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SUMMARY

Mass spectrometry (MS)-based proteomics has become a powerful technology to quantify the entire comple-
ment of proteins in cells or tissues. Here, we review challenges and recent advances in the LC-MS-based anal-
ysis of minute protein amounts, down to the level of single cells. Application of this technology revealed that
single-cell transcriptomes are dominated by stochastic noise due to the very low number of transcripts per
cell, whereas the single-cell proteome appears to be complete. The spatial organization of cells in tissues
can be studied by emerging technologies, including multiplexed imaging and spatial transcriptomics, which
can now be combined with ultra-sensitive proteomics. Combined with high-content imaging, artificial intelli-
gence and single-cell laser microdissection, MS-based proteomics provides an unbiased molecular readout
close to the functional level. Potential applications range frombasicbiological questions toprecisionmedicine.
INTRODUCTION

The complexity of an organism arises through the intricate func-

tional and spatial adaptation of its cell types and cell states. Hu-

mans, for instance, have hundreds of different cell types, and

each of these can further change their state over time and de-

pending on where they are in the body (Regev et al., 2017). For

centuries, increasingly advanced microscopy technologies

have shed light on this complexity and heterogeneity. More

recently, in a complementary approach, cells have been molec-

ularly studied in a system-wide, ‘‘untargeted’’ manner using ge-

nomics, proteomics, or metabolomics. Tremendous advances in

genomic technologies, such as RNA sequencing (RNA-seq),

now allow the characterization of the transcriptome of thousands

of single cells, revealing important biological insights into cellular

heterogeneity (Tabula Muris Consortium et al., 2018).

As proteins in their different forms and modified states are

generally the functional units in a cell, it would be very attractive

to directly study them at the single-cell level rather than by using

transcripts as a proxy. In a targeted manner, this can readily be

done by antibodies directed against a number of proteins of inter-

est, for instance, by multiplexed imaging or by FACS sorting. In a

somewhat related mass spectrometry (MS)-based technology

called CyTOF, heavy metals are coupled to these antibodies and

the metal isotope patterns are then recorded by specialized

massspectrometers (Bodenmiller, 2016; Bodenmiller et al., 2012).

Since the introduction of electrospray in 1989 for the analysis

of proteins (Fenn et al., 1989), the speed and sensitivity of MS-

based technology has continuously increased, which now

readily allows the in-depth characterization of the proteome.
Importantly, for our purposes, there has been a dramatic boost

in sensitivity in just the last few years. In our own laboratory,

for instance, the amount of sample needed to identify thousands

of proteins in routine 1-h liquid chromatography-mass spec-

trometry (LC-MS) measurements has decreased more than

100-fold to the nanogram level (Beck et al., 2015; Meier

et al., 2020).

Such advances have initiated a quest for measuring single-cell

proteomes at a depth similar to that of single-cell RNA-seq

(scRNA-seq) and ideally also in a robust and scalable manner.

However, proteomics has neither an equivalent to oligonucleo-

tide amplification nor to barcoding that enable multiplexing and

high throughput in scRNA-seq. Illustrating the challenge, a single

cell contains only about 150 pg of protein material, and its prote-

ome consists of far more than 12,000 different proteins, whose

abundance is furthermore distributed over many orders of

magnitude (Bekker-Jensen et al., 2017; Muntel et al., 2019;

Volpe and Eremenko-Volpe, 1970).

In the first part of this review, we describe how this challenge is

being addressed by miniaturizing the entire sample preparation

workflow and by dramatically improving the sensitivity of the

LC-MS systems themselves. This has now enabled the direct

comparison of single-cell proteomes and transcriptomes, which

turn out to be quite different from each other in unexpected

ways. Initially the above technologies generally require cells to

be in suspension or to be disaggregated from tissues before

analysis, thereby losing the all-important spatial context of

each single cell (Figure 1A).

In the second part of the review, we describe how this impor-

tant information can be integrated by multiplexed imaging,
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Figure 1. Workflows for single-cell proteomics
(A) Different approaches for isolation of single cells from tissue. Tissues can be treated with enzymes to release single cells followed by single-cell sorting into
individual wells. This allows cell-type assignment after downstream analysis but loses the spatial context. Instead, tissues can be sectioned and isolated as
octagons by laser microdissection, which results in a merged proteome from neighboring cells and the extracellular matrix. The isolation of single-cell types by
laser microdissection after assignment of their spatial position results in a clean isolation with defined spatial information.
(B) Handling of the sample after isolation of the single cells aims at miniaturization to sub mL-scale and lossless preparation. Several options have emerged, which
are known as nanodroplet processing in one pot for trace samples, oil-air droplet processing, nanopackage processing, and microfluidics devices.

(legend continued on next page)
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spatial transcriptomics, or spatial proteomics. We also introduce

a concept that we have termed ‘‘deep visual proteomics (DVP),’’

which combines the advantages of multiplexed imaging with a

deep proteomic read out of single-cell types or states (Mund et

al., 2022; Spatial characterization of single tumor cells by prote-

omics, 2022). By combining digital pathology with a molecular

readout, these approaches are set to make a transforming

impact toward precision medicine.
Ultra-sensitive mass spectrometry for single-cell
analysis
There are many different sample preparation techniques for pro-

cessing lowcell numbers down to the single-cell level. Their over-

all goal is the collection of these cells without loss,miniaturization

of sample lysis, protein extraction, and digestion into peptides

that are amenable to MS, all aiming at minimizing sample loss

and maximizing digestion kinetics (Figure 1B) (Brunner et al.,

2022; Gebreyesus et al., 2022; Li et al., 2018; Williams et al.,

2020). A major lesson learned in ultra-high sensitivity proteomics

is that the analysis of real samples—as opposed to diluted down

standards—exposes even subtle imperfections in the workflow,

which would otherwise be hidden in bulk analysis. Furthermore,

what works in a highly optimized experimental setting for a proof

of concept may not be amenable to a high-throughput routine.

