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Abstract
Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown 
promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging 
systems has been a major barrier for clinical integration and evaluation. The  DICOM® standard specifies information object 
definitions (IODs) and services for the representation and communication of digital images and related information, includ-
ing image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its 
adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in 
DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) 
for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of 
image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays 
for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. 
Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the 
medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model 
outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, 
that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art 
ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical 
systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment 
process, we made the library available free and open-source at https:// github. com/ herrm annlab/ highd icom.
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Background

Recent breakthroughs in machine learning (ML) and com-
putational processing capabilities have led to the devel-
opment of ML models that demonstrate unprecedented 

performance on a variety of highly complex computer 
vision tasks [1]. State-of-the-art convolutional neural net-
work models now regularly achieve near-human or even 
superhuman performance on a variety of challenging vision 
tasks and across different imaging modalities, including 
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segmentation and classification of slide microscopy images 
in pathology [2–4] as well as computed tomography or mag-
netic resonance images in radiology [5–7]. Over the last 
couple of years, ML models have evolved technically within 
the research domain [8] and the vision is that these models 
will soon be applied widely in clinical practice to support 
pathologists and radiologists in interpretation of images and 
ultimately improve diagnostic accuracy and efficiency [6, 
9–11]. To realize this vision, healthcare enterprises are now 
tasked with evaluating model performance in clinical con-
text and integrating the outputs of ML models into clinical 
workflows. Similarly, development of models may be expe-
dited if image annotations generated by clinical experts and 
stored within clinical information systems could be directly 
consumed by ML training and validation pipelines. Unfor-
tunately, this is currently impeded by the lack of standard 
interfaces for exchange of image annotations and ML model 
outputs between image analysis, image display, and image 
management systems.

Digital Imaging and Communication in Medicine 
(DICOM) is the internationally accepted standard for 
communication of medical images and related information 
across a wide range of medical imaging modalities and 
disciplines. Hospitals around the world have established 
an extensive enterprise imaging infrastructure, work-
flows, and software applications based on DICOM [12] 
and pathology and radiology are converging towards using 
DICOM for communication of digital images [13–16]. 
However, existing pathology as well as radiology systems 
primarily rely on non-standard formats and interfaces for 
the storage and exchange of image annotations and com-
putational image analysis results, to which we hereafter 
collectively refer as annotations. Similarly, ML models 
developed by researchers generally receive and return 
annotations in a variety of customized formats that are 
incompatible with clinically available image management 
and display systems and that lack metadata required for 
interpretation and use of the information in clinical con-
text. Instead, it would be desirable if ML models were 
developed according to the FAIR guiding principles [17] 
using standardized metadata to allow for annotations to 
be findable, accessible, interoperable, and reusable. The 
DICOM standard provides information object definitions 
(IODs), such as Segmentations and Structured Reports, 
for annotations  [18, 19], and implementation of these 
IODs to enable interoperable storage and communication 
of ML model outputs has been proposed by the Integrat-
ing the Healthcare Enterprise (IHE) Radiology Technical 
Committee [20].

Python is the de facto standard programming language 
of data science and provides a rich ecosystem for scien-
tific computing, image processing, and machine learn-
ing [21–24]. The majority of ML models are developed 
and deployed in the form of Python programs. The pydicom 
library [25] provides data structures and routines for stor-
ing and accessing data of DICOM datasets (parts 5 and 6 
of the DICOM standard) as well as reading and writing 
DICOM files (part 10 of the DICOM standard). However, 
pydicom has no concept of IODs (parts 3 and 16 of the 
DICOM standard) and as such leaves it to each developer 
to set all attributes required by an IOD manually and ensure 
that they follow all relevant constraints when creating new 
DICOM objects containing annotations. Similarly, parsing 
the annotation IODs for the information relevant to a par-
ticular ML task using the pydicom API is challenging due 
to their highly nested and interdependent structure. Conse-
quently, both tasks are slow, complex, and error-prone and 
require considerable knowledge of the DICOM standard. 
We therefore identified a need for a higher-level abstraction 
layer between the ML model developer and the low-level 
encoding rules of the DICOM standard. This motivated us 
to create the open-source highdicom library, which provides 
a high-level application programming interface for creat-
ing and reading annotations in DICOM format using the 
Python programming language. Our goal in releasing this 
library is to enable ML processes that achieve interoperabil-
ity between ML models and clinical information systems 
throughout the entire model development and deployment 
lifecycle while avoiding the complexity that this currently 
entails. Furthermore, we aimed to create a library that is 
applicable across a range of common ML tasks and imag-
ing domains.

In this article, we first describe the design and imple-
mentation of the highdicom library to meet this unmet need 
and then assess the library’s capabilities in encoding and 
decoding annotations (either generated by human readers 
or ML models) in DICOM format. We perform experiments 
that demonstrate the use of the library during ML model 
training and inference and show how the library enables 
the development of ML models that are interoperable with 
established image management and display systems and thus 
can be readily integrated into an enterprise medical imaging 
environment. To this end, we consider a variety of clini-
cally relevant computer vision problems and multiple imag-
ing modalities across different medical disciplines, placing 
a focus on lung tumor detection in slide microscopy images 
in pathology and computed tomography images in radiology 
as an illustrative use case.
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Methods

Design Overview and Application Programming 
Interface (API)

The software components responsible for transforming the 
data input and output from ML models, and thereby ensur-
ing interoperability with adjacent systems, are commonly 
referred to as data pipelines [26, 27]. During inference, pipe-
lines are responsible for retrieving and preprocessing input 
images into an in-memory format that can be consumed by 
the model and encoding the model’s in-memory outputs 
into a form suitable for communication and storage. During 
training, they retrieve and preprocess input images and addi-
tionally, if required, decode annotations into an in-memory 
representation of the target for model training. The highdi-
com library is intended to operate within data pipelines that 
connect clinical infrastructure using the DICOM standard to 
popular Python ML frameworks such as PyTorch [28] and 
Tensorflow [29], and is focused on annotations rather than the 
input images themselves. The library’s core functionality is 
twofold: First, encoding model outputs in the form of NumPy 
arrays together with relevant metadata into annotations in the 
form of pydicom objects (Fig. 1A). Second, decoding anno-
tations provided as pydicom datasets to obtain targets in the 
form of NumPy arrays (Fig. 1B) by reading and interpreting 
the included metadata. We chose the n-dimensional NumPy 
array data structure [22] as an in-memory representation of 

model outputs and targets because it is interoperable with 
pydicom as well as PyTorch and Tensorflow and many other 
well-established Python image processing libraries (e.g., 
OpenCV [30] and ITK [31]).

