
COMMENTARY

To ensure safe, effective, equitable, and trustworthy de-
ployment, diagnostic artificial intelligence (AI) tools 

must perform robustly across the target population at their 
initial use and over time (1). Robust model performance is 
a complex and multifaceted challenge that requires careful 
consideration of various highly context-dependent factors. 
The AI research and development community is begin-
ning to recognize and address this challenge more com-
prehensively. Increasingly, external testing studies are being 
conducted that aim to bridge the existing generalization 
gap, and ultimately, the implementation gap (2). The goal 
is to establish standardized methodologies and guidelines 
that can help overcome the challenges associated with the 
limited applicability of AI tools and ensure their broader 
effectiveness and reliability.

One important step toward robust deployment is sub-
group analysis. This analysis can reveal hidden stratifica-
tion, providing insight into the inherent weaknesses of the 
algorithm that may adversely affect subgroups and make 
a certain tool unfit for a certain clinical context. In this 
issue of Radiology: Artificial Intelligence, Ahluwalia et al (3) 
show that the four tested chest radiograph classifiers are 
unfit for their specific setting to accurately identify subtle 
findings and merely serve as a “gross abnormality detec-
tor.” The group performed a pragmatic study illustrating 
the subgroup problem in, to our knowledge, the largest 
comparative external testing study to date. One classifier 

was a proprietary third-party classifier, while the rest were 
open source and trained on well-known, large, publicly 
available datasets (ie, CheXpert, MIMIC-CXR, and Chest 
X-ray-14). The classifiers were tested on a large dataset of 
chest radiographs consecutively collected at their regional 
teaching hospital from patients with temporally, geograph-
ically, and demographically different makeup (n = 197 540 
adults with a posteroanterior chest radiograph; age range, 
18–105 years; 50% males; 67% with ancestry from 
“greater Europe”). The primary outcome was binary (nor-
mal or abnormal) with algorithm composition and operat-
ing thresholds “as-is”; for example, the overall prevalence of 
abnormalities was 49% of cases versus 91% in CheXpert.

Subgroup analysis was conducted by patient setting 
(eg, emergency), age categories, sex, and name-based an-
cestry. A pragmatic, natural language processing–based, 
semisupervised method to establish ground truth was 
chosen and locally validated. Overall sensitivity ranged 
from 50% to 72%; the third-party classifier had the high-
est overall performance. We could not find the intended 
performance of the studied classifiers in the article nor in 
the literature, but we assume that the overall performance 
as reported by Ahluwalia et al (3) was considerably less 
than anticipated.

Subgroup analysis revealed weak performance of the 
classifiers for solitary findings, younger patients (<40 
years), and emergency settings, with absolute sensitivity 
drops of 27%, 33%, and 12%, respectively, that could not 
be attributed to calibration differences. Figure 2 of the ar-
ticle nicely depicts performance shifts per subgroup; such 
information is rarely reported, especially regarding ethnic-
ity (4), but is highly insightful. Significant sensitivity drops 
were reported in females (-3%) and those with names of 
African/Indian ancestry (-6%). These drops likely repre-
sent movements along the receiver operating characteristic 
curve, which could lead to underdiagnosis in these groups 
if models are deployed when uncalibrated.

The results clearly disqualify the tested tools for screen-
ing tasks such as triage in all patients, but especially in the 
scenario of younger patients presenting to the emergency 
department with one abnormality (eg, pneumothorax). 
This represents a critical insight, as filtering out normal 
studies is currently considered a popular scenario for de-
ployment of chest radiograph detection tools. A possible 
part of the explanation is that the current dataset contains 
relatively healthier patients than the open-source databases 
the tools were trained on. Studies like this are needed to 
define the suitable context for decision-support tools, espe-
cially when stand-alone deployment is intended.
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The AI-Generalization Gap

Ethically sound deployment of AI tools has been a topic 
of much debate even outside the imaging space. A famous ex-
ample is the Correctional Offender Management Profiling for 
Alternative Sanctions, or COMPAS, risk assessment tool used 
by the U.S. criminal justice system to predict the likelihood of 
reoffense based on several personal factors. The tool turned out 
to be biased against Black defendants, especially females (5), 
and is no longer used in several locations. The same phenom-
enon has been shown in radiology, and the topic has gained in-
creasing attention, as the relatively homogeneous background 
of developers and authors may (subconsciously) influence al-
gorithm generalizability (6). Recent efforts in breast radiology 
have established a benchmark dataset that is racially diverse to 
obtain unbiased performance (7). One hopes that other sub-
specialty areas will follow.

