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ABSTRACT 

Cutaneous melanoma is a highly immunogenic malignancy, surgically curable at early stages, but life-

threatening when metastatic. Here we integrate high-plex imaging, 3D high-resolution microscopy, and 

spatially-resolved micro-region transcriptomics to study immune evasion and immunoediting in primary 

melanoma. We find that recurrent cellular neighborhoods involving tumor, immune, and stromal cells 

change significantly along a progression axis involving precursor states, melanoma in situ, and invasive 

tumor. Hallmarks of immunosuppression are already detectable in precursor regions. When tumors 

become locally invasive, a consolidated and spatially restricted suppressive environment forms along the 

tumor-stromal boundary. This environment is established by cytokine gradients that promote expression 

of MHC-II and IDO1, and by PD1-PDL1 mediated cell contacts involving macrophages, dendritic cells, 

and T cells. A few millimeters away, cytotoxic T cells synapse with melanoma cells in fields of tumor 

regression. Thus, invasion and immunoediting can co-exist within a few millimeters of each other in a 

single specimen.  

 

STATEMENT OF SIGNIFICANCE 

The reorganization of the tumor ecosystem in primary melanoma is an excellent setting in which to 

study immunoediting and immune evasion. Guided by classical histopathology, spatial profiling of 

proteins and mRNA reveals recurrent morphological and molecular features of tumor evolution that 

involve localized paracrine cytokine signaling and direct cell-cell contact. 

INTRODUCTION 

Tumorigenesis commonly involves a progressive failure of immune cells, particularly T  

cells, to detect cancer cells as they accumulate mutations promoting growth, invasion, and metastasis 

(1). The competition between editing by immune cells and escape by cancer cells generates a complex 

ecosystem whose molecular features and physical organization determine disease outcomes and 

responsiveness to therapy (2,3). In the case of primary cutaneous melanoma, DNA sequencing has 

identified recurrent mutations in drivers such as BRAF, NRAS, PTEN, and TP53 (4–6) and dissociative 

single-cell RNA sequencing (scRNA-Seq) has revealed progression-associated changes in immune cell 

states (7). However, oncogenic transformation and immune escape remain only partly understood due in 

part to a high mutational burden in morphologically normal skin, estimated in Caucasians to be >100 

driver mutations per cm2 by late middle age (8). Although treatment of metastatic melanoma has 

benefitted from modern targeted therapies guided by genetic biomarkers (BRAF and MEK inhibitors) 
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and by immune checkpoint inhibitors, primary melanoma is treated surgically. It is diagnosed and staged 

using classical methods such as histopathological assessment of hematoxylin and eosin (H&E) stained 

formaldehyde-fixed paraffin-embedded (FFPE) skin biopsies, complemented in some cases by 

immunohistochemistry (IHC) (9). 

 

Normal skin is characterized by evenly spaced melanocytes, which are neural crest-derived melanin-

producing cells (10) located between cuboidal basal keratinocytes on the apical face of the dermal-

epidermal junction (11). Fields of melanocytic atypia, the earliest signs of oncogenic transformation, 

involve increases in melanocyte number and density, enlargement, and irregularity of melanocyte nuclei, 

movement of melanocytes away from the dermal-epidermal junction (12), and loss of 5-

hydroxymethylcytosine (5hmC) epigenetic marks (5,13). These precursor fields can develop into 

melanoma in situ (MIS), a proliferation and confluence of malignant melanocytes within the epidermis 

but without invasion into the underlying dermis (14). MIS can spread within the epidermis and focally 

invade the superficial dermis without expansile growth, giving rise to radial growth phase melanoma, 

which has an excellent prognosis upon complete excision. However, invasive growth into the dermis is 

both expansile and highly mitotic, giving rise to vertical growth phase melanoma with a high potential 

for metastasis (15). Vertical growth phase melanomas can be endophytic or exophytic, corresponding to 

vertical growth down into the dermis or upwards above the skin, at times resulting in polypoid lesions 

that erupt from the surrounding skin (16). 

 

The study of recurrent mutations found in cutaneous melanoma has yielded models of sequential tumor 

evolution starting with the formation of dysplastic nevi (4). However, while the removal of dysplastic 

nevi with higher grades of atypia is standard clinical practice (17) it is now thought that the majority of 

primary cutaneous melanomas are not derived from nevi, but rather arise de novo from fields of 

melanocytic atypia, particularly in sun-damaged skin (18,19). The key features of these precursor fields, 

and the sequence of genetic events and immunosuppressive features that promote their progression to 

invasive melanoma remain poorly understood, as does the extent and impact of inter-patient and patient-

to-patient variability. From a prognostic perspective, the depth of tumor invasion into the dermis 

(Breslow thickness) is a particularly important parameter (20) and is used in conjunction with the 

standard Tumor-Node-Metastasis (TNM) system used for melanoma staging (21). The number and 

locations of tumor-infiltrating lymphocytes (TILs) also have prognostic value (22). Finally, the Clark 

scoring system recognizes three distinct patterns for TILs: absent, non-brisk, and brisk (23). Absent 

describes both the absence of TILs and their failure to infiltrate tumor; non-brisk describes the 
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restriction of TILs to scattered foci in the vicinity of the tumor, and brisk describes infiltration 

throughout vertical growth phase tumors or widely distributed along the invasive tumor front (24). In 

general, the greater the number of infiltrating TILs – the brisker the response – the more favorable the 

prognosis (25,26). In some tumors, regions of inflammatory regression are also observed. In these 

regions T cells are observed to eradicate malignant melanocytes, leading to fields of fibrosis, vascular 

proliferation, and pigment incontinence, which are indicative of terminal regression (27). Inflammatory 

regression represents an example of successful and ongoing immunoediting but is currently incidental to 

diagnosis and of uncertain prognostic significance (28). 

