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It has long been recognized that in biological systems ranging from 
the Drosophila embryo to the hepatic lobule, many genes need to be 
properly regulated in space for the system to function. To study the 

spatial patterns of gene expression, many different spatial transcrip-
tomics methods, which produce spatially localized quantification of 
messenger RNA (mRNA) transcripts as proxies for gene expression, 
have been developed. Thanks to growing interest in the field, several 
reviews have been written in the past 5 years, providing overviews 
of experimental techniques for data collection1,2, and describing how 
such techniques can be applied to specific biological systems, for 
example tumors3, brain4, and liver5. These reviews typically begin 
with either laser capture microdissection (LCM) or single-molecule 
fluorescent in situ hybridization (smFISH) in the late 1990s, although 
the quest to profile the transcriptome in space is much older.

Unlike the previous reviews, this paper presents a database of 
literature dating back to 1987 comprehensively documenting the 
historical evolution and current development in data collection and 
analysis in spatial transcriptomics. In addition, we have analyzed 
the literature metadata from the database to show trends in the 
field. Key highlights from the database and analyses are presented 
in this paper, and more details are presented in our book-length 
supplement: https://pachterlab.github.io/LP_2021/. Section and 
figure numbers of the supplement in this paper refer to those in 
the DOI PDF version, while those in the online HTML version are 
subject to change, as it is continuously updated to reflect changes 
in the field. This database was curated by searching keywords such 
as “spatial transcriptomics” and “Visium” on PubMed and bioRxiv, 
and manually screening literature citing influential papers in the 
field. Literature metadata collected include the date published or 
posted and the institution of the first author. In addition, metadata 
for publications concerning new datasets include the species and 
tissue from which the data were collected, the experimental tech-
niques used to collect the data, and the programming languages 
used to analyze the data. Metadata for publications concerning new 
data-analysis methods include the programming languages used 
in the implementation, the code repository of the implementation, 
and whether the code is packaged and documented. The database 
is continuously updated by manually screening RSS feeds from 
PubMed and bioRxiv for relevant keywords, or by submission via 
a Google Form.

Prequel era
By “spatial transcriptomics”, we mean attempts to quantify mRNA 
expression of large numbers of genes within the spatial context of 
tissues and cells. Some important technologies enabling spatial 
transcriptomics date back to the 1970s (Chapter 2 in Supplementary 
Information). Various forms of in situ hybridization (ISH) have 
been used for a long time to visualize gene expression in space. 
Radioactive ISH was first introduced in 1969, visualizing ribosomal 
RNA6 and DNA7 in Xenopus laevis oocytes, and was first used to visu-
alize transcripts of specific genes (globin) in 1973 (ref. 8) (Fig. 1a).  
Non-radioactive fluorescent or colorimetric ISH was developed in 
the 1970s and the early 1980s, improving spatial resolution, enabling 
three-dimensional (3D) staining, and shortening required exposure 
times9,10 (Fig. 1a). Early ISH was performed in tissue sections, mak-
ing it challenging to apply to blastulas and to reconstruct 3D tissue 
structures; whole-mount ISH (WM ISH) was first introduced in 
Drosophila in 1989 (ref. 11) and was soon adapted to other species, 
such as mice, in the early 1990s (ref. 12).

Another strand of development in early spatial transcriptomics 
was the enhancer and gene trap screen, which was developed in 
the 1980s when DNA sequencing throughput was increasing13 and 
metazoan genomes were newly opened frontiers. The first screens 
in Drosophila14 and mice15 were performed in the late 1980s in 
order to visualize expression of untargeted, and often previously 
unknown, genes. With increasing throughput, enhancer and gene 
traps became the technology of choice for spatial transcriptomics 
in the 1990s, until the rise of WM ISH in the late 1990s, which lev-
eraged automation. WM ISH also avoided the need for transgenic 
lines, and was facilitated by the availability of reference genomes 
in the early 2000s for computational probe design. Although now 
eclipsed by newer methods, enhancer trap, gene trap, and in situ 
reporter methods have been used to build reference databases of 
gene expression and enhancer usage patterns in transgenic lines 
throughout the 2000s and 2010s16.

The foundation for many current-era technologies was built in the 
decades between the 1970s and the 2000s (Fig. 1c). For example, ultravi-
olet (UV) laser was first used to cut tissue in 1976 (ref. 17). Popular infra-
red (IR) and UV LCM systems were first reported in 1996 (refs. 18,19) and 
were soon commercialized. Some highly multiplexed smFISH tech-
nologies, such as sequential FISH (seqFISH)20, rely on combinatorial  
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Fig. 1 | timelines of major events. a, Development of prequel era technologies. References: 1969 radioactive ISH of ribosomal RNA (rRNA)6,7, 1973 
radioactive ISH of goblin mRNAs8, 1977 FISH of rRNA10, 1982 immunological FISH with biotin-labeled probe9, 1982 FISH of actin mRNA135, 1987 Drosophila 
enhancer trap14, 1989 WM ISH in Drosophila11, 1989 ES cell enhancer and gene trap in mice15, 1991 in situ reporter in Caenorhabditis elegans136. b, Major WM 
ISH atlases and gene expression pattern databases. References: 1994 scaling up WM ISH in C. elegans137, 1995 first mouse WM ISH138, 1998 AXelDB139, 
1999 mouse: GXD140, 2000 Maboya Gene Expression patterns and Expression Sequence Tags (MAGEST)141, 2001 the Nematode Expression Pattern 
Database (NEXTDB)142, 2001 Ghost143, 2002 GenePaint144, 2002 D. melanogaster: Berkeley Drosophila Genome Project (BDGP)24, 2003 Medaka Expression 
Pattern Database (MEPD)145, 2003 Zebrafish Information Network (ZFIN)31, 2004 Gallus Expression In Situ Hybridization Analysis (GEISHA)25, 2005 
miRNA atlas29, 2006 Allen26, 2006 BDTNP146, 2007 Fly-FISH147, 2007 Xenbase148, 2011 mouse Genitourinary Development Molecular Anatomy Project 
(GUDMAP)27, 2017 LungMAP28, 2020 ZEBrA149. c, Development of current-era technologies and their notable precursors, colored by type of technology. 
References: 1976 LCM17, 1988 ligase-mediated single -nucleotide variant (SNV) detection150, 1989 single-cell cDNA amplification151,152, 1989 FISH with 
combinatorial barcoding21, 1995 cDNA microarray153, 1996 commercial LCM18,19, 1998 smFISH23, 1999 LCM + microarray154, 2002 combinatorial FISH22, 
2008 RNA-seq155, 2012 Tomo-array156 (the cDNA microarray predecessor of Tomo-seq), 2013 high-throughput RCA + ISS59, 2014 seqFISH20, 2015 
MERFISH50, 2016 ST87, and 2019 GeoMX DSP44.
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barcoding, that is encoding each gene with a combination of colors 
so transcripts of more genes with easily discernible colors (up to 5) 
can be quantified simultaneously. Combinatorial barcoding was first 
reported in immunological DNA FISH in 1989 (ref. 21) and was first 
used for transcripts in 2002 (ref. 22). The first unequivocal demonstra-
tion of smFISH showing each mRNA molecule as a spot was reported 
in 1998 (ref. 23). Highly multiplexed smFISH would not have been 
possible without the development of these technologies.