API Overview We designed highdicom following the object-
oriented programming paradigm and modelled the API 
according to the DICOM Information Model, which speci-
fies different abstract data types that are referred to as infor-
mation object definitions (IODs) (Fig. 2). An IOD defines 
the set of required and optional DICOM attributes that may 
be included into DICOM objects. We selected various IODs 
for storage of annotations and implemented each in highdi-
com as a Python class.

Strictly speaking, each Python class implements a 
DICOM Storage Service-Object Pair (SOP) Class, which is 
the data structure within the DICOM standard that stores the 
attributes defined by an IOD. An instance of such a Python 
class thus represents a DICOM SOP instance and serves 
as a container for a DICOM dataset, where each instance 
attribute holds the value of a DICOM data element.

The Python classes are ultimately derived from the 
pydicom.Dataset class from the existing pydicom 
package and therefore inherit low-level behaviors, such 
as accessing, setting, iterating over data elements, and 
reading/writing to/from files that many developers are 
already familiar with. It further allows developers to retain 

Fig. 1  Intended use of highdicom in data pipelines during machine learning model training and inference workflows. A Encoding of model out-
puts upon inference in the postprocessing pipeline. B Decoding of image annotations for model training in the preprocessing pipeline
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low-level control over all data elements in order to add 
to or alter information in objects constructed by highdi-
com. Below pydicom.Dataset in the class hierarchy, 
there is a common abstract base class called highdi-
com.SOPClass (Fig. 2A), which abstracts the attributes 
that are required by all SOP classes. Specific SOP classes 
are then implemented by dedicated Python classes that 
are derived from the abstract base class (Fig. 2B). In this 
way, we aim to provide an idiomatic Python interface that 
abstracts as much of the low-level DICOM encoding and 
decoding rules as possible while staying close to the stand-
ard DICOM terminology to avoid potential ambiguities.

Encoding of DICOM SOP Instances The process of encoding 
information in derived objects is implemented in the con-
structor methods of the corresponding SOP classes (either 
in the highdicom.SOPClass abstract base class or in 
derived IOD-specific classes). For construction of an SOP 
instance, the developer provides the image-derived informa-
tion that is outputted by a model (e.g., pixel data or graphic 
data) together with descriptive contextual information that 
the standard requires for the corresponding IOD. Attribute 
values that are static or can be derived from provided argu-
ments are automatically set upon object construction. For 
example, relevant metadata about the patient, the study, or 

Fig. 2  Implementation of the DICOM Information Model in Python. 
A The highdicom Python abstract base class highdicom.SOP-
Class and its relationship to an DICOM information object defini-
tion (IOD) and DICOM Storage Service-Object Pair (SOP) Class. B 

A highdicom Python class for a specific DICOM IOD and SOP Class 
(exemplified by highdicom.seg.Segmentation that imple-
ments the DICOM Segmentation Storage SOP Class defined by the 
DICOM Segmentation IOD)
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the specimen are automatically copied from the metadata of 
provided source images and references to the source images 
are included in the derived objects (Fig. 3A–B). Further-
more, the constructor automatically validates the content 
of created SOP instances through runtime checks to ensure 
that constructed objects are fully compliant with the relevant 
IOD in the standard.

By design, all required information must be passed to 
the SOP class constructor when creating the object, and 
thereafter the object remains immutable through the high-
dicom API (though an experienced developer may use the 
lower-level interface provided by the pydicom API to mod-
ify the object if required). This means that the constructor 
can validate all input parameters at once accounting for all 

Fig. 3  Encoding of machine learning model outputs in DICOM. A 
Information entities and the Python types used to represent machine 
learning model inputs (images) and outputs (image-derived informa-
tion) for three common decision problems. B Schematic overview of 
the content of source image objects (exemplified by a DICOM VL 

Whole Slide Microscopy Image) and derived objects (DICOM Com-
prehensive 3D SR and DICOM Segmentation). Note that descriptive 
metadata is copied from source to derived objects and derived objects 
may reference information contained in source images or other 
derived objects
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interdependencies and conditional logic between attributes. 
It also reflects the intent of the standard in that DICOM 
objects are immutable following creation.

Decoding of DICOM SOP Instances The pydicom library pro-
vides a powerful low-level Python interface to developers to 
access DICOM data elements of a dataset directly, with little 
abstraction from the details of the data format. While this is 
appropriate for many image objects, the complexity of the 
derived objects used for annotations means that accessing the 
desired information using the pydicom API requires a detailed 
knowledge of the underlying data structures and in our experi-
ence results in a verbose, cumbersome, and error-prone pro-
cess. Therefore, we have endowed highdicom SOP classes 
with additional methods (not in the standard) that provide a 
means for developers to access, filter, and interpret the content 
of a DICOM object when preparing image annotations to be 
used as targets for a training algorithm. In addition, highdicom 
SOP classes implement alternative constructor methods that 
allow for the creation of highdicom SOP instances from exist-
ing pydicom.Dataset objects, which were read from a 
file or retrieved over network, and thereby enhance the objects 
with additional, modality-specific methods and properties for 
data access.

Data Types and Structures The majority of DICOM meta-
data attribute values that are passed to and returned from 
the highdicom API upon encoding and decoding of SOP 
instances have primitive, built-in Python types such as 
strings (str), integers (int), and floats (float). To fur-
ther encapsulate closely related metadata of composite 
DICOM data types (DICOM Sequences or Sequence Items) 
and to improve code readability and reusability, the highdi-
com API further provides custom Python types, which are 
implemented in the form of Python classes and are generally 
derived from either pydicom.Dataset or pydicom.
Sequence. DICOM bulkdata values such as pixel data or 
vector graphic data are passed to and returned from highdi-
com Python classes as NumPy objects (numpy.ndarray).

Storage of Annotations in DICOM Format

Having described the general approach taken by our library, 
we now begin to discuss the individual IODs that we 
selected for implementation. The DICOM standard speci-
fies a wide range of IODs for different types of DICOM 
objects, including images acquired by various modalities 
(e.g., computed tomography or whole slide microscopy) as 
well as image-derived information generated by image dis-
play, processing, or analysis systems [32]. For implementa-
tion in the highdicom library, we considered standard IODs 
that provide mechanisms to store image annotations for com-
mon ML tasks across pathology and radiology use cases. 