 

The great majority of studies on immune surveillance in primary and metastatic melanoma have 

involved either histologic analysis of H&E or IHC images, which are restricted to one to three markers 

per section, or sequencing of genomic mutations or mRNA profiling. However, several recent studies 

have demonstrated the potential for multiplexed imaging to provide greater insight into the spatially 

restricted tumor and immune programs in melanomas at different stages (29,30).  

 

Here, we focus on the molecular and morphological analysis of histologic features commonly found in 

primary melanoma. We focus on features used for diagnosis and treatment decisions in specimens 

containing multiple distinct stages of diseases. These include precursor fields, melanoma in situ, radial 

growth phase melanoma, and/or invasive vertical growth phase melanoma as well as regions of 

inflammatory regression. Specimens were acquired from the Brigham and Women’s Hospital 

dermatopathology tissue bank and, like virtually all primary melanomas, were available only in fixed 

form (FFPE) as a diagnostic necessity; only a few were subjected to or consented for DNA sequencing. 

The spatial organization of the tumor microenvironment (TME) was analyzed using 20 to 30-plex 

fluorescence microscopy (CyCIF) and either conventional wide-field microscopy or 3D optical 

sectioning followed by deconvolution (31). We also performed transcriptional profiling of selected 

micro-regions using two different methods for micro-region transcriptomics (mrSEQ: GeoMx and 

PickSeq) (32,33). The resulting molecular and morphological data were then correlated with local 

histopathology as determined from H&E images by board-certified dermatopathologists. To preserve the 

spatial relationships of different histologies and to provide sufficient statistical power (34) CyCIF and 

H&E imaging were performed on whole slides, not tissue microarrays (TMAs) or small fields of view 

(FOVs) (35).  
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Using differential expression analysis and unsupervised clustering of mrSEQ data and spatial statistics 

on CyCIF data we identified molecular programs associated with histopathologic progression. In many 

cases, immunoediting by activated T cells was observed within a few millimeters of near-complete 

immune exclusion from invasive melanoma. Immunosuppressive niches were highly localized, in some 

cases only a few cells thick, and high-resolution imaging showed that they contained PDL1 expressing 

myeloid cells in direct contact with PD1 expressing T cells.  

 
RESULTS 

Multimodal profiling of spatially distinct regions within cutaneous melanoma 

A total of 70 tissue regions (histological ROIs) with pre-cancer or cancer histologies were identified in 

eleven FFPE specimens of primary cutaneous melanoma, one locoregional metastasis, and one distant 

skin metastasis (specimens MEL1 to MEL13; Supplementary Tables S1 and S2; histological features 

and annotations are described in Supplementary Table S3). Analysis of H&E-stained specimens by 

board-certified dermatopathologists confirmed the presence of one to five histological ROIs (average 2.4 

per specimen) corresponding to precursor fields, melanoma in situ (MIS), invasive melanoma (IM), 

exophytic melanoma (EM), and inflammatory regression (IR) ~5-20 mm apart from each other 

(summarized in Supplementary Fig. S1A). Serial FFPE sections (5 µm thick) were subjected to whole-

slide, subcellular-resolution, 20-30 plex CyCIF imaging with different combinations of antibodies to 

generate complementary sets of image data (Fig. 1A-1C, Supplementary Fig. S1A; antibody panels 

described in Tables S3, S4). Antibodies included pan-cytokeratin (pan-CK) to stain keratinocytes in the 

epidermis; SOX10 and MITF to stain normal and atypical melanocytes and tumor cells (Supplementary 

Fig. S1B); smooth muscle actin (αSMA) to stain stromal cells, and CD31 to stain endothelial cells lining 

vessels. Immune cells were stained with lineage-specific cell surface proteins and functional markers 

(e.g., PD1) as described in Supplementary Fig. S1C, Supplementary Tables S5, and S6. Image 

analysis and data processing were performed using algorithms integrated into the open-source 

MCMICRO pipeline (36); staining intensities for lineage markers such as CD4, CD8, CD163, etc. were 

then binarized to distinguish among 13 immune cell types (Fig. 1D-1F).  

 

More extensive molecular analysis was performed of specimen MEL1, which had the greatest number of 

distinct histologies (and spanned three tissue blocks MEL1-1, MEL1-2, and MEL1-3). MEL1 was an 

NF1-mutant, BRAFwt tumor, which is one of four recurrent cutaneous subtypes identifiable in TCGA 

data (37). It was a large primary tumor involving both inward projecting vertical growth phase (nodular 

melanoma) as well as outward growing exophytic melanoma. A region of melanoma in situ (MIS) was 
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co-extensive with regions of inflammatory and terminal regression in which immune editing had 

reduced or eliminated tumor cells; these regions contained dense infiltrates of CTLs, the majority of 

which were PD1+ (and thus activated) as well as Tregs. Invasive melanoma (IM) was located ~10 mm 

away from the MIS and the invasive boundary (IB) of the nodular component had reached a depth of 4-5 

mm and was surrounded by a domain of immune-rich stroma that was scored as a brisk TIL (bTIL) 

response. The patient from whom MEL1 was obtained developed loco-regional recurrence and distant 

metastases but was alive at the time of the last follow-up. MEL1 was characterized with a total of 80 

different antibodies on five serial sections, subjected to micro-region transcript sequencing and 3D high-

resolution imaging. 