WM ISH was the technology of choice in the late 1990s and the 
2000s, before the rise of highly multiplexed, high-resolution, and 
more quantitative technologies, and has been used to create gene 
expression atlases in embryos of several species such as Drosophila 
melanogaster24, Mus musculus, and Gallus gallus25; in various mouse 
organs such as the brain26, genitourinary tract27, and lung28; and for 
specific types of genes, such as microRNAs (miRNAs)29 (Fig. 1b). 
For miRNAs and many species other than mice and humans, the 
only spatial transcriptomics resources currently available are, for 
the most part, WM ISH atlases. Model-organism databases collect-
ing proliferating gene expression patterns from various sources were 
also established in this period, such as Gene Expression Database 
(GXD)30 and Zebrafish Information Network31 (Fig. 1b). The golden 
age of WM ISH seems to have ended in the 2010s (Fig. 1b), perhaps 
due to some of the technology’s disadvantages, such as requiring 
stereotypical tissue structure, the need for thousands of animals to 
generate an atlas, and the largely qualitative nature of results.

Early motivating applications for spatial transcriptomics 
included identification of genes with restricted patterns that indi-
cated function in development, identification of novel cell-type 
markers, and identification of novel cell types not evident from 
tissue morphology14,15. In the 1980s and 1990s, analyses were typi-
cally done manually, although more recently automated methods 
have been developed (Chapter 3 in Supplementary Information). 
Convergence of strands of technologies, including more power-
ful computing infrastructure, decreasing cost of sequencing, and 
the generation of more quantitative data, have mainstreamed and 
revolutionized spatial transcriptomics and opened up new possi-
bilities. However, the legacy of the prequel era still lives on in the 
usage of prequel resources, such as referencing the Allen Brain Atlas 
(ABA)32 and the Allen Mouse Common Coordinate Framework33, 
and in institutions such as the Allen Brain Institute and the Jackson 
Laboratory, which are contributing to the current era of research34,35.

data collection
Current-era technologies broadly fall into five categories in terms 
of how spatial information is acquired: region of interest (ROI)  

selection (Section 5.1 in Supplementary Information), smFISH 
(Section 5.2 in Supplementary Information), in situ sequencing 
(ISS) (Section 5.3 in Supplementary Information), next-generation 
sequencing (NGS) with spatial barcoding (Section 5.4 in 
Supplementary Information), and methods not requiring a priori 
spatial locations (Section 5.6 in Supplementary Information). 
Developers of such technologies often seek to enable a trifecta 
of transcriptome-wide profiling, single-cell resolution, and high 
gene-detection efficiency. Although this achievement appears to be 
increasingly within reach, current-era technologies are character-
ized by trade-offs between these goals.

ROI selection. Spatial locations can be obtained by selection 
and isolation of ROIs of known locations and shapes, which 
can be performed by physical (Section 5.1.3 in Supplementary  
Information) and optical marking of ROIs for isolation (Section 
5.1.4 in Supplementary Information). The isolated ROIs can then 
be analyzed with complementary DNA (cDNA) microarray or RNA 
sequencing (RNA-seq), or dissociated into single cells for single-cell 
RNA-seq (scRNA-seq).

Physical microdissection includes LCM, 2000s voxelation36, and 
Tomo-seq37, which sections a tissue with a cryotome along an axis of 
interest, followed by RNA-seq on each section. Since 1999, by far the 
most widely used microdissection technology is LCM, which has 
been used in various biological fields, such as oncology, neurosci-
ence, immunology, developmental biology, and botany (see Chapter 
6 in the Supplementary Information for topic modeling of PubMed 
and bioRxiv LCM literature). In LCM, ROIs in the tissue section are 
dissected by either UV laser cutting (lasers manufactured by Zeiss 
and Leica) or fusion of tissue with a membrane by IR laser (manu-
factured by Arcturus, Fig. 2a); the two are combined in recent ver-
sions of Arcturus, in which IR fusion removes the ROI cut using UV. 
Combining LCM and Tomo-seq, the spatial transcriptome in 3D 
can be profiled as in geographical position sequencing (Geo-seq)38, 
albeit with limited spatial resolution. An innovative physical 
microdissection method is STRP-seq39, which slices adjacent tis-
sue sections into stripes at different angles and reconstructs gene 
expression patterns in 3D with an algorithm inspired by ray-based 
computerized tomography. Manual dissection is commonly used to 
profile gene expression along one spatial axis of interest in plants40.

Optical marking of ROIs includes NICHE-seq41, which uses 
two-photon irradiation to mark ROIs in tissue from transgenic mice 
expressing photoactivatable green fluorescent protein (PA-GFP), and 
then uses fluorescence-activated cell sorting (FACS) to isolate cells 
with activated PA-GFP for scRNA-seq. Similar to NICHE-seq but 