We thereby focused on the following decision problems and 
their corresponding annotations (Fig. 3A) [1]: 

1. Image classification — class labels in the form of dis-
crete binary or categorical values and optionally class 
scores in the form of continuous probabilistic values 
(Fig. 3A upper panel)

2. Image segmentation — class labels at pixel resolution 
that identify semantically distinct regions of interest 
(ROIs) within an image in the form of raster graphics 
(Fig. 3A middle panel)

3. Object detection — spatial coordinates for individual 
ROIs in the form of vector graphics (commonly bound-
ing boxes), combined with class labels and detection 
scores (Fig. 3A lower panel)

We identified three IODs that together allow for the encod-
ing of annotations for these common use cases: the Seg-
mentation IOD and two Structured Report (SR) IODs. The 
Segmentation IOD was selected to encode ROIs returned by 
image segmentation models as raster graphics. The Compre-
hensive SR and Comprehensive 3D SR IODs were chosen 
to encode vector graphic ROIs returned by object detection 
models as well as class labels, scores, and measurements 
returned by image classification and regression models 
(Fig. 3A). All three IODs are designed to be agnostic of the 
imaging modality and able to support use cases across medi-
cal disciplines including pathology and radiology.

DICOM Segmentation Images The Segmentation IOD is 
implemented in highdicom as the highdicom.seg.
Segmentation Python class and allows for the encoding 
of one or more components, which in DICOM are referred to 
as segments. Each segment may represent a pixel class (cat-
egory) or an individual instance of a given class as generated 
by semantic segmentation or instance segmentation mod-
els [33], respectively. Segments may further have binary or 
fractional type, either representing a mask of Boolean values 
where non-zero pixels encode class membership or a mask 
of decimal numbers where pixels encode class probability.

In order to encode a DICOM Segmentation image, the 
developer passes to the constructor a mask as a numpy.
ndarray (of either Boolean, integer, or floating point data 
type) along with additional metadata that describe the mean-
ing of each segment within the segmentation (highdi-
com.seg.SegmentDescription) and the algorithm 
responsible for producing the segmentation (highdicom.
AlgorithmIdentificationSequence).

To facilitate decoding of DICOM Segmentation images, 
the highdicom.seg.Segmentation class provides 
methods that allow developers to filter segments by their 
label, segmented property category or type, or tracking iden-
tifiers. It further provides methods to obtain a segmentation 
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mask as a numpy.ndarray for a given set of segments 
and source image frames. While conceptually straightfor-
ward, in practice, several steps are necessary to achieve this 
correctly: (i) Determining which frames stored in the Seg-
mentation image are relevant to a given set of segments and 
source image frames based on the multi-frame dimension 
indexing information, (ii) Sorting the Segmentation image 
frames according the query, (iii) Adding in missing pixel 
values in case of sparse Segmentation images where back-
ground image frames were omitted during encoding to save 
storage space (iv) (Optionally) combining multi binary seg-
ments into a multi-class label map.

DICOM Structured Report Documents There are various 
IODs defined by the standard that utilize structured report-
ing, but we selected the Comprehensive SR (highdicom.
sr.ComprehensiveSR) and Comprehensive 3D SR 
(highdicom.sr.Comprehensive3DSR) IODs for 
implementation in highdicom because they provide the most 
flexible mechanisms for storing annotations. In addition to 
the IOD definitions, the standard provides SR templates, 
which serve as schemas that define how the content of an 
SR document shall be structured and how the information 
shall be encoded. A template consists of a sequence of con-
tent items, each defining a name-value pair (or question-
answer pair) that encodes a domain-specific property or 
concept (Fig. 4A). Notably, both concept names and val-
ues have a composite data type and are each encoded by 
one or more DICOM attributes. Concept names are coded 
using standard medical terminologies and ontologies such 
as the DICOM Controlled Terminology or the Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT) 
and thereby get endowed with an explicit, domain-specific 
meaning [34]. The structure of the corresponding value 
depends on the value type, which defines a set of DICOM 
attributes that are included in the SR document to represent 
the assigned value.

Within highdicom, the highdicom.sr.CodedConcept 
class is an important data type that encapsulates the DICOM 
attributes required to code a concept using a standard coding 
scheme within a single Python object. We further contributed 
lower-level data types to the underlying pydicom library that 
provide programmatic access to codes included in the DICOM 
standard, specifically the DICOM Controlled Terminology 
(DCM), SNOMED-CT (SCT), and Unified Code for Units 
of Measure (UCUM) coding schemes. These codes that are 
included in the pydicom library are fully compatible with the 
coded concepts of the highdicom library and can generally be 
used interchangeably throughout the API. Furthermore, for 
each of the different DICOM content item value types, we 
have implemented a separate Python class that is derived from 
pydicom.Dataset and encapsulates both the coded concept 
name and the corresponding value of the given type (Fig. 4B).

Notable content item classes include highdi-
com.sr.CodeContentItem, which may be used 
to store class labels as coded values, and highdicom.
sr.NumContentItem, which may be used to store 
a measurement along with its unit. ROIs may be either 
encoded by value or by reference and stored within or outside 
of the SR document content, respectively. In the case of vec-
tor graphics (including but not limited to bounding boxes), 
the graphic data may be stored within the SR document 
and encoded via DICOM content items of value type SCO-
ORD3D, which encodes 3D spatial coordinates of geometric 
objects in the frame of reference (patient or slide coordi-
nate system). This value type is implemented in highdicom 
by the highdicom.sr.Scoord3DContentItem 
Python class (Fig.  4B). In the case of raster graphics, 
the pixel data of Segmentation images are stored outside 
of the SR document, but specific segments can be refer-
enced from within the SR document via content items of 
value type IMAGE. (implemented by the highdicom.
sr.ImageContentItem Python class), which includes 
DICOM identifiers for the referenced image object and seg-
ments contained therein.