 

The ability of immune cells to make functional contacts with each other and with tumor cells is a 

fundamental feature of cancer immunoediting commonly quantified using spatial statistics (proximity 

analysis (38). In images collected at standard resolution (~450 nm laterally), it is not possible to 

visualize the distinctive morphologies of immune synapses or PDL1 binding to PD1 (39). We, therefore, 

used 3D 21-plex CyCIF imaging with optical deconvolution on 110 µm square fields of view (FOV; 

~100 to 200 cells each) at a resolution of ~220 nm laterally. Image stacks were collected from a total of 

42 FOVs corresponding to regions of tumor invasion, MIS, and IR (where immune editing had reduced 

or eliminated tumor cells; Fig. 1C and Supplementary Fig. S1D). Among tumor and immune cells that 

were judged to be in proximity by proximity analysis of standard resolution images, we identified 

multiple examples of structures characteristic of functional cell-cell interactions. 

 

Polarized interactions between the PD1 receptor and PDL1 ligand could also be imaged in this way (see 

below for data on ROIs and cell types). To estimate the frequency of such interactions, we performed a 

detailed inspection of two high-resolution FOVs lying at the tumor-stroma interface. A total of 199 cells 

(15 PDL1+ macrophages and 64 PD1+ T cells) were identified; in 58 cases these cells were judged to be 

within 20 µm of each other (a commonly used cutoff for proximity analysis) (40). In total, 21 immune 

cells (27%) had morphologies consistent with polarized PD1-PDL1 interaction. Thus, of the immune 

cells proximate enough to potentially interact directly, about one-quarter appeared to be involved in 

juxtracrine cell-cell interactions. These interactions were often complex, involving more than two cells. 

For example, Fig. 1G and 1H show a SOX10+ tumor cell in contact with two CD8+ cytotoxic T 

lymphocytes and one CD4+ regulatory T cell (Treg; identified based on FOXP3+ staining in other 

imaging channels; Supplementary Fig. S1E, F), each of which was located at a different position on 

the tumor cell perimeter. Polarization of CD8 (a co-receptor for the T-cell receptor) at the site of contact 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 7 

between the tumor cell and one of the CTLs is consistent with the formation of an immune synapse. In 

this CTL, some TIM3 and LAG3 were partially localized to the synapse, although the majority of these 

proteins were sorted to the opposite side of the cell (Fig. 1H, 1I). TIM3 and LAG3 are co-inhibitory 

receptors that function to regulate the activity of CTLs (41) and their presence on PD1+ CTLs showed 

that these cells are likely to be activated or possibly “exhausted”. The distribution of SOX10, CD3, and 

CD8 orthogonal to the plane of the cell-to-cell contact confirmed that the majority of CD8 (red line in 

the plot in Fig. 1I; Supplementary Fig. S1G, H) was found on the membrane of the CD3+ lymphocyte 

(green line) and approximately 500 nm away from the membrane of the adjacent SOX10+ tumor cell. 

Optical sectioning through the point of contact between the tumor cells and the Treg also revealed a 

contact (Fig. 1J and Supplementary Fig. S1I) that may be associated with the programming of 

tolerogenic activity.  

 

Comprehensive characterization and quantification of cell-cell contacts detected by high-resolution 

tissue imaging await the development of better image recognition tools but our data provide clear and 

hitherto unavailable evidence that immune and tumor cells in close proximity to each other have 

structures characteristic of functional cell-to-cell contacts. Proximity analysis likely overestimates the 

frequency of these contacts whereas visual inspection of thin sections almost certainly results in an 

undercount because long processes perpendicular to the image plane are lost.  

 

Recurrent cellular neighborhoods associated with melanoma progression 

To identify patterns of immune and tumor cell interaction that recur across patients and correlate with 

tumor progression, we used Latent Dirichlet Allocation (LDA) (42) (Supplementary Fig. S2A). LDA is 

a probabilistic modeling method that reduces complex assemblies of intermixed entities into distinct 

component communities (recurrent cellular neighborhoods; RCNs). LDA is widely used in biodiversity 

studies because it can detect both gradual and abrupt changes in the composition and arrangements of 

natural elements (cells in a tissue or trees in a forest) while effectively accounting for uncertainty and 

missing data (43,44). To identify RCNs, ~1.7 x 106 single cells from MEL1-MEL13 were assigned to 

one of 12 basic classes based on the expression of cell type and state markers (e.g., proliferating, 

regulatory, exhausted) in 22-plex CyCIF data (Fig. 2A and Supplementary Fig. S2B). The data 

exhibited good signal to noise across critical markers and cell type assignment was robust to variation in 

gating (Fig. 2B). Across 70 histological ROIs annotated (regions of disease progression) we observed 

significant increases in percent of S100A+ SOX10+ cells between normal or precursor regions in 

comparision to MIS, and invasive melanoma, consistent with an increase in melanocyte-derived tumor 
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cells (Fig. 2C) (45). S100 proteins are small calcium-binding proteins upregulated in melanoma and 

serum levels of S100B are used as a diagnostic marker of metastatic melanoma (although not a 

progression marker per-se; (46)). We trained spatial-LDA models using a 20 µm proximity radius so 

that RCNs would be enriched for cells in physical contact; latent weights were then clustered using k-

means clustering (k=30) and grouped into ten informative meta-clusters (see methods). The generation 

of meta clusters made it possible to identify both direct and indirect interactions that recurred across the 

cohort. The RCNs corresponding to these meta-clusters were annotated based on cellular composition 

and frequency of occurrence in different ROIs and were then mapped to physical positions in the 

original specimens (Fig. 2D).  