Fig. 2 | schematics of common current-era technologies. a, IR LCM. b, GeoMX DSP. The purple circle in step 2 is the UV-illuminated ROI. c, seqFISH 
barcoding and error correction scheme: if signal from one round of hybridization is missing, the remaining rounds can still uniquely identify the gene 
barcoded. d, MERFISH Hamming distance 4 barcoding and error correction scheme: from the design of the barcodes, if signal from one round of 
hybridization is missing, the correct barcode can be recovered. If two rounds are missing, the remaining signals are equidistant to two different barcodes 
so the original barcode cannot be recovered. e, Cartana ISS with cPAL sequencing: many copies of the gene barcode are made with RCA for signal 
amplification, which are then sequenced in situ with cPAL. The orange line stands for the RCA amplicon. Short blue lines stand for the gene barcode. Brown 
stands for the probe; bases not labeled are degenerate. Gray stands for primer matching constant region. f, NGS barcoding techniques. In Visium, the 
spots are arranged in a hexagonal grid, 100 µm apart center to center and 55 µm in diameter. In DBiT-seq, positional barcodes are deposited in microfluidic 
channels and spatial resolution is determined by the width (down to 10 µm) and spacing of the channels. In Slide-seq, barcoded beads 10 µm in diameter 
are spread in a single layer on a slide. In XYZeq, spatial barcodes are conferred on multiple cells in wells 500 µm in diameter, which are then dissociated for 
scRNA-seq. In Seq-Scope, the tissue is mounted on a repurposed Illumina flow cell with barcoded polony spots 0.6 µm apart on average. For Visium and 
Slide-seq, the lines represent oligonucleotides attached to the slide or bead. For DBiT-seq, red and green lines represent the flow in microfluidic channels 
carrying barcoding oligonucleotides. For Seq-Scope, the tissue (pink block) is mounted on repurposed Illumina flow cell with bridge-amplified polonies 
each with its own spatial barcode represented by different colors. For XYZeq, different colors of the cells represent different spatial barcodes in the 
microwells, and the cells are dissociated for scRNA-seq. t-SNE, t-distributed stochastic neighbor embedding. g, Data-analysis workflow: upstream analysis 
is technology specific, and includes image processing for smFISH and ISS-based technologies, and FASTQ file processing, quality control of the gene count 
matrix, and data normalization for NGS-based technologies. Non-spatial scRNA-seq data can be integrated by mapping cells to locations with landmark 
genes in the smFISH or ISS data or deconvolving cell types in Visium spots. Downstream analyses tend to be technology agnostic, and include finding 
spatially variable genes, transcriptionally defined spatial regions, and cell–cell interactions. Created with BioRender.com.
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without transgenic mice is spatially photoactivatable color encoded 
cellular address tags (SPACECAT)42, which stains cultured live cells 
or organoids with photocaged fluorophores and photoactivates ROIs 
for FACS and scRNA-seq. Also using photocaging, ZipSeq43 attaches 
anchor oligonucleotides with photocaged overhangs to tissue with 

antibodies or lipid insertion, and adds spatial ‘zipcodes’ to photoacti-
vated ROIs hybridizing to the overhangs. A more popular commercial 
optical ROI-selection technique is the GeoMX Digital Spatial Profiler 
(DSP)44 and whole-transcriptome atlas (WTA)45 of Nanostring  
(Fig. 2b), which shines UV light on ROIs to release photo-cleavable 
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gene barcodes for quantification with either nCounter or NGS. 
As GeoMX uses predefined gene panels rather than poly-A cap-
ture, Nanostring provides the Cancer Transcriptome Atlas (CTA) 
gene panel with over 1,800 genes, as well as human and mouse 
whole-transcriptome panels with over 18,000 genes.

Single-molecule FISH. Chronologically, the next technology devel-
oped in the current era is highly multiplexed single-molecule FISH 
(smFISH), which began with a 2012 prototype (seqFISH) that relied 
on super-resolution microscopy (SRM) to simultaneously profile 32 
genes in yeast by hybridizing probes with different colors to tran-
scripts, and then deducing the relative locations of the colors pres-
ent46. SRM is no longer needed; in 2014, seqFISH20 was published, 
in which one color per gene is visualized per round of hybridiza-
tion, and the probes are stripped before the next round for the next 
color in the barcode. All transcripts of the same gene have the same 
barcode. Four colors and 8 rounds of hybridization (48 = 65,536) 
are more than enough to encode all genes in the human or mouse 
genome. In practice, an error-correcting round of hybridization is 
performed, so that genes can still be distinguished if signal from one 
round of hybridization is missing47 (Fig. 2c). More recently, in a ver-
sion of seqFISH based on RNA sequential probing of targets (RNA 
SPOTs)48, the ‘colors’ themselves are one-hot encoded by a sequence 
of hybridizations, expanding the palette to 20 ‘colors’ per channel 
and enabling the profiling of 10,000 genes49.

Another smFISH technique is multiplexed error-robust FISH 
(MERFISH)50, which uses a different barcoding strategy, in which 
each gene is encoded by a binary code. The color codes in each 
experiment must be separated by a Hamming distance (HD) of four 
to allow for correction of missing signal in one round, and by two 
to identify error without the facility for correcting it (Fig. 2d). The 
length of barcodes can be increased to encode 10,000 genes51. As 
only the fluorophores are removed but the probes are not stripped, 
numerous rounds of hybridization in MERFISH are less time con-
suming than those in seqFISH. Most other smFISH-based tech-
niques, such as hybridization-based ISS (HybISS)52 and split-FISH53, 
use either seqFISH-like or MERFISH-like barcoding.

smFISH faces a number of challenges, which have been addressed 
by various methods. Signal-to-noise ratio can be improved with roll-
ing circle amplification (RCA)52, branched DNA (bDNA)54, hybrid-
ization chain reaction (HCR)47, primer exchange reaction55, and 
tissue clearing56. With an increasing number of genes profiled, the 
transcript spots are increasingly likely to overlap, causing optical 
crowding. This can be mitigated by expansion microscopy (ExM)57, 
only imaging a subset of probes at a time and using computational 
super-resolution49, imaging highly expressed genes without combina-
torial barcoding50, and computationally resolving overlapping spots58.

In situ sequencing. ISS methods yield spatial transcriptome infor-
mation by sequencing, typically by ligation (SBL), gene barcodes 
(targeted), or short fragments of cDNAs (untargeted) in situ. Such 
methods rely on ligase joining only two pieces of DNA—a primer 
with known sequence and a probe—if they match the template, 
and non-matching probes are washed away. The probes used are 
degenerate except for one or two query bases encoded by a color. 
RCA is commonly used for signal amplification. The 2013 ISS59, 
later commercialized by Cartana, and barcoded oligonucleotides 
ligated on RNA amplified for multiplexed and parallel in situ analy-
ses (BOLORAMIS)60 use one query base per probe, as in combi-
natorial probe anchor ligation (cPAL)61, to sequence gene barcodes 
(Fig. 2e). In cPAL, each probe queries one base in the gene bar-
code. Fluorescence ISS (FISSEQ)62 and a later adaptation with 
ExM, called ExSeq63, use SOLiD, which uses two query bases per 
probe to sequence circularized and RCA-amplified cDNAs. In spa-
tially resolved transcript amplicon readout mapping (STARmap)56, 
gene barcodes are sequenced by sequencing with error-reduction 

by dynamic annealing and ligation (SEDAL), in which SOLiD-like 
two query bases are used to reject error, but one-base encoding can 
also be used. Barcode analysis by sequencing (BAR-seq) also RCA 
amplifies probes with gene barcodes, but uses sequencing by syn-
thesis (SBS) instead of SBL to sequence the barcodes64.

