be interpreted as evidence that the cn1-cn7

(T cell enriched/vasculature) motif has an altered role in DII pa-

tients, by assembling with the stromal enriched CN. In addition,

triangle (2,6,9) was actively assembled in DII patients, further

corroborating that the signals generated in cn9 (granulocyte en-

riched), and their effects in opposition to those generated in the

tumor (e.g. on DC phenotypes as suggested by the CNM) could

be an ingredient of the antitumoral immune response in DII

patients.

We observed that triangle (1,4,7), (T cell enriched, macro-

phage enriched, and vasculature), which was the most signifi-

cantly enriched in the CLR patient group relative to the

maximum-entropy null distribution, was present in 16/17 CLR

patients and 17/18 DII patients. The fact that this motif was pre-

sent in both groups but only actively assembled in CLR raised

the question of whether it was an important component of the

immune response. If so, there clinically significant differences

in how this motif is used in each patient group would be ex-

pected. For each extension of triangle (1,4,7) by a single CN,

we quantified the differences between patient groups in the fre-

quency of patients with each such extension (Figure 5H). While

many extensions were similarly represented across both patient

groups, as would be expected (Figure 5H, motifs in middle of

plot), the extension of this motif by the follicle CN 5 was enriched

among CLR patients (Figure 5H, lower end of plot). On the other

hand, there was a great enrichment of the motif formed by the

extension of triangle (1,4,7) with cn2 (bulk tumor) adjacent to
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cn1 (T cell enriched) in DII patients (Figure 5H, upper end of plot),

suggesting that the tumor incorporating itself into a motif could

affect clinical outcomes.

We found that DII patients with at least one instance of the

cn2-triangle(1,4,7) motif had dramatically worse survival out-

comes than DII patients that did not have any instances of

that motif (despite 17/18 DII patients having an instance of tri-

angle (1,4,7)) (Cox Proportional Hazards regression p value =

0.006) (Figure 5I). Taken together, these data provide evidence

that the (T cell-enriched, macrophage-enriched, and vascula-

ture) motif is actively formed as part of an effective antitumoral

response, and moreover, tumors can dynamically repurpose its

assembly in a clinically significant manner. When the presence

of the cn2-triangle(1,4,7) motif was included as a feature in

combination with the functional state of CN-9 (i.e., the fre-

quency of PD-1+ CD-4+ T cells in the granulocytic CN, which

had previously been reported to positively associated with sur-

vival of DII patients (Sch€urch et al., 2020) in a Cox proportional

hazards regression model on survival outcomes in DII patients,

both features were highly significant (p < 0.005) (Figure S9).

Thus, the biological programs mediating the negative effect

on survival associated with the cn2-triangle(1,4,7) motif,

and the positive effect of the functional state of cn9 are

complementary.

We identified whether any motifs related to the triangle(1,4,7)

motif were found only in patients without the cn2-triangle(1,4,7)

motif, and observed that the only ones that were found in at

least five patients with those CNs were complex ones (Fig-

ure 5J, visualized motifs and corresponding TMA cores), but

these did not have significant association with survival. We

observed cn9 in two of these motifs, indicating that simulta-

neously inhibiting the assembly of cn2-triangle(1,4,7) and

inducing the adjacency and functional state of cn9 could syner-

gize to help improve the outcomes of DII patients. This raised

the question is the functional role of the cn2-triangle(1,4,7) motif

emergent, or is it also obtained by any of its subcomponents?

We assessed whether the presence of any submotifs of the

cn2-triangle(1,4,7) motif were associated with survival (Fig-

ure 5K). In that graph the color intensity of the surrounding cir-

cle indicates the p value of the association with survival. All of

the submotifs that were associated with survival required all

four of the CNs 1,4,2, and 7, showing that assessment of the

more complicated motif is required for clinical stratification of

patients. Moreover, the graph also demonstrates how a com-

mon assembly (one with no stratification of patients by survival

[Figure 5K, black arrows]) can be corrupted by the tumor to

construct an iTME detrimental to patient health (Figure 5K,

red arrows).

Through this approach for dissecting functional contributions

to the CRC iTME, we have established the following: (1) the phe-

nomenon of interactions between the local processes of CNs in

SCs giving rise to emergent tissue signals is a common feature of

tissue function across multiple tissue types and sizes, (2) com-

plex motifs are not merely statistically emergent from tissue con-

straints on simpler motifs, but rather specific motifs are higher

order (likely to be actively assembled), (3) such higher-order

motifs can play a distinct, functional role from their simpler sub-

components, and (4) the distinct functional role of higher-order

motifs can affect patient outcomes.

