Challenges – Data Quality

- Good quality data is critical
 - bad data → bad model
 - Some models need large amount of training data
- Data have insufficient quantity / variability for context
 - Especially problematic for models finding less common patterns (e.g., disease screening, anomaly detection)
 - Underrepresented populations > nongeneralizable rules (socioeconomic, gender, race, ethnic and other disparities)
- Data labels represent human bias / false beliefs
 - e.g., court sentences, hiring / firing decisions
 - Can promulgate or exacerbate inequality

- Data have incomplete, inaccurate and/or variable labels
 - Different terms or metrics for same label due to human inconsistency
- Critical input data may be missing
 - Polanyi's Paradox:
 - Human decision-making beyond explicit understanding or description
 - Human may not realize which data contributed to human decision
 - Critical inputs may not be represented in AI training data

Challenges – ML Model Problems

- Models can be brittle
 - Small changes in input → big changes in output
 - Unable to see the forest for the trees (double-edged sword)
 - Humans are BETTER at generalization and situational awareness
- Small changes to input introduced by hackers (adversarial examples) led to wrong output

[https://www.nature.com/articles/d41586-019-03013-5]

- Models can also degrade over time
 - Similar concept for laboratory tests (drift, shift)

Figure 1. Randomly sampled poses of a 3D-printed turtle adversarially perturbed to classify as a rifle at every viewpoint². An unperturbed model is classified correctly as a turtle nearly 100% of the time.

Athalye et al. 2018.

https://arxiv.org/pdf/1707.07397.pdf

D

Challenges - Cybersecurity

- Al can be hacked just like any other software
 - Robotic surgical systems (https://www.ncbi.nlm.nih.gov/pubmed/30397993)
- Hacked systems have potential for unauthorized disclosure, patient harm
- Human autonomy ("human-in-the-loop") may help detect malfunctions
- US national efforts for AI cybersecurity
 - National Security Commission on Artificial Intelligence (https://www.nscai.gov/)
 - Established 2018 by John S. McCain National Defense Authorization Act (Public Law 115-232)

Challenges - Transparency

- Definitions (multiple)
 - For AI developers: Reasons for model's performance are known and understood
 - For end-users (ethics): Sufficient information is published such that model's performance can be audited [https://www.who.int/publications/i/item/9789240029200]
- Lack of transparency (Black box problem)
 - Rules developed by the AI algorithm
 - May be indecipherable after model is trained, even to the developer(s)
 - May not be able to determine why algorithm generated certain output
 - May generally work well but some output may be inexplicably wrong

B

Challenges - Ethics

- Hot topic because of some noted failures
 - https://georgetownsecuritystudiesreview.org/2021/05/06/racism-is-systemic-in-artificial-intelligence-systems-too/
 - https://technologyandsociety.org/bias-and-discrimination-in-ai-a-cross-disciplinary-perspective/
 - https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai/
- Beneficence: Maximize benefits; minimize risks and harms
 - Al can propagate and exacerbate human bias
 - Protect human autonomy in decisions ("human-in-the-loop")
 - ACR and RSNA recommendation → do not approve autonomous AI until sufficient human-supervised AI experience obtained
- Auditability: Audit the tool to verify performance, ensure ethics followed
- Accountability: Who or what is accountable when something goes wrong
 - Medicolegal liability
 - Al is not standard of care
 - Regulations not yet developed in US
 - <u>EU paper</u> (https://pubmed.ncbi.nlm.nih.gov/33489979/) that discusses that liability is based on physician using standard of care

Challenges – Ethics (cont.)