 

Based on cellular composition, different RCNs corresponded primarily to epidermal, melanocytic, 

myeloid, T cell, and immune-suppressed populations (Fig. 2E). RCN1 was rich in keratinocytes (70% of 

the cells in this RCN) and Langerhans cells and was co-extensive with the epidermis (Supplementary 

Fig. S2C). RCN10 contained the largest number of cells (38% of all cells quantified), 90% of which 

were SOX10+; these corresponded primarily to tumor cells in regions of vertical growth phase 

melanoma (annotated as EM – exophytic melanoma, and IM – invasive melanoma) (Fig. 2D). In 

RCN10, tumor cells were densely packed together with few infiltrating cells (Fig. 3A and 3B). In 

contrast, RCN9 (comprising ~6.4% of all cells) contained equal numbers of SOX10+ and immune cells 

(36% and 34%, respectively) and corresponded to the interface between solid tumor and the dermis (red; 

Fig. 2D, 3A-B). Isolated pockets of RCN9 and RCN10 were also found in normal skin and in regions 

with adjacent melanocytic atypia and regions where SOX10+ cells clustered together (Fig. 3C, 

Supplementary Fig. S3A). The most abundant immune cells in RCN9 were CD11C+ macrophages and 

dendritic cells (80%) and the prevalence of this neighborhood increased significantly from precursor to 

MIS to invasive tumor, highlighting the formation of a myeloid-enriched tumor boundary (Fig. 3D and 

Supplementary Fig. S3B). When we quantified the proximity of tumor and CD11C+ myeloid cells 

using a 10 µm cutoff, we found that proximity volume scores increased from precursor to MIS to IM 

stages, independently confirming the observed increase in RCN9 frequency with progression 

(Supplementary Fig. S3B, C).  

 

RCNs that were primarily made of immune cells could be subdivided into three classes: enriched for 

myeloid cells (RCN2-4), enriched for T cells (RCN6-7), and immune-suppressed (RCN5, 8). RCN2-4 

contained overlapping sets of cells, with tissue-resident macrophages predominating in RCN2 and 

CD11C+ cells in RCN3 and 4 (Fig. 2D). RCN2 was found throughout the dermis (and had a distribution 
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similar to that of tissue-resident macrophages) while RCN3 and 4 were found close to the invasive 

tumor (Supplementary Fig. S3D). RCN6 was rich in CD4+ T helper and Tregs and RCN7 was enriched 

for CTLs. RCN5 and 8 had high proportions of activated PD1+ CTLs as well as Tregs and PDL1+ 

myeloid cells, which are immunosuppressive (47). Five of the seven immune enriched niches (RCN3-7) 

significantly (P < 0.05) increased in frequency between precursor and MIS, while only one (RCN4) 

significantly increased between normal and precursor fields, reflecting recruitment of myeloid cells. 

Two significant changes were observed between MIS and IM and this involved RCN9, which increased 

in abundance due to the formation of a PDL1+ sheath of cells at the IB, and RCN1, which fell in 

abundance due to the displacement of keratinocytes and proliferation of tumor cells in IM 

(Supplementary Fig. S3E).  

 

When we quantified the proximity of immune rich RCNs (RCN2-8) to SOX10+ cells in RCN10 (i.e., 

melanocytes or tumor cells) we found that myeloid-enriched (RCN2, 4) and PDL1-enriched (RCN5) 

communities were significantly closer to RCN10 in precursor ROIs than adjacent uninvolved skin or 

later disease stages. In contrast, a cytotoxic community (RCN7) appeared closer to RCN10 in precursor 

samples than in MIS or IM (Fig. 3E; Supplementary Table S7). To confirm this finding, we measured 

the distance between melanocytic cells and the nearest PDL1+ myeloid cell or CTLs. We observed a 

significant decrease in distances for both cell types between normal and precursor stages. Tregs also 

showed a significant decrease in proximity to melanocytic cells in precursor fields (Fig. 3F). Thus, at 

the precursor stage, the recruitment of cytotoxic T cells was accompanied not only by immune 

resolution but also by the first signs of immunosuppression by myeloid cells. When RCNs were mapped 

back to the landscape of MEL1-1 (see Fig. 1), we found that the community of tumor cells near CD11C+ 

myeloid cells (RCN9) that were sporadically present in association with MIS had become a nearly 

continuous sheath at the invasive boundary of IM (Fig. 3A-3C). Immediately adjacent to the sheath of 

RCN9 cells we observed RCN3 and 4 myeloid niches in a mosaic pattern with RCN6 (T helper and 

Treg) and RCN5 (PDL1+ immunosuppressive) neighborhoods. The density of immunosuppressive 

niches was also highly variable even between nearby locations (Fig. 3A and 3B). RCNs containing 

cytotoxic T cells (RCN7) and PD1+ CTLs (RCN8) were also intermingled, consistent with local 

activation of T cells. Moreover, whereas intermixing of tumor cells (RCN10) and multiple immune-rich 

RCNs was evident in MIS, in EM and IM the myeloid and immunosuppressive RCN (RCN5) was 

largely confined to areas immediately surrounding the CD31+ vasculature. Individual tumors differed in 

the specific arrangements of RCNs, and LDA generates statistical models subject to instance to instance 
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variation, but it was consistent true that progression was associated not only with greater levels of 

invasion but also the formation of increasingly complex immune environments. 

 

PDL1-mediated immune suppression primarily involves myeloid not tumor cells  

The importance of PD1-PDL1 interaction in melanoma is demonstrated by the success of anti-PD1 

therapy. Across all 70 ROIs from 13 specimens, ~70% of CTLs expressed the activation marker PD1 but 

we detected very few tumor cells expressing significant levels of PDL1, even in regions of tumor in 

which IFNɣ was highly expressed based on transcript profiling (see below; IFNɣ is a known inducer of 

PDL1). 3D deconvolution imaging proved to be more sensitive than conventional imaging in detecting 

PDL1, but even in MIS, in which immune and tumor cells were intermixed, only 5 of 106 tumor cells 

imaged at high-resolution in 12 FOVs were judged to be PDL1 positive. In these cases, imaging showed 

that PDL1 ligand on tumor cells and PD1 receptor on CTLs were co-localized, consistent with ligand-

receptor binding (Fig. 4A and Supplementary Fig. S4A). In contrast to the paucity of PDL1+ tumor 

cells across all patients, significant co-occurrence (P < 0.05) was observed between PD1+ CTLs and 