The standard provides different SR templates for a variety 
of common clinical use cases and diagnostics tasks, such as 
recording X-ray dose exposure or reporting echocardiography 
findings. We chose to implement the more generic template TID 
1500 “Measurement Report” in highdicom for encoding annota-
tions, because the template provides standard content items to 
describe measurements and qualitative evaluations of images 
as well as individual image ROIs (Fig. 4C) and because it has 
already been successfully used for standardized communication 
of quantitative image analysis results [18, 19]. Importantly, sub-
templates that can be included in TID 1500 allow for the encod-
ing of annotations of entire images, planar image regions, or 
volumetric image regions (Fig. 4C). Within the library’s API, 
these selected templates are implemented by Python classes, 
which are derived from an abstract base class highdicom.
sr.Template, which is in turn derived from pydicom.
Sequence (Fig. 4D). The constructors of these Python classes 
require the developer to pass the relevant data via named param-
eters but then handle its inclusion in the template with the correct 
concept names as well as ensuring all constraints are satisfied.

When decoding SR documents, the high degree of nest-
ing in the document tree and the variable order of content 
items at each level means that finding a particular content 
item of interest in the tree potentially requires multiple 
nested loops. Furthermore, as described above, each con-
tent item is a collection of data elements that must first 
be parsed and interpreted as a unit. The Python classes 
that implement SR templates and individual SR content 
items provide methods and properties to facilitate data 
access. Using the provided methods, measurement groups 
within a highdicom.sr.ComprehensiveSR or 
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Fig. 4  Encoding of annotations as DICOM Structured Reporting (SR) 
content items and templates for inclusion into an SR document. A 
SR content items of different values types. B Implementation of SR 
content items in highdicom by classes that inherit from pydicom.

Dataset. C SR template TID 1500 “Measurement Report” and 
included sub-templates. D Implementation of SR templates in highdi-
com by classes that inherit from pydicom.Sequence 
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highdicom.sr.Comprehensive3DSR object can 
be filtered by their finding type, finding site, or track-
ing identifiers. Individual measurements and qualitative 
evaluations contained within these groups can similarly 
be filtered by their concept name. Furthermore, highdicom 
classes representing SR templates and content items pro-
vide access to their content items or values, respectively, 
through Python properties that return the data either as a 
built-in Python type or a custom highdicom type (which 
will typically match the type of the argument passed to 
the constructor).

Results

Having laid the foundation through the description of the 
library’s design and implementation, we now proceed to 
demonstrating the capabilities of the library. We consider a 
concrete use case of developing machine learning models for 
lung tumor detection in both pathology and radiology and 
deploying the models clinically using a common platform 
and framework that is applicable independent of the medi-
cal discipline or imaging modality. In this section, we first 
describe the steps necessary to encode the annotations in 
DICOM using highdicom, including the description of the 
detected region of interest, the identified finding, and related 
measurements and qualitative evaluations. We then show 
through a series of experiments how highdicom can stream-
line ML model training and inference for this use case.

Highdicom Facilitates Encoding of Image 
Annotations in DICOM Format

Structured Reporting using Standard Medical Terminolo‑
gies While the approach of using standardized vocabularies 
is powerful and important for interoperability, it complicates 
working with the data. For example, comparing two con-
cepts for equality requires comparison of their code values, 
coding scheme designators, and coding scheme versions. 
The highdicom.sr.CodedConcept and the lower-
level pydicom types facilitate the use of coded concepts for 
structured reporting of annotations in Python at a high level 
of abstraction (code snippet 1).

CCooddee snipsnipppeett 11:: CCoodindingg ooff conceptconceptss usinusingg domain-sdomain-sppeciecifificc terminologiesterminologies.. “Neoplasm“Neoplasm”” anandd ““TTumor”umor”
araree synosynonnyymmss thathatt mamapp ttoo ththee samsamee ccooddee withiwithinn ththee SNOMED-CSNOMED-CTT ccoodindingg ssccheme.heme.

Describing ROI Evaluations and Measurements The coded 
concept type forms the basis for additional higher-level com-
posite data types for DICOM structured reporting such as SR 
content items. Code snippet 2 demonstrates example content 
items for the encoding of a tumor image region of interest, 
the tumor finding, and an associated tumor measurement.

CCooddee snipsnipppeett 22:: EnEnccoodindingg ooff regionregionss ooff iinnterestterest,, qualitatiqualitativvee eevvaluationaluationss anandd measuremmeasuremeennts.ts.

This demonstrates using the SCT vocabulary built in to 
pydicom to encode a concept name as “Morphology,” and a 
domain-specific coding scheme, the International Classifica-
tion of Diseases for Oncology (ICD-O), to specify the exact 
type of tumor as the concept value. Of note, the area meas-
urement in our example is encoded in a well-defined physical 
unit, as would be expected for clinical decision-making. The 
corresponding image region is defined in the same physical 
space. In DICOM, image regions may be defined by spatial 
coordinates within either the pixel matrix of an individual 
image or, as in this example, the frame of reference (the 3D 
patient- or slide-based physical coordinate system). While 
the former appears more straightforward, the latter is more 
general and allows for annotations derived from transformed 
versions of the original images with arbitrary affine transfor-
mations (rotations, scaling, etc.) as well as crops.

Creation of DICOM Annotation Objects The computer vision 
problem of tumor detection could be solved using either an 
object detection or image segmentation model. Accord-
ingly, the output of these models and the annotations used 
to train them can be encoded using the highdicom.
sr.Comprehensive3DSR (code snippet 3) and high-
dicom.seg.Segmentation (code snippet 4) classes 
respectively. In either case, this involves describing the find-
ing and the anatomical site of the finding as well as supply-
ing relevant contextual metadata such as the device or person 
reporting the observation. However, note that it is not neces-
sary to specify patient, study, or specimen information since 
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highdicom copies this metadata directly from the source 
images provided as evidence to the constructor.

CCooddee snipsnipppeett 33:: CreatioCreationn ooff aa DICODICOMM ComprehensiComprehensivvee 33DD SSRR ddoocumecumenntt instancinstancee ttoo encencoodede
predictionpredictionss ooff aann oobbjecjectt detectiodetectionn mmoodedell usinusingg coconntetenntt itemitemss constructeconstructedd iinn snipsnipppeett 2.2.

CCooddee snipsnipppeett 44:: CreatioCreationn ooff aa DICODICOMM SegmeSegmenntatiotationn imagimagee instancinstancee ttoo encencooddee predictionpredictionss ooff aa

semasemanntiticc imagimagee segmesegmenntatiotationn mmoodel.del.

