
1

Learning under Concept Drift: A Review
Jie Lu, Fellow, IEEE, Anjin Liu, Member, IEEE, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang

Abstract—Concept drift describes unforeseeable changes in the underlying distribution of streaming data over time. Concept drift
research involves the development of methodologies and techniques for drift detection, understanding and adaptation. Data analysis
has revealed that machine learning in a concept drift environment will result in poor learning results if the drift is not addressed. To help
researchers identify which research topics are significant and how to apply related techniques in data analysis tasks, it is necessary
that a high quality, instructive review of current research developments and trends in the concept drift field is conducted. In addition,
due to the rapid development of concept drift in recent years, the methodologies of learning under concept drift have become
noticeably systematic, unveiling a framework which has not been mentioned in literature. This paper reviews over 130 high quality
publications in concept drift related research areas, analyzes up-to-date developments in methodologies and techniques, and
establishes a framework of learning under concept drift including three main components: concept drift detection, concept drift
understanding, and concept drift adaptation. This paper lists and discusses 10 popular synthetic datasets and 14 publicly available
benchmark datasets used for evaluating the performance of learning algorithms aiming at handling concept drift. Also, concept drift
related research directions are covered and discussed. By providing state-of-the-art knowledge, this survey will directly support
researchers in their understanding of research developments in the field of learning under concept drift.

Index Terms—concept drift, change detection, adaptive learning, data streams

F

1 INTRODUCTION

GOVERNMENTS and companies are generating huge
amounts of streaming data and urgently need efficient

data analytics and machine learning techniques to sup-
port them making predictions and decisions. However, the
rapidly changing environment of new products, new mar-
kets and new customer behaviors inevitably results in the
appearance of concept drift problem. Concept drift means
that the statistical properties of the target variable, which the
model is trying to predict, change over time in unforeseen
ways [1]. If the concept drift occurs, the induced pattern of
past data may not be relevant to the new data, leading to
poor predictions and decision outcomes. The phenomenon
of concept drift has been recognized as the root cause of
decreased effectiveness in many data-driven information
systems such as data-driven early warning systems and
data-driven decision support systems. In an ever-changing
and big data environment, how to provide more reliable
data-driven predictions and decision facilities has become a
crucial issue.

Concept drift problem exists in many real-world situa-
tions. An example can be seen in the changes of behavior in
mobile phone usage, as shown in Fig. 1. From the bars in this
figure, the time percentage distribution of the mobile phone
usage pattern has changed from “Audio Call” to “Camera”
and then to “Mobile Internet” over the past two decades.

Recent attractive research in the field of concept drift
targets more challenging problems, i.e., how to accurately
detect concept drift in unstructured and noisy datasets [2],
[3], how to quantitatively understand concept drift in a
explainable way [4], [5], and how to effectively react to drift
by adapting related knowledge [6], [7].

Solving these challenges endows prediction and
decision-making with the adaptability in an uncertain envi-
ronment. Conventional research related to machine learning
has been significantly improved by introducing concept
drift techniques in data science and artificial intelligence in

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

2000 - 2005 2005 - 2010 2010 - 2015 2015 - Now

Audio Call Text Message Multimedia Camera Mobile Internet

Fig. 1. Concept drift in mobile phone usage (data used in figure are for
demonstration only)

general, and in pattern recognition and data stream mining
in particular. These new studies enhance the effectiveness of
analogical and knowledge reasoning in an ever-changing
environment. A new topic is formed during this devel-
opment: adaptive data-driven prediction/decision systems.
In particular, concept drift is a highly prominent and sig-
nificant issue in the context of the big data era because
the uncertainty of data types and data distribution is an
inherent nature of big data.

Conventional machine learning has two main compo-
nents: training/learning and prediction. Research on learn-
ing under concept drift presents three new components:
drift detection (whether or not drift occurs), drift under-
standing (when, how, where it occurs) and drift adaptation
(reaction to the existence of drift) as shown in Fig. 2. These
will be discussed in Section 3-5.

In literature, a detailed concept drift survey paper [8]
was published in 2014 but intentionally left certain sub-
problems of concept drift to other publications, such as the
details of the data distribution change (P (X)) as mentioned
in their Section 2.1. In 2015, another comprehensive survey
paper [9] was published, which surveys and gives tutorial
of both the established and the state-of-the-art approaches.
It provides a hybrid-view about concept drift from two

ar
X

iv
:2

00
4.

05
78

5v
1

 [
cs

.L
G

]
 1

3
A

pr
 2

02
0

2

Training and
Learning Prediction Concept Drift

Adaptation
Concept Drift

Understanding

Update

Stream Data

Concept Drift
Detection

A drift detected

No drift detected

Fig. 2. Framework for handling concept drift in machine learning. Please
note that some methods can do concept drift detection and concept drift
understanding simultaneously.

primary perspectives, active and passive. Both survey pa-
pers are comprehensive and can be a good introduction
to concept drift researching. However, many new publica-
tions have become available in the last three years, even a
new category of drift detection methods has arisen, named
multiple hypothesis tests drift detection. It is necessary to
review the past research focuses and give the most recent
research trends about concept drift, which is one of the main
contribution of this survey paper.

Besides these two publications, four related survey pa-
pers [6], [7], [10], [11] have also provided valuable insights
into how to address concept drift, but their specific research
focus is only on data stream learning, rather than analyz-
ing concept drift adaptation algorithms and understand-
ing concept drift. Specifically, paper [7] focuses on data
reduction for stream learning incorporating concept drift,
while [6] only focuses on investigating the development in
learning ensembles for data stream learning in a dynamic
environment. [11] concerns the evolution of data stream
clustering, and [10] focuses on investigating the current and
future trends of data stream learning. There is therefore a
gap in the current literature that requires a fuller picture
of established and the new emerged research on concept
drift; a comprehensive review of the three major aspects
of concept drift: concept drift detection, understanding and
adaptation, as shown in Fig. 2; and a discussion about the
new trend of concept drift research.

The selection of references in this survey paper was
performed according to the following steps:

Step 1. Publication database: Science Direct, ACM Digital
Library, IEEE Xplore and SpringerLink.

Step 2. Preliminary screening of articles: The first search
was based on keywords. The articles were then selected
as references if they 1) present new theory, algorithm or
methodology in the area of concept drift, or 2) report a
concept drift application.

Step 3. Result filtering for articles: The articles selected
in Step 2 were divided into three groups: concept drift
detection, understanding, and adaptation. The references in
each group were filtered again, based on 1) Time: published
mainly within the last 10 years, or 2) Impact: published in
high quality journals/conferences or having high citations.

Step 4. Dataset selection: To help readers test their re-
search results, this paper lists popular datasets and their
characteristics, the dataset providers, and how each dataset
can be used.

On completion of this process, 137 research articles, 10
widely used synthetic datasets for evaluating the perfor-
mance of learning algorithms dealing with concept drift,
and 14 publicly available and widely used real-world
datasets were listed for discussion.

The main contributions of this paper are:

1) It perceptively summarizes concept drift research
achievements and clusters the research into three cat-
egories: concept drift detection, understanding and
adaptation, providing a clear framework for concept
drift research development (Fig. 2);

2) It proposes a new component, concept drift under-
standing, for retrieving information about the status of
concept drift in aspects of when, how, and where. This
also creates a connection between drift detection and
drift adaptation;

3) It uncovers several very new concept drift techniques,
such as active learning under concept drift and fuzzy
competence model-based drift detection, and identifies
related research involving concept drift;

4) It systematically examines two sets of concept drift
datasets, Synthetic datasets and Real-world datasets,
through multiple dimensions: dataset description,
availability, suitability for type of drift, and existing
applications;

5) It suggests several emerging research topics and poten-
tial research directions in this area.

The remainder of this paper is structured as follows.
In Section 2, the definitions of concept drift are given
and discussed. Section 3 presents research methods and
algorithms in concept drift detection. Section 4 discusses
research developments in concept drift understanding. Re-
search results on drift adaptation (concept drift reaction) are
reported in Section 5. Section 6 presents evaluation systems
and related datasets used to test concept drift algorithms.
Section 7 summaries related research concerning the concept
drift problem. Section 8 presents a comprehensive analysis
of main findings and future research directions.

2 PROBLEM DESCRIPTION

This section first gives the formal definition and the sources
of concept drift in Section 2.1. Then, in Section 2.2, the
commonly defined types of concept drift are introduced.

2.1 Concept drift definition and the sources
Concept drift is a phenomenon in which the statistical prop-
erties of a target domain change over time in an arbitrary
way [3]. It was first proposed by [12] who aimed to point
out that noise data may turn to non-noise information at
different time. These changes might be caused by changes
in hidden variables which cannot be measured directly [4].
Formally, concept drift is defined as follows:

Given a time period [0, t], a set of samples, de-
noted as S0,t = {d0, . . . , dt}, where di = (Xi, yi) is
one observation (or a data instance), Xi is the fea-
ture vector, yi is the label, and S0,t follows a certain
distribution F0,t(X, y). Concept drift occurs at times-
tamp t+ 1, if F0,t(X, y) 6= Ft+1,∞(X, y), denoted as
∃t : Pt(X, y) 6= Pt+1(X, y) [2], [8], [13], [14].

Concept drift has also been defined by various authors
using alternative names, such as dataset shift [15] or concept
shift [1]. Other related terminologies were introduced in
[16]’s work, the authors proposed that concept drift or shift
is only one subcategory of dataset shift and the dataset
shift is consists of covariate shift, prior probability shift and

3

x1x1

x2x2

x1x1

x2x2Pt(X) drift

Pt(y|X) remains

data distribution at time t data distribution at time t+1

x1x1

x2x2

x1x1

x2x2
Pt(X)

Pt(y|X) drift

data distribution at time t data distribution at time t+1

x1x1

x2x2

x1x1

x2x2Pt(y|X) drift

Pt(X) remains

data distribution at time t data distribution at time t+1

Two dimensional

data X={x1, x2}

with two class label

y={y0, y1}

label y0 at time t
label y1 at time t
label y0 at time t
label y1 at time t

label y0 at time t
label y1 at time t
label y0 at time t
label y1 at time t

(a) Source I (b) Source II

(c) Source III

Fig. 3. Three sources of concept drift

concept shift. These definitions clearly stated the research
scope of each research topics. However, since concept drift is
usually associated with covariate shift and prior probability
shift, and an increasing number of publications [2], [8], [13],
[14] refer to the term ”concept drift” as the problem in
which ∃t : Pt(X, y) 6= Pt+1(X, y). Therefore, we apply the
same definition of concept drift in this survey. Accordingly,
concept drift at time t can be defined as the change of
joint probability of X and y at time t. Since the joint
probability Pt(X, y) can be decomposed into two parts as
Pt(X, y) = Pt(X)× Pt(y|X), concept drift can be triggered
by three sources:

• Source I: Pt(X) 6= Pt+1(X) while Pt(y|X) =
Pt+1(y|X), that is, the research focus is the drift in
Pt(X) while Pt(y|X) remains unchanged. Since Pt(X)
drift does not affect the decision boundary, it has also
been considered as virtual drift [7], Fig. 3(a).

• Source II: Pt(y|X) 6= Pt+1(y|X) while Pt(X) =
Pt+1(X) while Pt(X) remains unchanged. This drift
will cause decision boundary change and lead to learn-
ing accuracy decreasing, which is also called actual drift,
Fig. 3(b).

• Source III: mixture of Source I and Source II, namely
Pt(X) 6= Pt+1(X) and Pt(y|X) 6= Pt+1(y|X). Concept
drift focus on the drift of both Pt(y|X) and Pt(X),
since both changes convey important information about
learning environment Fig. 3(c).

Fig. 3 demonstrates how these sources differ from each
other in a two-dimensional feature space. Source I is feature
space drift, and Source II is decision boundary drift. In
many real-world applications, Source I and Source II occur
together, which creates Source III.

2.2 The types of concept drift

Commonly, concept drift can be distinguished as four types
[8] as shown in Fig. 4:

Research into concept drift adaptation in Types 1-3 fo-
cuses on how to minimize the drop in accuracy and achieve
the fastest recovery rate during the concept transformation
process. In contrast, the study of Type 4 drift emphasizes
the use of historical concepts, that is, how to find the best
matched historical concepts with the shortest time. The new
concept may suddenly, incrementally, or gradually reoccur.

To better demonstrate the differences between these
types, the term “intermediate concept” was introduced by
[8] to describe the transformation between concepts. As
mentioned by [4], a concept drift may not only take place

Sudden
Drift:
A new concept occurs within a short time.

D
at
a

di
st
ri
bu
tio
n

Time

Gradual
Drift:
A new concept gradually replaces an old one over a period of time.

D
at
a

di
st
ri
bu
tio
n

Time

Incremental
Drift:
An old concept incrementally changes to a new concept over a period of time.

D
at
a

di
st
ri
bu
tio
n

Time

Reoccurring
Concepts:
An old concept may reoccur after some time.