PDL1+ macrophages and dendritic cells in 44 of 70 annotated histological domains; the frequency of this 

co-occurrence also increased with disease stage (Fig. 4B). To confirm that co-occurrence involved cell-

to-cell interactions at least some of the time, we performed high-resolution 3D imaging of FOVs 

spanning the invasive front in MEL1-1 and observed frequent contact between PD1+ CTLs and either 

PDL1+ macrophages or dendritic cells with a concentration of PD1 and PDL1 at the site of cell-to-cell 

interaction (Supplementary Fig. S4B and S4C). In some cases, macrophages formed presumed 

inhibitory synapses with CTLs via cellular processes that extended at least one cell diameter (10 µm) 

from the macrophage (Fig. 4C, Supplementary Video), showing that non-adjacent cells can make 

functional contacts with each other. A substantial subset of PDL1+ myeloid cells also expressed TIM3, 

which is associated with immune suppression (Fig. 4D and 4E).  

 

We were surprised to find so few PDL1+ tumor cells in our specimens and therefore sought confirmation 

via analysis of an additional set of 25 primary melanomas. These specimens were annotated by 

dermatopathology as containing for radial (6/25) and vertical growth phase (16/25) histologies based on 

H&E images (as before) and subjected to low-plex immunofluorescence imaging for PD1, PDL1, 

SOX10 and CD11C followed by visual inspection of staining patterns by trained tissue biologists and 

pathologists. In these specimens PDL1+ SOX10+ tumor cells were abundant (estimated to be ≥20% 

positive) in only one specimen, present (5-20% positive) in two specimens, and infrequent (0-5% 

positive) in 22 of 25 specimens (Fig. 4F and 4G; note that 5% threshold for PDL1 has previously been 
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used to score tumor “PDL1 positivity” in melanoma) (48–50). In contrast >25% of CD11C+ myeloid 

cells scored as PDL1+ in 19 of 25 specimens. Moreover, using the same reagents, we have routinely 

found that nearly all metastatic melanomas contain abundant PDL1+ SOX10+tumor cells (51). When the 

three melanomas containing relatively abundant PDL1+ tumor cells were examined further, we found 

that PDL1-positivity was strongly enriched at the IB of vertical growth phase melanoma, which is 

enriched in cytokines secreted by immune cells (e.g. IFNγ) and the probable site of metastasis 

formation. We conclude that in the primary melanomas we imaged (n = 33 of 36 in total), the cells most 

expressing PDL1 were dendritic cells and/or macrophages, not tumor cells.  

 

Recent data from the MC38 murine syngeneic model of colorectal cancer suggests that dendritic cells, 

not macrophages, may also be the relevant myeloid cell type for PDL1-mediated immunosuppression of 

activated CTLs in colonic adenocarcinomas (52). However, whereas the murine tumors analyzed by Oh 

et al. (52) contained many more PDL1+ macrophages than PDL1+ dendritic cells, we found that these 

two types of myeloid cells were similar in abundance in primary melanoma (1.2 to 1.4% of all cells). By 

high-resolution imaging of the invasive front, we also found multiple fields in which tumor cells, CTLs, 

dendritic cells, and other immune cell types (a subset of which expressed PD1 or PDL1) were all in 

direct contact with each other as part of extended networks (Fig. 4E). The presence of multi-dentate cell 

interactions and extended cellular processes containing immune-regulatory molecules suggests that 

multiple different immune cell types might communicate with each other via cell-cell contacts as well as 

autocrine or paracrine signaling. A more complete understanding of these interactions awaits high-

resolution 3D reconstructions of the TME. 

  

Single-cell analysis of invasive tumor reveals large scale gradients in lineage, immune, and 

proliferation markers 

Because LDA detects discrete differences between cells (most commonly in immune differentiation 

markers), it is insensitive to qualitative differences between cells of a single type. To quantify such 

differences - specifically in tumor cells - we used principal components analysis (PCA), and shift-lag 

analysis, focusing on cells in the invasive tumor (~5 x 105 malignant single cells) (Supplementary Fig. 

S1A). Principal components 1 and 2 (PC1 and PC2) explained 40% of the variance in these data, which 

represents good performance for a PCA model. The top loadings in score plots were KI67, the S100A 

and S100B proteins, and the MITF transcription factor (Supplementary Fig. S5A). KI67 is widely used 

to measure proliferation (53) and MITF is a master regulator of melanocyte differentiation (54). MITF is 

both a melanoma oncogene (55) and a determinant of drug resistance (56): an MITFlow state has been 
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associated with de-differentiation and resistance to RAF/MEK therapy (57). Across the whole tumor, 

S100A, S100B, and MITF exhibited striking gradients in expression levels on short and long length 

scales (~100-3000 µm), with the highest protein levels at the invasive margin, and lowest in the middle 

of the EM (Fig. 5A, 5B and Supplementary Fig. S5B). Thus, whereas clustering of sequencing data (7) 

emphasizes the presence of dichotomous MITF or S100 high and low states, imaging reveals continuous 

changes in protein levels through space. Spatial gradients involving morphogens have been widely 

studied in tissue development (58) but infrequently in cancer (59). 

 

Spatial lag is a common spatial statistic in geography and ecology (60) and we used it to identify 

recurrent tumor cell communities based on continuous differences in protein levels. Clustering of spatial 

lag vectors revealed the presence of 10 tumor cell communities (TCCs; see methods for details of 

clustering; Fig. 5C and 5D) that differed from each other in hyperdimensional features (combinations of 

markers) although in a few cases, single markers were dominant: MHC-II positivity for TCC3 and a 

MITFhigh KI67low state for TCC8 (Fig. 5C and 5D). TCC1 corresponded to an S100Ahigh MITFlow pattern 

that was primarily found in EM, while MITFhigh cells in TCC2 were primarily found in IM. TCC3 and 

TCC4 were either MHC-II high or CCND1high and had distinctive spatial localization (Fig. 5C and 5D). 