The pursuit of generalizability can lead to applications that 
sacrifice strong performance at individual sites or specific patient 
populations in favor of applications with mediocre or poor per-
formance across multiple sites or subgroups of patients. Clini-
cians and researchers face a trade-off between improving system 
performance locally or for specific subgroups and having systems 
that can generalize across different contexts.

In the context of buying AI solutions, there is no one-size-
fits-all solution, and the adage “buyer beware” is applicable. 
Therefore, it is important for the end user to be aware of possible 
performance shifts in certain subgroups that were underrepre-
sented in the development data and to realize that performance 
monitoring over time is a necessity to avoid degrading perfor-
mance. The end user, the radiologist or clinician, needs to decide 
what serves patients best, and it is the vendor’s responsibility to 
be transparent about model development and validation. To that 
end, electronic health record vendors should enable easily ac-
cessible demographics and general disease characteristics of the 
target population to enable decision-making regarding the trans-
latability of a certain AI tool to the intended setting. For vendors 
to be able to reach their commercial goals, it is important that 
they understand the granularity of the health care context to bet-
ter steer business efforts and avoid technical push (ie, products 
being developed based on technical opportunities rather than a 
clinical need).

To alleviate some of the issues encountered with underrep-
resented patient groups in the data, domain adaptation and/
or transfer learning may be used. In medical imaging, domain 
adaptation refers to the process of adjusting machine learning 
models trained on medical image data from one domain (eg, 
specific hospital or imaging center) to perform well on a differ-
ent but related domain. Due to variations in imaging protocols, 
equipment, patient populations, or demographics, there can 
be differences in the data distributions between these domains, 
known as domain shift (or dataset shift).

The objective of domain adaptation techniques is to address 
these domain differences and enhance model generalizability 
across diverse imaging settings, aiming to leverage the knowledge 
gained from the source domain to improve model performance 
in the target domain. Recent advances in domain adaptation 
methods have been explored extensively in the field of medi-
cal imaging analysis. These advancements encompass a range of 

approaches, including feature alignment, image transformation, 
unsupervised domain adaptation, and the use of generative ad-
versarial networks (8).

Transfer learning is a broader concept that involves domain 
adaptation and refers to the process of transferring knowledge or 
learned representations from one task or domain to another (9). 
While domain adaptation specifically deals with adapting mod-
els to different domains, transfer learning can involve transfer-
ring knowledge between tasks within the same domain or across 
different domains.

Another known tool in AI that can help assure broad gen-
eralizability of AI models is stress testing (10). Stress tests help 
determine if a model will perform consistently when applied to 
different datasets. It aims to ensure that the AI application can 
handle unexpected scenarios, large volumes of data, or adverse 
conditions without breaking down or producing unreliable re-
sults. These stress tests involve introducing artificial shifts or 
examining the model’s predictions in specific subsets of the 
testing data. However, it is not feasible to create stress tests 
for every possible shift, especially in radiology, where various 
factors like image acquisition parameters and patient charac-
teristics can result in a wide range of potential changes. Ide-
ally, stress tests should be carefully designed to replicate specific 
shifts that can cause the model to fail. In addition to consider-
ing how well the model performs its intended task, researchers 
must also anticipate the conditions in which the model will be 
used to ensure stable performance. By subjecting the system to 
challenging conditions, stress testing helps uncover potential 
issues with, for example, shifted data, subgroups, or noise, arti-
facts, and different acquisition parameters, and allows develop-
ers to address them proactively, leading to more reliable and 
trustworthy AI applications.

Limitations of the study by Ahluwalia et al (3) are well ad-
dressed and include semisupervised natural language process-
ing–based labeling techniques and using the report instead of the 
image as a basis for the reference standard. Also, only a selected 
number (n = 12) of abnormalities was investigated. Notwith-
standing, we believe that the most important take-away of this 
study is its demonstration of the overarching principle of incon-
sistent subgroup performance in a large-scale dataset.

In summary, the issues related to generalizability of AI ap-
plications calls for a collaborative effort between researchers, 
clinicians, and vendors to ensure that these technologies are 
thoroughly validated and carefully implemented to maximize 
their benefits and minimize potential risks. As the field of AI 
in radiology continues to grow and evolve, it is essential that 
the scientific community develops a rigorous, standardized, 
and evidence-based approach to ensure ethically sound and 
tailored deployment.
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