DISCUSSION

The TSs approach, which consists of identifying CNs, mapping

their local interactions in SCs and the rules of their assembly

into tissue motifs, provides a systematized strategy to infer

(using high-parameter imaging data) how tissues achieve com-

plex functions by composing simpler components.

The map of the SCs in the CRC iTME, as well as changes in

expression of functional immune markers within them, suggests

that cellular mechanisms of how the CRC iTME is wired to

generate immune responses: (1) the local processes of the TLS

and T cell-enriched CN are analogous to those of a lymphoid

organ, and key features of the tissue schematic of HLT are imple-

mented in TLS, (2) the local processes of the tumor generates an-

tigen-dependent immune activation, (3) interactions between the

local processes of the main tumor and tumor boundary interact

to give rise to signals driving macrophage proliferation, (4) the

local processes of the macrophage CN interact with those of

the T-cell-enriched and immune-infiltrated stroma CNs leading

to the generation of DC enhanced inhibition of T cells, and (5)

the local processes of the compartmentalized region of the gran-

ulocyte enriched CN generate effects on DC phenotypes that

oppose immune inhibitory local processes of the tumor. In addi-

tion, the way in which the known architectural optimizations of

the germinal center response are reflected in the SCs formed

by the CNs of HLT shows that CNMs can be an informative

way to infer the nature of signal propagation between CNs.

The analysis of basic rules of HLT motif assembly aligned the

three tissue types, identifying a core, conserved lymphoid motif,

and its specialization to each tissue type. Furthermore, the basic

rules showed that the architecture of the lymph node and tonsil

were more similar than that of either to the spleen. Assessing

the motif assembly of the CRC iTME, we identified evidence of

conserved assembly and wiring between the TLS and the follicles

of HLT. Furthermore, our statistical framework identified a higher-

order tissue motif whose mutation was associated with survival

outcomes for high-risk patients that was complementary to the

one that had been previously identified. The tumor’s corruption

of the T-cell-enriched,macrophage-enriched, vasculature triangle

motif may play a similar role in other iTMEs beyond that of CRC.

Our results highlight that while the compositional nature of im-

mune architecture enables different lymphoid tissues to specialize

common immune programs, it also provides opportunities for the

tumor to strategically insert itself into these programs.

Future work to define SCs that utilize different strategies from

the CN combination one (for example those that directly model

chemokine gradients or distance from vasculature) may elucidate

more complex local processes and interactions. Extending the

identification of motifs to those defined in terms of more compli-

cated spatial ontologies (Bateman and Farrar, 2004) will increase

the granularity with which assemblies of CNs and their functional

role can be defined and understood. A limitation of our analysis is

that tissue-volume sampling biases are not taken into account in

the identification of rules. Therefore, statistical models for assess-

ing the presence of ARs and changes within them will address

such considerations of spatial sampling power. Extending ARs

to incorporate more complicated qualitative spatial reasoning

techniques (Dylla et al., 2017) and identifications of redundancies

in such rules (Li et al., 2015) will enhance automated construction
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of TSs. Further, we propose here only that that understanding tis-

sues compositionally (describing them with respect to composi-

tions of interacting components, while maintaining registry of

the functionality of such components) will be essential to dissect-

ing order out of the apparent disorder of the tumor microenviron-

ment. As such, othermodels for composition (Willems andPolder-

man, 1997; Fong et al., 2016, 2021; Courser, 2020) applied to

tissues will enhance mapping efforts. Furthermore, constructing

schematics of tissue in a compositional manner enables perturba-

tions to complex tissue components to be designed in-silico from

those to simpler ones, providing both a strategy for designing

therapeutic strategies and validating the schematic.

Merging of our data and approach with ongoing tissue atlas

projects and perturbational data should enable identification of

associated genetic programs that are definitive for the structures

and functions we have identified. To this end, experimental

models, such as in-vitro-insert-based systems (Marshall,

2011), organoid (Rossi et al., 2018), and bioprinting (Murphy

and Atala, 2014) platforms, could allow quantitative functional

understanding of signals emergent from the signal propagation

in CN assemblies. The local processes of CNs and their interac-

tions in SCs could be quantitatively modeled through optimal

transport (Schiebinger et al., 2019), pseudo-spatiotemporal

analysis (Nowotschin et al., 2019), and field-based models (Op-

per and Saad, 2001) to provide insights into the emergent order

present in the architecture of these tissues. Extending our sam-

pling-based approach for identifying higher-order structures will

enable establishment of the minimal relationships required to

specify the assembly of tissues and will thus inform engineering

of spatially organized systems such as those enabled by syn-

thetic morphogen systems (Toda et al., 2020).