The component of the IM facing the dermis had seven distinct TCCs each of which was 2-5 cell 

diameters thick. For example, TCC3 and TCC4 were found at the invasive boundary and significantly 

co-localized (P < 0.05 by co-occurrence analysis) with immune cells (Supplementary Fig. S5C). TCC8 

was found internal to TCC3 and TCC4, and TCC1 and TCC2 were primarily found internal to this, at 

the trailing edge (Fig. 5E). H&E imaging has previously suggested that vertical growth phase melanoma 

might have the layered arrangement of tumor cells states revealed by spatial lag analysis of CyCIF data 

(61).  

 

The invasive state of cutaneous melanoma cells is thought to involve an MITFlow slowly-cycling state 

(56). However, we found that the TCC2 community at the invasive front was comprised of 70 to 85% 

MITFhigh KI67high cells (Fig. 5F; Supplementary Fig. S5D and S5E). Further evidence of proliferation 

was provided by positive staining of many cells in this TCC with antibodies against cyclin A2, cyclin 

B1, phospho-Rb (pRB, which is highest in S-phase), and phospho-histone H3 (pHH3 a marker of 

mitosis; Supplementary Fig. S6A) with the highest rates of proliferation in IM (~3-fold fewer 

proliferating cells were present in EM; Supplementary Fig. S6A and S6B). A second previously 

described feature of invasive melanoma is upregulation of genes involved in EMT in epithelial cells (in 

the case of melanoma these have been referred to as EMT-associated genes; (62,63)) and anti-apoptotic 
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programs (64); we observed both in tumor cells in IM (Supplementary Fig. S6C). Thus, the cells at the 

invasive boundary of MEL1 have several molecular properties previously associated with invasion, but 

they are neither MITFlow nor slowly proliferating (relative to the rest of the tumor). NGFR (CD271) and 

the AXL receptor tyrosine kinase are two other proteins widely studied for their roles in state switching 

and drug resistance in metastatic disease (65). However, we detected only sporadic NGFR expression in 

MEL1 tumor cells by either mrSEQ or imaging. AXL was detected only on the plasma membranes of 

keratinocytes and immune cells, not tumor cells (66). Thus, the primary melanomas we imaged differed 

in MITF, NGFR, and AXL expression from the melanoma cell lines used in most laboratory studies, 

most of which were derived from metastatic disease (67). 

 

Micro-regional transcript profiling identifies spatially distinct immune, mitogenic, and survival 

programs 

To study the transcriptional programs associated with different immune neighborhoods and tumor cell 

communities that we identified using LDA and spatial lag analyses, we performed micro-region 

transcriptomics (mrSEQ) on a total of 292 microregions of interest (mROIs) of specimen MEL1 using 

PickSeq (32), which recovers 5-20 cells per 40 µm diameter micro-region of interest (ROI) and GeoMX 

(a commercial technology) which recovers ~200-400 cells per ~200 µm diameter mROI; Fig. 1B and 

Supplementary Fig. S6D) (68). PCA of mrSEQ data revealed three primary clusters corresponding to 

(i) MIS, (ii) malignant tumor (EM plus IM), and (iii) regions of active immune response (IR – which 

were adjacent to the MIS and a bTIL region adjacent to the invasive boundary) (Fig. 6A). We found that 

markers commonly used to detect and subtype malignant melanoma (PMEL, MLANA, TYR, MITF, and 

CSPG4) were all strongly and consistently expressed at the gene level in mROIs from tumor domains 

(EM and IM), sporadically in MIS and not in immune-rich regions (IR, bTIL) confirming the annotation 

of these regions and the selectivity of the method (Fig. 6B; gene names are listed in Supplementary 

Table S6). Single-sample gene set enrichment analysis (ssGSEA) confirmed high enrichment of 

melanocyte signatures in tumor but not in immune mROIs, and conversely, immune signatures in IR and 

bTIL regions. Keratinocyte signatures were enriched in skin adjacent to MIS and IR (Fig. 6C), as 

expected. Moreover, results were consistent between PickSeq and GeoMX. 

 

To investigate molecular determinants of the spatial heterogeneity within vertical growth phase 

melanoma revealed by spatial-lag analysis, we performed differential expression (DE) analysis on the 

IM and EM domains of MEL1; this uncovered 81 significantly upregulated genes in IM and 69 

upregulated genes in EM (FDR < 0.05) (Fig. 6D; Supplementary Table S6). In IM, GSEA revealed 
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significant enrichment of KRAS signaling and the downstream NF-κB and MYC programs (Fig. 6E and 

6F). Upregulation of the KRAS pathway is expected in a tumor such as MEL1 that is mutant in NF1, 

which functions as a RAS GTPase-activating protein (GAP) (37). BCL2A1 (69), an antiapoptotic pro-

survival member of the BCL2 gene family, was expressed in IM but not in EM (Fig. 6F). EMT-

associated genes were also differently expressed: the S100A4 metalloproteases, β-catenin, and vimentin 

(DMKN, MMP2, CTNNB1, and VIM genes) were upregulated in IM and GSEA analysis confirmed 

enrichment of an EMT-associated signature within this region (Fig. 6G and Supplementary Fig. S6C). 

EMT-related genes are known to promote invasion and metastasis in many human neoplasms (70), 

consistent with the observed invasion of this melanoma into the underlying dermis. In contrast, an RNA 

sensing protein DDX58/RIG-I implicated in the suppression of cancer migration (71) was upregulated in 

EM (P < 0.05) (Supplementary Fig. S6E). The insulin-like growth factor receptor IGF-1R and the IGF 

binding protein IGFBP2, which is a mitogenic factor (72), were significantly upregulated in EM relative 

to IM (Fig. 6F). Thus, even though IM and EM are contiguous and both in the vertical growth phase, 

they exhibited significant differences in mitogenic, survival, and EMT-associated programs. 