Highdicom Facilitates Efficient Loading 
and Decoding of Images and Corresponding 
Annotations

When it comes to training a model for tumor detection, 
annotations may be provided in the form of either raster 
graphics within a Segmentation image or vector graphics 
within an SR document. In both cases, highdicom provides 
methods that simplify access to, and interpretation of, the 
relevant content in the annotation SOP instances. If annota-
tions are provided as raster graphics within a Segmentation 
image, model training may require combining binary bit 
planes from multiple segments in the Segmentation image to 
create a single label map, represented as a NumPy array, in 
which pixels encode tumor identities. If instead annotations 
are provided as vector graphics within an SR document, the 
spatial coordinates of image regions will need to be col-
lected from within the document content tree and passed as 
NumPy arrays to training processes. Snippets 5 and 6 show 
example usage of the methods that highdicom provides for 
these purposes.

CCooddee snipsnipppeett 66:: ExamplExamplee ooff parsinparsingg aa DICODICOMM SegmSegmeenntatiotationn imagimagee ttoo creatcreatee aa lalabbeell mamapp ooff lunglung

tumotumorr regionregionss fofor ar a gigivveenn sourcsourcee frame.frame.
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Highdicom Facilitates Decoding and Encoding 
of Annotations During Model Training 
and Inference, Respectively

To establish a proof-of-concept standard-based ML work-
flow and to demonstrate the utility of the highdicom library 
for ML, we performed a set of experiments on the training 
and evaluation of deep convolutional neural network (CNN) 
models using publicly available slide microscopy (SM) and 
computed tomography (CT) image datasets. We emphasize 
that our intent is to demonstrate a complete ML workflow for 
pathology and radiology fully based on DICOM, rather than 
create models with optimal performance or reach state-of-
the-art for a particular task.

For pathology, we trained and evaluated models using 
lung cancer collections of slide microscopy (SM) images 
from The Cancer Imaging Archive (TCIA) [35] that were 
acquired as part of The Cancer Genome Atlas (TCGA) Lung 
Adenocarcima (LUAD) or Lung Squamous Cell Carinoma 
(LUSC) projects and which we converted into DICOM for-
mat as previously described [14, 36]. For radiology, we used 
the collection of CT images of the Lung Image Database 
Consortium (LIDC) and Image Database Resource Initia-
tive (IDRI) (LIDC-IDRI) [35, 37, 38], which were already 
available in DICOM format. We used available measure-
ments and qualitative evaluations for these SM and CT files 
provided by TCIA as image annotations, which we encoded 
in DICOM SR documents or DICOM Segmentation images 
using highdicom (see supplementary methods), resulting in 
training sets for CT lung nodule detection and SM image 
classification encoded entirely within DICOM format.

We developed proof-of-concept ML models based on 
published algorithms and implemeted data pre- and post-
processing pipelines for each model to load model inputs 
from DICOM SM or CT image instances, annotations from 
DICOM SR documents or DICOM Segmentation images 
respectively, and store outputs to DICOM SR instances. For 
pathology, we implemented a weakly supervised image clas-
sification model using multiple instance learning with the 
objective to classify individual SM image frames of lung tis-
sue sections into slide background, normal lung tissue, lung 
adenocarcinoma, or lung squamous cell carcinoma similar to 
prior work described by Coudray et al. [39]. To this end, we 
used a modified version of a ResNet-101 model [40], which 
we initialized with parameters from pre-training on Ima-
geNet [41] and further optimized using SM image frames 
and image annotations from the TCGA collections similar 
to the algorithms described by Lerousseau et al. [42] and Lu 
et al. [43]. During training, each training sample was created 
by selecting one or more frames of an SM image from a given 
series (i.e., digital slide) together with the corresponding 
image-level annotations obtained from the SR document using 
highdicom. During inference, the data postprocessing pipeline 

collects predicted class probabilities for each image frame, 
constructs low-resolution probabilistic segmentation mask 
for each class (with pixels representing class probabilitisties 
for individual frames), and finally encodes the constructed 
masks in a DICOM Segmentation image with FRACTIONAL 
Segmentation Type and PROBABILITY Fractional Segmen-
tation Type (Fig. 5 upper panel). The postprocessing pipeline 
further thresholds the individual class probability predictions 
to generate a binary segmentation mask for each class (normal 
lung tissue, lung adenocarcinoma, or lung squamous carci-
noma), performs a connected component analysis and bor-
der following to find the contours of ROIs representing class 
instances, and encodes each detected ROI together with addi-
tional measurements and qualitative evaluations in a DICOM 
Comprehensive 3D SR document (Fig. 5 lower panel).

For radiology, we implemented an object detection model 
to detect lung nodules in individual CT slices of the chest. 
We used an off-the-shelf implementation of the widely used 
RetinaNet convolutional neural network [44] available with 
the torchvision package1. Specifically, we used a RetinaNet 
model with the ResNet-50 backbone [40] and initialized the 
model with weights from pre-training on the ImageNet data-
set [41]. During training, each training sample was created 
by selecting a random CT image frame (2D axial slice) from 
a given series. The annotations encoded in DICOM Segmen-
tation images were read using highdicom and the bounding 
box containing each nodule in the slice was calculated on-
the-fly from the contained segments and used as a ground 
truth label for supervised training of the RetinaNet model. 
The post-processing pipeline for the chest CT model col-
lected predicted bounding boxes and their detection scores 
outputted by the RetinaNet model for every frame in the CT 
series and encoded them in a DICOM Comprehensive 3D SR 
document, with vector graphics used to represent bounding 
box coordinates and detection scores encoded as a measure-
ment of the region represented by the bounding box (Fig. 6).

Annotations Generated by Highdicom can be Stored in Image 
Management Systems using DICOMweb Services and Visual‑
ized using DICOM‑Compliant Display Systems After model 
training, we selected one pathology and radiology model for 
further clinical evaluation and deployed it into a production-
like environment, consisting of an image management system 
(IMS) with a DICOMweb interface [45] and DICOM-com-
pliant image display systems. Specifically, a dcm4chee-arc-
light archive2 served as the IMS and we stored SM and CT 
images in the IMS via DICOMweb RESTful services using 
the dicomweb-client Python library [14].3 Upon inference, 

1 https:// pytor ch. org/ vision/ 0.8/ index. html
2 https:// github. com/ dcm4c he/ dcm4c hee- arc- light
3 https:// github. com/ mghco mputa tiona lpath ology/ dicom web- client

https://pytorch.org/vision/0.8/index.html
https://github.com/dcm4che/dcm4chee-arc-light
https://github.com/mghcomputationalpathology/dicomweb-client
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the data preprocessing pipelines retrieved DICOM SM or 
CT images from the IMS over network using the dicomweb-
client, read and interpreted the image metadata and pixel data 
using pydicom, and passed the pixel data as inputs to the 
model as NumPy arrays. Model outputs received as NumPy 
arrays were encoded as DICOM SR documents in the data 
postprocessing pipeline using highdicom and stored back in 
the IMS over network using the dicomweb-client.