D
at
a

di
st
ri
bu
tio
n

Time

Fig. 4. An example of concept drift types.

at an exact timestamp, but may also last for a long period.
As a result, intermediate concepts may appear during the
transformation as one concept (starting concept) changes to
another (ending concept). An intermediate concept can be
a mixture of the starting concept and the ending concept,
like the incremental drift, or one of the starting or ending
concept, such as the gradual drift.

3 CONCEPT DRIFT DETECTION

This section focuses on summarizing concept drift detection
algorithms. Section 3.1 introduces a typical drift detection
framework. Then, Section 3.2 systematically reviews and
categorizes drift detection algorithms according to their im-
plementation details for each component in the framework.
At last, Section 3.3 lists the state-of-the-art drift detection al-
gorithms with comparisons of their implementation details.

3.1 A general framework for drift detection

Drift detection refers to the techniques and mechanisms
that characterize and quantify concept drift via identifying
change points or change time intervals [17]. A general
framework for drift detection contains four stages, as shown
in Fig. 5.

Stage 1 (Data Retrieval) aims to retrieve data chunks
from data streams. Since a single data instance cannot carry
enough information to infer the overall distribution [2],
knowing how to organize data chunks to form a meaningful
pattern or knowledge is important in data stream analysis
tasks [7].

Stage 2 (Data Modeling) aims to abstract the retrieved
data and extract the key features containing sensitive infor-
mation, that is, the features of the data that most impact
a system if they drift. This stage is optional, because it
mainly concerns dimensionality reduction, or sample size
reduction, to meet storage and online speed requirements
[4].

Stage 3 (Test Statistics Calculation) is the measurement of
dissimilarity, or distance estimation. It quantifies the sever-
ity of the drift and forms test statistics for the hypothesis
test. It is considered to be the most challenging aspect of
concept drift detection. The problem of how to define an
accurate and robust dissimilarity measurement is still an
open question. A dissimilarity measurement can also be

4

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10... ...

Historical Data New Data

Stage 1: Data Retrieval

 data stream time line

Abstracted Data
Model (New)

Abstracted Data
Model (Historical)

Stage 2 (optional):
Data Modeling

Historical Data New Data

Dissimilarity
Measurement

Stage 3:
Test Statistics Calculation

Dissimilarity
Significance Test

Stage 4:
Hypothesis Test
(Statistical Bounds)

Fig. 5. An overall framework for concept drift detection

used in clustering evaluation [11], and to determine the
dissimilarity between sample sets [18].

Stage 4 (Hypothesis Test) uses a specific hypothesis test
to evaluate the statistical significance of the change observed
in Stage 3, or the p-value. They are used to determine
drift detection accuracy by proving the statistical bounds
of the test statistics proposed in Stage 3. Without Stage
4, the test statistics acquired in Stage 3 are meaningless
for drift detection, because they cannot determine the drift
confidence interval, that is, how likely it is that the change
is caused by concept drift and not noise or random sample
selection bias [3]. The most commonly used hypothesis tests
are: estimating the distribution of the test statistics [19],
[20], bootstrapping [21], [22], the permutation test [3], and
Hoeffding’s inequality-based bound identification [23].

It is also worth to mention that, without Stage 1, the
concept drift detection problem can be considered as a two-
sample test problem which examines whether the popula-
tion of two given sample sets are from the same distribution
[18]. In other words, any multivariate two-sample test is an
option that can be adopted in Stages 2-4 to detect concept
drift [18]. However, in some cases, the distribution drift may
not be included in the target features, therefore the selection
of the target feature will affect the overall performance of
a learning system and is a critical problem in concept drift
detection [24].

3.2 Concept drift detection algorithms

This section surveys drift detection methods and algo-
rithms, which are classified into three categories in terms
of the test statistics they apply.

3.2.1 Error rate-based drift detection

PLearner error rate-based drift detection algorithms form
the largest category of algorithms. These algorithms focus
on tracking changes in the online error rate of base classi-
fiers. If an increase or decrease of the error rate is proven to
be statistically significant, an upgrade process (drift alarm)
will be triggered.

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10... ...
Historical Data

New Data

Fig. 6. Landmark time window for drift detection. The starting point of
the window is fixed, while the end point of the window will be extended
after a new data instance has been received.

One of the most-referenced concept drift detection algo-
rithms is the Drift Detection Method (DDM) [20]. It was
the first algorithm to define the warning level and drift
level for concept drift detection. In this algorithm, Stage
1 is implemented by a landmark time window, as shown
in Fig. 6. When a new data instance become available for
evaluation, DDM detects whether the overall online error
rate within the time window has increased significantly.
If the confidence level of the observed error rate change
reaches the warning level, DDM starts to build a new learner
while using the old learner for predictions. If the change
reached the drift level, the old learner will be replaced
by the new learner for further prediction tasks. To acquire
the online error rate, DDM needs a classifier to make the
predictions. This process converts training data to a learning
model, which is considered as the Stage 2 (Data Modeling).
The test statistics in Stage 3 constitute the online error rate.
The hypothesis test, Stage 4, is conducted by estimating
the distribution of the online error rate and calculating the
warning level and drift threshold.

Similar implementations have been adopted and applied
in the Learning with Local Drift Detection (LLDD) [25],
Early Drift Detection Method (EDDM) [26], Heoffding’s
inequality based Drift Detection Method (HDDM) [23],
Fuzzy Windowing Drift Detection Method (FW-DDM) [5],
Dynamic Extreme Learning Machine (DELM) [27]. LLDD
modifies Stages 3 and 4, dividing the overall drift detection
problem into a set of decision tree node-based drift detection
problems; EDDM improves Stage 3 of DDM using the
distance between two correct classifications to improve the
sensitivity of drift detection; HDDM modifies Stage 4 using
Hoeffding’s inequality to identify the critical region of a
drift; FW-DDM improves Stage 1 of DDM using a fuzzy
time window instead of a conventional time window to
address the gradual drift problem; DEML does not change
the DDM detection algorithm but uses a novel base learner,
which is a single hidden layer feedback neural network
called Extreme Learning Machine (ELM) [28] to improve
the adaptation process after a drift has been confirmed.
EWMA for Concept Drift Detection (ECDD) [29] takes ad-
vantage of the error rate to detect concept drift. ECDD
employs the EWMA chart to track changes in the error rate.
The implementation of Stages 1-3 of ECDD is the same
as for DDM, while Stage 4 is different. ECDD modifies
the conventional EWMA chart using a dynamic mean p̂0,t
instead of the conventional static mean p0, where p̂0,t is the
estimated online error rate within time [0, t], and p0 implies
the theoretical error rate when the learner was initially built.
Accordingly, the dynamic variance can be calculated by
σ2
Zt

= p̂0,t(1 − p̂0,t)
√

λ
2−λ (1− (1− λ)2t) where λ controls

how much weight is given to more recent data as opposed
to older data, and λ = 0.2 is recommended by the authors.

5

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10... ...

New Data
Historical Data

Fig. 7. Two time windows for concept drift detection. The New Data
window has to be defined by the user.

Also, when the test statistic of the conventional EWMA
chart is Zt > p̂0,t + 0.5LσZt , ECDD will report a concept
drift warning; when Zt > p̂0,t + LσZt , ECDD will report a
concept drift. The control limits L is given by the authors
through experimental evaluation.

In contrast to DDM and other similar algorithms, Sta-
tistical Test of Equal Proportions Detection (STEPD) [30]
detects error rate change by comparing the most recent
time window with the overall time window, and for each
timestamp, there are two time windows in the system, as
shown in Fig. 7. The size of the new window must be
defined by the user. According to [30], the test statistic
θSTEPD conforms to standard normal distribution, denoted
as θSTEPD ∼ N (0, 1). The significance level of the warning
level and the drift level were suggested as αw = 0.05 and
αd = 0.003 respectively. As a result, the warning threshold
and drift threshold can be easily calculated.

Another popular two-time window-based drift detection
algorithm is ADaptive WINdowing (ADWIN) [31]. Unlike
STEPD, ADWIN does not require users to define the size
of the compared windows in advance; it only needs to
specify the total size n of a “sufficiently large” window
W . It then examines all possible cuts of W and computes
optimal sub-window sizes nhist and nnew according to the
rate of change between the two sub-windowswhist andwnew.
The test statistic is the difference of the two sample means
θADWIN = |µ̂hist − µ̂new|. An optimal cut is found when the
difference exceeds a threshold with a predefined confidence
interval δ. The author proved that both the false positive rate
and false negative rate are bounded by δ. It is worth noting
that many concept drift adaptation methods/algorithms in
the literature are derived from or combined with ADWIN,
such as [32]–[35]. Since their drift detection methods are
implemented with almost the same strategy, we will not
discuss them in detail.

3.2.2 Data Distribution-based Drift Detection

The second largest category of drift detection algorithms is
data distribution-based drift detection. Algorithms of this
category use a distance function/metric to quantify the
dissimilarity between the distribution of historical data and
the new data. If the dissimilarity is proven to be statistically
significantly different, the system will trigger a learning
model upgradation process. These algorithms address con-
cept drift from the root sources, which is the distribution
drift. Not only can they accurately identify the time of drift,
they can also provide location information about the drift.
However, these algorithms are usually reported as incurring
higher computational cost than the algorithms mentioned
in Section 3.2.1 [2]. In addition, these algorithms usually
require users to predefine the historical time window and
new data window. The commonly used strategy is two
sliding windows with the historical time window fixed

Two windows at timestamp: t+6

Dt+11... ...
Historical Data New Data

...Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10 Dt+11...
Historical Data New Data

Two windows at timestamp: t+7

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10

Fig. 8. Two sliding time windows, of fixed size. The Historical Data
window will be fixed while the New Data window will keep moving.

while sliding the new data window [3], [22], [36], as shown
in Fig. 8.

According to the literature, the first formal treatment
of change detection in data streams was proposed by [37].
In their study, the authors point out that the most natural
notion of distance between distributions is total variation,
as defined by: TV (P1, P2) = 2supE∈ε|P1(E) − P2(E)| or
equivalently, when the distribution has the density func-
tions f1 and f2, distL1 =

∫
|f1(x)− f2(x)|dx. This provides

practical guidance on the design of a distance function
for distribution discrepancy analysis. Accordingly, [37] pro-
posed a family of distances, called Relativized Discrepancy
(RD). The authors also present the significance level of the
distance according to the number of data instances. The
bounds on the probabilities of missed detections and false
alarms are theoretically proven, using Chernoff bounds and
the Vapnik-Chervonenkis dimension. The authors of [37] do
not propose novel high-dimensional friendly data models
for Stage 2 (data modeling); instead, they stress that a
suitable model choice is an open question.

Another typical density-based drift detection algorithm
is the Information-Theoretic Approach (ITA) [22]. The in-
tuitive idea underlying this algorithm is to use kdqTree to
partition the historical and new data (multi-dimensional)
into a set of bins, denoted as A,and then use Kullback-
Leibler divergence to quantify the difference of the density
θITA in each bin. The hypothesis test applied by ITA is
bootstrapping by merging Whist, Wnew as Wall and resam-
pling as W ′hist, W ′new to recompute the θ∗ITA. Once the
estimated probability P (θ∗ITA ≥ θITA) < 1 − α, concept drift
is confirmed, where α is the significant level controlling the
sensitivity of drift detection.

Similar distribution-based drift detection meth-
ods/algorithms are: Statistical Change Detection for multi-
dimensional data (SCD) [38], Competence Model-based
drift detection (CM) [2], a prototype-based classification
model for evolving data streams called SyncStream [36],
PCA-based change detection framework (PCA-CD) [39],
Equal Density Estimation (EDE) [40], Least Squares Density
Difference-based Change Detection Test (LSDD-CDT)
[21], Incremental version of LSDD-CDT (LSDD-INC) [41]
and Local Drift Degree-based Density Synchronized Drift
Adaptation (LDD-DSDA) [4].

3.2.3 Multiple Hypothesis Test Drift Detection
Multiple hypothesis test drift detection algorithms apply
similar techniques to those mentioned in the previous two
categories. The novelty of these algorithms is that they use
multiple hypothesis tests to detect concept drift in different

6

Test Statistic θ1 Hypothesis Test H1

Test Statistic θ2 Hypothesis Test H2

Test Statistic θz Hypothesis Test Hz

... ...

Stage 3 Stage 4

Detection ResultsWhist and Wnew

detect drift based on z hypothesis test

Fig. 9. Parallel multiple hypothesis test drift detection.

ways. These algorithms can be divided into two groups:
1) parallel multiple hypothesis tests; and 2) hierarchical
multiple hypothesis tests.

The idea of parallel multiple hypothesis drift detection
algorithm is demonstrated in Fig. 9. According to the liter-
ature, Just-In-Time adaptive classifiers (JIT) [19] is the first
algorithm that set multiple drift detection hypothesis in this
way. The core idea of JIT is to extend the CUSUM chart,
known as the Computational Intelligence-based CUSUM
test (CI-CUSUM), to detect the mean change in the features
interested by learning systems. The authors of [19], gave the
following four configurations for the drift detection target.
Config1: the features extracted by Principal Component
Analysis (PCA), which removes eigenvalues whose sum
is below a threshold, e.g. 0.001. Config2: PCA extracted
features plus one generic component of the original features
xi; Config3: detects the drift in each xi individually. Config4:
detects drift in all possible combinations of the feature space
xi. The authors stated that Config2 is the preferred setting
for most situations, according to their experimentation, and
also mentioned that Config1 may have a high missing rate,
Config3 suffers from a high false alarm rate, and Config4
has exponential computational complexity. The same drift
detection strategy has also been applied in [42]–[45] for
concept drift adaptation.