- Intelligibility
 - Achieved through Transparency and eXplainability
 - https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8312-draft.pdf
 - Transparency [https://www.who.int/publications/i/item/9789240029200]
 - Sufficient information published before the design or deployment of an AI technology
 - Describes how technology is designed, intended use, data used, etc.
 - Also means that a person knows when AI is being used on them
 - eXplainability (XAI)
 - Providing the human user an explanation of how the AI tool works

Other Challenges

Medicine lacks Personnel sufficient data scientists

 Many data scientists lack expertise in medicine and/or healthcare environment

Organizationa

- · Lack AI strategies
- Right tasks
- •Right data
- Right evidence standard(s)
- •Right approaches for integration
- Deploying models in clinical environments is challenging (patient safety, population differences between locations)

Financia

- ·Lack of reimbursement mechanisms
- Harder to define returns on investment

Technical

- Lack of adequate computational infrastructure
- Introduces new cybersecurity threats that aren't yet addressed

Response to Challenges -> Guidelines

- Guideline for machine learning model development (US, Canada, UK Guideline Oct 2021)
 - https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
 - Multidisciplinary expertise throughout
 - Good software/security practices
 - Data representative of intended patient population
 - Training data independent of testing data
 - Reference data is well characterized
 - Model design tailored to available data and reflects intended use
 - Focus on keeping the human in the loop (human AI team)
 - Testing demonstrates performance during clinically relevant conditions
 - Users provided clear essential information for use
 - Deployed models are monitored for performance in the real world
- AI Ethics Guidelines and White Papers
 - WHO Ethics Guidelines for AI https://www.who.int/publications/i/item/9789240029200
 - UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000379920.page=14
 - EU guidelines https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
 - https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community

2

ML Definitions – Types of Learning

Supervised learning	Trains on classified and/or labeled data • Goal → train model to generate known answers, patterns or relationships
Fully supervised	All data labeled to same extent (degree of detail)
Semi-supervised	Some data are labeled while other data are not Unlabeled data may be auto-labeled to match patterns on labeled data
Weakly supervised	Small amount of data have detailed labels; rest of data have fewer labels
Unsupervised learning	 Data which have <u>not</u> been classified or labeled Goal → model discovers <u>new</u> (previously <u>unknown</u>) patterns or relationships

ML Definitions – Types of Learning

Reinforcement learning

- Used to learn how to reach a (complex) goal
 - Game playing (IBM Watson and Jeopardy)
 - Speech to text, financial trading

Agent perceives state of Environment

Environment has new state Agent executes action based on state

Environment gives reward or penalty to Agent

ML Definitions – Types of Learning

Transfer learning

- Separate category vs. subtype of supervised learning
- Data used for training the model are transferred from a different related domain
 - Data were developed for use in a domain <u>different</u> than the one intended for the model
 - Example: Using natural images from <u>ImageNet</u> (<u>https://image-net.org/</u>) to train a models for medical images [Alzubaidi et al 2021 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036379/]
- Coarse training done on transferred data
- Fine tune training with smaller data directly related to domain of use
- Reasons
 - Data are expensive
 - Higher quality and quantity data may be more available, cheaper in another domain

ML Definitions - Data

Instance

- Single event in a data set
- # instances required to train a model depends on the problem and model used
- Outlier
 - Instance which is significantly different from the remaining instances in the population
 - Can skew results
 - Different models have different sensitivities to outliers
- Label observed value for a feature of an individual instance

•	F	2	2	h		r	_
•	г	=	a١	u	ш	Ц	_

- An aspect (variable) of the training data
- Called a dimension in unsupervised learning

	Feature 1	Feature 2	Feature 3 ←
Instance 1	Red 1.5	Slow	Yes
Instance 2	Red	Fast	No
Instance 3	Green	Medium	No

Red, Green, Slow, Fast, Medium, Yes and No are all **labels** in this data set.