 

To identify genes differentially expressed with tumor progression, we compared mrSEQ data of tumor 

in aggregate (EM plus IM) with MIS; this yielded 1,327 DE genes (FDR < 0.05) (Supplementary 

Table S6). However, differences in cellular composition were a complicating factor in this analysis: EM 

and IM contained mostly tumor cells with very few immune cells, but MIS was rich in immune cells and 

keratinocytes in addition to tumor cells. To correct for this effect, we searched for a gene shown by 

imaging and mrSEQ to be expressed in SOX10+ tumor cells from EM and IM but not in MIS and then 

constructed a correlation-based gene network to identify genes co-expressed with that gene (see 

methods); S100B was found to be an ideal candidate for this purpose (epidermal Langerhans cells also 

stain positive for S100B, but they were too infrequent to affect the analysis; Fig. 6H). The resulting 

S100B correlation module comprised 35 genes (at r = 0.6) all of which exhibited statistically significant 

upregulation in EM-IM (FDR < 0.05) (Fig. 6I and 6J; Supplementary Table S6). Among these genes, 

we validated by CyCIF the upregulation of CD63 and PMEL at the protein level (Fig. 6K). The S100B 

module included: (i) genes implicated in metastasis or invasion in diverse cancers such as SERPINE2 

(73), CTSL (74,75), TBC1D7 (76), and NRP2 (77); (ii) MITF-regulated genes such as the SCD (78) and 

CDK2 (79); (iii) oncogenes, such as the ETV5 transcription factor (80,81). When we examined TCGA 

melanoma data we found that multiple genes in the S100B module (BRI3, CDK2, MT-ND2, PMEL, 

SOX10, TBC1D7, TSPAN10, TYR) were associated with lower survival (P <0.05) (Supplementary 

Fig. S6F). Thus, half of the genes differentially expressed between MIS and EM-IM have established 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 15 

roles in oncogenesis, invasion, or progression in one or more cancers and ~25% are associated with 

lower survival in melanoma. This gene set may warrant further analysis as a means to refine current 

approaches to determining melanoma risk by gene set analysis (e.g., using methods such as DecisionDx-

Melanoma) (82). 

 

Tumor-immune interaction induces multiple immune suppression programs at the invasive 

boundary  

To better understand invasive properties of primary melanoma (Fig. 7A), we combined mrSEQ, 

conventional CyCIF (with a total of 80 antibodies in five separate panels), and 3D high-resolution 

deconvolution microscopy from tumor MEL1. In the invasive boundary (IB) region, mrSEQ data 

revealed significant and localized upregulation of IFNɣ and JAK-STAT signaling as well as the IFN-

inducible cytokines CXCL10 and CXCL11 (Fig. 7B and Supplementary Fig. S7A-S7C). CXCL10 and 

CXCL11 (along with CXCL9 and the CXCR3 receptor) have diverse roles in regulating immune cell 

migration, differentiation, and activation, and play a role in response to immune checkpoint inhibitor 

therapy (83). IFNɣ mediated JAK-STAT signaling can promote upregulation of the metabolic enzyme 

IDO1 (84) that has previously been reported to inhibit CTL activation (85,86) and also promote 

recruitment of regulatory T cells and myeloid-derived suppressor cells (MDSCs) (87). Consistent with 

this observation, we observed spatially restricted expression of IDO1 at the IB (Fig. 7B). Additionally, 

both mrSEQ and CyCIF of tumor cells revealed spatially restricted expression of MHC-II (HLA-DPB1) 

(Fig. 7C and Supplementary Fig. S7D), which is known to be IFNɣ-inducible (88). MHC-II binds to 

LAG3  on CD4+/ CD8+ T cells, promoting melanoma persistence by upregulating MAPK/PI3K 

signaling and can also facilitate immune escape by suppressing FAS-mediated apoptosis (89). Thus, a 

tightly restricted microenvironment exists at the IB involving multiple cytokines that induce, and are 

induced by, the JAK-STAT-IDO1 pathway (90) leading to the formation of a highly localized immune-

suppressive environment.  

 

Expression of other interferon-stimulated genes (ISGs) such as IRF1 and IRF5 was also evident at the 

IB: imaging revealed nuclear staining of IRF1 in tumor cells and strong IRF5 staining in CD11C+ 

myeloid cells directly adjacent to the tumor boundary (Fig. 7D-E, and Supplementary Fig. S7E). By 

integrating protein intensities across this boundary, we found that the half-maximal width for IRF1 

staining was ~40 µm (Fig. 7E) and that of MHC-II expression roughly twice as wide (i.e., ~ 100 µm or 

4 cell diameters; Fig. 7C and Supplementary Fig. S7D). Thus, mrSEQ and imaging are consistent with 
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a paracrine signaling mechanism in which IFNɣ arising in the peritumoral stroma (including the bTIL 

region) diffuses into the tumor, inducing ISGs at the invasive front (91).  