Similar implementations have been applied in Linear
Four Rate drift detection (LFR) [46], which maintains and
tracks the changes in True Positive rate (TP), True Negative
rate (TN), False Positive rate (FP) and False Negative rate
(FN) in an online manner. The drift detection process also
includes warning and drift levels.

Another parallel multiple hypothesis drift detection al-
gorithm is three-layer drift detection, based on Information
Value and Jaccard similarity (IV-Jac) [47]. IV-Jac aims to
individually address the label drift Pt(y) Layer I, feature
space drift Pt(X) Layer II, and decision boundary drift
Pt(y|X) Layer III. It extracts the Weight of Evidence (WoE)
and Information Value (IV) from the available data and
then detects whether a significant change exists between
the WoE and IV extracted from Whist and Wnew by mea-
suring the contribution to the label for a feature value.
The hypothesis test thresholds are predefined parameters
θPt(y) = θPt(X) = θPt(X|y) = 0.5 by default, which are
chosen empirically.

Ensemble of Detectors (e-Detector) [48] proposed to de-
tect concept drift via ensemble of heterogeneous drift de-
tector. The authors consider two drift detectors are homo-
geneous as if they are equivalent in finding concept drifts,
otherwise they are heterogeneous. e-Detector groups homo-
geneous drift detectors via a diversity measurement, named

Detection Layer:
Standard Drift Detection Algorithms that have low drift

delay rate and low computational cost

Validation Layer:
Depend on the detection layer

Stage 3 Stage 4

Detection ResultsWhist and Wnew Test Statistic θdetect Hypothesis Test Hdetect

Test Statistic θvalid Hypothesis Test Hvalid

Fig. 10. Hierarchical multiple hypothesis test drift detection.

diversity vector. For each group, it select the one with the
smallest coefficient of failure as the base detector to form
the ensemble. e-Detector reports concept drift following the
early-find-early-report rule, which means no matter which
base detector detect a drift, the e-Detector reports a drift.
Similar strategy has been applied in drift detection ensemble
(DDE) [49].

Hierarchical drift detection is an emerging drift detec-
tion category that has a multiple verification schema. The
algorithms in this category usually detect drift using an
existing method, called the detection layer, and then apply
an extra hypothesis test, called the validation layer, to obtain
a second validation of the detected drift in a hierarchical
way. The overall workflow is shown in Fig. 10.

According to the claim made by [50], Hierarchical
Change-Detection Tests (HCDTs) is the first attempt to
address concept drift using a hierarchical architecture. The
detection layer can be any existing drift detection method
that has a low drift delay rate and low computational
burden. The validation layer will be activated and deacti-
vated based on the results returned by the detection layer.
The authors recommend two strategies for designing the
validation layer: 1) estimating the distribution of the test
statistics by maximizing the likelihood; 2) adapting an ex-
isting hypothesis test, such as the Kolmogorov-Smirnov test
or the Cramer-Von Mises test.

Hierarchical Linear Four Rate (HLFR) [51] is another
recently proposed hierarchical drift detection algorithm. It
applies the drift detection algorithm LFR as the detection
layer. Once a drift is confirmed by the detection layer,
the validation layer will be triggered. The validation layer
of HLFR is simply a zero-one loss, denoted as E, over
the ordered train-test split. If the estimated zero-one loss
exceeds a predefined threshold, η = 0.01, the validation
layer will confirm the drift and report to the learning system
to trigger a model upgradation process.

Two-Stage Multivariate Shift-Detection based on EWMA
(TSMSD-EWMA) [52] has a very similar implementation,
however, the authors do not claim that their method is a
hierarchy-based algorithm.

Hierarchical Hypothesis Testing with Classification Un-
certainty (HHT-CU) and Hierarchical Hypothesis Testing
with Attribute-wise ”Goodness-of-fit” (HHT-AG) are two
drift detection algorithms based on request and reverify
strategy [53]. For HHT-CU, the detection layer is a hypothe-
ses test based on Heoffding’s inequality that monitoring
the change of the classification uncertainty measurement.
The validation layer is a permutation test that evaluates the
change of the zero-one loss of the learner. For HHT-AG, the

7

detection layer is conducted based on Kolmogorov-Smirnov
(KS) test for each feature distribution. Then HHT-AG vali-
date the potential drift points by requiring true labels of data
that come from wnew, and performing d independent two-
dimensional (2D) KS test with each feature-label bivariate
distribution. Compare to other drift detection algorithms,
HHT-AG can handle concept drift with less true labels,
which makes it more powerful when dealing with high
verification latency.

3.3 Summary of concept drift detection meth-
ods/algorithms
TABLE 1 lists the most popular concept drift detection meth-
ods/algorithms against the general framework summarized
in Section 3.1 (Fig. 5). A comparative study on eight popular
drift detection methods can be found in [54].

4 CONCEPT DRIFT UNDERSTANDING

Drift understanding refers to retrieving concept drift infor-
mation about “When” (the time at which the concept drift
occurs and how long the drift lasts), “How” (the severity
/degree of concept drift), and “Where” (the drift regions
of concept drift). This status information is the output of
the drift detection algorithms, and is used as input for drift
adaptation.

4.1 The time of concept drift occurs (When)
The most basic function of drift detection is to identify
the timestamp when a drift occurs. Recalling the definition
of concept drift ∃t : Pt(X, y) 6= Pt+1(X, y), the variable t
represents the time at which a concept drift occurs. In drift
detection methods/algorithms, an alarm signal is used to
indicate whether the concept drift has or has not occurred or
not at the current timestamp. It is also a signal for a learning
system to adapt to a new concept. Accurately identifying
the time a drift occurs is critical to the adaptation process
of a learning system; a delay or a false alarm will lead to
failure of the learning system to track new concepts.

A drift alarm usually has a statistical guarantee with a
predefined false alarm rate. Error rate-based drift detection
algorithms monitor the performance of the learning system,
based on statistical process control. For example, DDM
[20] sends a drift signal when the learning accuracy of
the learner drops below a predefined threshold, which is
chosen by the three-sigma rule [55]. ECCD [29] reports a
drift when the online error rate exceeds the control limit
of EWMA. Most data distribution-based drift detection
algorithms report a drift alarm when two data samples
have a statistically significant difference. PCA-based drift
detection [36] outputs a drift signal when the p-value of
the generalized Wilcoxon test statistic W l

BF is significantly
large. The method in [3] confirms that a drift has occurred by
verifying whether the empirical competence-based distance
is significantly large through permuataion test.

Taking into account the various drift types, concept drift
understanding needs to explore the start time point, the
change period, and the end time point of concept drift.
And these time information could be useful input for the
adaptation process of the learning system. However the

...
Dt Dt+1

Dt+2
Dt+3

Dt+4
Dt+5 Dt+6 Dt+7 Dt+8 Dt+9

Dt+10 Dt+12Dt+11

...

D
at
a

di
st
ri
bu
tio
n

TimeStart time of
concept drift

Time the drift alarm
is triggered

End time of
concept drift

Period of
concept drift change

Severity of concept drift

Fig. 11. An example of the occurrence time and the severity of concept
drift. One incremental drift starts to change at t + 1 and ends at t + 5.
The other sudden drift occurs between t+ 9 and t+ 10. The severity of
these two concept drifts (Dt+1-Dt+5 and Dt+9-Dt+10) is marked with
brackets.

drift timestamp alert in existing drift detection algorithms
is delayed compared to the actual drifting timestamp, since
most drift detectors require a minimum number of new data
to evaluate the status of the drift, as shown in Fig. 11. The
emergence time of the new concept is therefore still vague.
Some concept drift detection algorithms such as DDM [20],
EDDM [26], STEPD [30], and HDDM [23], trigger a warning
level to indicate a drift may have occurred. The threshold
used to trigger warning level is a relaxed condition of the
threshold used for the drift level; for example, the warning
level is set p-value to 95% or 2σ, and the drift level is set
p-value to 99% or 3σ. The data accumulated between the
warning level and the drift level are used as the training set
for updating a learning model.

4.2 The severity of concept drift (How)
The severity of concept drift refers to using a quantified
value to measure the similarity between the new concept
and the previous concept, as shown in Fig. 11. Formally,
the severity of concept drift can be represented as ∆ =
δ(Pt(X, y), Pt+1(X, y)), where δ is a function to measure the
discrepancy of two data distributions, and t is the timestamp
when the concept drift occurred. ∆ usually is a non-negative
value indicating the severity of concept drift. The greater the
value of ∆, the larger the severity of the concept drift is.

In general, error rate-based drift detection cannot di-
rectly measure the severity of concept drift, because it
mainly focuses on monitoring the performance of the learn-
ing system, not the changes in the concept itself. However,
the degree of decrease in learning accuracy can be used as
an indirect measurement to indicate the severity of concept
drift. If learning accuracy has dropped significantly when
drift is observed, this indicates that the new concept is
different from the previous one. For example, the severity
of concept drift could be reflected by the difference be-
tween pi and pmin in [20], [27], denoted as ∆ ∼ pi − pmin;
the difference between overall accuracy p̂hist and recent
accuracy p̂new in [30], expressed as ∆ ∼ p̂new − p̂hist; and
the difference between test statistics in the former window
E[X̂cut] and test statistics in the later window E[Ŷi−cut] [23],
denoted as ∆ ∼ E[Ŷi−cut]− E[X̂cut]. However, the meaning
of these differences is not discussed in existing publications.
The ability of error rate-based drift detection to output the
severity of concept drift is still vague.

Data distribution-based drift detection methods can di-
rectly quantify the severity of concept drift since the mea-
surement used to compare two data samples already reflects
the difference. For example, [37] employed a relaxation of the
total variation distance dA(S1, S2) to measure the difference

8

TABLE 1
Summary of drift detection algorithms

Category Algorithms Stage 1 Stage 2 Stage 3 Stage 4
Error
rate-based

DDM [20] Landmark Learner Online error rate Distribution estimation
EDDM [26] Landmark Learner Online error rate Distribution estimation
FW-DDM [5] Landmark Learner Online error rate Distribution estimation
DEML [27] Landmark Learner Online error rate Distribution estimation
STEPD [30] Predefined whist, wnew Learner Error rate difference Distribution estimation
ADWIN [31] Auto cut whist, wnew Learner Error rate difference Hoeffding’s Bound
ECDD [29] Landmark Learner Online error rate EWMA Chart
HDDM [23] Landmark Learner Online error rate Hoeffding’s Bound
LLDD [25] Landmark, or sliding whist,

wnew

Decision trees Tree node error rate Hoeffding’s Bound

Data
distribution-
based

kdqTree [22] Fixed whist, Sliding wnew kdqTree KL divergence Bootstrapping
CM [2], [3] Fixed whist, Sliding wnew Competence model Competence distance Permutation test
RD [37] Fixed whist, Sliding wnew KS structure Relativized Discrepancy VC-Dimension
SCD [38] Fixed whist, Sliding wnew kernel density estima-

tor
log-likelihood Distribution estimation

EDE [40] Fixed whist, Sliding wnew Nearest neighbor Density scale Permutation test
SyncStream [36] Fixed whist, Sliding wnew PCA P-Tree Wilcoxon test
PCA-CD [39] Fixed whist, Sliding wnew PCA Change-Score Page-Hinkley test
LSDD-CDT [21] Fixed whist, Sliding wnew Learner Relative difference Distribution estimation
LSDD-INC [41] Fixed whist, Sliding wnew Learner Relative difference Distribution estimation
LDD-DSDA [4] Fixed whist, Sliding wnew k-nearest neighbor Local drift degree Distribution estimation

Multiple
Hypothesis
Tests

JIT [19] Landmark Selected features 4 configurations Distribution estimation
LFR [46] Landmark Learner TP, TN, FP, FN Distribution estimation
Three-layer [47] Sliding both whist, wnew Learner P (y), P (X), P (X|y) Distribution estimation
e-Detector [48] depends on base detector depends depends depends
DDE [49] depends on base detector depends depends depends
TSMSD-EWMA [52] Landmark Learner Online error rate EWMA Chart
HCDTs [50] Landmark Depending on layers Depending on layers Depending on layer
HLFR [51] Landmark Learner TP, TN, FP, FN Distribution estimation
HHT-CU [53] Landmark Learner Classification uncertainty Layer-I Hoeffding’s Bound,

Layer-II Permutation Test
HHT-AG [53] Fixed whist, Sliding wnew N/A KS statistic on each at-

tribute
Layer-I KS test, Layer -II 2D
KS test

between two data distributions. [3] proposed a competence-
based empirical distance dCB(S1, S2) to show the difference
between two data samples. Other drift detection meth-
ods have used information-theoretic distance; for example,
Kullback-Leibler divergence D(W1||W2), also called relative
entropy, was used in the study reported in [22]. The range of
these distances is [0, 1]. The greater the distance, the larger
the severity of the concept drift is. The distance “1” means
that a new concept is different from the pervious one, while
the distance “0” means that two data concepts are identical.
The test statistic δ used in [38] gives an extremely small
negative value if the new concept is quite different from
the previous concept. The degree of concept drift in [36] is
measured by the resulting p-value of the test statistic W l

BF

and the defined Angle(Dt, Dt+1) of two datasets Dt and
Dt+1.