TSs constructed across other disease states could identify bio-

markers and yield mechanistic insights into altered tissue behav-

iors associated with pathologies of the kind we have identified

here. TSs could also be constructed across organismal develop-

ment time from egg to fetus to adult stages to understand the

developmental programs regulating CN assemblies and their

behavior. Indeed, cross-species comparisons of TSs will reveal

the architectural innovations enabling specialized andmore effec-

tive tissue function. We expect that as data accumulate across

multiple immuneorgans,perturbation conditions, age,andspecies

comparisons that the ‘‘nuts and bolts’’ of the schematics of various

tissue types will come together in amanner that allows its modula-

tion toward correct function during disease and pathologies.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Garry

Nolan (gnolan@stanford.edu).

Materials availability
This study did not generate or utilize any reagents.

Data and code availability
d The HLT and CRC CODEX data and associated metadata utilized are published in (Kennedy-Darling et al., 2021) and (Sch€urch

et al., 2020) respectively.

d All code has been deposited at www.github.com/nolanlab/TissueSchematics/. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

CODEX imaging data
Raw imaging data, segmented single-cells and cell-type clusters types for the HLT dataset were obtained from (Kennedy-Darling

et al., 2021). Segmented single-cells, cell-type clusters, and CN assignments for the CRC dataset were obtained from (Sch€urch

et al., 2020).

CN identification in the HLT dataset
CNs in the HLT dataset were identified by clustering cells based on the cell-type composition of their 20 nearest neighboring cells. For

each cell, a window of size 20 nearest neighboring cells (including the center cell) as measured by Euclidean distance between X/Y

coordinates was obtained. These windows were then clustered by the composition of their microenvironment with respect to the 25

previously identified cell types. Specifically, each window was converted to a vector of length 25 containing the frequency of each of

the 25 cell types amongst the 20 neighbors. We then clustered these windows using Python’s scikit-learn implementation of

MiniBatchKMeans with k = 11. Each cell was then allocated to the same CN as the window in which it was centered. To validate

the CN assignment, these allocations were overlaid on the original tissue images and cross compared with expression of the char-

acteristic markers of the cell types enriched in that CN. We observed that the original follicular CNs did not accurately reflect the dis-

tribution of marker expression that could be observed in the original data, because the cell types in the original publication merged

phenotypic subsets of B-cells. We finely re-clustering all cells across the tissues using the K-means algorithm with a k=100, identi-

fying 11 clusters that were abundant in the follicle, and re-clustering the original follicular CNs into three new CNs using these

cell types.

Barycentric coordinate projection
Windows of 100 nearest neighbors were extracted around each cell, and frequencies of CN assignments to each individual cell in

each window were computed. Those windows where cnB, cnLZ, and cnDZ comprised more than 90% of the cells were selected

and projected linearly under the linear map sending the unit coordinate vectors (i.e., 100% of cnB, cnLZ and cnDZ) to a point of

an equilateral triangle. The projected points were colored by the CN assignment at the center of the window.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Spatial cellular data for HLT Kennedy-Darling et al., 2021 (PI: Garry

Nolan lab)

https://doi.org/10.1002/eji.202048891

Spatial cellular data for CRC and patient

metadata

Sch€urch et al., 2020 (PI: Garry Nolan) https://github.com/nolanlab/

TissueSchematics

https://doi.org/10.1016/j.cell.2020.07.005

Software and algorithms

TissueSchematics jupyter notebooks This paper https://doi.org/10.5281/zenodo.5494009
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Identification of SCs for HLT
Windows of 100 nearest neighbors were extracted around each cell, and frequencies of CN assignments in each window to each

individual cell were computed. Windows were assigned to the minimal combination of CNs such that 90% of the cells in a window

were assigned to a CN from that combination. Figure S5 shows that neither which combinations, or their relative abundances are

sensitive to small changes in the choice of 100 for window size or 90% for the minimal parameter.

CN combination map for HLT
A directed graph was built from the abundant combinations (those more than .001% of total cells) using the Python networkx library,

where nodes were combinations and edges were added between a source combination and a target combination if the combination

at the target could be obtained by adding oneCN to the combination at the source. Thesewere visualized using the Pythonmatplotlib

library.

Instance segmentation for HLT dataset
For each CN and tissue, a binary image was created from the x, y coordinates of each cell; pixels containing cell centers assigned to

the CN of interest were assigned a value of 1. The size of these images was such that the x, y coordinates of the original cell were

downsampled by a factor of 50. For CNs BT, Pl LZ, DZ, binary images were dilated using the SciPy ndi binary dilation function. The

connected components of the binary images were identified using the SciPy ndi label function with default parameters. Connected

components that were less than 20 pixels in size were assigned to background. The collection of instances of each CNwere the non-

background-connected components in each tissue.