As a first step of sample preparation, isolated cells need to be

digested to peptides. A pioneering implementation of single-cell

sample preparation is called ‘‘nanodroplet for processing in one

pot for trace amounts (nanoPOTS)’’ (Zhu et al., 2018a). In nano-

POTS, all sample processing is performed in a 200-nL volume

spotted robotically onto a glass slide in a humidity-controlled

chamber to prevent evaporation. Similarly, in the ‘‘oil-air droplet

(OAD)’’ method, the sample is placed in a nanoscale droplet on

the OAD chip, where it is covered with oil, again to prevent evap-

oration (Li et al., 2018). Proteomics researchers have also adapt-

ed microfluidic approaches that are widespread in scRNA-seq.

These promise parallel processing in enclosed systems andmin-

imal sample volumes (Gebreyesus et al., 2022). Along these

lines, the cellenONE instrument combines single-cell manipula-

tion by acoustic dispensing with a dedicated downstream

collection in a manner compatible with further proteomics pro-

cessing (Ctortecka et al., 2022a).

A limitation of many of these approaches is that they use very

dedicated and specialized devices that are not necessarily easily

available to use by the community. Furthermore, the absence of

a subsequent cleanup step requires enzymatic digestion in elec-

trospray compatible buffers rather than those with digestion

enhancing modifiers. In contrast, single cells can be processed

efficiently in standard low-bind 384-well plates. Here, the reac-

tion chamber can be used to collect cells in a standardized

manner by FACS or following laser capture microdissection

(LCM), and samples can be processed in microliter or sub-
(C) Single-cell-derived peptide analytes are separated by high-performance chr
‘‘true single-cell’’ approach, single cells are injected one by one (upper part of
comprising hundreds of cells increase the overall signal. Novel computational ap
tification and quantification of single-cell-derived peptide signals.
microliter volumes in standard PCR cyclers (Brunner et al.,

2022; Specht et al., 2021).

After sample preparation, the digested peptides need to be

transferred onto the chromatographic column without loss. A

capillary containing chromatographic material can passively

extract the peptides after which it can be placed in line with

the analytical column (Li et al., 2018; Williams et al., 2020). For

a more standardizable and nearly lossless approach, we have

found that the digestion mixtures from 384-well plates can be

transferred to commercial StageTips that are routinely used for

sample cleanup before chromatography (Bache et al., 2018; Bi-

nai et al., 2015; Rappsilber et al., 2007). A key advantage is that

peptides are concentrated in a ‘‘nanopackage’’ of only 20 nL,

which is then eluted onto the analytical column, leaving contam-

inants on the tip. This approach also allows efficient digestion at

low acetonitrile concentrations, which improves digestion ki-

netics (Brunner et al., 2022).

It has long been appreciated that electrospray sensitivity in-

creases with decreasing chromatographic flowrate, which in

turn favors very narrow columns. Whereas standard MS-based

proteomics is performed with 75-mm inner diameter columns

and flow rates of several hundred nanoliters per minute, dedi-

cated ultra-sensitive setups have used columns that are only

20 mm wide and flowrates in the low nL/min range. Although

they often achieve much higher sensitivity, peptide separation

power usually suffers, and it is difficult to manufacture them in

a reproducible and streamlined manner. The recently introduced

mPAC columns may be an attractive alternative, as they make

use of lithographically etched micro pillars in regular arrays

instead of high pressure packed column material (Malsche

et al., 2012). Initial reports already indicate excellent sensitivity

(Stadlmann et al., 2019), and this format could readily be adop-

ted to very low flow rates by producing columns with small cross

sections.

After eluting from the column, the peptides are transferred to

the gas phase by electrospray, which involves small, highly

charged droplets evaporating under ambient pressure, thereby

ionizing the contained analyte molecules (Figure 1C). Typically,

only a small percentage of the total ion population eluting at

each time point finds its way into the gas phase and ultimately

into the entrance orifice of the MS. Fully enclosed environments

such as the captive spray partially address this challenge by

increasing desolvation efficiency, as does the addition of chem-

icals such as DMSO to the solvents of the liquid chromatography

systemat low percentages (Beck et al., 2015; Hahne et al., 2013).

However, the largest contribution to higher sensitivity has been

an increase in the diameter of the orifice that admits the ions to

the MS, directly boosting the signal available for analysis. Ulti-

mately, it may be possible to electrospray directly into the vac-

uum, which would remove transfer losses entirely (Page et al.,

2008). Once inside the MS instrument, ions are very efficiently

guided until they are actually mass analyzed, fragmented, and
omatography followed by electrospraying into the mass spectrometer. In the
the panel), whereas in the multiplexed ‘‘scope’’ approach a booster channel
proaches comprising advanced neural networks allow high confidence iden-
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quantified, for which there are a variety of innovative strategies

and scan modes.

One of the first approaches for single-cell proteomics was

‘‘single-cell proteomics by mass spectrometry (SCoPE-MS),’’

which multiplexes a number of cells after labeling them with

the widely used tandem mass tag (TMT) reagents (Budnik

et al., 2018; Thompson et al., 2003). The crucial feature of

SCoPE-MS is the introduction of a ‘‘booster channel’’ initially

consisting of the equivalent of hundreds of cells, which is sepa-

rately labeled and mixed into the samples. For most aspects of

the MS analysis, this reduces the required sensitivity 10- to

100-fold as the vast majority of the signal comes from the

booster channel. This method was pioneered on the Orbitrap

analyzer, which is capable of resolving multiplexed samples

with very small reporter mass differences. Peptide fragmentation

is relatively simple, leading to the identification of several hun-

dred proteins per single cell and up to thousands altogether.