The severity of concept drift can be used as a guideline
for choosing drift adaptation strategies. For example, if the
severity of drift in a classification task is low, the decision
boundary may not move much in the new concept. Thus,
adjusting the current learner by incremental learning will
be adequate. In contrast, if the severity of the concept drift
is high, the decision boundary could change significantly,
therefore discarding the old learner and retraining a new
one could be better than incrementally updating the old
learner. We would like to mention that, even though some
researches have promoted the ability to describe and quan-
tify the severity of the detected drift, this information is not
yet widely utilized in drift adaptation.

0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10

(a) Data at time t

0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10

(b) Data at time t+1

0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8 9 10

(c) Data in drift re-
gions

Fig. 12. An example of the drift regions of concept drift.

4.3 The drift regions of concept drift (Where)

The drift regions of concept drift are the regions of conflict
between a new concept and the previous concept. Drift re-
gions are located by finding regions in data feature space X
where Pt(X, y) and Pt+1(X, y) have significant difference.
To illustrate this, we give an example of a classification task
in Fig. 12. The data used in this task are uniformly sampled
in the range of [0, 10]2. The left sub-figure is the data sample
accumulated at time t, where the decision boundary is
x1 + x2 = 8. The middle sub-figure is the data accumulated
at time t + 1, where the decision boundary is x1 + x2 = 9.
Intuitively, data located in regions 8 ≤ x1 + x2 < 9 have
different classes in time t and time t + 1, since the decision
boundary has changed. The right sub-figure shows the data
located in the drift regions.

The techniques to identify drift regions are highly de-
pendent on the data model used in the drift detection

9

methods/algorithms. Paper [25] detected drift data in lo-
cal regions of the instance space by using online error-
rate inside the inner-nodes of a decision tree. The whole
data feature space is partitioned by decision tree. Each
leaf of this decision tree corresponds to a hyper-rectangle
in the data feature space. All leaf nodes contain a drift
detector. When the leaf nodes are alerted to a drift, the
corresponding hyper-rectangles indicate the regions of drift
in the data feature space. Similar to [25], [22] utilized the
nodes of the kdq-tree with Kulldorff’s spatial scan statistic
to identify the regions in which data had changed the
most. Once a drift has been reported, Kulldorff’s statistic
measures how the two datasets differ only with respect
to the region associated with the leaf node of the kdq-tree.
The leaf nodes with the greater statistical value of show
the drift regions. [2] highlighted the most severe regions
of concept drift through top-p-competence areas. Utilizing
the RelatedSets of the competence model, the data feature
space is partitioned by a set of overlapping hyperspheres.
The RelatedSet-based empirical distance defines the distance
between two datasets on a particular hypersphere. The drift
regions are identified by the corresponding hyperspheres
with large empirical distance at top p% level. [4] identified
drift regions by monitoring the discrepancy in the regional
density of data, which is called the local drift degree. A local
region with a corresponding increase or decrease in density
will be highlighted as a critical drift region.

Locating concept drift regions benefits drift adaptation.
Paper [56] pointed out that even if the concept of the entire
dataset drifts, there are regions of the feature space that
will remain stable significantly longer than other regions.
In an ensemble scenario, the old learning models of stable
regions could still be useful for predicting data instances
located within stable regions, or data instances located in
drift regions could be used to build a more updated current
model. The authors of [3] also pointed out that identifying
drift regions can help in recognizing obsolete data that
conflict with current concepts and distinguish noise data
from novel data. In their later research [2], they utilized top-
p-competence areas to edit cases in a case-based reasoning
system for fast new concept switching. One step in their
drift adaptation is to remove conflict instances. To preserve
as many instances of a new concept as possible, they only
remove obsolete conflict instances which are outside the
drift regions. LDD-DSDA [4] utilized drift regions as an
instance selection strategy to construct a training set that
continually tracked a new concept.

4.4 Summary of drift understanding

We summarize concept drift detection algorithms according
to their ability to identify when, how, and where concept
drift occurs, as shown in TABLE 2. All drift detection al-
gorithms can identify the occurrence time of concept drift
(when), and most data distribution-based drift detection
algorithms can also measure the severity of concept drift
(how) through the test statistics, but only a few algorithms
have the ability to locate drift regions (where).

TABLE 2
Summary of drift understanding for drift detection algorithms

Category Algorithms When How Where
Error rate-based DDM [20]

√

EDDM [26]
√

FW-DDM [5]
√

DEML [27]
√

STEPD [30]
√

ADWIN [31]
√

ECDD [29]
√

HDDM [23]
√

LLDD [25]
√ √

Data distribution-
based

kdqTree [22]
√ √ √

CM [2], [3]
√ √ √

RD [37]
√ √

SCD [38]
√ √

EDE [40]
√

SyncStream [36]
√ √

PCA-CD [39]
√ √

LSDD-CDT [21]
√

LSDD-INC [41]
√

LDD-DSDA [4]
√ √ √

Multiple
hypothesis tests

JIT [19]
√

LFR [46]
√

Three-layer drift detection [47]
√

e-Detector [48]
√

DDE [49]
√

EWMA [52]
√

HCDTs [50]
√

HLFR [51]
√

HHT-CU [53]
√

HHT-AG [53]
√

...
Dt Dt+1 Dt+2 Dt+3

Dt+4

Dt+5 Dt+6 Dt+7 Dt+8 Dt+9

...

D
at
a

di
st
ri
bu
tio
n

TimeOld concept New concept

Old model

Drift detected and retrain

New model

Fig. 13. A new model is trained with latest data to replace the old model
when a concept drift is detected.

5 DRIFT ADAPTATION

This section focuses on strategies for updating existing
learning models according to the drift, which is known as
drift adaptation or reaction. There are three main groups
of drift adaptation methods, namely simple retraining, en-
semble retraining and model adjusting, that aim to handle
different types of drift.

5.1 Training new models for global drift
Perhaps the most straightforward way of reacting to concept
drift is to retrain a new model with the latest data to replace
the obsolete model, as shown in Fig. 13. An explicit concept
drift detector is required to decide when to retrain the model
(see Section 3 on drift detection). A window strategy is
often adopted in this method to preserve the most recent
data for retraining and/or old data for distribution change
test. Paired Learners [57] follows this strategy and uses two
learners: the stable learner and the reactive learner. If the stable
learner frequently misclassifies instances that the reactive
learner correctly classifies, a new concept is detected and
the stable learner will be replaced with the reactive learner.
This method is simple to understand and easy to implement,
and can be applied at any point in the data stream.

10

When adopting a window-based strategy, a trade-off
must be made in order to decide an appropriate window
size. A small window can better reflect the latest data
distribution, but a large window provides more data for
training a new model. A popular window scheme algorithm
that aims to mitigate this problem is ADWIN [31]. Unlike
most earlier works, it does not require the user to guess
a fixed size of the windows being compared in advance;
instead, it examines all possible cuts of the window and
computes optimal sub-window sizes according to the rate
of change between the two sub-windows. After the optimal
window cut has been found, the window containing old
data is dropped and a new model can be trained with the
latest window data.

Instead of directly retraining the model, researchers
have also attempted to integrate the drift detection process
with the retraining process for specific machine learning
algorithms. DELM [27] extends the traditional ELM algo-
rithm with the ability to handle concept drift by adaptively
adjusting the number of hidden layer nodes. When the
classification error rate increases — which could indicate
the emergence of a concept drift — more nodes are added to
the network layers to improve its approximation capability.
Similarly, FP-ELM [58] is an ELM-extended method that
adapts to drift by introducing a forgetting parameter to the
ELM model. A parallel version of ELM-based method [59]
has also been developed for high-speed classification tasks
under concept drift. OS-ELM [60] is another online learning
ensemble of repressor models that integrates ELM using an
ordered aggregation (OA) technique, which overcomes the
problem of defining the optimal ensemble size.

Instance-based lazy learners for handling concept drift
have also been studied intensively. The Just-in-Time adaptive
classifier [19], [42] is such a method which follows the
”detect and update model” strategy. For drift detection,
it extends the traditional CUSUM test [61] to a pdf-free
form. This detection method is then integrated with a kNN
classifier [42]. When a concept drift is detected, old instances
(more than the last T samples) are removed from the case
base. In later work, the authors of [11], [45] extended this
algorithm to handle recurrent concepts by computing and
comparing current concept to previously stored concepts.
NEFCS [2] is another kNN-based adaptive model. A compe-
tence model-based drift detection algorithm [3] was used to
locate drift instances in the case base and distinguish them
from noise instances and a redundancy removal algorithm,
Stepwise Redundancy Removal (SRR), was developed to
remove redundant instances in a uniform way, guaranteeing
that the reduced case base would still preserve enough
information for future drift detection.

5.2 Model ensemble for recurring drift

In the case of recurring concept drift, preserving and reusing
old models can save significant effort to retrain a new
model for recurring concepts. This is the core idea of using
ensemble methods to handle concept drift. Ensemble meth-
ods have received much attention in stream data mining
research community in recent years. Ensemble methods
comprise a set of base classifiers that may have different
types or different parameters. The output of each base

...
Dt Dt+1 Dt+2 Dt+3

Dt+4

Dt+5 Dt+6 Dt+7 Dt+8 Dt+9

...

D
at
a

di
st
ri
bu
tio
n

TimeOld concept New concept

Ensemble
Add new model

to ensemble
...

Fig. 14. A new base classifier is added to the ensemble when a concept
drift occurs.

classifier is combined using certain voting rules to predict
the newly arrived data. Many adaptive ensemble methods
have been developed that aim to handle concept drift by
extending classical ensemble methods or by creating specific
adaptive voting rules. An example is shown in Fig. 14,
where new base classifier is added to the ensemble when
concept drift occurs.

Bagging, Boosting and Random Forests are classical
ensemble methods used to improve the performance of
single classifiers. They have all been extended for handling
streaming data with concept drift. An online version of the
bagging method was first proposed in [62] which uses each
instance only once to simulate the batch mode bagging.
In a later study [63], this method was combined with the
ADWIN drift detection algorithm [31] to handle concept
drift. When a concept drift is reported, the newly proposed
method, called Leveraging Bagging, trains a new classifier
on the latest data to replace the existing classifier with the
worst performance. Similarly, an adaptive boosting method
was developed in [64] which handles concept drift by moni-
toring prediction accuracy using a hypothesis test, assuming
that classification errors on non-drifting data should follow
Gaussian distribution. In a recent work [35], the Adaptive
Random Forest (ARF) algorithm was proposed, which ex-
tends the random forest tree algorithm with a concept drift
detection method, such as ADWIN [31], to decide when to
replace an obsolete tree with a new one. A similar work can
be found in [65], which uses Hoeffding bound to distinguish
concept drift from noise within decision trees.

Besides extending classical methods, many new ensem-
ble methods have been developed to handle concept drift
using novel voting techniques. Dynamic Weighted Majority
(DWM) [66] is such an ensemble method that is capable of
adapting to drifts with a simple set of weighted voting rules.
It manages base classifiers according to the performance
of both the individual classifiers and the global ensemble.
If the ensemble misclassifies an instance, DWM will train
a new base classifier and add it to ensemble. If a base
classifier misclassifies an instance, DWM reduces its weight
by a factor. When the weight of a base classifier drops
below a user defined threshold, DWM removes it from
the ensemble. The drawback of this method is that the
adding classifier process may be triggered too frequently,
introducing performance issues on some occasions, such as
when gradual drift occurs. A well-known ensemble method,
Learn++NSE [67], mitigates this issue by weighting base
classifiers according to their prediction error rate on the
latest batch of data. If the error rate of the youngest classifier
exceeds 50%, a new classifier will be trained based on
the latest data. This method has several other benefits: it

11

...
Dt Dt+1 Dt+2 Dt+3

Dt+4

Dt+5 Dt+6 Dt+7 Dt+8 Dt+9

...

D
at
a

di
st
ri
bu
tio
n

TimeOld concept New concept

Drift detected in subregion

Partially update model

Fig. 15. A decision tree node is replaced with a new one as its perfor-
mance deteriorates when a concept drift occurs in a subregion.

can easily adopt almost any base classifier algorithm; it
does not store history data, only the latest batch of data,
which it only uses once to train a new classifier; and it
can handle sudden drift, gradual drift, and recurrent drift
because underperforming classifiers can be reactivated or
deactivated as needed by adjusting their weights. Other
voting strategies than standard weighted voting have also
been applied to handle concept drift. Examples include
hierarchical ensemble structure [68], [69], short term and
long term memory [13], [70] and dynamic ensemble sizes
[71], [72].