For radiology, we visualized the ground truth lung nod-
ules using the OHIF 4 viewer, which retrieved the DICOM 
Segmentation images over network using the dicomweb-
client library and displayed each segment as a raster graphic 
on top of the corresponding CT images (supplementary 
Fig. S3B). We additionally visualized detected ROIs using 
the open-source 3D Slicer  5 software (supplementary 
Fig. S3B).

For pathology, we visualized detected lung tumor regions 
using the Slim 6 viewer, which retrieved the DICOM SR doc-
uments over network using the dicomweb-client JavaScript 
library 7 and displayed the spatial coordinates of each ROI 
contained in the SR documents as a vector graphic on top 
of the corresponding SM images (supplementary Fig. S4).

Discussion

The main contributions of this paper are: (i) The demonstra-
tion that image annotations can be encoded and exchanged in 
DICOM format using existing DICOM IODs and services, 
respectively. (ii) The development of a software library that 
provides a high-level application programming interface 
(API) for the Python programming language to facilitate 

Fig. 5  Schematic overview of output post-processing pipelines of the 
pathology model, which classifies individual image frames of a multi-
frame SM image of a lung tissue section specimen. Outputted scores 
get transformed into a segmentation mask from which bounding 

boxes of the tumor regions are derived. The coordinates of the bound-
ing box vertices are stored as 3D spatial coordinates in the reference 
slide coordinate system

4 https:// github. com/ ohif/ viewe rs
5 https:// slicer. org

6 https:// github. com/ herrm annlab/ slim
7 https:// github. com/ dcmjs- org/ dicom web- client

https://github.com/ohif/viewers
https://slicer.org
https://github.com/herrmannlab/slim
https://github.com/dcmjs-org/dicomweb-client
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creation of DICOM objects for storage of image-derived 
information, including image annotations, as well as access-
ing and interpreting information stored in DICOM objects. 
(iii) The establishment of a standard-based workflow for 
ML model training and inference that is generally appli-
cable across different imaging modalities, computer vision 
problems, and medical disciplines.

In developing the highdicom library and establishing an 
ML workflow based on DICOM, we made several observa-
tions that merit further discussion.

Clinical Use of Machine Learning Model 
Outputs in Pathology and Radiology Requires 
Domain‑Specific Metadata

Medical images and image annotations must not only 
contain the actual data, such as the pixel data in case of 
an image, but require additional metadata that enable 
interpretation and use of the data. Such metadata can 
be grouped into information related to data representa-
tion, information about the data acquisition process and 

equipment, and information related to the clinical context 
in which the data was acquired, including identifying and 
descriptive information about the patient, study, and speci-
mens. This contextual information that describes how the 
data relates to the real world is crucial for unambiguous 
interpretation of medical images as well as any regions of 
interest, measurements, or qualitative evaluations derived 
from them.

To ensure that clinical decisions based on this informa-
tion are made for the right patient and specimen and in 
the correct clinical setting, real-world entities need to be 
uniquely identifiable throughout the digital workflow. As 
such it is desirable to establish an unambiguous association 
between the digital information (images and image annota-
tions) on the one hand and clinically relevant real-world enti-
ties (patients, specimens, etc.) on the other hand by includ-
ing clinical identifiers into digital objects. This furthermore 
facilitates exchange of information between departments and 
institutions upon transfer and referral of patients. DICOM 
specifies standard information object definitions and attrib-
utes to store and exchange digital images and image-derived 

Fig. 6  Schematic overview of output post-processing pipeline of 
the radiology model, which detects lung nodules in image frames of 
single-frame CT images of the thorax and outputs bounding boxes of 

lung nodule regions. The coordinates of the bounding box vertices are 
stored as 3D spatial coordinates in the reference patient coordinate 
system
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information together with the relevant clinical identifiers as 
composite objects. The highdicom API facilitates access 
to and creation of such standard DICOM objects using the 
Python programming language and thereby enables data 
engineers and scientists to develop ML models and systems 
that can receive inputs and return outputs that include rel-
evant identifiers for clinical application. Additionally, in 
many cases including patient information and references to 
the source images, highdicom will find and copy the relevant 
metadata from the dataset of the source image to reduce the 
room for human error as far as possible.

In addition to identifiers, DICOM objects contain descrip-
tive metadata about the imaging target (patient or specimen), 
the imaging modality and procedure, the anatomical location 
of the imaging or surgical procedure, and in case of pathol-
ogy the preparation of the specimen. This information can be 
critical for the interpretation of images or image annotations 
by ML systems during model training or inference as well as 
by other systems that use or interpret model outputs. Most 
importantly this descriptive metadata allows automated sys-
tems to decide whether or not a given information object 
may be appropriate to use in the context of the intended use 
or select one of several available objects for analysis or dis-
play [46]. Descriptive metadata is also useful for performing 
model validation and error analysis to determine groups of 
inputs, according to patient demographic information, pre-
analytic specimen preparation variables, or image acquisi-
tion parameters, upon which models are under-performing. 
Furthermore, the DICOM standard provides mechanisms for 
describing the image analysis algorithm (name, version, etc.) 
as well as the completeness or validity of analysis results at 
various stages of the clinical decision making process. For 
example, the DICOM SR IODs include attributes that allow 
clinical users to verify or, if necessary, complete or correct 
ML model outputs, to record the verification or modifica-
tion activity, and to create an audit trail that establishes the 
relationship between the document containing the verified 
or modified content and the predecessor document contain-
ing the unverified model outputs. These mechanisms are 
critical for safe clinical application of ML models, since 
their outputs are generally intended for clinical decision sup-
port rather than independent decision making [47] and thus 
require review by a clinical expert before inclusion into the 
medical record.