However, quantification of these single-cell proteomes is

complicated by isotope crosstalk between their channels and

the dominant booster channel. Furthermore, there is an exten-

sive history of well-documented issues with TMT quantification

in general (Bradshaw et al., 2005; Brenes et al., 2019; Cheung

et al., 2021). As the sensitivity of MS workflows has increased

dramatically, most of these problems could now be alleviated

by reducing the booster channel to nomore than 25 cells or leav-

ing it out altogether (Cheung et al., 2021). Furthermore, precur-

sor-bound instead of low molecular weight reporter ions would

further improve quantification accuracy (Pappireddi et al., 2019).

As an alternative to isotopically multiplexed methods, label-

free ‘‘true single-cell’’ methods analyze one cell at a time in the

mass spectrometer, and therefore the identification and quanti-

fication of proteins are based only on the signals of peptides

derived from that single cell (Brunner et al., 2022; Dou et al.,

2019; Liang et al., 2021). This requires the use of very efficient

scan modes. Data-dependent acquisition (DDA), in which pep-

tides are quantified based on their MS1 intensity, has been

used in many proof of concept single-cell studies (Brunner

et al., 2022; Cong et al., 2020; Li et al., 2018; Liang et al.,

2021). Depending on the cell type, more than 1,000 proteins

could be identified per single cell. However, DDA converts only

a small fraction of the incoming peptide ions into fragments

and does not always select the same ones for fragmentation, re-

sulting in relatively low data completeness over many single

cells. Data-independent acquisition (DIA) inherently has high

data completeness (Gillet et al., 2012; Röst et al., 2015) making

this scan mode attractive for single-cell proteomics. Normally,

DIA converts just a few percent of the peptide ions into frag-

ments onwhich identification and quantification are based.Mak-

ing use of the correlation of ion mobility andmass to charge (m/z)

in the ‘‘trapped ion mobility’’ time of flight instrument (timsTOF),

we have described a scan mode called diaPASEF that converts

much of the peptide ion current to quantifiable fragments (Meier

et al., 2020). This led to the quantification of up to 2,000 proteins

per single cell, with high data completeness (Brunner et al.,

2022). Improved software analysis of single-cell spectra by ma-

chine learning (ML) and in particular deep learning (DL) has also

provided a major boost and is currently a very active field of

research (Bruderer et al., 2015; Demichev et al., 2020; Mann
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et al., 2021). Artificial intelligence (AI) now assists in all stages

of the analytical pipeline of MS-based proteomics, predicting

the expected measurement points for each identified peptide

from the sequence alone. Furthermore, once a clinical study is

completed, AI is the method of choice to extract biomarker can-

didates from the data (Mann et al., 2021).

Many of the methods developed for ‘‘true single-cell’’ prote-

omics would improve isotopically multiplexed approaches as

well. Although DIA acquisition is normally incompatible with

TMT-based quantification because fragment ions from many

precursors are mixed together, ‘‘multiplexed DIA’’ may be

possible by employing precursor encoding or precursor-coupled

reporter ions with sophisticated algorithms to deconvolute the

data (Ctortecka et al., 2022b; Derks et al., 2021).

Single-cell transcriptomics versus proteomics
The canonical gene expression cascade starts with the tran-

scription of the genomic blueprint into mRNAs, which are then

translated into proteins, the main workhorses and regulators of

cellular life. The roughly 20,000 protein-coding genes in the hu-

man genome give rise to a number of different active RNA mol-

ecules, and in turn to hundreds of thousands of ‘‘proteoforms’’

including those subjected to post-translational modifications

(PTMs) that dynamically regulate protein function (Aebersold

et al., 2018; Melani et al., 2022). This vast complexity of the pro-

teome goes along with a very large dynamic range, with some

structural proteins expressed million-fold more than low abun-

dance, regulatory ones (Figure 2A).

Although the ‘‘central dogma of biology’’ (that DNA makes

mRNA and mRNA makes proteins) appears straightforward in

principle, in reality there are numerous control points of immense

complexity. Of particular interest here is the translation between

mRNAs and their cognate proteins, which is highly regulated and

non-linear. This is reflected in the relatively low correlation be-

tween the transcriptome and proteome observed in numerous

experiments (Pearson correlation coefficients typically in the

range of 0.3–0.6) (Buccitelli and Selbach, 2020). This is the

case for steady-state levels and is even more pronounced for

the correlation of changes in gene expression upon perturbation,

which can even be anticorrelated at particular time points, for

example, during tumor progression (Zhang et al., 2014).

In single-cell proteomics, the journey starts with obtaining in-

dividual cells. In this aspect researchers could build on the

extensive experience of single-cell transcriptome analysis.

Oligonucleotide sequencing technologies have advanced

tremendously and now enable routine analysis and comprehen-

sive coverage of the genome and transcriptome. scRNA-seq has

become routine and high throughput, using barcodes to tag all

the individual RNA molecules in a cell and quantifying most of

them. By far, the majority of these studies employ either suspen-

sion cells or fresh tissue cells that have been brought into solu-

tion by tissue disaggregation and subsequent cell sorting into

single wells. For instance, droplet-based single-cell methods

can sort up to 15,000 events per second and have very recently

even been coupled tomultiparameter image-enabled cell sorting

(Schraivogel et al., 2022).