A number of research efforts have been made that focus
on developing ensemble methods for handling concept drift
of certain types. Accuracy Update Ensemble (AUE2) [73]
was proposed with an emphasis on handling both sudden
drift and gradual drift equally well. It is a batch mode
weighted voting ensemble method based on incremental
base classifiers. By doing re-weighting, the ensemble is
able react quickly to sudden drift. All classifiers are also
incrementally trained with the latest data, which ensures
that the ensemble evolves with gradual drift. The Optimal
Weights Adjustment (OWA) method [74] achieves the same
goal by building ensembles using both weighted instances
and weighted classifiers for different concept drift types.
The authors of [75] considered a special case of concept drift
— class evolution — the phenomenon of class emergence
and disappearance. Recurring concepts are handled in [76],
[77], which monitor concept information to decide when to
reactivate previously stored obsolete models. [78] is another
method that handles recurring concepts by refining the
concept pool to avoid redundancy.

5.3 Adjusting existing models for regional drift
An alternative to retraining an entire model is to develop
a model that adaptively learns from the changing data.
Such models have the ability to partially update themselves
when the underlying data distribution changes, as shown
in Fig. 15. This approach is arguably more efficient than
retraining when the drift only occurs in local regions. Many
methods in this category are based on the decision tree
algorithm because trees have the ability to examine and
adapt to each sub-region separately.

In a foundational work [79], an online decision tree
algorithm, called Very Fast Decision Tree classifier (VFDT)
was proposed, which is especially tailored for high speed
data streams. It uses Hoeffding bound to limit the num-
ber of instances required for node splitting. This method
has become very popular because of its several distinct
advantages: 1) it only needs to process each instance once
and does not store instances in memory or disk; 2) the

tree itself only consumes a small amount of space and
does not grow with the number of instances it processes
unless there is new information in the data; 3) the cost of
tree maintenance is very low. An extended version, called
CVFDT [80], was later proposed to handle concept drift. In
CVFDT, a sliding window is maintained to hold the latest
data. An alternative sub-tree is trained based on the window
and its performance is monitored. If the alternative sub-
tree outperforms its original counterpart, it will be used for
future prediction and the original obsolete sub-tree will be
pruned. VFDTc [81] is another attempt to make improve-
ments to VFDT with several enhancements: the ability to
handle numerical attributes; the application of naive Bayes
classifiers in tree leaves and the ability to detect and adapt to
concept drift. Two node-level drift detection methods were
proposed based on monitoring differences between a node
and its sub-nodes. The first method uses classification error
rate and the second directly checks distribution difference.
When a drift is detected on a node, the node becomes a leaf
and its descending sub-tree is removed. Later work [82],
[83] further extended VFDTc using an adaptive leaf strategy
that chooses the best classifier from three options: majority
voting, Naive Bayes and Weighted Naive Bayes.

Despite the success of VFDT, recent studies [84], [85]
have shown that its foundation, the Hoeffding bound, may
not be appropriate for the node splitting calculation because
the variables it computes, the information gain, are not
independent. A new online decision tree model [86] was
developed based on an alternative impurity measure. The
paper shows that this measure also reflects concept drift
and can be used as a replacement measure in CVFDT. In the
same spirit, another decision tree algorithm (IADEM-3) [87]
aims to rectify the use of Hoeffding bound by computing
the sum of independent random variables, called relative
frequencies. The error rate of sub-trees are monitored to
detect drift and are used for tree pruning.

6 EVALUATION, DATASETS AND BENCHMARKS

Section 6.1 discusses the evaluation systems used for learn-
ing algorithms handling concept drift. Section 6.2 introduces
synthetic datasets, which used to simulate specific and
controllable types of concept drift. Section 6.3 describes real-
world datasets, which used to test the overall performance
in a real-life scenario.

6.1 Evaluation Systems

The evaluation systems is an important part for learning
algorithms. Some evaluation methodologies used in learn-
ing under concept drift have been mentioned in [8]. We
enrich this previous research by reviewing the evaluation
systems from three aspects: 1) validation methodology, 2)
evaluation metrics, and 3) statistical significance, and each
evaluation is followed by its computation equation and
usage introduction.

Validation methodology refers to the procedure for a
learning algorithm to determine which data instances are
used as the training set and which are used as the testing
set. There are three procedures peculiar to the evaluation
for learning algorithms capable of handling concept drift:

12

1) holdout, 2) prequential, and 3) controlled permutation. In the
scenario of a dataset involving concept drift, holdout should
follow the rule: when testing a learning algorithm at time
t, the holdout set represents exactly the same concept at
that time t. Unfortunately, it is only applied on synthetic
datasets with predefined concept drift times. Prequential is
a popular evaluation scheme used in streaming data. Each
data instance is first used to test the learning algorithm, and
then to train the learning algorithm. This scheme has the
advantage that there is no need to know the drift time of
concepts, and it makes maximum use of the available data.
The prequential error is computed based on an accumulated
sum of a loss function between the prediction and observed
label: S =

∑n
t=1 f(ŷt, yt). There are three prequential error

rate estimates: a landmark window (interleaved-test-then-
train), a sliding window, and a forgetting mechanism [88].
Controlled permutation [89] runs multiple test datasets in
which the data order has been permutated in a controlled
way to preserve the local distribution, which means that
data instances that were originally close to one another in
time need to remain close after a permutation. Controlled
permutation reduces the risk that their prequential evalua-
tion may produce biased results for the fixed order of data
in a sequence.

Evaluation metrics for datasets involving concept drift
could be selected from traditional accuracy measures, such
as precision/recall in retrieval tasks, mean absolute scaled
error in regression, or root mean square error in recom-
mender systems. In addition to that, the following measures
should be examined: 1) RAM-hours [90] for the computation
cost of the mining process; 2) Kappa statistic κ = p−pran

1−pran

[91] for classification taking into account class imbalance,
where p is the accuracy of the classifier under consideration
(reference classifier) and pran is the accuracy of the random
classifier; 3) Kappa-Temporal statistic κper =

p−pper

1−pper
[92] for the

classification of streaming data with temporal dependence,
where pper is the accuracy of the persistent classifier (a clas-
sifier that predicts the same label as previously observed);
4) Combined Kappa statistic κ+ =

√
max(0, κ) max(0, κper)

[92], which combines the κ and κper by taking the geometric
average; 5) Prequential AUC [93]; and 6) the Averaged Nor-
malized Area Under the Curve (NAUC) values for Preci-
sion-Range curve and Recall-Range curve [53], for the clas-
sification of streaming data involving concept drift. Apart
from evaluating the performance of learning algorithms, the
accuracy of the concept drift detection method/algorithm
can be accessed according to the following criteria: 1) true
detection rate, 2) false detection rate, 3) miss detection rate, and
4) delay of detection [22].

Statistical significance is used to compare learning algo-
rithms on achieved error rates. The three most frequently
used statistical tests for comparing two learning algorithms
[94], [95] are: 1) McNemar test [96]: denote the number
of data instances misclassified by the first classifier and
correctly classified by the second classifier by a, and denote
b in the opposite way. The McNemar statistic is computed
as M = sign(a − b) × (a − b)2/(a + b) to test whether
two classifiers perform equally well. The test follows the
χ2 distribution; 2) Sign test: for N data instances, denote
the number of data instances misclassified by the first

classifier and correctly classified by the second classifier by
B and the number of ties by T . Conduct one-sided sign
test by computing p =

∑N−T
k=B

(N−T
k

)
0.5k × 0.5N−T−k. If

p less than a significant level, then the second classifier
is better than the first classifier. and 3) Wilcoxon’s sign-
rank test: For testing two classifiers on N datasets, let xi,1
and xi,2 (i = 1, . . . , N) denote the measurements. The
number of ties is T and Nr = N − T . The test statistic
W =

∑Nr

i=1(sign(xi,1 − xi,2) × Ri) where Ri is the rank
ordered by |xi,1 − xi,2| increasingly. Two classifiers perform
equally is rejected if |W | > Wcritical,Nr

(two-sided), where
Wcritical,Nr

can be acquired from the statistical table. All
three tests are non-parametric. The Nemenyi test [97] is
used to compare more than two learning algorithms. It is
an appropriate test for comparing all learning algorithms
with multiple datasets, based on the average rank of algo-
rithms over all datasets. The Nemenyi test consists of the
following: two classifiers are performing differently if the
corresponding average ranks differ by at least the critical
difference CD = qα

√
k(k + 1)/6N , where k is the number

of learners, N is the number of datasets, and critical values
qα are based on the Studentized range statistic divided by√

2. Other tests can be used to compare learning algorithms
with a control algorithm [97].

6.2 Synthetic datasets
We list several widely used synthetic datasets for evaluat-
ing the performance of learning algorithms dealing with
concept drift. Since data instances are generated by prede-
fined rules and specific parameters, a synthetic dataset is
a good option for evaluating the performance of learning
algorithms in different concept drift scenarios. The dataset
provider, the number of instances (#Insts.), the number
of attributes (#Attrs.), the number of classes (#Cls.), types
of drift (Types), sources of drift (Sources), and used by
references, are listed in TABLE 3.

6.3 Real-world datasets
In this section, we collect several publicly available real-
world datasets, including real-world datasets with syn-
thetic drifts. The dataset provider, the number of instances
(#Insts.), the number of attributes (#Attrs.), the number
of classes (#Cls.), and used by references, are shown in
TABLE 4.

Most of these datasets contain temporal concept drift
spanning over different period range - e.g. daily (Sensor
[108]), seasonally (Electricity [109]) or yearly (Airlines
[104], NOAA weather [67]). Others include geographical

(Covertype [106]) or categorical (Poker-Hand [106]) concept
drift. Certain datesets, mainly text based, are targeting at
specific drift types, such as sudden drift (Email data [110]),
gradural drift (Spam assassin corpus [111]), recurrent drift
(Usenet [112]) or novel class (KDDCup’99 [106], ECUE drift
dataset 2 [113])

These datasets provide realistic benchmark for evaluat-
ing differnent concept drift handling methods. There are,
however, two limitations of real world data sets: 1) the
groud truth of precise start and end time of drifts is un-
known; 2) some real datasets may include mixed drift types.
These limitations make it difficult to evaluate methods for

13

TABLE 3
List of synthetic datasets for performance evaluation of learning under concept drift.

Dataset #Insts. #Attrs. #Cls. Types Sources Used by references
1 STAGGER [1] Custom 3 2 Sudden II [20], [23], [27], [30], [41], [57], [65], [72], [87], [98],

[99]
2 SEA [100] Custom 3 2 Sudden II [2], [5], [13], [20], [27], [32], [35], [51], [57], [58],

[63], [65], [67], [73], [76], [99]–[102]
3 Rotating hyperplane [80],

[103]
Custom 10 2 Gradual; Incremental II [2], [13], [21], [27], [30], [32], [35], [36], [41], [51],

[58], [59], [63], [71]–[73], [78], [80], [83], [87], [102]
4 Random RBF [104] Custom Custom Custom Sudden; Gradual; Incre-

mental
III [13], [20], [21], [26], [27], [29], [30], [35], [41], [50],

[63], [67], [72]–[74], [87], [102], [105]
5 Random Tree [79], [104] Custom Custom Custom Sudden; Reoccurring II [27], [35], [73], [82], [84]–[87]
6 LED [106] Custom 24 10 Sudden II [23], [27], [35], [63], [73], [81], [82], [87], [99], [102]
7 Waveform [106] Custom 40 3 Sudden II [18], [27], [78], [81]–[83], [87], [102]
8 Sine [20] Custom 2 2 Sudden II [20], [21], [26], [29], [72], [107]
9 Circle [20] Custom 2 2 Gradual III [20], [21], [26], [30], [41], [72], [101], [107]
10 Rotating chessboard [67] Custom 2 2 Gradual II [13], [45], [51], [67], [107]

understanding the drift, and could introduce bias when
comparing different machine learning models.

7 THE CONCEPT DRIFT PROBLEM IN OTHER RE-
SEARCH AREAS

We have observed that handling the concept drift problem is
not a standalone research subject but has a large number of
indirect usage scenarios. In this section, we adopt this new
perspective to review recent developments in other research
areas that benefit from handling the concept drift problem.

7.1 Class imbalance
Class imbalance is a common problem in stream data min-
ing in addition to concept drift. Research effort has been
made to develop effective learning algorithms to tackle
both problems at same time. [117] presented two ensemble
methods for learning under concept drift with imbalanced
class. The first method, Learn++.CDS, is extended from
Learn++.NSE and combined with the Synthetic Minority
class Oversampling Technique (SMOTE). The second al-
gorithm, Learn++.NIE, improves on the previous method
by employing a different penalty constraint to prevent
prediction accuracy bias and replacing SMOTE with bag-
ging to avoid oversampling. ESOS-ELM [118] is another
ensemble method which uses Online Sequential Extreme
Learning Machine (OS-ELM) as a basic classifier to improve
performance with class imbalanced data. A concept drift
detector is integrated to retrain the classifier when drift
occurs. The author then developed another algorithm [119],
which is able to tackle multi-class imbalanced data with
concept drift. [120] proposed two learning algorithms OOB
and UOB, which build an ensemble model to overcome
the class imbalance in real time through resampling and
time-decayed metrics. [121] developed an ensemble method
which handles concept drift and class imbalance with addi-
tional true label data limitation.