NGS with spatial barcoding. Spatial locations of transcripts can 
also be preserved by capturing the transcripts from tissue sections 
on in situ arrays. Such arrays can be manufactured by printing spot 
barcodes, unique molecular identifiers (UMIs), and poly-T oligo-
nucleotides on commercial microarray slides to capture polyadenyl-
ated transcripts, as in the spatial transcriptomics (ST) and Visium 
technologies (Fig. 2f). They can also be Drop-seq-like beads65 with 
split pool barcodes, UMIs, and poly-T oligonucleotides spread on 
slides in a single layer (for example, Slide-seq66) or confined in wells 
etched on the slides (for example, high-definition spatial transcrip-
tomics (HDST)67), with bead barcodes subsequently located using 
in situ SBL. Alternatively, in deterministic barcoding in tissue for 
spatial omics sequencing (DBiT-seq)68, an array is generated by 
microfluidic channels, which are used to deposit one type of barcode 
in one direction and then another in a perpendicular direction, with 
the orthogonal barcodes ligated so each spot can be identified with a 
unique pairwise combination. While NGS barcoding techniques are 
typically designed for 3′-end Illumina sequencing, Visium has been 
adapted to Nanopore long-read sequencing69.

NGS barcoding techniques have been applied to large areas of 
tissue33, and their use is increasing (Fig. 4b). Nevertheless, they do 
not have single-cell spatial resolution. The commonly used Visium 
has spots in a hexagonal array 100 µm center to center and 55 μm 
in diameter (Fig. 2f). Bead diameter is 10 μm in Slide-seq and 2 μm 
in HDST (Fig. 2f). Slide-seq and HDST use bead sizes smaller 
than single cells, but they may not always provide single-cell reso-
lution because one bead can span two or more cells. Resolution of 
DBiT-seq is determined by channel width (either 50, 25, or 10 μm, 
Fig. 2f). More recently, the spot size can be reduced to below 1 μm, 
with RCA-amplified DNA nanoballs as small as 0.22 μm across, with 
spot barcodes deposited in wells that are 0.5 or 0.715 μm apart in 
Stereo-seq70, and in Seq-Scope polymerase colonies (polonies) with 
spatial barcodes ~0.6 μm center to center on an Illumina flow cell 
that has been repurposed to capture transcripts from tissue sec-
tions71 (Fig. 2f). Another polony-based method, PIXEL-seq, achieves 
a spot diameter of about 1.22 μm, but unlike in the flow cell, polony 
(or DNA cluster)-indexed library-sequencing (PIXEL-seq) does 
not have much spacing around each polony72. Techniques such as 
XYZeq73 and sci-Space74 have been developed to dissociate the single 
cell or nuclei in spatially barcoded spots for scRNA-seq, so the data 
have single-cell transcriptomic, but not spatial, resolution (Fig. 2f).

De novo reconstruction of spatial information. Some technolo-
gies have been developed to preserve information necessary to 
computationally reconstruct spatial gene expression patterns with-
out knowing or collecting spatial locations. One such technology 
is DNA microscopy75,76, which records proximity between cDNAs. 
This information can be used to reconstruct relative locations of 
transcripts. At the cellular level, gene expression in rare cell types 
can be reconstructed by deliberately assaying multiplets and then 
mapping them to locations in a spatial reference on the basis of gene 
expression of cells from common cell types attached to cells from 
the rare cell types77. Variants of the term “spatial transcriptomics” 
have also been used to describe techniques localizing transcripts to 
organelles (for example, APEX-seq78), although no spatial coordi-
nates are recorded.

Multi-omics. The transcriptome is only one aspect of cell function. 
Other aspects, such as the proteome, neuronal connectome, and 
3D chromatin conformation are also important to cell function, 
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and some methods have been developed to profile them along with 
the transcriptome in the same cells (Section 5.8 of Supplementary 
Information). For the proteome, oligonucleotide-tagged antibod-
ies are used to detect proteins of interest, and the oligonucleotide 
signifying the protein species can be detected with smFISH-based 
methods. Such antibody panels have been combined with tran-
scriptomics, such as in DBiT-seq68, SM-Omics79, GeoMX DSP44, 
and MERFISH80. With the oligonucleotide barcode, over 100 anti-
bodies can be used, such as when using all available antibody pan-
els for GeoMX DSP. For 3D chromatin conformation, MERFISH 
and seqFISH+ have been adapted to visualize chromatin struc-
ture, by targeting DNA genomic loci81 or introns of nascent tran-
scripts81,82. For the neuronal connectome, multiplexed transcript 
quantification can also be combined with neuron projection trac-
ing. For instance, cholera toxin subunit b (CTb) retrograde tracing 
has been used in conjunction with MERFISH to visualize axons83. 
Also, BAR-seq was originally designed to use ISS for axon trac-
ing by sequencing neuron-specific barcodes introduced by a virus 
injected into the brain, but was later adapted to sequence gene 
barcodes64 as well. In addition, while not an -ome per se, electro-
physiology has been recorded prior to transcriptome profiling in 
the same cells, such as with a patch–clamp in explanted human 
neurons, followed by HCR–smFISH84, and with extracellular 
electrodes in cultured cardiomyocytes, followed by STARmap in 
electro-seq85.

Comparison across categories
In this section, we discuss trade-offs, among high detection effi-
ciency, transcriptome-wide profiling, high spatial resolution, and 
sometimes larger tissue area, made by different types of technolo-
gies, as well as practical factors relevant to selection of technology, 
such as FFPE compatibility and cost/usability.

Detection efficiency. Detection efficiency is commonly estimated 
by performing non-barcoded smFISH with near 100% sensitivity for 
select marker genes on the same cell type and comparing the average 
number of transcripts detected for each gene per cell for techniques 
in which cells can be segmented, or per unit tissue area for tech-
niques without single-cell resolution. For NGS-based techniques 
with UMI, sometimes the number of UMIs and genes detected per 
cell or unit area is compared with that of other techniques with 
UMI. Note that comparisons of efficiencies are confounded by dif-
ferent tissues and methods used to estimate efficiencies in different 
studies and by different sequencing depths in NGS.