Despite this, even the latest single-cell RNA-seq technologies

still report high dropout rates for each individual cell
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Figure 2. The cellular flow of information and the comparison of transcriptome to the proteome
(A) The molecular flow of information from genome to transcriptome, proteome, and the metabolome. Average copy numbers for each level are indicated.
(B) Single-cell correlation analysis of the proteome highlights a high quantitative protein correlation.
(C) Transcriptome expression levels in single cells are very different from single-cell proteomes in a principal component analysis (PCA).
(D) Distribution of coefficients of variation of the transcriptome and proteome of single cells of the same cell type (blue). A core proteome defined by highest data
completeness and least quantitative change at the proteome level is contrasted to matched transcriptome genes (orange). (Box and whiskers: the middle
represents the median, the top and the bottom of the box represent the upper and lower quartile values of the data, and the whiskers represent the 1.53 IQR). For
further details, see main text.
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(Svensson, 2020; Svensson et al., 2017). This is presumably due

to the very low number of transcripts per active gene in a given

cell. Even in dividing cells the average number of transcripts of

expressed genes is less than ten, while for the majority of genes

in nondividing tissue cells, copy numbers are less than one

(Eberwine et al., 2014). This introduces a high stochastic fluctu-

ation in the number of transcripts per gene and per cell (termed

Poisson or shot noise) and raises interesting questions about

whichmRNA copy numbers are needed to affect biological func-

tions and how cells regulate gene expression in a robust manner,

for instance, by transcriptional bursts (Larsson et al., 2019).

At the bulk proteome level, we and others have observed that

there is generally at least a 100-fold difference in copy numbers

of proteins compared with corresponding mRNAs, well above
the level of Poisson noise (Azimifar et al., 2014; Schwanh€ausser

et al., 2011). This is because each single cell needs a full comple-

ment of proteins and functional proteoforms to perform its

myriad functions, whereasmost transcriptsmay only be required

in particular situations.

In a recent study, we have experimentally explored these

questions with the single-cell proteomics technology described

above. We drug-perturbed a cancer cell line to profile different

cell-cycle stages at the single-cell level and compared our re-

sults with equivalent scRNA-seq data (Brunner et al., 2022). Sin-

gle-cell proteomes correlated highly with each other and pro-

teins significantly changing throughout the cell cycle were

known or likely novel actors in this process (Figure 2B). Interest-

ingly, cells clustered quite differently by their transcriptomes and
Molecular Cell 82, June 16, 2022 2339
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proteomes, supporting the notion of different modes of regula-

tion (Figure 2C). Strikingly, the coefficients of variation of proteins

compared with cognate mRNAs were much lower (Figure 2D).

Rather than reflecting differences in technology, we attribute

this phenomenon to the above-mentioned stochastic nature of

the expression of transcripts compared with the proteins. We

further defined a ‘‘core proteome’’ as the proteins with the high-

est data completeness and the least changes throughout the cell

cycle. The variability of the core proteome was even much lower

than that of their transcripts (median coefficient of variation 0.2 in

proteomics versus 1.3 for the corresponding transcripts in drop-

seq; Figure 2D). Note thatMS sensitivity is currently still limited at

the single-cell level (up to 2,000 different quantified proteins in

this experiment). In general, the throughput and comprehensive-

ness of deep-sequencing-based technologies is much higher

than proteomics, and they increasingly incorporate the spatial

aspect as well. Therefore, we believe that it will be advantageous

in many situations to combine the two approaches. This can vali-

date transcriptomics or genomic results at the protein level. For

instance, these data also allow cataloging mutations in a tumor,

which in turn enables proteogenomic approaches, where the

impact of mutations on cell function can be accessed directly.

Spatial tissue proteomics with single-cell resolution
The requirement of tissue dissociation described above loses

the spatial context important for cell-to-cell interactions between

normal and diseased tissue (Goltsev et al., 2018). However, that

context is crucial to fully understand cellular functions, their rela-

tionships to each other, and their contribution to heterogeneous

tissues. Spatial transcriptomics—the 2020 method of the year

(Editorial, 2021)—addresses this challenge either by highly multi-

plexed fluorescence in situ hybridization (FISH) or sequencing-

based methods (Larsson et al., 2021). In the latter case, areas

of tissues with dimensions of 10–100 mm are generally desig-

nated to efficiently capture mRNA, and single-cell contribution

is inferred by deconvolution with respect to single-cell libraries.

In contrast to proteins, RNA is prone to degradation and easily

cross-linked with other biomolecules in formalin-fixed and

paraffin-embedded (FFPE) samples (Hoffman et al., 2015),

although these challenges can be overcome to some degree (Vil-

lacampa et al., 2021). More generally, cell types are not directly

visible in spatial transcriptomics but have to be inferred from the

data. As mentioned above, RNA expression does not directly

predict protein expression (Buccitelli and Selbach, 2020; Liu

et al., 2016; Wang et al., 2017; Zhang et al., 2014). Ideally the

above-mentioned methods would be complemented by direct

measurement of the proteome, which would more accurately

reflect the specific cell functions and state.

It is possible to analyze spatially resolved protein distribution

or entire proteomes at the tissue, cell, and even subcellular level

with immunohistochemistry (IHC), immunofluorescence (IF), MS,

and cytometry (Lundberg and Borner, 2019; Uhlén et al., 2015).

These methods all have trade-offs between spatial information

and depth of coverage, molecular or cellular throughput, and

data acquisition time (Hickey et al., 2021; Lewis et al., 2021)

and can globally be categorized by whether they use antibodies

(or other specific binders) or not. The thousands of tissue IHC im-

ages from the Protein Atlas Project provide unprecedented in-
2340 Molecular Cell 82, June 16, 2022
sights into the spatial (sub)cellular organization and composition

of tissues at the protein level (Thul et al., 2017; Uhlén et al., 2015).