7.2 Big data mining
Data mining in big data environments faces similar chal-
lenges to stream data mining [122]: data is generated at
a fast rate (Velocity) and distribution uncertainty always
exists in the data, which means that handling concept drift is
also crucial in big data applications. Additionally, scalability

is an important consideration because in big data environ-
ments, a data stream may come in very large and potentially
unpredictable quantities (Volume) and cannot be processed
in a single computer server. An attempt to handle concept
drift in a distributed computing environment was made
by [123] in which an Online Map-Reduce Drift Detection
Method (OMR-DDM) was proposed, using the combined
online error rate of the parallel classification algorithms to
identify the changes in a big data stream. A recent study
[124] proposed another scalable stream data mining algo-
rithm, called Micro-Cluster Nearest Neighbor (MC-NN),
based on nearest neighbor classifier. This method extends
the original Micro-Cluster algorithm [125] to adapt to con-
cept drift by monitoring classification error. This micro-
cluster algorithm was further extended to a parallel version
using the map-reduce technique in [126] and applied to
solve the label-drift classification problem where class labels
are not known in advance [127].

7.3 Active learning and semi-supervised learning

Active learning is based on the assumption that there is a
large amount of unlabeled data but only a fraction of them
can be labeled by human effort. This is a common situation
in stream data applications, which are often also subject to
the concept drift problem. [115] presented a general frame-
work that combines active learning and concept drift adap-
tation. It first compares different instance-sampling strate-
gies for labeling to guarantee that the labeling cost will be
under budget, and that distribution bias will be prevented.
A drift adaptation mechanism is then adopted, based on the
DDM detection method [20]. In [128], the authors proposed
a new active learning algorithm that primarily aims to
avoid bias in the sampling process of choosing instances
for labeling. They also introduced a memory loss factor to
the model, enabling it to adapt to concept drift.

Semi-supervised learning concerns how to use limited
true label data more efficiently by leveraging unsupervised
techniques. In this scenario, additional design effort is re-
quired to handle concept drift. For example, in [129], the au-
thors applied a Gaussian Mixture model to both labeled and
unlabeled data, and assigned labels, which has the ability
to adapt to gradual drift. Similarly, [99], [130], [131] are all
cluster-based semi-supervised ensemble methods that aim
to adapt to drift with limited true label data. The latter

14

TABLE 4
List of real-world datasets for performance evaluation of learning under concept drift.

Dataset #Insts. #Attrs. #Cls. Used by references
1 Airlines [104] 539384 7 2 [4], [5], [35], [73], [102], [114], [115]
2 Covertype [106] 581012 54 7 [13], [23], [35], [36], [59], [63], [73], [81]–[83], [86], [87], [102], [115]
3 Electricity [109] 45312 8 2 [4], [5], [13], [20], [23], [26], [29], [31], [35], [36], [57], [63], [72], [73], [78], [86], [87], [101],

[102], [115]
4 Poker-Hand [106] 1025010 10 10 [13], [32], [63], [73], [102]
5 NOAA weather [67] 18159 8 2 [2], [4], [13], [67], [68], [78], [105]
6 Sensor [108] 2219803 5 54 [36], [78]
7 KDDCup’99 [106] 494021 41 23 [35], [47], [65], [69], [74], [84], [86], [99], [102]
8 Usenet1 [112] 1500 99 2 [23], [51], [87]
9 Usenet2 [112] 1500 99 2 [23], [87]
10 Email data [110] 1500 913 2 [45], [76], [77]
11 Spam data [110] 9324 499 2 [4], [5], [23], [36], [102], [116]
12 Spam assassin corpus [111] 9324 39916 2 [4], [35], [76], [87]
13 ECUE drift dataset 1 [113] 10983 287034 2 [2], [3]
14 ECUE drift dataset 2 [113] 11905 166047 2 [2], [3]

are also able to recognize recurring concepts. In [132], the
author adopted a new perspective on the true label scarcity
problem by considering the true labeled data and unlabeled
data as two independent non-stationary data generating
processes. Concept drift is handled asynchronously on these
two streams. The SAND algorithm [133], [134] is another
semi-supervised adaptive method which detects concept
drift on cluster boundaries. There are also studies [90, 91]
that focus on adapting to concept drift in circumstances
where true label data is completely unavailable.

7.4 Decision Rules

Data-driven decision support systems need to be able to
adapt to concept drift in order to make accurate decisions
and decision rules is the main technique for this purpose.
[102] proposed a decision rule induction algorithm, Very
Fast Decision Rules (VFDR), to effectively process stream
data. An extended version, Adaptive VFDR, was developed
to handle concept drift by dynamically adding and remov-
ing decision rules according to their error rate which is mon-
itored by drift detector. Instead of inducing rules from de-
cision trees, [135] proposed another decision rule algorithm
based on PRISM [136] to directly induce rules from data.
This algorithm is also able to adapt to drift by monitoring
the performance of each rule on a sliding window of latest
data. [137] also developed an adaptive decision making
algorithm based on fuzzy rules. The algorithm includes a
rule pruning procedure, which removes obsolete rules to
adapt to changes, and a rule recal procedure to adapt to
recurring concepts.

This section by no means attempts to cover every re-
search field in which concept drift handling is used. There
are many other studies that also consider concept drift as a
dual problem. For example, [138] is a dimension reduction
algorithm to separate classes based on least squares linear
discovery analysis (LSLDA), which is then extended to
adapt to drift; [139] considered the concept drift problem in
time series and developed an online explicit drift detection
method by monitoring time series features; and [140] devel-
oped an incremental scaffolding classification algorithm for
complex tasks that also involve concept drift.

8 CONCLUSIONS: FINDINGS AND FUTURE DIREC-
TIONS

We summarize the recent developments of concept drift
research, and the following important findings can be ex-
tracted:

1) Error rate-based and data distribution-based drift de-
tection methods are still playing a dominant role in con-
cept drift detection research, while multiple hypothesis
test methods emerge in recent years;

2) Regarding to concept drift understanding, all drift
detection methods can answer “When”, but very
few methods have the ability to answer “How” and
“Where”;

3) Adaptive models and ensemble techniques have played
an increasingly important role in recent concept drift
adaptation developments. In contrast, research of re-
training models with explicit drift detection has slowed;

4) Most existing drift detection and adaptation algorithms
assume the ground true label is available after classifi-
cation/prediction, or extreme verification latency. Very
few research has been conducted to address unsuper-
vised or semi-supervised drift detection and adapta-
tion.

5) Some computational intelligence techniques, such as
fuzzy logic, competence model, have been applied in
concept drift;

6) There is no comprehensive analysis on real-world data
streams from the concept drift aspect, such as the drift
occurrence time, the severity of drift, and the drift
regions.

7) An increasing number of other research areas have
recognized the importance of handling concept drift,
especially in big data community.

Based on these findings, we suggest four new directions
in future concept drift research:

1) Drift detection research should not only focus on identi-
fying drift occurrence time accurately, but also need to
provide the information of drift severity and regions.
These information could be utilized for better concept
drift adaptation.

2) In the real-world scenario, the cost to acquire true label
could be expensive, that is, unsupervised or semi-su-

15

pervised drift detection and adaptation could still be
promising in the future.

3) A framework for selecting real-world data streams
should be established for evaluating learning algo-
rithms handling concept drift.

4) Research on effectively integrating concept drift han-
dling techniques with machine learning methodologies
for data-driven applications is highly desired.

We hope this paper can provide researchers with state-
of-the-art knowledge on concept drift research develop-
ments and provide guidelines about how to apply concept
drift techniques in different domains to support users in
various prediction and decision activities.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the
Australian Research Council (ARC) under discovery grant
DP150101645. We significantly thank Yiliao Song for her
help in preparation of datasets and applications shown in
Sections 6.

REFERENCES

[1] G. Widmer and M. Kubat, “Learning in the presence of concept
drift and hidden contexts,” Machine Learning, vol. 23, no. 1, pp.
69–101, 1996.

[2] N. Lu, J. Lu, G. Zhang, and R. Lopez de Mantaras, “A concept
drift-tolerant case-base editing technique,” Artif. Intell., vol. 230,
pp. 108–133, 2016.

[3] N. Lu, G. Zhang, and J. Lu, “Concept drift detection via compe-
tence models,” Artif. Intell., vol. 209, pp. 11–28, 2014.

[4] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift
detection and density synchronized drift adaptation,” in Proc.
26th Int. Joint Conf. Artificial Intelligence. Accept, 2017, Conference
Proceedings.

[5] A. Liu, G. Zhang, and J. Lu, “Fuzzy time windowing for gradual
concept drift adaptation,” in Proc. 26th IEEE Int. Conf. Fuzzy
Systems. IEEE, 2017, Conference Proceedings.

[6] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wo-
niak, “Ensemble learning for data stream analysis: A survey,”
Information Fusion, vol. 37, pp. 132–156, 2017.

[7] S. Ramı́rez-Gallego, B. Krawczyk, S. Garcı́a, M. Woźniak, and
F. Herrera, “A survey on data preprocessing for data stream
mining: Current status and future directions,” Neurocomputing,
vol. 239, pp. 39–57, 2017.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 1–37, 2014.

[9] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in
nonstationary environments: a survey,” IEEE Comput. Intell. Mag.,
vol. 10, no. 4, pp. 12–25, 2015.

[10] J. Gama, “A survey on learning from data streams: current and
future trends,” Progress in Artificial Intelligence, vol. 1, no. 1, pp.
45–55, 2012.

[11] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L.
F. d. Carvalho, and J. Gama, “Data stream clustering: A survey,”
ACM Comput. Surv., vol. 46, no. 1, pp. 1–31, 2013.

[12] J. C. Schlimmer and R. H. Granger Jr, “Incremental learning from
noisy data,” Machine learning, vol. 1, no. 3, pp. 317–354, 1986.

[13] V. Losing, B. Hammer, and H. Wersing, “Knn classifier with self
adjusting memory for heterogeneous concept drift,” in Proc. 16th
Int. Conf. Data Mining, 2016, Conference Proceedings, pp. 291–
300.

[14] I. Žliobaitė and J. Hollmén, “Optimizing regression models for
data streams with missing values,” Machine Learning, vol. 99,
no. 1, pp. 47–73, 2014.

[15] S. Amos, “When training and test sets are different: characteriz-
ing learning transfer,” Dataset Shift in Machine Learning, pp. 3–28,
2009.

[16] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla,
and F. Herrera, “A unifying view on dataset shift in classifica-
tion,” Pattern Recognit., vol. 45, no. 1, pp. 521–530, 2012.

[17] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory
and application. Prentice Hall Englewood Cliffs, 1993, vol. 104.

[18] A. Dries and U. Rückert, “Adaptive concept drift detection,”
Statistical Analysis and Data Mining: The ASA Data Science Journal,
vol. 2, no. 5–6, pp. 311–327, 2009.

[19] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers part i:
Detecting nonstationary changes,” IEEE Trans. Neural Networks,
vol. 19, no. 7, pp. 1145–1153, 2008.

[20] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Proc. 17th Brazilian Symp. Artificial Intelligence,
ser. Lecture Notes in Computer Science. Springer, 2004, Book
Section, pp. 286–295.

[21] L. Bu, C. Alippi, and D. Zhao, “A pdf-free change detection
test based on density difference estimation,” IEEE Trans. Neural
Networks Learn. Syst., vol. PP, no. 99, pp. 1–11, 2016.

[22] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multi-
dimensional data streams,” in Proc. Symp. the Interface of Statistics,
Computing Science, and Applications. Citeseer, 2006, Conference
Proceedings, pp. 1–24.

[23] I. Frias-Blanco, J. d. Campo-Avila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-Diaz, and Y. Caballero-Mota, “Online and
non-parametric drift detection methods based on hoeffding’s
bounds,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 3, pp. 810–
823, 2015.

[24] M. Yamada, A. Kimura, F. Naya, and H. Sawada, “Change-point
detection with feature selection in high-dimensional time-series
data,” in Proc. 23rd Int. Joint Conf. Artificial Intelligence, 2013,
Conference Proceedings, pp. 1827–1833.

[25] J. Gama and G. Castillo, “Learning with local drift detection,”
in Proc. 2nd Int. Conf. Advanced Data Mining and Applications.
Springer, 2006, Conference Proceedings, pp. 42–55.

[26] M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet,
R. Gavaldà, and R. Morales-Bueno, “Early drift detection
method,” in Proc. 4th Int. Workshop Knowledge Discovery from Data
Streams, 2006, Conference Paper.

[27] S. Xu and J. Wang, “Dynamic extreme learning machine for
data stream classification,” Neurocomputing, vol. 238, pp. 433–449,
2017.

[28] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning ma-
chine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3,
pp. 489–501, 2006.

[29] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Expo-
nentially weighted moving average charts for detecting concept
drift,” Pattern Recognit. Lett., vol. 33, no. 2, pp. 191–198, 2012.