Highly multiplexed smFISH techniques tend to excel in this area, 
with ~95% for Hamming distance 4 MERFISH86 compared with 
non-barcoded smFISH; multiple rounds of hybridization tend to 
decrease the efficiency, in part because barcodes with incorrigible 
errors are discarded. NGS barcoding techniques tend to have lower 
efficiency. For select genes in the same tissue type, ST detected around 
6.9% as many UMIs as transcript spots detected by non-multiplexed 
smFISH per unit area analyzed87, comparable to the detection effi-
ciency of scRNA-seq per cell analyzed. Visium’s efficiency seems to 
be moderately higher than that of ST, and DBiT-seq’s is even higher, 
at ~15.5% per area compared with smFISH68. Efficiencies of the sub-
micrometer techniques, in the number of UMIs per unit area in the 
same tissue, might be comparable to that of Visium72. ISS tends to 
be less efficient, in part because of inefficiency of reverse transcrip-
tion (RT) and SBL. Whereas the detection efficiency of scRNA-seq 
techniques is between 3% and 25% (refs. 65,88–91), the detection effi-
ciencies of Cartana ISS and FISSEQ92 are ~5% and ~0.005% respec-
tively, with STARmap being only marginally better than scRNA-seq. 
However, compared with smFISH, ExSeq claims up to 62% effi-
ciency per cell for genes tested63. Newer technologies tend to skip 
RT and make ligation of the padlock probe on an RNA template 
more efficient, such as in BOLORAMIS and hybridization-based 

RNA ISS (HybRISS)93, or to substitute SBL with seqFISH-like bar-
coding, as in HybISS, to improve detection efficiency.

Transcriptome-wide profiling. Techniques not targeting specific 
genes with a panel of known probes are transcriptome wide, such 
as ROI selection followed by NGS, and NGS barcoding, where 
NGS is performed on poly-A captured transcripts, as well as untar-
geted ISS, such as FISSEQ and untargeted ExSeq. However, these 
transcriptome-wide techniques tend to have lower detection effi-
ciency. It is possible to use certain techniques that require gene 
probe panels to quantify transcripts of over 10,000 genes, such 
as seqFISH+, MERFISH, and GeoMX WTA, although unlike 
in NGS, novel transcripts not targeted by the probes cannot be 
detected. While GeoMX WTA has been used in some studies out-
side Nanostring, where GeoMX originated94, the number of overall 
genes profiled with smFISH-based techniques per dataset has not 
increased over time (Fig. 3g). Instead, in studies using smFISH- and 
ISS-based techniques, a smaller number of genes is profiled, and the 
smFISH or ISS dataset is complementary to a transcriptome-wide 
scRNA-seq dataset95.

The number of genes that can be detected by highly multiplexed 
smFISH is limited by optical crowding, and expansion microscopy 
was used to address this issue in MERFISH and ExSeq. However, 
expansion reduces the amount of tissue covered per field of view, 
thus limiting imaging throughput.

Spatial resolution. smFISH- and ISS-based techniques have 
single-cell and single-molecule resolution, although cell segmenta-
tion can be challenging. In addition, smFISH- and ISS-based tech-
niques can be applied to cleared thick tissue sections80, although 
the number of genes profiled in this case is much smaller than in 
most two-dimension (2D) highly multiplexed smFISH studies. 
All other types of techniques require tissue sections and are thus 
limited to 2D, or 3D with z resolution limited to section thickness, 
which is usually at least 10 μm for frozen sections. Although there 
are submicrometer-resolution NGS barcoding techniques, and the 
ROIs of LCM and GeoMX can in principle be single-cell or smaller, 
these types of techniques, as they are most commonly used, tend to 
have lower spatial resolution, such as 55 μm for Visium and several 
hundred micrometers across for GeoMX (for example 700 × 800 
μm in ref. 94), owing to insufficient sensitivity of transcript detection 
at single-cell or subcellular resolution96.

Tissue area. Overall, techniques with lower detection efficiencies 
tend to be better at profiling larger tissue areas, and for smFISH, 
there seems to be a trade-off between the number of cells and the 
number of genes. In current-era spatial transcriptomics, a tissue 
section several millimeters across, such as a substantial portion of a 
mouse brain coronal section, which can fit into a Visium or ST tis-
sue capture area, is considered large, and increasing tissue area and 
sequencing depth for sensitivity would increase sequencing cost. 
Cartana ISS and HybISS have also been used to profile large areas 
of tissue several millimeters across, but only around 100 genes97. 
An advantage of HybISS here is strong RCA signal and less opti-
cal crowding, thanks to lower detection efficiency facilitating lower 
magnification (×20; MERFISH uses ×60) and thus faster imaging. 
While most highly multiplexed smFISH datasets remain at hun-
dreds of genes (Fig. 3g), among studies that reported the number 
of cells, the total number of cells per study has increased (Fig. 3h, 
P < 0.001, two-sided t-test). ROI-selection techniques are gener-
ally used for small numbers of ROIs, as it’s labor intensive to select 
very large numbers of ROIs and process them separately without 
spatial barcoding. However, when high spatial resolution is not as 
crucial or practical, ROIs with very low resolution can be selected 
to cover more tissue, as in the LCM dataset in the Allen Human 
Brain Atlas98.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Review ARticleNATuRe MeThOds

MERFISH

Slide-seq2

GeoMX WTA

smFISH

Manual dissection

ISS

Tomo-seq

ST

GeoMX DSP

Visium

0 10 20 30 40 50 60
Number of institutions

Te
ch

no
lo

gy
a b c

Other (43)

Drosophila
melanogaster (6)

Danio rerio (11)

Mus musculus (136)

Homo sapiens (158)

d e f

20

40

60

Number of
publications
(healthy)

5

10

15

20

Number of
publications
(pathological)