Multiplexed antibody-based imaging methods differ by the prin-

ciple of antibody tagging (such as metal tag, fluorophore, DNA

oligonucleotide barcode, or enzyme) and detection modality

(such as MS, spectroscopy, fluorescence, or chromogen ap-

proaches) (Hickey et al., 2021). For example, imaging mass cy-

tometry (IMC) now allows detection of 40 antigens and nucleic

acid sequences in FFPE with single-cell resolution in their 3D

context (Kuett et al., 2022). Multiplexed antibody-based imaging

generally defines cell types by the expression of a handful of pro-

teins, but newmethods can detect up to a hundred targets in the

same tissue section (Table 1). For a detailed discussion of these

technologies see (Bodenmiller, 2016; Hickey et al., 2021).

As an alternative to antibody-based approaches, tissues can

be scanned by light or particle beams, ionizing some of the

surface biomolecules and making them accessible to time of

flight (TOF) MS. In matrix-assisted laser desorption/ionization

(MALDI), a pulsed laser beam ionizes predominantly small bio-

molecules and peptides with near single-cell resolution (10–

50 mm) (Spraggins et al., 2019). As a first step, surface proteins

are digested in situ to produce a peptide representation of the

proteome. This technology has recently been applied to various

states of disease, including cancer, to discover diagnostic, pre-

dictive and survival markers (Ahmed et al., 2020). While the laser

spot could probably be focused to enable single-cell resolution

for MALDI, the digestion of proteins into peptides in slides can

lead to analyte delocalization. Furthermore, MALDI is generally

less quantitative and has less dynamic range than electrospray,

which has led to its displacement in proteomics workflows. How-

ever, MALDI has roles in applications such as investigating drug

distribution in tissues and tumors, and it can be combined with

stable-isotope-labeled nutrient infusion (iso-imaging) to reveal

the spatial organization of metabolic activity in tissues (Wang

et al., 2022). Furthermore, MALDI is a promising technology for

the analysis of single-cell metabolomes, where the aim is to

characterize as much of the universe of small molecules (metab-

olites, lipids, etc.) as possible. For example, a method called

SpaceM integrates light microscopy with MALDI-imaging

providing a metabolic profile in situ for each cell. SpaceM de-

tected more than 100 metabolites and lipids per hour from

more than 1,000 co-cultured human epithelial cells and mouse

fibroblasts, demonstrating high sensitivity and speed (Rappez

et al., 2021). We expect that technological advances, both in

sample preparation and in MS equipment, will enable a more

extensive and high spatial resolution analysis of metabolic activ-

ity over the next few years.

Secondary ion mass spectrometry (SIMS) is a mature technol-

ogy used for investigating the surfaces of semi-conductors, for

instance. NanoSIMS has high spatial resolution in the tens of

nanometers. NanoSIMS has been used for visualizing subcellu-

lar structures but is limited to very small molecules (Nuñez

et al., 2017).

For LC-MS-based proteomics, bulk tissue is most easily

analyzed and it is now possible to identify and quantify more

than 10,000 proteins in single LC runs and even more after initial

fractionation (Bekker-Jensen et al., 2017; Meier et al., 2018;

Muntel et al., 2019). However, any tissue homogenization



Table 1. Criteria for the selection and implementation of (spatial) proteomics technologies

(Spatial)

proteomics

in tissue Approach Method Area

Cellular

resolution

Current

proteome

depth

Tissue

preparation

Spatial

dimension

Special

features

Multiplexed

antibody based

fluorophore

labeled

CyCIF whole

slide

subcellular >60 FFPE/FF 2D, 3D conventional microscopes

ChipCytometry mm2 subcellular >60 FFPE/FF 2D specialized instrument,

special vendor-supplied

kits, or consumables

Cell DIVE whole

slides

subcellular >60 FFPE/FF 2D specialized instrument,

special vendor-supplied

kits, or consumables

DNA labeled CODEX whole

slides

subcellular >60 FFPE/FF 2D, 3D specialized instrument,

special vendor-supplied

kits, or consumables

GeoMx DSP/

CosMx SMI

whole

slides

subcellular >100/100 FFPE/FF 2D, 3D specialized instrument,

special vendor-supplied

kits, or consumables

immuno-

SABER

mm2 subcellular >10 FFPE/FF 2D, 3D conventional microscopes

Spatial-

CITE-seq

mm2 cellular Up to 300 FFPE/FF 2D next-generation sequencer,

microfluidic device

metal labeled MIBI-TOF mm2 subcellular >40 FFPE/FF 2D, 3D specialized instrument,

special vendor-supplied

kits, or consumables

IMC mm2 subcellular >40 FFPE/FF 2D, 3D specialized instrument,

special vendor-supplied

kits, or consumables

Untargeted label free DVP whole

slides

subcellular >5,000 FFPE/FF 2D, 3D conventional microscopes,

specialized software and

ultra-high sensitivity MS

nanoPOTS whole

slides

multi-cellular >2,000 FFPE/FF 2D, 3D conventional microscopes,

specialized equipment,

consumables, ultra-high

sensitivity MS

MALDI whole

slides

multi-cellular 100s FFPE/FF 2D specialized equipment

SCP – cellular up to 2,000

per cell

FF – ultra-high sensitivity MS

labeled SCP – cellular up to 1,000

per cell

FF – ultra-high sensitivity MS

Comparison of technologies representative of different approaches, classified by antibody-based and untargeted as well as the nature of the label.