[30] K. Nishida and K. Yamauchi, “Detecting concept drift using
statistical testing,” in Proc. 10th Int. Conf. Discovery Science, V. Cor-
ruble, M. Takeda, and E. Suzuki, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, Conference Proceedings, pp.
264–269.

[31] A. Bifet and R. Gavaldà, “Learning from time-changing data with
adaptive windowing,” in Proc. 2007 SIAM Int. Conf. Data Mining,
vol. 7. SIAM, 2007, Conference Proceedings, p. 2007.

[32] ——, “Adaptive learning from evolving data streams,” in Proc.
8th Int. Symp. Intelligent Data Analysis. Springer, 2009, Confer-
ence Proceedings, pp. 249–260.

[33] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, “Improving
adaptive bagging methods for evolving data streams,” in Proc.
1st Asian Conf. Machine Learning, ser. Lecture Notes in Computer
Science, Z.-H. Zhou and T. Washio, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, Book Section, pp. 23–37.

[34] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà,
“New ensemble methods for evolving data streams,” in Proc. 15th
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining.
ACM, 2009, Conference Proceedings, pp. 139–148.

[35] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random
forests for evolving data stream classification,” Machine Learning,
2017.

[36] J. Shao, Z. Ahmadi, and S. Kramer, “Prototype-based learning
on concept-drifting data streams,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining. 2623609: ACM,
2014, Conference Proceedings, pp. 412–421.

16

[37] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proc. 30th Int. Conf. Very Large Databases, vol. 30.
VLDB Endowment, 2004, Conference Proceedings, pp. 180–191.

[38] X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change de-
tection for multi-dimensional data,” in Proc. 13th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining. San Jose, Cali-
fornia, USA: ACM, 2007, Conference Paper, pp. 667–676.

[39] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A pca-based
change detection framework for multidimensional data streams,”
in Proc. 21th Int. Conf. on Knowledge Discovery and Data Mining.
ACM, 2015, Conference Proceedings, pp. 935–944.

[40] F. Gu, G. Zhang, J. Lu, and C.-T. Lin, “Concept drift detection
based on equal density estimation,” in Proc. 2016 Int. Joint Conf.
Neural Networks. IEEE, 2016, Conference Proceedings, pp. 24–30.

[41] L. Bu, D. Zhao, and C. Alippi, “An incremental change detection
test based on density difference estimation,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. PP, no. 99, pp. 1–13,
2017.

[42] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers part
ii: designing the classifier,” IEEE Trans. Neural Networks, vol. 19,
no. 12, pp. 2053–2064, 2008.

[43] C. Alippi, G. Boracchi, and M. Roveri, “A just-in-time adaptive
classification system based on the intersection of confidence
intervals rule,” Neural Networks, vol. 24, no. 8, pp. 791–800, 2011.

[44] ——, “Just-in-time ensemble of classifiers,” in Proc. 2012 Int. Joint
Conf. Neural Networks. IEEE, 2012, Conference Proceedings, pp.
1–8.

[45] ——, “Just-in-time classifiers for recurrent concepts,” IEEE Trans.
Neural Networks Learn. Syst., vol. 24, no. 4, pp. 620–634, 2013.

[46] W. Heng and Z. Abraham, “Concept drift detection for streaming
data,” in Proc. 2015 Int. Joint Conf. Neural Networks, 2015, Confer-
ence Proceedings, pp. 1–9.

[47] Y. Zhang, G. Chu, P. Li, X. Hu, and X. Wu, “Three-layer concept
drifting detection in text data streams,” Neurocomputing, vol. 260,
pp. 393–403, 2017.

[48] L. Du, Q. Song, L. Zhu, and X. Zhu, “A selective detector en-
semble for concept drift detection,” The Computer Journal, vol. 58,
no. 3, pp. 457–471, 2014.

[49] B. I. F. Maciel, S. G. T. C. Santos, and R. S. M. Barros, “A
lightweight concept drift detection ensemble,” in Proc. 27th IEEE
Int. Conf. on Tools with Artificial Intelligence. IEEE, 2015, pp. 1061–
1068.

[50] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical change-
detection tests,” IEEE Trans. Neural Networks Learn. Syst., vol. 28,
no. 2, pp. 246–258, 2017.

[51] S. Yu and Z. Abraham, “Concept drift detection with hierarchical
hypothesis testing,” in Proc. 2017 SIAM Int. Conf. Data Mining.
SIAM, 2017, Conference Proceedings, pp. 768–776.

[52] H. Raza, G. Prasad, and Y. Li, “Ewma model based shift-detection
methods for detecting covariate shifts in non-stationary environ-
ments,” Pattern Recognit., vol. 48, no. 3, pp. 659–669, 2015.

[53] S. Yu, X. Wang, and J. C. Principe, “Request-and-reverify: Hi-
erarchical hypothesis testing for concept drift detection with
expensive labels,” arXiv preprint arXiv:1806.10131, 2018.

[54] P. M. Gonçalves Jr, S. G. de Carvalho Santos, R. S. Barros, and
D. C. Vieira, “A comparative study on concept drift detectors,”
Expert Systems with Applications, vol. 41, no. 18, pp. 8144–8156,
2014.

[55] F. Pukelsheim, “The three sigma rule,” The American Statistician,
vol. 48, no. 2, pp. 88–91, 1994.

[56] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen,
“Dynamic integration of classifiers for handling concept drift,”
Information Fusion, vol. 9, no. 1, pp. 56–68, 2008.

[57] S. H. Bach and M. Maloof, “Paired learners for concept drift,”
in Proc. 8th Int. Conf. Data Mining, 2008, Conference Proceedings,
pp. 23–32.

[58] D. Liu, Y. Wu, and H. Jiang, “Fp-elm: An online sequential learn-
ing algorithm for dealing with concept drift,” Neurocomputing,
vol. 207, pp. 322–334, 2016.

[59] D. Han, C. Giraud-Carrier, and S. Li, “Efficient mining of high-
speed uncertain data streams,” Applied Intelligence, vol. 43, no. 4,
pp. 773–785, 2015.

[60] S. G. Soares and R. Araújo, “An adaptive ensemble of on-line
extreme learning machines with variable forgetting factor for
dynamic system prediction,” Neurocomputing, vol. 171, pp. 693–
707, 2016.

[61] B. F. J. Manly and D. Mackenzie, “A cumulative sum type of
method for environmental monitoring,” Environmetrics, vol. 11,
no. 2, pp. 151–166, 2000.

[62] N. C. Oza and S. Russell, “Experimental comparisons of online
and batch versions of bagging and boosting,” in Proc. 7th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining. 502565:
ACM, 2001, Conference Proceedings, pp. 359–364.

[63] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Proc. 2010 Joint European Conf. Machine
Learning and Knowledge Discovery in Databases. Springer, 2010,
Conference Proceedings, pp. 135–150.

[64] F. Chu and C. Zaniolo, “Fast and light boosting for adaptive
mining of data streams,” in Proc. 8th Pacific-Asia Conf. Knowledge
Discovery and Data Mining, H. Dai, R. Srikant, and C. Zhang,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, Book
Section, pp. 282–292.

[65] P. Li, X. Wu, X. Hu, and H. Wang, “Learning concept-drifting data
streams with random ensemble decision trees,” Neurocomputing,
vol. 166, pp. 68–83, 2015.

[66] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” Journal of Machine
Learning Research, 2007.

[67] R. Elwell and R. Polikar, “Incremental learning of concept drift
in nonstationary environments,” IEEE Trans. Neural Networks,
vol. 22, no. 10, pp. 1517–31, 2011.

[68] X.-C. Yin, K. Huang, and H.-W. Hao, “De2: Dynamic ensemble of
ensembles for learning nonstationary data,” Neurocomputing, vol.
165, pp. 14–22, 2015.

[69] P. Zhang, J. Li, P. Wang, B. J. Gao, X. Zhu, and L. Guo, “Enabling
fast prediction for ensemble models on data streams,” in Proc.
17th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Min-
ing. San Diego, California, USA: ACM, 2011, Conference Paper,
pp. 177–185.

[70] Y. Xu, R. Xu, W. Yan, and P. Ardis, “Concept drift learning with
alternating learners,” in Proc. 2017 Int. Joint Conf. Neural Networks,
2017, Conference Proceedings, pp. 2104–2111.

[71] L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda, “A
method for automatic adjustment of ensemble size in stream
data mining,” in Proc. 2016 Int. Joint Conf. Neural Networks, 2016,
Conference Proceedings, pp. 9–15.

[72] S.-C. You and H.-T. Lin, “A simple unlearning framework for
online learning under concept drifts,” in Proc. 20th Pacific-Asia
Conf. Knowledge Discovery and Data Mining. Springer, 2016,
Conference Proceedings, pp. 115–126.

[73] D. Brzezinski and J. Stefanowski, “Reacting to different types of
concept drift: The accuracy updated ensemble algorithm,” IEEE
Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 81–94, 2014.

[74] P. Zhang, X. Zhu, and Y. Shi, “Categorizing and mining concept
drifting data streams,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining. Las Vegas, Nevada, USA:
ACM, 2008, Conference Paper, pp. 812–820.

[75] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, “Online en-
semble learning of data streams with gradually evolved classes,”
IEEE Trans. Knowl. Data Eng., vol. 28, no. 6, pp. 1532–1545, 2016.

[76] J. Gama and P. Kosina, “Recurrent concepts in data streams
classification,” Knowledge and Information Systems, vol. 40, no. 3,
pp. 489–507, 2013.

[77] J. B. Gomes, M. M. Gaber, P. A. Sousa, and E. Menasalvas,
“Mining recurring concepts in a dynamic feature space,” IEEE
Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 95–110, 2014.

[78] Z. Ahmadi and S. Kramer, “Modeling recurring concepts in data
streams: a graph-based framework,” Knowledge and Information
Systems, 2017.

[79] P. Domingos and G. Hulten, “Mining high-speed data streams,”
in Proc. 6th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining. ACM, 2000, Conference Proceedings, pp. 71–80.

[80] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing
data streams,” in Proc. 7th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining. San Francisco, California: ACM, 2001,
Conference Paper, pp. 97–106.

[81] J. Gama, R. Rocha, and P. Medas, “Accurate decision trees for
mining high-speed data streams,” in Proc. 9th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining. ACM, 2003,
Conference Proceedings, pp. 523–528.

[82] H. Yang and S. Fong, “Incrementally optimized decision tree
for noisy big data,” in Proc. 1st Int. Workshop Big Data, Streams
and Heterogeneous Source Mining Algorithms, Systems, Programming

17

Models and Applications. Beijing, China: ACM, 2012, Conference
Paper, pp. 36–44.

[83] ——, “Countering the concept-drift problems in big data by
an incrementally optimized stream mining model,” Journal of
Systems and Software, vol. 102, pp. 158–166, 2015.

[84] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “Decision
trees for mining data streams based on the gaussian approxima-
tion,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 108–119,
2014.

[85] L. Rutkowski, L. Pietruczuk, P. Duda, and M. Jaworski, “Decision
trees for mining data streams based on the mcdiarmid’s bound,”
IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1272–1279, 2013.

[86] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “A new
method for data stream mining based on the misclassification
error,” IEEE Trans. Neural Networks Learn. Syst., vol. 26, no. 5, pp.
1048–1059, 2015.

[87] I. Frı́as-Blanco, J. d. Campo-Ávila, G. Ramos-Jiménez, A. C. P.
L. F. Carvalho, A. Ortiz-Dı́az, and R. Morales-Bueno, “Online
adaptive decision trees based on concentration inequalities,”
Knowledge-Based Systems, vol. 104, pp. 179–194, 2016.

[88] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine Learning, vol. 90, no. 3, pp. 317–
346, 2012.

[89] I. Žliobaitė, “Controlled permutations for testing adaptive learn-
ing models,” Knowledge and Information Systems, vol. 39, no. 3, pp.
565–578, 2014.

[90] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank, “Fast perceptron
decision tree learning from evolving data streams,” in Proc. 14th
Pacific-Asia Conf. Knowledge Discovery and Data Mining, M. J. Zaki,
J. X. Yu, B. Ravindran, and V. Pudi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, Book Section, pp. 299–310.

[91] J. Cohen, “A coefficient of agreement for nominal scales,” Edu-
cational and Psychological Measurement, vol. 20, no. 1, pp. 37–46,
1960.

[92] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, and G. Holmes,
“Evaluation methods and decision theory for classification of
streaming data with temporal dependence,” Machine Learning,
vol. 98, no. 3, pp. 455–482, 2015.

[93] D. Brzezinski and J. Stefanowski, “Prequential auc for classifier
evaluation and drift detection in evolving data streams,” in
Proc. 3rd Int. Workshop New Frontiers in Mining Complex Patterns,
A. Appice, M. Ceci, C. Loglisci, G. Manco, E. Masciari, and Z. W.
Ras, Eds. Cham: Springer International Publishing, 2014, Book
Section, pp. 87–101.

[94] A. Bifet, G. d. F. Morales, J. Read, G. Holmes, and B. Pfahringer,
“Efficient online evaluation of big data stream classifiers,” in
Proc. 21th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining. Sydney, NSW, Australia: ACM, 2015, Conference Paper,
pp. 59–68.