Tissue graph for HLT dataset
A graph for each tissue was built with nodes corresponding to instances of each CN, and edges corresponding to pairs of instances

that spatially intersected (i.e., that had at least 1 pixel in common) in the binary images. A combined graph for the tonsil was

constructed as the union of the graphs from each tonsils. Graphs were represented using the python networkx library.

Hashing of motifs, instances and extensions from tissue graphs
Only one CN name was only allowed to appear in the motifs we considered. As a result, we could represent motifs programmatically

(we used python) as a pair (A,B), where:

d A was a lexicographically ordered tuple of lexicographically ordered pairs of CN names, representing edges in the graph of

a motif

d B was a lexicographically ordered tuple of CN names, representing the vertices of a motif.

A motif instance – a collection of CN instances respecting the adjacency structure specified by the motif was programmatically

represented as a lexicographically ordered tuple of CN instances.

Using this convention, we constructed a python dictionary (a map of key-> value pairs) whose keys were motifs, and values were

sets of motif instances (termed the motif-instances map). Specifically, we initialized the algorithm by adding 2-chains and their cor-

responding instances by iterating over the edges of the tissue graph to the dictionary. Next, we iteratively extended themotifs already

in the keys of the dictionary by iterating over their instances and adding adjacent vertices of the graph, adding these instances to the

set of instances for the correspondingly extended motifs and therefore adding to the motif-instance map. Since we were iterating

over each motif instance to identify its extensions, we simultaneously constructed another dictionary, termed the extension-in-

stances map, whose keys were pairs (m1,m2) where m1 is a submotif of m2 and values corresponded to sets of instances of m1

that could be extended to m2, and a directed graph with edges (m1,m2), termed the extension graph.

We only extended motifs with at most 5 CN names, so the motifs we assessed had at most six CN names.

Identification of assembly rules
The assembly rules were identified by selecting edges in the extension graph with source motifs with at least 5 instances for which at

least 70% of the instances of the source motif could be extended to the target motif. We validated that this 70% threshold did not

affect the rules identified, capturing themajor structure present in extensions of HLT instances to 2 chains (Figure S7). This collection

of edges was further pruned by enforcing transitivity; so that rules were only selected if they could be composed (i.e., that for every

submotif of a given motif, at least 70% of the instances of that submotif could be extended to the larger motif of the rule). This

subgraph of the extension graph was termed the rule graph.

Identification of basic assembly rules
The basic rule graphwas obtained from the rule graph as follows. First, each edge in the extension graphwas assigned a ‘difference’,

corresponding to the specific edge between CNs added to the motif of the source to obtain the motif at the target. For example, if an

edge in the rule graph corresponded to themotif (A-B) being extended to themotif (A-B-C), the difference assigned to that edge of the

rule graph would be (B-C). An edge was added to the basic rule graph if the difference assigned to it was not equal to the difference

assigned to any of its ancestors’ outgoing edges.
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Identification of SCs for CRC dataset
Cores that had 750 cells or fewer were excluded (corresponding to 13/140 cores). SCs were identified similarly to the HLT dataset:

windows of 50-nearest neighbors were extracted around each cell, and frequencies of CN assignments in each window to each in-

dividual cell were computed. Windowswere assigned to theminimal combination of CNs such that 90%of the cells in a windowwere

assigned to a CN from that combination.We then identified abundant SCs as thosewith at least 25 cells in each of at least 10 patients.

This resulted in in 55 abundant SCs.

Identification of differences in SC frequency between CLR and DII patients
The frequency of each abundant SC was computed for each patient. Mann-Whitney U tests were performed using the python

function scipy.stats.mannwhitneyu to obtain a p-value for differences between these groups. FDRs were computed using the

Benjamini-Hochberg procedure as implemented in the python function statsmodels.stats.multitest.fdrcorrection. Reported differ-

ences are at a FDR of 0.05.