Methods cover spatial dimensions from whole slide to square micrometer or absent spatial information. Proteome depths range from a handful of pro-

teins to a substantial part of the entire cellular proteome. Most but not all spatial proteomics techniques are amenable to FFPEmaterial as well as fresh

frozen material (FF). Several approaches can naturally be extended to three dimensions. Finally, special features such as specialized equipment or

special vendor-supplied kits are indicated. For a detailed description of these technologies see Hickey et al. (2021). Cyclic immunofluorescence

(CyCIF), ChipCytometry (Canopy Biosciences), Cell DIVE (Leica), co-detection by indexing (CODEX, Akoya Biosciences), GeoMx DSP (nanoString),

immunostaining with signal amplification by exchange reaction (immuno-SABER), multiplexed ion beam imaging by time of flight (MIBI-TOF), imaging

mass cytometry (IMC), deep visual proteomics (DVP), nanodroplet processing in one pot for trace samples (nanoPOTS), matrix-assisted laser desorp-

tion/ionization (MALDI), single-cell proteomics (SCP) (Brunner et al., 2022; Budnik et al., 2018; Hickey et al., 2021; Jarosch et al., 2021; Mund et al.,

2022). Spatial-CITE-seq utilizes spatial barcoding and high-throughput sequencing for protein mapping with cellular resolution (Liu et al., 2022).
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process will unavoidably result in an averaging effect by blurring

the spatial and cell-type information.

In LCM, tissue areas of interest are excised using direct micro-

scopic visualization to link positional cellular information to

genetic, transcriptomic, or proteomic information (Figure 1A).

As an example from transcriptomics, a combination of LCM
and Smart-seq2 (LCM-seq) has proven successful for transcrip-

tome analyses of single-cell neurons (Nichterwitz et al., 2016).

FFPE tissue collections are the gold standard in pathology tis-

sue storage and analysis, with hundreds of millions of tissue

blocks stored in biobanks (Figure 1A). Therefore, the ability to

analyze FFPE material makes any spatial omics technology
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Figure 3. Combining antibody-based bioimaging with the unbiased characterization of proteomes for system-level cellular phenotyping
Deep visual proteomics (DVP) connects high-parametric imaging of biobank tissues with machine-learning-based cell segmentation and classification of cellular
phenotypes. The cells or subcellular structures of interest are excised using automated laser microdissection and subjected to ultra-sensitive mass-spec-
trometry-based proteomic profiling. Next, bioinformatics data analysis discovers protein signatures that provide molecular insights into proteome variation at the
single-cell level (Mund et al., 2022).
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much more applicable to clinical questions. Initial concerns that

proteins might be substantially chemically modified or that they

might be inaccessible to extraction and digestion, hampering

proteomic analysis by MS, have proven unfounded. On the con-

trary, FFPE has proven to be an ideal long-term storage medium

for the proteome with minimal influence on measured protein

abundance as compared with fresh frozen tissue (Coscia et al.,

2020; Craven et al., 2013; Shao et al., 2019; Tayri-Wilk et al.,

2020; Zhu et al., 2019). Importantly, PTMs are also perfectly pre-

served over decades in these blocks, awaiting measurement

(Friedrich et al., 2021; Ostasiewicz et al., 2010).

Efficient protocols have enabled the streamlined analysis of

macro or laser microdissected FFPE tissues (Coscia et al.,

2020; Griesser et al., 2020; Zhu et al., 2018b, 2019), leading to

insights into tumor heterogeneity (Mardamshina et al., 2021;

Xu et al., 2018) and discovery of a novel biomarker of long-

term survival following chemotherapy in ovarian cancer (Coscia

et al., 2018). Notably, even decades old FFPE material can be

analyzed, and functional biomarkers have also been found in

the proteins of the extracellular matrix (Eckert et al., 2019). The

above-mentioned nanoPOTS method enabled the analysis of

grid elements of 100-mm resolution to a depth of 2,000 proteins

from fresh tissue (Piehowski et al., 2020). Even though molecular
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information of the tissue in its spatial context is retained, the grid

analysis is not single-cell resolved and therefore results in

merged data of cell types and states, or cells and the extracel-

lular matrix.

To gain deeper insights into tissue biology, it would be desir-

able to directly connect the visual dimension with the molecular

phenotype by combining antibody-based bioimaging with the

unbiased characterization of proteomes; thereby integrating sin-

gle-cell and spatially resolved molecular data. To this end, we

have developed a new concept, which we have called DVP

(Figure 3). DVP combines AI-driven image-based segmentation

and classification for the analysis of cellular phenotypes with ul-

tra-high sensitivity MS-based proteomics (Mund et al., 2022).

High-content imaging with subcellular resolution provides the

required number of cells to identify statistically and analytically

robust cellular phenotypes for precise cell-type and state isola-

tion within a spatial region (Palla et al., 2022). Thus, DVP ties

together visual information that defines cellular identity and het-

erogeneity with cellular neighborhoods and the underlying prote-

omic signatures in an unbiased and system-wide way.

The inherent trade-off between spatial information, throughput,

and depth of coverage dictates the methodological choice that

needs to be made by the investigator to most efficiently answer



Figure 4. Spider plots ranking each technology for six parameters
Adapted from Lewis et al. (2021). Trade-offs between spatial resolution and subcellular function, molecular or cellular throughput, and type of data acquisition.
Highly multiplexed FISH and sequencing-based spatial transcriptomic techniques have great potential for multiomics, combining cellular and molecular
throughput with spatial resolution and ease of use. In contrast, multiplexed imaging and deep visual proteomics (DVP) directly address proteins and their post-
translational modifications (PTMs) that dictate cellular function or activity. These PTMs include glycosylation, phosphorylation, acetylation, and many more,
potentially creating tens of thousands of additional proteoforms. Proteomic methods allow studying extracellular matrix proteins (ECMs), which form complex
macromolecule networks that fill the extracellular space in tissues. DVP combines strengths of imaging (high spatial and subcellular resolution) and of the MS-
based proteomics worlds (excellent molecular specificity and substantial coverage of the proteome).
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the experimental question. Consequently, the final data require-

ments, samples and formats available, and existing infrastructure

should guide the choice of multiplex imaging methods (Table 1).