[95] N. Japkowicz and M. Shah, Evaluating learning algorithms: a clas-
sification perspective. Cambridge University Press, 2011.

[96] Q. McNemar, “Note on the sampling error of the difference
between correlated proportions or percentages,” Psychometrika,
vol. 12, no. 2, pp. 153–157, 1947.

[97] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, no. Jan, pp.
1–30, 2006.

[98] J. Z. Kolter and M. A. Maloof, “Using additive expert ensembles
to cope with concept drift,” in Proc. 22nd Int. Conf. Machine
Learning. Bonn, Germany: ACM, 2005, Conference Paper, pp.
449–456.

[99] X. Wu, P. Li, and X. Hu, “Learning from concept drifting data
streams with unlabeled data,” Neurocomputing, vol. 92, pp. 145–
155, 2012.

[100] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea)
for large-scale classification,” in Proc. Seventh ACM Int. Conf.
Knowledge Discovery and Data Mining. 502568: ACM, 2001,
Conference Proceedings, pp. 377–382.

[101] R. Fok, A. An, and X. Wang, “Mining evolving data streams with
particle filters,” Comput. Intell., vol. 33, no. 2, pp. 147–180, 2017.

[102] P. Kosina and J. Gama, “Very fast decision rules for classification
in data streams,” Data Mining and Knowledge Discovery, vol. 29,
no. 1, pp. 168–202, 2015.

[103] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Proc. 9th
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining.
Washington, D.C.: ACM, 2003, Conference Paper, pp. 226–235.

[104] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive
online analysis,” Journal of Machine Learning Research, vol. 99, pp.
1601–1604, 2010.

[105] V. M. Souza, D. F. Silva, J. Gama, and G. E. Batista, “Data
stream classification guided by clustering on nonstationary en-
vironments and extreme verification latency,” in Proceedings of the
2015 SIAM International Conference on Data Mining. SIAM, 2015,
pp. 873–881.

[106] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[107] M. Harel, S. Mannor, R. El-Yaniv, and K. Crammer, “Concept drift
detection through resampling,” in Proc. 31st Int. Conf. Machine
Learning, 2014, Conference Proceedings, pp. 1009–1017.

[108] X. Zhu, “Stream data mining repository,” 2010. [Online].
Available: http://www.cse.fau.edu/∼xqzhu/stream.html

[109] M. Harries and N. S. Wales, “Splice-2 comparative evaluation:
Electricity pricing,” 1999.

[110] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring
contexts using ensemble classifiers: an application to email filter-
ing,” Knowledge and Information Systems, vol. 22, no. 3, pp. 371–
391, 2009.

[111] I. Katakis, G. Tsoumakas, E. Banos, N. Bassiliades, and I. Vla-
havas, “An adaptive personalized news dissemination system,”
Journal of Intelligent Information Systems, vol. 32, no. 2, pp. 191–212,
2008.

[112] I. Katakis, G. Tsoumakas, and I. P. Vlahavas, “An ensemble of
classifiers for coping with recurring contexts in data streams,”
in 18th European Conf. Artificial Intelligence, 2008, Conference
Proceedings, pp. 763–764.

[113] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A case-
based technique for tracking concept drift in spam filtering,”
Knowledge-Based Systems, vol. 18, no. 4–5, pp. 187–195, 2005.

[114] L.-Y. Wang, C. Park, K. Yeon, and H. Choi, “Tracking concept drift
using a constrained penalized regression combiner,” Comput.
Stat. Data Anal., vol. 108, pp. 52–69, 2017.

[115] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learn-
ing with drifting streaming data,” IEEE Trans. Neural Networks
Learn. Syst., vol. 25, no. 1, pp. 27–39, 2014.

[116] G. Song, Y. Ye, H. Zhang, X. Xu, R. Y. K. Lau, and F. Liu, “Dy-
namic clustering forest: An ensemble framework to efficiently
classify textual data stream with concept drift,” Information Sci-
ences, vol. 357, pp. 125–143, 2016.

[117] G. Ditzler and R. Polikar, “Incremental learning of concept drift
from streaming imbalanced data,” IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 10, pp. 2283–2301, 2013.

[118] B. Mirza, Z. Lin, and N. Liu, “Ensemble of subset online sequen-
tial extreme learning machine for class imbalance and concept
drift,” Neurocomputing, vol. 149, pp. 316–329, 2015.

[119] B. Mirza and Z. Lin, “Meta-cognitive online sequential extreme
learning machine for imbalanced and concept-drifting data clas-
sification,” Neural Networks, vol. 80, pp. 79–94, 2016.

[120] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 5, pp. 1356–1368, 2015.

[121] E. Arabmakki and M. Kantardzic, “Som-based partial labeling of
imbalanced data stream,” Neurocomputing, vol. 262, pp. 120–133,
2017.

[122] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, chal-
lenges, tools and good practices,” in Proc. 6th Int. Conf. Contempo-
rary Computing (IC3), 2013, Conference Proceedings, pp. 404–409.

[123] A. Andrzejak and J. B. Gomes, “Parallel concept drift detection
with online map-reduce,” in Proc. 12th Int. Conf. Data Mining
Workshops, 2012, Conference Proceedings, pp. 402–407.

[124] M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, “Scalable real-
time classification of data streams with concept drift,” Future
Generation Computer Systems, vol. 75, pp. 187–199, 2017.

[125] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in Proc. 29th Int. Conf. Very
Large Databases, vol. 29. VLDB Endowment, 2003, Conference
Proceedings, pp. 81–92.

[126] X. Song, H. He, S. Niu, and J. Gao, “A data streams analysis
strategy based on hoeffding tree with concept drift on hadoop
system,” in Proc. 4th Int. Conf. Advanced Cloud and Big Data, 2016,
Conference Proceedings, pp. 45–48.

[127] V. Nguyen, T. D. Nguyen, T. Le, S. Venkatesh, and D. Phung,
“One-pass logistic regression for label-drift and large-scale clas-

http://archive.ics.uci.edu/ml
http://www.cse.fau.edu/~xqzhu/stream.html

18

sification on distributed systems,” in Proc. 16th Int. Conf. Data
Mining, 2016, Conference Proceedings, pp. 1113–1118.

[128] W. Chu, M. Zinkevich, L. Li, A. Thomas, and B. Tseng, “Unbi-
ased online active learning in data streams,” in Proc. 17th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining. San
Diego, California, USA: ACM, 2011, Conference Paper, pp. 195–
203.

[129] G. Ditzler and R. Polikar, “Semi-supervised learning in non-
stationary environments,” in Proc. 2011 Int. Joint Conf. Neural
Networks, 2011, Conference Proceedings, pp. 2741–2748.

[130] M. J. Hosseini, A. Gholipour, and H. Beigy, “An ensemble
of cluster-based classifiers for semi-supervised classification of
non-stationary data streams,” Knowledge and Information Systems,
vol. 46, no. 3, pp. 567–597, 2015.

[131] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and cluster
ensembles for mining concept drifting data streams,” in Proc.
10th Int. Conf. Data Mining, 2010, Conference Proceedings, pp.
1175–1180.

[132] S. Chandra, A. Haque, L. Khan, and C. Aggarwal, “An adaptive
framework for multistream classification,” in Proc. 25th ACM Int.
on Conf. Information and Knowledge Management. Indianapolis,
Indiana, USA: ACM, 2016, Conference Paper, pp. 1181–1190.

[133] A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggar-
wal, “Efficient handling of concept drift and concept evolution
over stream data,” in Proc. 32nd Int. Conf. Data Engineering, 2003,
Conference Proceedings, pp. 481–492.

[134] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adap-
tive novel class detection and classification over data stream,” in
30th AAAI Conf. Artificial Intelligence, 2016, Conference Proceed-
ings, pp. 1652–1658.

[135] T. Le, F. Stahl, M. M. Gaber, J. B. Gomes, and G. D. Fatta, “On
expressiveness and uncertainty awareness in rule-based classifi-
cation for data streams,” Neurocomputing, vol. 265, pp. 127–141,
2017.

[136] J. Cendrowska, “Prism: An algorithm for inducing modular
rules,” Int. J. Man Mach. Stud., vol. 27, no. 4, pp. 349–370, 1987.

[137] M. Pratama, S. G. Anavatti, M. Joo, and E. D. Lughofer, “pclass:
An effective classifier for streaming examples,” IEEE Trans. Fuzzy
Syst., vol. 23, no. 2, pp. 369–386, 2015.

[138] Y.-R. Yeh and Y.-C. F. Wang, “A rank-one update method for least
squares linear discriminant analysis with concept drift,” Pattern
Recognit., vol. 46, no. 5, pp. 1267–1276, 2013.

[139] R. C. Cavalcante, L. L. Minku, and A. L. I. Oliveira, “Fedd: Fea-
ture extraction for explicit concept drift detection in time series,”
in Proc. 2016 Int. Joint Conf. Neural Networks, 2016, Conference
Proceedings, pp. 740–747.

[140] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and S. Anavatti, “Scaf-
folding type-2 classifier for incremental learning under concept
drifts,” Neurocomputing, vol. 191, pp. 304–329, 2016.

Jie Lu is a Distinguished Professor, Director of
Centre for Artificial Intelligence, and Associate
Dean Research with in the Faculty of Engineer-
ing and Information Technology at the University
of Technology Sydney. Her research interests lie
in the area of decision support systems, concept
drift, fuzzy transfer learning, and recommender
systems. She has published 10 research books
and 400 papers, won 8 Australian Research
Council discovery grants and 20 other grants.
She serves as Editor-In-Chief for KBS and IJCIS,

and delivered 16 keynotes in international conferences.

Anjin Liu is a Postdoctoral Research Associate
in the A/DRsch Centre for Artificial Intelligence,
Faculty of Engineering and Information Technol-
ogy, University of Technology Sydney. He re-
ceived the BIT degree (Honour) at the Univer-
sity of Sydney in 2012. His research interests
include concept drift detection, adaptive data
stream learning, multi-stream learning, machine
learning and big data analytics

Fan Dong is Research Fellow of Centre for
Artificial Intelligence, University of Technology
Sydney. He received the dual Ph.D. degree from
University of Technology Sydney and Beijing In-
stitute of Technology in 2018. His research in-
terests include concept drift detection, adaptive
learning under concept drift and data stream
mining.

Feng Gu is a Ph.D. candidate at the Faculty
of Engineering and Information Technology, the
University of Technology Sydney, NSW, Aus-
tralia. He received bachelors degree of soft-
ware engineering at Zhejiang University, China,
in 2012. His research interests include stream
data mining, adaptive learning under concept
drift and evolving data.

João Gama is an Associate Professor at the
University of Porto, Portugal. He is also a senior
researcher and member of the board of directors
of the Laboratory of Artificial Intelligence and
Decision Support (LIAAD), a group belonging
to INESC Porto. He serves as the member of
the Editorial Board of Machine Learning Journal,
Data Mining and Knowledge Discovery, Intelli-
gent Data Analysis and New Generation Com-
puting. His main research interest is in knowl-
edge discovery from data streams and evolving

data. He has published more than 200 papers and a recent book on
Knowledge Discovery from Data Streams. He has extensive publications
in the area of data stream learning.

Guangquan Zhang is an Associate Professor,
and the Director of Decision System and e-
Service Intelligence (DeSI) lab with in the Centre
for Artificial Intelligence, in the Faculty of Engi-
neering and Information Technology at the Uni-
versity of Technology Sydney. His main research
interests lie in the area of uncertain information
processing, fuzzy decision making, concept drift
and fuzzy transfer learning. He has published
4 monographs and over 400 papers in refer-
eed journals, conference proceedings and book

chapters. He has won 7 Australian Research Council discovery grants
and guest edited many special issues for international journals.

	1 Introduction
	2 Problem Description
	2.1 Concept drift definition and the sources
	2.2 The types of concept drift

	3 Concept Drift detection
	3.1 A general framework for drift detection
	3.2 Concept drift detection algorithms
	3.2.1 Error rate-based drift detection
	3.2.2 Data Distribution-based Drift Detection
	3.2.3 Multiple Hypothesis Test Drift Detection

	3.3 Summary of concept drift detection methods/algorithms

	4 Concept Drift understanding
	4.1 The time of concept drift occurs (When)
	4.2 The severity of concept drift (How)
	4.3 The drift regions of concept drift (Where)
	4.4 Summary of drift understanding

	5 Drift adaptation
	5.1 Training new models for global drift
	5.2 Model ensemble for recurring drift
	5.3 Adjusting existing models for regional drift

	6 Evaluation, Datasets and Benchmarks
	6.1 Evaluation Systems
	6.2 Synthetic datasets
	6.3 Real-world datasets

	7 The Concept Drift Problem in Other Research Areas
	7.1 Class imbalance
	7.2 Big data mining
	7.3 Active learning and semi-supervised learning
	7.4 Decision Rules

	8 Conclusions: findings and future directions
	References
	Biographies
	Jie Lu
	Anjin Liu
	Fan Dong
	Feng Gu
	João Gama
	Guangquan Zhang