SRM seqFISH

iceFISH

bDNA−smFISH

seqFISH

smFISH

MERFISH

corrFISH

corrFISH corrFISHcorrFISH

SGA

smFISH smFISH

seqFISH
seqFISH+

seqFISH+
ExM−MERFISH

MERFISH

C−FISH

MERFISH

MERFISH

MOSAICA

MERFISH

MERFISH

MERFISH

SMI

SMI

10

100

1000

10,000

2012 2014 2016 2018 2020 2022

Date published

2012 2014 2016 2018 2020 2022

Date published

N
um

be
r 

of
 g

en
es

 p
er

 d
at

as
et

g

SRM seqFISH

bDNA−smFISH

smFISH

MERFISH
corrFISH

MERFISH

HCR−seqFISH
smFISH

SGA

seqFISH
smFISH

HCR−seqFISH

osmFISH

MERFISH

seqFISH+

HCR−seqFISH MERFISH

bDNA−smFISH

MERFISH
SCRINSHOT

smFISH

CISI

smFISH

par−seqFISH

HybISS

smFISH
seqFISH

MERFISH

coppaFISH

SMI

EASI−FISH

1 × 102

1 × 103

1 × 104

1 × 105

1 × 106

To
ta

l n
um

be
r 

of
 c

el
ls

 p
er

 s
tu

dy

h

C++

MATLAB

Python

R

0 50 100 150 200
Number of publications

La
ng

ua
ge

C

C++

MATLAB

Python

R

0 50 100 150 200
Number of publications

La
ng

ua
ge

Users (downstream analysis)i Package developersj

Fig. 3 | Current-era metadata. a, Number of institutions that have published papers or preprints with each technique, excluding LCM literature too vast to be 
manually curated. Only techniques used by at least three institutions are shown. b, Number of publications for each healthy organ in humans (male shown 
here, as there is no study on healthy female-specific organs in humans at present). c, Number of publications for pathological organs in humans (female 
shown here, but there are two studies on prostate cancer). d, Number of publications per species. e, Number of publications per healthy organ in mice. f, 
Number of publications for pathological organs in mice. g, Number of genes per dataset over time. Gray ribbon in g and h stands for 95% confidence interval. 
The slope is not significantly different from 0 in g (t test). In g and h, the y axis is log-transformed. h, Total number of cells per study profiled by smFISH-based 
techniques over time among studies that reported the number of cells. IceFISH, intron chromosomal expression FISH; C-FISH, consecutive FISH; MOSAICA, 
multi-omic single-scan assay with integrated combinatorial analysis; SGA, spatial genomic analysis; corrFISH, correlation FISH; EASI-FISH, expansion-assisted 
iterative FISH; par-seqFISH, parallel seqFISH; CISI, composite in situ imaging; SCRINSHOT, single-cell-resolution in situ hybridization on tissue; coppaFISH, 
combinatorial padlock-probe-amplified FISH. i, Number of publications for data collection using each of the fice most popular programming languages for 
downstream data analysis. j, Number of publications for data analysis using each of the five most popular programming languages for package development. 
In both i and j, each icon stands for 20 publications. Note that multiple programming languages can be used in one publication.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Review ARticle NATuRe MeThOds

Usability. While most techniques were originally developed for 
frozen sections, some are compatible with FFPE, which, as this is 
a common tissue archive, may at times be the only type of tissue 
available. Among smFISH-based techniques, ACD’s RNAscope99 is 
FFPE compatible but can profile only 12 genes at a time in FFPE, 
compared with 48 in frozen sections. Among NGS barcoding tech-
niques, Visium100 and DBiT-seq101 are FFPE compatible, but owing to 
crosslinking and RNA fragmentation in archival storage, detection 
efficiency as number of UMIs and genes detected per spot in FFPE 
tissues is about 5 to 10 times lower than in their frozen counterparts. 
LCM has long been applied to FFPE tissues, even at single-cell reso-
lution with the sensitive SMART-3Seq102. GeoMX is not only FFPE 
compatible, but also predominantly used on pathological human 
FFPE tissues (Figure 5.8 in Supplementary Information).

While many new techniques have been developed, most 
never spread beyond their institutions of origin (Figure 4.9 in 
Supplementary Information). Among those that have spread far, 
the most popular tend to have commercial platforms, such as 
LCM, 10X Visium and its precursor ST, Cartana ISS (acquired by 
10X), and Nanostring GeoMX (Fig. 3a). In addition, many major 
institutions have core facilities for NGS, if not LCM, Visium, and 
GeoMX (for example, the TPCL at the University of California, 
Los Angeles, and the Advanced Genomics Core at University of 
Michigan, Ann Arbor), reducing the cost of purchasing new equip-
ment and training personnel in individual laboratories. Tomo-seq 
has also spread, perhaps because of its ease of implementation 
with standard equipment. In contrast, smFISH-based techniques 
have not spread as widely thus far, perhaps due to the complicated 
home-built fluidic system, long imaging time, terabytes of images, 
and expensive probes. However, some smFISH techniques are being 
commercialized with automated imaging and fluidic platforms, 
such as MERFISH, commercialized as MERSCOPE by Vizgen, and 
another smFISH-based technique, Resolve Biosciences’s Molecular 
Cartography platform. In addition, Rebus Esper can be programmed 
to automate different smFISH technologies and can process images 
online as in Illumina sequencing, and has been used to automate 
cyclic-ouroboros smFISH (osmFISH)103. With the new automated 
commercial platforms, the popularity of smFISH-based techniques 
might rise, especially if such platforms are adopted by core facilities.

Data analysis. The processing and analysis of high-throughput spa-
tial transcriptomics data requires new methods and tools, especially 
for problems such as image preprocessing, spatial reconstruction of 
scRNA-seq data, cell-type deconvolution of NGS barcoding data, 

identification of spatially variable genes, and inference of cell–cell 
interactions (Fig. 2g).

Upstream. Upstream data analysis converts raw data into forms 
more amenable to biological interpretation and is dependent on the 
data-collection technology.

For smFISH- and ISS-based methods, the raw data consist of 
images of fluorescent spots, which must be processed to identify 
transcript spots, match spots to genes, and assign spots to cells 
(Section 7.1 of Section Information). smFISH and ISS studies often 
use classical image-processing tools, such as top-hat filtering, to 
remove background, translation to align images from different 
rounds of hybridization, and watershed for cell segmentation47,56,86. 
Machine learning in Ilastik, deep learning packages like DeepCell104, 
and alternative tools incorporating scRNA-seq data105 can also be 
used for cell segmentation. However, without visualizing the plasma 
membrane, accuracy of cell segmentation is limited. Some analyses, 
such as identification of tissue regions, can be performed without 
cell segmentation105. Until 2019, image processing was typically per-
formed with poorly documented and technique-specific code writ-
ten in the proprietary language MATLAB, but more recently, such 
code is increasingly written in the open-source language Python. 
The package starfish106 was developed as an attempt to provide a 
unified and well-documented user interface to process images from 
different techniques, such as seqFISH, MERFISH, and ISS, but it has 
not been widely adopted.