Identification of cell types enriched in SC(1,2,4,6)
The following expression of functional markers was obtained from the manually gated data reported in (Sch€urch et al., 2020). CD4+

T cells (PD-1, Ki67), CD8+ T cells (PD-1, Ki67), Tregs (PD-1, Ki67), B cells (PD-1, Ki67), CD68+CD163+ macrophages (PD-1, Ki67,

VISTA), CD11c+ DCs (PD-1, Ki67, VISTA). Next, for each SC and cell subset, a null distribution for the percentage of cells expressing

a given functional marker was generated as follows. For each SC and cell subset and TMA core, 30000 samples of that cell subset

(ignoring expression of the functional marker) of the same size as the number of the given cell subset in the given SC in each TMA core

were obtained. These cells were pooled to generate a sample of cells across the tissues consisting of the same number of the im-

mune cell subset as the number of that immune cell subset in the given SC across the tissues. Next, the percentage of the sampled

subset of cells that were positive for each functional marker was computed in each sampled subset, thereby generating a null

distribution for marker in the SC. The observed percentage of the immune cells in the SC was compared to this null distribution.

A p-value was obtained as the minimum of:

d 1- Average number of null samples whose frequency of functional marker expression exceeded the frequency of functional

marker expression in the immune cell subset in the SC

d 1- Average number of null samples whose frequency of functional marker expression was less than the frequency of functional

marker expression in the immune cell subset in the SC

FDRs were obtained using the python statsmodels.stats.multitest.fdrcorrection function, and the reported results are at a FDR

of 0.05.

Instance segmentation for CRC dataset
Since each TMA core was small, a different approach was used to segment instances. A 10-nearest neighbor graph for the cells of

each TMA core was constructed using the sklearn.nearest_neighbors module. The connected components of this graph were iden-

tified using the scipy.sparse.csgraph module. Instances which consisted of fewer than 5 cells were discarded

Tissue graph for CRC dataset
A graph for each TMA core was formed whose edges were the segmented CN instances from that core and whose edges were CN

instances in each TMA core that were adjacent. Two instances were considered adjacent if one contained a cell that neighbored

another in the other.

Comparison of fragmentation between CLR/DII patients
The number of nodes and average degree for the tissue graph of each TMA core was computed, which is what is displayed in Fig-

ure 4F. For each patient, the average of these was taken across the tissue graphs of their 4 TMA cores. The p-values for differences

between groups were computed using the python scipy.stats implementation of the Mann Whitney U-test.

Identification of differential extension frequencies between CLR and DII patients
A null distribution for the difference in extension frequencies was generated by permuting patient assignments to CLR or DII. Since

each patient had multiple TMA cores, permutations had to be conducted at the patient level and not at the TMA core level. Specif-

ically, for each permuted patient group assignment, two graphs were obtained by taking the union of the tissue graphs for each TMA

core assigned to patients from the respective permuted group. In each of these graphs, the instances of each CN were enumerated,

and the frequency that each of those instances was extended to a 2-chain was computed. For each possible extension, the differ-

ence between the frequency of extension in the permuted assignment to CLR and in the permuted assignment to DII was obtained. A

one-sided hypothesis test was conducted for each extension against the null hypothesis that the difference in extension frequency

was 0. The rejection p-value was the frequency that the permuted difference exceeded the observed differencewhen positive, or vice

versa when negative. 10000 permutations were conducted. p-values were Bonferroni corrected by multiplying by twice the number

of tests conducted.
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Identification of higher-order 2-chains in CLR and DII patients
A tissue graph for each patient group was obtained by taking the union of the tissue graphs of each TMA core. We considered the

Level-0 null-set defined as follows. The level 0 null-set was defined as graph the set of CN-assignments obtainable by a sequence of

valid transpositions of CN-assignments, where a valid transposition was:

d Any transposition of the CN assignment of two nodes in same TMA core.

The Level-0 null-set can be seen to be equivalent to the set of CN assignments obtainable by arbitrary product of permutations of

the assignments within each core, as well as the set of CN assignments that fix the number of vertices in each core assigned to

each CN. The maximum entropy null distribution – given by the uniform distribution on this set – could therefore by sampled

directly using random permutations from the numpy.random library.

Only those 2-chains with at least 5 instances were considered as candidate higher-order structures. One-sided hypothesis tests

were conducted for those 2-chains against the hypothesis that the observed count arose as the count of that 2-chain as a sample

assignment from the null distribution. The null hypothesis rejection p-value was estimated as the smaller of:

d 1-(the proportion of permutations for which the observed count was greater than the count in the permuted assignment)

d 1- (the proportion of permutations for which the observed count was less than the count in the permuted assignment).

To identify significant 2-chains, p-values were Bonferroni corrected by multiplying by twice the number of tests conducted in each

patient group.