The highdicom library enables developers to access 
relevant descriptive information in received DICOM 
objects upon preprocessing or include such information 
into generated DICOM object upon post-processing and 
thereby make it available to downstream clinical systems. 
The high-level and well-tested abstractions provided by 

highdicom allow developers to achieve this goal with only 
a few lines of Python code.

Standard Coding Schemes Enable Unambiguous 
Interpretation of Image Annotations

Subtle differences in the description of imaging findings can 
lead to drastically different treatment decisions. To ensure that 
image annotations can be interpreted unambiguously by both 
clinicians and devices or automated systems that may act upon 
the information, the terms used to describe and report annota-
tions need to be well-defined. DICOM structured reporting 
uses codes of established clinical terminologies and ontolo-
gies to describe image-derived information rather than using 
free text. For example, while many words in English and other 
languages may be used to refer to a “tumor” as the finding 
type of the ROI, the concept can be unambiguously repre-
sented across languages and domains by the SNOMED-CT 
code “108369006.” The use of structured reports and stand-
ardized codes facilitates interpretation of image annotations 
by both humans and machines and is therefore critical for 
enabling structural and semantic interoperability between ML 
models and clinical systems. The standard-based approach 
further facilitates the re-use of data beyond the scope of the 
project or use case for which they were initially created. While 
there are several advantages to using codes, they are cum-
bersome to work with and increase the complexity of ML 
programs and are thus in our experience often frowned on by 
developers. The highdicom library provides data structures 
and methods that abstract the codes and significantly simplify 
using and operating on coded concepts.

While codes chosen from well-established coding 
schemes can significantly improve interoperability, the 
choice of the appropriate code can still pose a significant 
challenge to both developers and clinical experts. The high-
dicom library does not (and cannot) fully solve this problem. 
Indeed, in practice, it may be the case that no standard coded 
concept accurately describes the annotation and a custom 
coding scheme is required. DICOM allows, and pydicom 
and highdicom support, the definition of such custom cod-
ing schemes with the convention of a prefix of “99” fol-
lowed by an identifying text string. Consumers of custom 
coded concepts should detect this condition and seek out-
of-band information for correct interpretation of the anno-
tations. However, for a large range of common clinical use 
cases, the library (together with the underlying pydicom 
library) exposes value sets defined in the DICOM standard 
via abstractions, and by depending on these abstractions 
throughout its API, encourages developers to choose codes 
from these predefined sets.
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Encoding Image Regions in a Well‑defined 
Coordinate System in Three‑dimensional 
Physical Space Allows for Clinically Actionable 
Measurements

Establishing an unambiguous spatial relationship between 
ROIs and their corresponding source images for display or 
computational analysis requires a common frame of refer-
ence, which defines the coordinate system to uniquely local-
ize both images or image regions with respect to the imaging 
target (the specimen in pathology or the patient in radiology) 
with both position and orientation. Many applications sim-
ply specify ROIs relative to the pixel matrix of an image in 
pixel units. However, this simple approach is problematic for 
interoperability, because the image pixel grid forms an ill-
defined coordinate system and the location (offset, rotation, 
and scale) of an image with respect to the imaging target 
changes upon spatial transformation of the image. DICOM 
specifies a frame of reference for both slide-based and 
patient-based coordinate systems, which enables accurate 
and precise localization of a ROI with respect to the patient 
or the specimen on the slide independent of whether affine 
transformations have been applied to images. Defining ROIs 
in physical space in millimeter units further has the advan-
tage that spatial ROI measurements such as diameter or area 
can be readily taken in this frame of reference without the 
need to transform coordinates, a process that can be error 
prone and result in incorrect measurements with potentially 
serious clinical implications. The highdicom library enables 
developers to work with both 2D pixel matrix and 3D frame 
of reference coordinates and provides developers methods to 
readily convert coordinates between the different coordinate 
systems.

Scaling to Large Numbers of Image Annotations 
in the Context of Slide Microscopy Imaging 
in Pathology

As demonstrated in this paper, encoding of ROIs in SR docu-
ments works for both pathology and radiology. However, the 
deeply nested structure of SR documents does not scale well 
to object detection problems in pathology, where millions 
of cells or nuclei may be detected per whole slide image. To 
address this challenge, DICOM Working Group 26 Pathol-
ogy (WG-26) has developed a supplement for the DICOM 
standard that proposes the introduction of a Microscopy Bulk 
Simple Annotations IOD and Annotation (ANN) modality 
specifically designed for the storage and exchange of a large 
number of image annotations in the form of spatial coordi-
nates [48]. The graphic types used in the ANN objects have 
been harmonized with those in SRs, and their structure is 
similar to that of SEG images. This supplement was recently 
approved and incorporated into the DICOM standard and is 

now implemented in highdicom as a highdicom.ann.
MicroscopyBulkSimpleAnnotations SOP class, 
reusing the existing building blocks of the library for coded 
concepts and spatial coordinates.

Abstracting the Complexity of the Standard Without 
Oversimplifying Medical Imaging Use Cases

DICOM is the ubiquitous standard for representation and 
communication of medical image data and standardizes 
many aspects of the imaging workflow to enable interoper-
ability in the clinical setting. However, DICOM is often crit-
icized by the biomedical imaging research community for 
its elaborateness and alternative data formats have emerged 
in the research setting that are intended to simplify access 
to and storage of data by researchers that do not want to 
cope with intricacies of the standard [49]. The first step in 
an image analysis pipeline is thus often the conversion of 
DICOM objects into an alternative format that is consid-
ered more suitable for research use [50]. While conversion 
of clinically acquired DICOM objects into another format 
may work well within the limited scope of a research project, 
the reverse, i.e., the conversion of a given research output 
into standard DICOM representation, is generally not possi-
ble, since important contextual information is lost along the 
way [51]. Many of the attributes of DICOM objects that are 
regarded superfluous by researchers and are readily removed 
for ease of use are crucial for interoperability with clinical 
systems and for correct representation and interpretation of 
the data in clinical practice.