Similarly, the first and crucial step of creating a multiplexed imag-

ing panel is to determine the scientific questions to be solved.

For MS-based proteomics, single-cell analysis is rapidly

becoming feasible with the approaches described above, and

we expect to see increases in proteome coverage to several

thousand proteins as well as throughput of hundreds of cells

per day in the next years. It will be interesting to compare the sin-

gle-cell transcriptome and proteome to pinpoint differences, for

instance, in dynamic processes involving protein degradation. In

contrast to disaggregated cells, proteomics on cells directly

from tissue is more challenging. However, it is crucial not to

mix cell types in the analysis as this would entail all the disadvan-

tages of bulk analysis. Here, DVP comes to the rescue as it de-

fines the cell types and cell states upfront from imaging data.

This avoids the pooling effect while allowing the analysis of a sta-

tistically meaningful number of cells in one go, which also ad-

dresses the throughput challenge and provides excellent depth

of proteome coverage.

Clinical applications of tissue proteomics with single-
cell resolution
In clinical or translational applications, the above-described

spatial proteomics approaches are a natural fit to the general

area of pathology. For many decades, pathologists have looked

through microscopes at stained slides of surgical specimens for

diagnostic purposes, to provide prognostic information to clini-

cians and to explore new approaches of treatment. Today, the

rich histological and molecular information embedded in tissue

sections can increasingly be extracted through digital pathology

(van der Laak et al., 2021). Manual inspection of a narrow field of

a microscope is replaced by broader, more diverse, and more

precise digital whole-slide imaging (WSI), opening completely
new opportunities. A central element in digital pathology is the

automated analysis of images using ML methods (van der

Laak et al., 2021). By mimicking human capabilities, this prom-

ises better and faster data extraction. These technologies

require training the algorithms on human annotated features, a

fairly complex task. DL can help overcome this problem and

aims for end-to-end trainable systems, including feature extrac-

tion. In digital pathology, these algorithms allow the discovery of

meaningful features, while achieving better robustness rega-

rding intensity or morphology-dependent signal heterogeneity.

Pioneering work achieved dermatologist level performance in

detecting melanoma from photographs of skin lesions (Esteva

et al., 2017).

In the context of protein-based multiplexed image analysis,

one wants to retrieve complex information such as single-cell in-

teractions, neighborhood analysis, expression of biomarkers, or

immune cell infiltration within the tumor. In oncology, the clinical

goals are to define the interplay between individual tumor cells,

immune cells, blood vessels, fibroblasts, and the extracellular

matrix. Investigating this tumor microenvironment, including

the type, density, localization, and organization of immune

cells—defined as the immune contexture—could help predict

treatment response and clinical outcomes on an individual basis.

Thus, digital pathology aims to detect tumors and classify them

into subtypes, which involves image segmentation (Chen et al.,

2017; Graham et al., 2019; Greenwald et al., 2022; Hollandi

et al., 2020), cell detection, and counting (Sirinukunwattana

et al., 2016), tumor grading (Nagpal et al., 2019), and others. Hu-

man-level performance of tissue segmentation with complex cell

morphologies for feature extraction can now be achieved

(Greenwald et al., 2022; Mund et al., 2022). As a next step,

computational approaches can calculate spatial features and re-

lationships between tissue cells and how frequent certain im-

mune cells are in the tissue microenvironment or parenchyma.

Those spatial features allow us to find digital biomarkers that
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Figure 5. Clinical applications of spatial proteomics for patient phenotyping
(A) High-resolution tissue maps allow machine-learning-based accurate cell segmentation and classification. Spatial proteomics analysis reveals disease-
specific molecular signatures in their native tissue context, directly from normal or tumor FFPE tissue slices.
(B) Combining unbiased proteomics with high-content imaging generates a phenotype map including the tissue microenvironment. Out of the detailed and
quantitative proteomic map of the tissue, matrices, profiles, enrichment plots, and neighborhood analysis can be generated to define phenotypic relationships
and mine the spatial correlations in the data to provide diagnostic decision support.
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can potentially predict response to therapy, be prognostic

markers themselves, or even predict genomic mutations in pa-

tients (van der Laak et al., 2021).

As an illustrative example, a protein-based spatial phenotyp-

ing approach using multiplexed immunofluorescence (mIF)

was recently evaluated in a meta-analysis to determine

whether this approach could improve the diagnostic perfor-

mance over PD-L1 (programmed cell death ligand 1) IHC, tu-

mor mutational burden (TMB), and gene expression profiling

(GEP). From 45 reports, the authors concluded that multimo-

dality biomarker and mIF strategies indeed outperformed

PD-L1 IHC, TMB, or GEP alone in terms of specificity and

sensitivity (Lu et al., 2019).

Cancer is a genetic and multifactorial disorder associated

with the dysregulation of proteins and environmental factors.

Hence, acquiring spatial multi-omics profiles may enable the

reconstruction of key processes of tumorigenesis in a holistic

manner. For example, a new technology called spatial-CITE-

seq (spatial co-indexing of transcriptomes and epitopes) com-

bines next-generation sequencing with antibody-based tissue

barcoding to map �300 proteins and the whole transcriptome

(Liu et al., 2022). Another example is spatial-CUT&Tag that

combines microfluidic deterministic barcoding, next-generation

sequencing, and imaging to spatially resolve single-cell epige-

nome profiling in frozen tissue (Deng et al., 2022). As mentioned
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above, DVP combines high-content and high-resolution imag-

ing with unbiased, in-depth proteomics to compare and

contrast pure cell types and states directly from their native tis-

sue context (Figure 5A). In the context of precision oncology,

this allows tracking and functionally describing a single tissue

slide. In turn, this enables the visualization of dysregulated

key pathways of cancer progression across a two-dimensional

tissue section (Figure 5B) (Mund et al., 2022). Future develop-

ments will extend this to the analysis of consecutive sections,

allowing the reconstruction of enriched key pathways in 3D.