Construction of Level-1 Null Set
The Level-1 Null Set for the tissue graphs of each group was defined as the set of colorings obtainable by a sequence of valid trans-

positions of color-assignments. We considered two distinct notions of valid transposition.

d The ‘exact’ level-1 null set was obtained by considering a valid transposition to be one between two nodes from the same TMA

core whose neighboring nodes had the exact same collection of colors taking into account multiplicity (a given CN instance

could be adjacent to multiple instances of the same CN).

d The ‘inexact’ level-1 null set was obtained by considering a valid transposition to be one between two nodes from the same

TMA core whose neighboring nodes had the same set of colors, counting each color at most once.

From these definitions, we can see the following:

d The exact level-1 null set is a subset of the inexact level-1 null set.

d The exact level-1 null set exactly preserves the number of instances of each 2-chain, but the inexact level-1 null set does not

(since a valid transposition in the inexact case could for example swap the colors of two nodes that have the same set but

different numbers of adjacent colors).

d The exact level-1 null set is a subset of but not in general equal to the set of permutations that fixes the number of each 2-chain.

This is because some permutations of the original coloring that fix the number of 2-chains in a colored graph might require

permuting the color assignments of more than two nodes simultaneously. For example, considering a triangle with 3 different

colors to each node, there are no valid transpositions since each node has a different set of neighboring colors, but any per-

mutation of the coloring fixes the number of 2-chains.

In either of these cases, it is not possible to directly sample a random coloring from the Level-1 null set because of the constraints

defining valid transpositions.

Sampling from the uniform distribution over the Level-1 Null Set
We implemented the Metropolis-Hastings (MH) algorithm to generate samples of colorings from the uniform distribution over the

exact and inexact Level 1 null-sets. MH is a Markov Chain Monte Carlo algorithm. This algorithm operates by generating candidate

transpositions with a certain probability for the tissue graph of each TMA core, and accepting them with a certain probability termed

the acceptance probability, and otherwise rejecting them. The candidate transpositions and acceptance probability are chosen, such

that the distribution of generated samples after hundreds of thousands of iterations is approximately the uniform distribution on the

level 1 null set. To describe our algorithm, we will first give a brief overview, then discuss the implementation, and subsequently the

steps we took to validate it.

We first give a brief overview of the approach. Starting with a coloring xt in the level 1 null set, we generate a candidate new coloring

x’ by applying a transposition chosen with probability g(x’| xt). Crucially, this candidate transposition, by how it is selected, also be-

longs to the level 1 null set. Since the target distribution is uniform on the level 1 null-set, and our sampled transposition belongs to this

set, the Metropolis acceptance probability has a simple formula:

A = minð1; gðxjx0Þ =gðx0jxÞÞ
as described in(Chib and Greenberg, 1995). We obtain a sample from a random uniform variable in [0,1], r, and set xt+1 =x

0 if r < A, or

set xt+1 = xt if r>A.
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To generate the candidate transposition, we construct a map assigning vertices its equivalence class, which is defined as either:

d The set of colors that its neighboring vertices have, in the case of the inexact Level-1 null set

d The exact collection of colors that its neighboring vertices have taking into account multiplicity.

We simultaneously construct a map assigning an equivalence class to the set of vertices that belong to that equivalence class.

Using these maps, we identify for each vertex, the other vertices in the graph that have distinct CN assignments but the same equiv-

alence class, i.e. we identify candidate transpositions that are allowed and alter the overall coloring. We select a vertex that has a

candidate transposition involving it uniformly, and also choose a vertex with the same equivalence class that has a different color

to it uniformly.

This means that our chance of selecting a candidate transposition of colors between vertices s and t is given by:�
1

number of vertices part of a candidate transposition

�

3

�
1

number of vertices in same equivalence class as vertex s with different color

+
1

number of vertices in same equivalence class as vertex t with different color

�

Next, since the equivalence classes change only for the vertices adjacent to the transposed ones, we update the maps assigning

vertices to their equivalence class, and equivalence classes to their set of vertices.We compute g(x’|x) by the same formula as above,

but with the updated maps. This enables computation of g(x|x’) as with g(x’|x), which enables computation of the MH acceptance

probability A = min(1,g(x|x’)/g(x’|x)). A random uniform sample r is drawn from [0,1]. If r<A, the new state x’ is accepted and taken

to the next iteration. If r>A, the transposition is rejected, and x and the previous maps are taken forward to the next iteration. The

rejection is implemented by applying the transposition again and updating the maps, since this is more efficient than copying the

entire map.