We argue that the discussion regarding the establishment 
and adoption of standards for clinical deployment of ML 
models and integration of their outputs into clinical work-
flows should be guided primarily by the requirements of 
clinical systems and clinicians for interpretability and clini-
cal decision making, rather than current practices within 
research communities. The DICOM standard has been evolv-
ing over many years through continuous collaboration of an 
international group of experts and a diverse set of stakehold-
ers based on a considerate and controlled process that takes 
a variety of use cases as well as legal and regulatory aspects 
into account. While the comprehensiveness and inclusive-
ness of the standard has advantages, it has also resulted in 
significant complexity and demands an implementation that 
exposes the useful parts of the standards through a layer of 
abstraction. The highdicom library strikes a fine balance, by 
providing an API that hides as many details of the DICOM 
standard as possible from model developers, while acknowl-
edging that medical imaging is complex and that efforts aim-
ing for DICOM abstraction should involve technical and 
domain experts to avoid oversimplification with detrimen-
tal effects on interoperability and ultimately patient safety. 
The result is an API that abstracts the intricate structure of 
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DICOM datasets, but retains full and direct access to all 
DICOM attributes and stays close to the terminology of the 
DICOM data models to avoid any ambiguities.

Bridging the Gap Between Model Development 
in Research and Model Deployment in Clinical 
Practice

Researchers, medical device manufacturers, and healthcare 
providers are generally interested in accelerating the trans-
lation of research findings into clinical practice and enable 
patients to get access to and benefit from diagnostic and 
therapeutic innovations. However, the incentives for the dif-
ferent stakeholders who participate in the translation process 
at different time points from model development to deploy-
ment are not necessarily well aligned. Currently, the produc-
tion deployment of an ML model is generally not a major 
concern to model developers, who primarily operate in a 
research environment. The developer often does not receive 
a technical specification against which the model should be 
developed and is unaware of the environment into which the 
model should ultimately be deployed for clinical validation. 
As a consequence, the structure of data outputted by ML 
models developed in research settings is generally highly 
customized towards a particular research project and spe-
cific use case and lacks identifying or descriptive metadata 
relevant for clinical application (see above). Furthermore, 
current ML models store data in a variety of proprietary 
formats that are incompatible with clinical systems, which 
generally rely on a DICOM interface for data exchange. 
Together, these factors impede the deployment of an ML 
model and its integration into existing clinical workflows 
for validation or application.

One opportunity for streamlining this process is to rely 
on DICOM as a common format and interface for data 
exchange during both model development and deployment. 
In our experiments, we demonstrated that highdicom makes 
feasible a fully DICOM-based workflow in which all files 
stored on storage devices are in DICOM format with mini-
mal increase in complexity for the developer. Adapting a 
model developed in such a workflow for clinical deployment 
becomes a straightforward task.

A common use for non-DICOM formats is for storage of 
intermediate results within the input image preprocessing 
pipeline, such as the results of image registration operations. 
A limitation of our proposed DICOM-only workflow is that 
it assumes that model training and inference pre-processing 
pipelines operate directly on the source images. However, 
we argue that models developed for eventual clinical deploy-
ment must have input preprocessing pipelines that are able 
to operate efficiently from the raw source data and as such 
having this constraint in place through model development 
process simplifies deployment. Furthermore, intermediate 

results could also be represented in DICOM format (e.g., 
using the Spatial Registration IOD for image registration 
results) and future versions of highdicom may provide tools 
to help with the creation and access of intermediate results 
in DICOM format.

Common Platforms, Services, and Tools 
Will Facilitate Enterprise Medical Imaging, 
Interdisciplinary Research, and Integrated 
Diagnostics

Standardization of images, image annotations, and model 
predictions between pathology and radiology opens new 
avenues for enterprise medical imaging, interdisciplinary 
quantitative biomedical imaging research, and integrated 
image-based diagnostics. Despite unique challenges and 
use cases for image management in digital pathology and 
radiology, there are opportunities for streamlining the invest-
ment into and use of IT infrastructure and platforms across 
medical disciplines within the enterprise. Given that most 
hospitals already have an existing medical imaging infra-
structure based on DICOM, encoding image annotations in 
DICOM format may lower the barrier for integration of ML 
systems into clinical workflows.

Relying on the DICOM standard may further promote 
interdisciplinary biomedical imaging research by, for exam-
ple, clearing the way for the use of annotations of slide 
microscopy images in pathology as ground truth for training 
ML models for analysis of CT images in radiology or vice 
versa. Furthermore, leveraging a standard data format and 
communication interface provides an opportunity to syn-
thesize different imaging modalities and interpret pathol-
ogy and radiology ML model outputs side-by-side. In this 
paper, we demonstrate that highdicom facilitates the creation 
and interpretation of image annotations independent of a 
specific medical imaging modality, discipline, department, 
or institution. We further show that data can be exchanged 
and stored using DICOM-compatible image management 
systems, which already exist in hospitals worldwide and are 
increasingly being adopted by biomedical imaging research 
initiatives around the world. For example, the National Can-
cer Institute’s Imaging Data Commons (IDC) in the USA 
will make large public collections of pathology and radiol-
ogy images, image annotations, and image analysis results 
available in DICOM format [52]. The highdicom library will 
allow researchers to leverage these resources and enable 
them to readily share their results and make them usable by 
other researchers. We therefore see the potential for high-
dicom to streamline the development and deployment of 
ML models across departmental boundaries, accelerate the 
translation of technological innovations from research into 
clinical practice, and to assist in the realization of AI in 
healthcare.



Journal of Digital Imaging 

1 3

Conclusion

The highdicom library abstracts the complexity of the 
DICOM standard, and exposes medical imaging data to ML 
model developers via a pythonic interface that ties into the 
scientific Python ecosystem for machine learning and image 
processing and allows data scientists to think of imaging 
data at a high level of abstraction without having to worry 
about the low-level details and rules of the DICOM stand-
ard. Focusing on the use case of detecting lung tumors in 
slide microscopy images of surgical tissue section specimens 
as well as in computed tomography images of the chest, 
we examined examples for the interpretation of DICOM-
encoded image annotations during model training and 
encoding of model outputs during model inference. Through 
a series of experiments, we have demonstrated the utility of 
the library for the development of ML models and shown 
that, by relying on the DICOM standard, the library enables 
interoperability of the developed ML models with commer-
cially available DICOM-compliant information systems and 
allows for unambiguous interpretation of model outputs in 
clinical context independent of the specific medical imaging 
modality or discipline. By facilitating the use of DICOM 
throughout the model development and deployment pro-
cess, highdicom has the potential to bridge the gap between 
research and clinical application and thereby streamline 
clinical integration and validation of ML models.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 022- 00683-y.
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