Improvements in scRNA-seq technology have inspired new 
methods for leveraging the complementary nature of high-resolution 
transcriptome quantification with spatial transcriptomics data. For 
smFISH and ISS data that are not transcriptome wide, expression 
patterns of genes not profiled in the spatial data can be imputed 
with scRNA-seq data, either by mapping dissociated scRNA-seq 
cells to the spatial reference or by directly imputing gene expression 
in space using expression profiles from scRNA-seq (Section 7.3 in 
Supplementary Information). Cells can be mapped to spatial loca-
tions on an existing spatial dataset with genes shared by the two 
datasets, with an ad hoc score favoring similarity between cell and 
location107 or via optimal transport modeling108. While ad hoc scor-
ing is simple to implement, the results tend to be qualitative. Gene 
expression in space can also be imputed from scRNA-seq with-
out explicitly mapping scRNA-seq cells to locations. A common 
approach is to project the spatial and scRNA-seq data into a shared 
low-dimensional and batch-free latent space, and to subsequently 
estimate gene expression by projecting the spatial cells into the 
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latent space. Examples of this approach include Seurat3 (ref. 32) and 
gimVI109. These methods may also be used to add spatial context to 
single-cell multi-omics data when spatial techniques for some of the 
multi-omics data are not available.

In spatial data that are not single-cell resolution, such as those 
derived from ST and Visium, scRNA-seq data can inform cell-type 
composition of the spots or voxels (Section 7.4 of Supplementary 
Information). Negative binomial models and non-negative least 
squares (NNLS) are common principles underlying cell-type decon-
volution methods. Negative binomial models are typically param-
eterized with rate and dispersion, and the rate is modeled as a 
weighted sum of cell-type signatures from scRNA-seq, with scaling 
factors for library size and technology sensitivity; the non-negative 
weights may be normalized to sum up to 1 as cell-type proportions 
per spot. Negative-binomial-based methods include stereoscope110 
and cell2location111. Simpler than negative binomial, gene expression 
is modeled as Poisson instead in RCTD112. Cell-type deconvolution 
can also be performed by modeling gene expression at each spot as 
a weighted sum of cell-type signatures outside the rate parameter of 
negative binomial distributions, and the weights are inferred with 
NNLS. For example, AdRoit113 uses the means of negative bino-
mial distributions fitted to spot gene expression and to scRNA-seq 
cell-type signatures. The cell-type signatures can be non-negative 
matrix factorization (NMF) cell factors from scRNA-seq assigned to 
cell types, as in NMFreg66 and SPOTlight114. The cell-type weights 
can be regularized or thresholded to limit the number of cell types 
assigned to each spot. Parallels can also be drawn between cell-type 
deconvolution and topic modeling in text mining; cell types are 
analogous to topics, and genes are analogous to words. Latent 
Dirichlet allocation (LDA) from topic modeling has been adapted to 
cell-type deconvolution, such as in spatial transcriptomics deconvo-
lution by topic modeling (STRIDE)115 and STdeconvolve116; the latter 
is unsupervised and does not require a scRNA-seq reference.

Downstream. Downstream analyses most often apply to the gene 
count matrix and cell or spot locations, and are thus largely inde-
pendent of data-collection technologies.

Given the relevance of scRNA-seq to spatial data, and how spa-
tial data are often analyzed like scRNA-seq data in exploratory 
data analysis (EDA), popular scRNA-seq EDA ecosystems, such 
as Seurat32, SCANPY (which spatical single-cell analysis in Python 
(Squidpy) is built on)117, and SingleCellExperiment (extended by 
SpatialExperiment)118, have added functionalities for spatial data, 
such as updates to data containers and functions to facilitate visual-
ization of gene expression and cell or spot metadata at spatial loca-
tions (Section 7.2 of Supplementary Information). EDA packages 
dedicated to spatial data with beautiful graphics and good docu-
mentation have also been written, such as Giotto119 and STUtility120. 
Seurat and Giotto also implement basic methods to identify spa-
tially variable genes. In addition, Giotto implements methods to 
identify cell-type enrichment in ST and Visium spots, to identify 
gene coexpression and association between gene expression and 
cell-type colocalization, and to identify spatial regions121.

Spatially variable genes are genes whose expression is associated 
with spatial location (Section 7.5 of Supplementary Information). 
Three approaches are commonly used for these genes: Gaussian 
process regression (GPR)122 and its generalization to Poisson123 
and NB124, Laplacian score125, and Moran’s I. GPR-based meth-
ods model normalize gene expression or the rate parameter of 
Poisson or NB gene expression as a GPR and find whether the 
model better describes the data with the spatial term than without. 
Laplacian-score-based methods identify genes whose expression 
better reflects the structure of a spatial neighborhood graph. The 
locations of cells can also be modeled as a spatial point process with 
gene expression as marks; spatially variable genes can be identified as 
marks associated with locations126. Fitting GPR models to numerous 

genes can be time consuming, especially when a Bayesian approach 
with Markov chain Monte Carlo is used. Permutation testing used 
in Laplacian-score-based methods can also be time consuming. As 
both GPR- and Laplacian-score-based methods seek to identify spa-
tial autocorrelation, sometimes the classic spatial autocorrelation 
metric Moran’s I is directly used to identify spatially variable genes, 
as in Seurat v3 and above. MERINGUE127 uses a local version of 
Moran’s I. Moran’s I and its significance testing are implemented in 
established geospatial packages and are easy and fast to run, but may 
have less statistical power than model-based methods123.

Spatial information also enables identification of potential cell–
cell interactions (Supplementary Section 7.8). This is commonly 
done with knowledge of ligand–receptor (L–R) pairs, and can test 
which L–R pairs are more likely to be expressed in neighboring cells 
or spots128 or whether two cell types each expressing the ligand and 
the receptor are more likely to colocalize127. The cross-type L func-
tion from a spatial point process can be used to find cell types that 
colocalize129. Expression of genes of interest can also be modeled, 
including a term for cell–cell colocalization; a gene is considered 
associated with cell–cell colocalization if the model better describes 
the data with this term than without130.