Since in each step, the coloring differs by at most 1, the samples are autocorrelated, but we require independent samples. This is a

general challenge for MCMC algorithms, and how well the samples match the target distribution is typically validated by inspecting

the traces and autocorrelation functions of samples over sequential MH steps to visually assess convergence and exploration of the

state space(Roy, 2020). We generated 25000 samples for each TMA core each 8000Metropolis-Hastings steps apart (2E8 samples),

discarding the first 1E5 samples, using both the exact and inexact level 1 null set. This thinning of samples was performed formemory

purposes. We computed the counts of each triangle observed in the original tissue graph for each selected core as well as each

MCMC sample. We then visualized traces for enrichment (log2 counts of the motif in the observed coloring/counts in the sample)

across successive samples (Figure S10A, traces in either for three spots column shown from blue to red). This analysis revealed three

kinds of TMA core. First, therewere cores in which the enrichment in the observed graph relative to the inexact Level-1 null set and the

exact Level-1 null set agreed (Figure S10A, top row traces). In these cases, the autocorrelation for each motif in the enrichment was

zero for all lags (Figure S10A, top row, autocorrelation plots). In the second case, cores had many motifs that were enriched or

depleted relative to the inexact level-1 null set, but considerably fewer relative to the exact level-1 null set (Figure S10, second

row), but autocorrelations in both cases were essentially zero for all lags and motifs. Finally, there were a few TMA cores for which

every motif was highly deviant from the samples from the maximum entropy distribution on the inexact level-1 null set, but consid-

erably fewer motifs were deviant relative to the exact level-1 null set (Figure S10A, third row). In the third case, there were autocor-

relations for somemotifs with respect to the inexact level-1 null for many lags, but these also went to zero for lags greater than 50.We

therefore visualized each spot by the distribution of motifs with respect to their autocorrelation at different lags, considering samples

from the exact and inexact level-1 null sets (Figures S10B and S10C respectively). This showed quantitively that the autocorrelations

for lags beyond 100were essentially negligible for both the inexact and exact level-1maximumentropy distributions, and thereby that

our collection of 25000 MCMC samples every 8000 steps was a reasonable one, with which to assess motifs that deviated.

To generate sampled tissue graphs for each patient group, we uniformly sampled 25000 of the colorings generated byMH for each

TMA core from that patient group, and pooled the counts of triangles from each core resulting in 25000 samples.

Our implementation was in C++, interfacing with python using the pybind11 library. This achieved a 100x speedup over an initial

python implementation.

Hypothesis testing to identify higher-order triangles in CRC
Triangles that were present in at least 10 patients were considered in each patient group. Hypothesis testing was conducted as with

2-chains. The null hypothesis rejection p-value was estimated as the smaller of:

d 1-(the proportion of sample colorings for which the observed count was greater than the count in the count in the sample

coloring)

d 1- (the proportion of sample colorings, for which the observed count was less than the count in the sample coloring).
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To identify significant triangles, p-values were combined across patient groups and subsequently FDR adjusted using the Benja-

mini-Hochberg procedure from the python function statsmodel.stats.fdrcorrection, prior to identifying those motifs significant at

FDR = 0.05.

We found no significant motifs in either patient group when using samples from the maximum entropy distribution over exact

Level-1 null set (Figure S10D, both volcano plots). In addition, deviation from this distribution was generally very small (Figure S10D,

positions along x axis). Thus, the uniform distribution over the exact level-1 null set, while easier to sample from, was too conservative

a null distribution relative to which motifs could be identified. As such, the significant results in Figure 5G are those obtained with

respect to the maximum entropy distribution over the inexact level-1 null set.

Identifying extensions of tri(1,4,7)
The motifs, instances and extensions for the tissue graphs of each TMA core were hashed as described above. In addition, a map

was computed assigning each motif to the set of patients with at least one instance of that motif. Thus, we found the outgoing edges

of tri(1,4,7) in the extension graph, and identified the number of patients in each patient group with that extension.

Survival analysis
We used the survival data from the previous paper to assess survival in DII patients only. This had overall survival times for 18 total

patients with 5 censored observations. The lifelines (Davidson-Pilon et al., 2021) python package was used to estimate a Cox

Proportional-Hazards regression model with a binary feature for whether or not a given patient had an instance of the cn2-

tri(1,4,7) motif. The lifelines KMFitter object was used to produce the Kaplan-Meier curve.

A second Cox Proportional Hazards regression model was fit by including as a feature the the frequency of PD-1+ CD4+ T cells in

cn9 alongside the presence of at least one instance of the cn2-tri(1,4,7) motif.