29

ML Definitions - Models

Algorithm

Repeatable process used to train a model from a given set of training data

Parameter

- Internal values inside machine learning that the model derives based on training data
- e.g., weights, bias values
- Model = algorithm + parameters
 - When a model is used for classification, it is called a classifier [https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623]
 - Weak learner (weak model): model whose performance only slightly > random chance
 - Good model: model that generalizes well (it performs the same on new data as it did on the training (and test) data)

Epoch

1 epoch = 1 pass through the training data

Signal

The true underlying pattern you are trying to learn from the data

Well designed machine learning separates signal from noise

Noise

Irrelevant information or randomness in a data set Irreducible error

Bias

- Measure of inaccuracy
- High bias + low variance → consistently inaccurate results

Variance

- Measure of imprecision (lack of reproducibility)
- High variance + low bias → inconsistently accurate results

Irreducible error

 Noise that cannot be reduced by optimizing algorithms

Bias

- Not just an ethical term...
- Amount of <u>inaccuracy</u> in the model's performance after training
- High bias → model is inaccurate (underfit)
- Low bias → model is accurate (but may be overfit)

Variance

- Amount of <u>imprecision</u> (square of standard deviation (σ) $\rightarrow \sigma^2$)
- Due to model's sensitivity to small fluctuations in the training set
- High variance → model is imprecise (and likely over fit)
- Low variance

 model is precise (but may not be accurate and may be underfit)

Bias-Variance Trade-Off

- Things that reduce variance increase bias
- Things that reduce bias increase variance

 $Total\ error = (bias^2) + variance + irreducible\ error$

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

Goodness of fit

 How closely a model's output values match the observed (true) values

Underfitting

- Model does not accurately predict output for the data fed to it
 - high bias, low or high variance

https://datascience.stackexchange.com/questions/361/when-is-a-model-underfitted

Overfitting

- Occurs when statistical model <u>exactly</u> fits <u>training</u> data BUT...
 - Does not fit new data well (test or production data)
- Training set has low error rate but test set has high error rate = high variance
- Most common problem for any statistical model using a training set

Null error rate

- For classification methods, rate of being wrong if you ALWAYS pick the majority class
- If the majority class has 105 instances out of 165 total instances
 - Null error rate = (165 105)/165 = 36%

Accuracy paradox

- Best classifier for the intended use may have a higher error rate than the null error rate
- Occurs when condition or outcome is very low percentage of overall data set (e.g., 1%)
- Model can correctly predict absence of the condition in 99% of cases hooray! BUT...
- May completely fail to detect the condition being sought
 - 100% failure of detecting the condition (but null error rate is only 1%)
- Take home point → Use different statistical methods when trying to screen for low incidence conditions

B

Process of ML Model Development

- Many ways that a model can be trained → tested → deployed
 - Depends on model, amount of data, and other factors
- Phases of model development have variable nomenclature between authors
 - E.g., learning phase, inference phase
- A few definitions to resolve possible confusion

	What it means in machine learning	What it means in a hospital laboratory
Validation	Evaluating preliminary (non-final) model Results of evaluation lead to tweaking (tuning) the model	Final evaluation of a <i>laboratory test</i> where no further changes to the test procedure are expected
Testing	Final evaluation of a <i>machine learning</i> model where no further changes to the model are expected	Evaluating preliminary (non-final) laboratory test OR Performing live clinical testing

Process of Model Development

Machine Learning Algorithms

- Each category has algorithms that are primarily used for that purpose
- However, classification algorithms may sometimes be used for regression and vice versa
- Unsupervised algorithms may sometimes be used with supervised learning

Artificial Neural Networks (ANNs)

- Goal: Solve problems like a human
- Operate via flow through neural nets, akin to biological networks
 - Handles large amounts of complex data
 - Computationally intensive
 - Unraveling the pathways after training is completed can be difficult to impossible -> Black Box Problem
- Nodes (akin to neurons) → transfer functions
- Connections (akin to synapses, a.k.a. edges)
- Back-propagation (nice YouTube

(https://www.youtube.com/watch?v=llg3gGewQ5U) video)

- Learns mistakes based on output
- Layers (nodes in each layer usually have same activation function)
 - Input layer: # nodes = # features selected in data
 - Output layer: # nodes = # output categories of data
 - Hidden layer(s): Shallow networks usually have 1; Deep networks have >3