There are many other types of downstream analysis that are 
useful for spatial transcriptomics analysis, including identifica-
tion of archetypal gene patterns (Section 7.6 of Supplementary 
Information), spatial regions defined by the transcriptome (Section 
7.7 of Supplementary Information), inferring gene–gene interac-
tions (Section 7.9 of Supplementary Information), subcellular tran-
script localization (Section 7.10 of Supplementary Information), 
and gene expression imputation from H&E images (Section 7.11 of 
Supplementary Information).

trends in the spatial transcriptomics field
The quality versus quantity trade-off inherent in existing technolo-
gies means that there is no single “best” solution currently available, 
and the difficulty in implementing methods has resulted in many 
technologies never spreading beyond their institutions of origin. 
LCM, Visium, ST, GeoMX DSP, and Tomo-seq have been the most 
widely adopted (Fig. 3a), and in almost all cases in the United States 
and western Europe (Figures 4.12, 5.27, and 5.33 in Supplementary 
Information). In terms of tissues analyzed, multiplexed current-era 
techniques have been used widely to characterize human tissues131, 
tumors87 (especially breast tumors), and pathological tissues that 
don’t necessarily have a stereotypical structure132 (Fig. 3b,c). In the 
SARS-CoV-2 pandemic, GeoMX DSP has been used for spatial 
transcriptomic profiling in lung autopsies of people who died due 
to COVID-19 (ref. 94).

Some of the processed data, and associated spatially vari-
able genes, can be downloaded and visualized from SpatialDB133. 
Excluding LCM literature too vast to manually curate, the vast 
majority of current-era studies were performed in either humans 
or mice (Fig. 3d), and the brain is the most studied healthy organ 
while the lungs (particularly due to COVID-19) and breast tumors 
are also often studied in humans (Fig. 3b,e,f). In particular, the 
international project Brain Research through Advancing Innovative 
Neurotechnologies (BRAIN) Initiative—Cell Census Network 
(BICCN) is constructing a multi-modal atlas for human, mouse, 
and non-human primate brains, including spatial data such as those 
from MERFISH and seqFISH34.

All packages mentioned in the “Data analysis” section are open 
source and written in languages such as R, Python, and Julia. 
Downstream analyses in studies primarily concerning new data 
anddata-analysis packages predominantly use open-source pro-
gramming languages, such as R, Python, and C++ (Fig. 3i,j). While 
MATLAB is still popular, its use has not risen, as was the case for 
R and Python (Figure 7.12 in Supplementary Information). While 
R is more popular for downstream analyses and EDA, Python, and 
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C++ are more popular for package development (Fig. 3i,j). Most 
of the packages are not hosted on standard repositories, such as 
the Comprehensive R Archive Network (CRAN), Bioconductor, 
pip, or conda (Figure 7.13 in Supplementary Information). While 
most packages using R, Python, and C++ are well-documented, 
many MATLAB packages are not (Figure 7.12 in Supplementary 
Information). The standard repositories and documentation make 
packages more usable; this is discussed in more detail in Section 
7.12 of the Supplementary Information.

Future perspective
While technologies of the past are rapidly depreciating, the ideas 
and methods that underlie them are fundamental to current-era 
spatial transcriptomics. The field has dramatically expanded over 
the past 5 years (Fig. 4a), with a plethora of new techniques and the 
popularization of Visium driving growth (Fig. 4b and Figures 4.9, 
5.38, and 8.1 of Supplementary Information).

What lies ahead of the rising curves (Fig. 4)? First, more can 
be done to improve data-collection techniques. For example, most 
current-era techniques require tissue sections. Highly multiplexed 
whole-mount smFISH and tissue clearing protocols, and more 
efficient computational tools that will align multiple sections 
that may come from multiple individuals or even developmental 
stages, should be developed to extend current-era techniques to 
3D and to spatiotemporal analysis. Future techniques may also 
extend the current era from the scale of millimeters to centimeters 
and across other modalities, such as epigenomics and metabolo-
mics, to give a fuller picture of cellular function. Furthermore, 
smFISH and ISS techniques, with signal amplification to reduce 
the number of probes per transcript, can be adapted to target 
isoform-specific exons or untranslated regions, rather than all 
transcripts of a gene.

Second, current-era data have not yet been integrated into com-
prehensive databases. Prequel databases, such as GXD and e-Mouse 
Atlas and Gene Expression (EMAGE)134, include data from mul-
tiple sources and can be queried by gene symbol and develop-
mental and spatial ontologies. In addition, ABA26 and EMAGE 
aligned ISH images to common coordinates and can be queried 
with expression patterns. While some current-era authors provide 
online interactive visualization of datasets from their studies33, 
comprehensive databases integrating, querying, and visualizing 
data from multiple sources, as in the prequel era, have not yet been 
developed. Furthermore, while prequel ontologies are still used 
in current-era studies, such ontologies may be improved with the 
transcriptome-wide quantitative data from the current era.

Third, outside of LCM, the current era is highly focused on 
humans and mice, while potential spatial transcriptomics investiga-
tions of other species, such as plants and invertebrates, lag behind. 
Technological modernization of prequel consortia for organisms 
other than humans and mice holds much promise for the develop-
ment of useful spatial transcriptomics atlases.

Fourth, an open-source, well-documented, interoperable, and 
scalable workflow with an integrated, easy-to-use interface would 
greatly simplify spatial transcriptomics data collection and analysis. 
At present, for tasks beyond EDA, users still often need to learn new 
syntax, convert object types, and even learn new languages to use 
some data-analysis tools. Finally, our survey of methods shows that 
spatial transcriptomics methods need to be more open and acces-
sible so that they become adopted around the world and are not 
restricted to elite Western institutions.

data availability
The database of spatial transcriptomics literature can be accessed 
at https://docs.google.com/spreadsheets/d/1sJDb9B7AtYm 
fKv4-m8XR7uc3XXw_k4kGSout8cqZ8bY/edit#gid=1363594152. 
The version used as of writing is in the metadata.xlsx file in the  

frozen DOI version of the GitHub repository to reproduce the fig-
ures in this paper and render the supplementary website: https://
doi.org/10.5281/zenodo.5774128

Code availability
All code used to generate figures in this paper and render the 
supplementary website is in the GitHub repository: https://github.
com/pachterlab/LP_2021. The frozen DOI version of the reposi-
tory as of final submission of this paper is on Zenodo: https://doi.
org/10.5281/zenodo.5774129.
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