Discussion and outlook
Biology and pathology always occur in a spatial context. As we

have described here, omics technologies are now addressing

the spatial dimension with a large, diverse, and rapidly growing

toolbox. We believe that spatial, high-resolution, and molecular

analysis of cells in tissues will be one of the major frontiers of

biology in the next years.

As a result of the immense complexity of cellular organization

in tissues, no single technology can answer all questions. While

genomics is already very mature, we have outlined how MS-

based proteomics is reaching an inflection point in its ability to

characterize single cells or single-cell types or states in tissue.

This unexpected development is the result of a number of break-

throughs in different aspects of the LC-MS-based workflow as



Box 1. Tissue-based spatial approaches fall into four categories
that can be compared along six different criteria (Figure 4)

A key strength of multiplexed imaging is its ability to classify

a very large number of cells in their spatial context. Even sub-

cellular and extracellular structures are readily accessible.

Molecular depth, in contrast, is limited to a relatively small

number of proteins, for which specific antibodies have to be

available. Bias may also be introduced via the design of the

antibody panel.

FISH-based spatial transcriptomics methods have excel-

lent resolution and record positional information for individual

mRNA species in a cell and image hundreds to thousands of

individual RNA molecules in situ through sequential rounds

of hybridization (Chen et al., 2015; Lewis et al., 2021).

Sequencing-based spatial transcriptomics also has high

throughput and depth at the cost of accurate single-cell

spatial resolution. Additionally, as it does not consider cell

boundaries, the results need to be deconvoluted (Ståhl

et al., 2016). Current developments are set to increase resolu-

tion to the sub-um range, as mentioned above.

Spatial transcriptomics detects a proxy for molecular function

and consequently, the location of the transcripts is not as

functionally informative as that of proteins. In contrast, a key

advantage of spatial MS-based proteomics is that it is unbi-

ased in the sense that one does not need to decide on the mo-

lecular targets to be investigated beforehand. Furthermore,

FFPE-embedded clinical samples are readily amenable

because proteins from a wide range of sources are preserved

and easily analyzable. Currently, throughput is comparatively

low and single-cell analysis is still very challenging. However,

the DVP method effectively uses high-content imaging for

identifying the cell population at its front end and greatly re-

duces the demands on the MS analysis at the back end.

Importantly, the cells that are analyzed together should

already be of the same type and state.
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described above. There are many further technological ad-

vances for increasing overall sensitivity, including even brighter

ion sources, improved chromatography, and smarter data anal-

ysis and modeling tools waiting just around the corner. Similar to

the rapid recent advances in the scRNA-seq community, this will

further expand the myriad potential applications of LC-MS-

based single-cell and spatial proteomics.

As proteins are the closest proxy for cellular function, this

will add an important dimension to single-cell biology.

Although technologically less mature, proteomics has the

advantage that proteins are readily extracted from tissue ma-

terial, such as FFPE slices, which are the common currency

of pathology. With further advances in MS-based proteomics

workflows, it should have a prime role in pathology, which itself

is already undergoing a transformation to digital pathology, in

part powered by rapid advances in DL. Although the digital

classification of pathology slides is very powerful in itself, we

argue that it will truly come to life when coupled to unbiased

in-depth molecular characterization. Beyond spatial transcrip-

tomics, this can be done by LCM followed by proteomics anal-

ysis. This previously involved the painstaking definition and

excision of a large number of cells but can now be achieved

by a combination of state-of-the-art imaging, AI, automated

single-cell isolation, and ultra-sensitive proteomics using the

DVP technology. An obvious next step is to extend these tech-

nologies into the third spatial dimension, by stacking and con-

necting the results of many tissue slices, creating a true 3D

multiomics map (Bhatia et al., 2021; Kiemen et al., 2020).

Beyond genomics and MS-based shotgun proteomics, more

modalities with a spatial dimension could be addressed. This

even extends to the determination of the structures of protein

complexes in situ and their intracellular localization (Klykov

et al., 2022).

All these technologies generate very large datasets on their

own that are challenging to analyze and interpret. This is com-

poundedwhen several omics technologies are brought together,

as it is increasingly the case. Therefore, the challenges and op-

portunities in algorithm development, data analysis, and joint

modeling of datasets will be just as great as those in obtaining

the data in the first place. Fortunately, this field is under rapid

development and seems likely to rise to these challenges (Palla

et al., 2022).

DVP is a generic pipeline that can be applied to investigate any

type of healthy or diseased tissue sample. In the former case, it

could contribute to cell-type-specific cell atlases or by

describing developmental trajectories. We envision a strong

partnership with pathologists and clinicians to create a future

in which cancer biopsies will routinely be imaged with next-gen-

eration microscopy technologies, enabling the AI-driven

recognition and classification of the affected cells, followed by

in-depth characterization of their genome and proteome. In the

future, spatial genomics, transcriptomics, and epigenomics

could be added (Deng et al., 2022) and perhaps even lipidomics

or metabolomics (Tsugawa et al., 2020).

DVP should find one of its major real-world applications

when cancer patients first present but will be even more impor-

tant in deciding on optimal treatment responses after relapse.

Besides this prime area of application, spatial proteomics
could just as well be used to investigate a wide range of pa-

thologies in organs such as the brain, the liver, the skin and

many more.

Thesemethodsneed towork ina robustandaffordablewayona

daily basis in the clinic, which will in turn require much technology

development and standardization. However, with the required

throughput, robustness, and affordability in place, many patients

could benefit from unbiased spatial omics and proteomics with

single-cell resolution, aworthygoal for our community to strive for.
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