For the graph associating survival with submotifs, we identified submotifs of the cn2-tri(1,4,7) motif as ancestors in the extension

graph. We assessed association for the presence of at least one instance of each submotif with survival in DII patients as above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of quantification and statistical tests are described in method details and legends. All results were corrected for multiple

hypothesis testing as described there.
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A) Heatmap of average window composition with respect to cell types of cells allocated to each CN in each tissue,

normalized across columns. B) Violin plots of cell type frequency in windows from each CN and tissue. 5000

windows were sampled from each CN in each tissue and distribution of cell-type frequencies are displayed to show

the spatially homogeneous distribution of cell types within the CNs.
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B

Figure S1: HLT CNs are distinct and spatially homogeneous
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Figure S2: Identified CNs in HLT do not depend on window size

Tissue CN plots of HLTs in CODEX dataset for windows sizes of 10, 20, and 30. Cell centers 
plotted colored by CN assignments aligned across clustering according to legend. 
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Figure S3.1 CN passports of cnGr, cnMS and cnEp. Tissue images
with markers defining cell types used for labelling CNs, with

overlaid CN assignments.
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Figure S3.2 CN passports of cnT and cnBT. Tissue images with
markers defining cell types used for labelling CNs, with overlaid

CN assignments.
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Figure S3.3 CN passports of cnPl and cnV. Tissue images with
markers defining cell types used for labelling CNs, with overlaid

CN assignments.
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Figure S3.4 CN passports of cnB, cnLZ and cnDZ. Tissue images
with markers defining cell types used for labelling CNs, with

overlaid CN assignments.



A) Intersection over union amongst top 40 CN combinations identified as the window size (left 
number in pair) and threshold to determine combination (right number in pair) are varied for 
HLT dataset. B) Spearman correlation in abundance amongst top 40 SCs  as the window size 
(left number in pair) and threshold to determine combination (right number in pair) are varied for 
HLT dataset
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Figure S4. Validation of stability of which SCs are identified and
their relative abundance to parameter choice.
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Figure S5. CD38 staining in tonsillar follicle relative to

outer zone

Follicle with a visible mantle zone, dark zone, light zone and outer zone. Left is image from 
Figure 2H.1 with CD21 in red, Ki67 in blue, and CD38 staining in white.  Right shows CD57 in 
yellow.



Frequency of extensions of single instances to 2-chains in each of the HLT.
Columns correspond to rule, where ((), (x,)), (((x,y),), (x,y)) indicates the rule
xà x-y as per the notation for motifs in the Methods.

Boxes indicate groupings of rules that correspond to the highlighted rules in
Figure 3 and results. Green box: conserved ARs across HLT. Cyan box: ARs
unique to tonsil. Yellow box: ARs conserved in LN and both tonsils. Blue: ARs
unique to spleen. Red: ARs unique to LN.

Figure S6. Validation that observed ARs are not an artefact of
discretization.
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Representative region of epithelium with cnEp, cnGr and

CD1c staining (B cells) on left, and the bridging CN-B cells

depicted on right.

Figure S7. cnB bridges the follicle and cnGr in tonsil.



CNs were qualitatively matched according to the average cell type
frequency in windows assigned to CNs. Cells were z normalized
across columns. Arrows indicate the following correspondences:
cn1àcnBT, cn5àcnB,cn4àcnM0,cn7àcnV
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Figure S8. Mapping of CRC iTME CNs to HLT CNs
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Summary table of Cox-Proportional Hazards regression model
fit on DII patients’ overall survival (n=18, 13 events observed)

Figure S9. Comparison of identified association with survival in
DII patients to that reported in Schürch et al. 2020
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Metropolis-Hastings  with inexact transpositions 
allowed (preserving only set of neighbors)

Metropolis-Hastings with only exact transpositions 
allowed (preserving exact collection of neighbors)
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(A) MCMC trace heatmap (left heatmaps) and autocorrelation functions (right heatmaps) for
enrichment of counts of motifs of length three in observed sample relative to MCMC samples
from uniform distribution over inexact level-1 null set (left) and exact level1 null set (right) for
three distinct TMA cores. Columns of each trace heatmap indicate a single MCMC sample and
are ordered sequentially, and rows indicate motifs. Columns of right heatmap correspond to
lags with respect to which autocorrelation is computed. (B) Distribution of sample
autocorrelations of enrichments of motifs relative to the inexact null set for TMA cores. Each
point in the scatter plot represents the indicated percentile (color) when the motif enrichments
relative to the level-1 null set in a given TMA core (each point corresponds to a TMA core) are
ordered by autocorrelation at the indicated lag (x-axis). (C) As (B) but with respect to samples
from the exact level-1 null set. (D) Volcano plots for deviation from the maximum entropy
distribution over the exact level-1 null set in CLR patients (left) and DII patients (right). See
methods for details on terminology.

Figure S10:  Validation of MCMC approach for identifying higher-order motifs. 
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