 

A reciprocal mechanism involved the macrophage migration inhibitory factor (MIF), an inflammatory 

cytokine overexpressed in a variety of cancers (92). MIF was more abundant in tumors (MIS, IM, EM) 

than in immune-rich regions (bTIL, IR; DE with P <0.05) (Fig. 7B) and was confirmed by imaging 

(Supplementary Fig. S7F). mrSEQ data showed that the MIF receptor CD74 (which is induced by 

IFNɣ (93)), was expressed in immune-rich (bTIL) regions adjacent to the IB (Fig. 7B) and CyCIF 

confirmed this at the protein level (Supplementary Fig. S7G). CD74 was also found to be expressed in 

melanoma cells (where it can promote PI3K/AKT activation and cell survival) but was spatially 

restricted to cells at the IB (Supplementary Fig. S7G). We also detected elevated expression of a 

second MIF receptor, CXCR4, and another cognate ligand, CXCL12, in the bTIL region; CXCR4 

activation leads to expansion of immunosuppressive Tregs (94). CXCR4 is the chemokine receptor most 

commonly found on cancer cells, and binding to CXLC12 is thought to promote invasive and migratory 

phenotypes leading to metastasis (95). However, mrSEQ showed that CXCR4 levels were low in IM and 

EM (Supplementary Fig. S7H). Thus, mrSEQ data are most consistent with MIF expression in tumor 

cells that acts in a paracrine manner on immune cells with overlapping CXCL12-CXCR4 signaling, also 

in the immune compartment. Overall, these data reveal the pattern of immune cell activation and 

immunosuppression involving highly localized cytokine signaling and direct cell-to-cell contact all 

within a few cell diameters of the IB. 

 

However, successful immune editing and clearance of SOX10+ tumor cells were also observed at 

regions of inflammatory and terminal regression in MEL1; only a few millimeters away from the 

invasive tumor front. In regions of regression, we observed dense infiltrates of CTLs, the majority of 

which were PD1+ and thus activated. The greatest concentration of PD1- CTLs in MEL1 was found not 

near the tumor but in the IR region (Fig. 7F and Supplementary Fig. S7I). MHC-II+ APCs were also 

abundant, consistent with ongoing Treg activation (Fig. 7G and Supplementary Fig. S7I). Imaging 

showed that CTLs in the IR that were PD1+ also expressed LAG3 and/or TIM3 and mrSEQ confirmed 

the expression of PDL1, LAG3, TIGIT, and CTLA4. Thus, many T cells in the region of IR appeared to 

be exhausted. An accumulation of terminally exhausted T cells near the tumor is likely to reflect normal 

immune homeostasis (immune induced tumor regression), not tumor-mediated immune suppression 

(Fig. 7H). Our data suggest that the key difference between the active immune response in regions of 
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tumor regression and the seemingly ineffective response in regions of invasion is the presence of 

abundant PDL1+ macrophages and dendritic cells and their physical interaction with T cells. 

 

DISCUSSION 

In this paper, we exploit histological features used clinically to stage primary cutaneous melanoma as a 

framework for analyzing multiplexed imaging and mrSEQ data along an axis of tumor progression from 

precursor fields to invasive melanoma. We also examine regions near the dermal-epidermal junction in 

which immunoediting is ongoing or had reached a resolution with few or no tumor cells remaining. 

Molecular evidence of progression was obtained using protein markers (by CyCIF) and oncogenic 

programs (by mRNA expression) both within specimens, each of which comprised several distinct 

histologies, and also across a patient cohort. Disease-relevant morphological features ranged in length 

scale from 0.5 µm (organelles) to 20 mm (invasive fronts) and we found that imaging the entirety of 

individual specimens up to ~1 cm in length – not a TMA or a small region of interest – was essential for 

retaining information on tissue context and for the success of our approach (34). Accompanying high-

resolution 3D imaging revealed the presence of immune synapses and PD1-PDL1 co-localization to the 

plasma membranes of neighboring cells; we interpret these as evidence of functional cell-to-cell 

interaction. Juxtacrine receptor-ligand interactions of this type appear to be relatively common among 

cells lying along the immune-rich invasive tumor boundary (up to 20% of adjacent cells making contact 

in an exemplary field). At the current state of the art, however, only a relatively small number of whole-

slide images could be analyzed for spatial patterns in their entirety (n = 13 patients and 70 histological 

ROIs). Thus, the progression-associated changes described in this manuscript should be regarded as 

representative rather than comprehensive: in contrast, discovery of new (progression) biomarkers by 

traditional IHC typically involves analysis of at least 100 specimens followed by clinical trials (96).  

 

The use of Latent Dirichlet Allocation (LDA) on high-plex data made it possible to identify recurrent 

combinations and arrangements of cell types across ROIs. The frequency of recurrent cellular 

neighborhoods (RCNs), and their proximity to each other, changed with disease stage (Fig. 7I). Relative 

to adjacent normal skin, changes in the immune environment were detectable in fields of melanocytic 

atypia (precursor fields) but the largest differences along the progression axis appeared to involve 

precursor fields and MIS. This involved the recruitment to the tumor domain of CTLs, many of which 

were PD1+ and presumably activated as well as increases in suppressive Tregs and PDL1-expressing 

myeloid cells. The resulting immunosuppressive environment became more consolidated between MIS 

and invasive stages. For example, in sample MEL1, a community of cells involving tumor and PDL1+ 
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myeloid cells (macrophages and dendritic cells in roughly equal proportion) formed a thin and 

continuous sheath along the invasive front. TILs were largely excluded from the tumor at this stage, 

except in the immediate proximity of small vascular structures that were found throughout the EM. 

 

Whereas LDA was effective at identifying neighborhoods involving different types of cells, spatial lag 

modeling on CyCIF data identified recurrent patterns involving continuous differences in protein levels 

on a scale of 10 to 100 cell diameters. Spatial gradients on similar scales were also observed for several 

protein markers – MITF or S100B for example. Thus, whereas LDA and clustering of transcriptional 

data highlight discrete differences in cell states, imaging demonstrates the presence of gradients 

reminiscent of those found in developing tissues (58,59). In general, significant differences among 

communities of cancer cells identified by shift-lag modeling involved hyperdimensional features 

(combinations of markers instead of single proteins) consistent with the current understanding of 

molecular determinants of cellular morphology (97). Moreover, gradients in MITF or S100B are likely 

to be indications that tumor cell phenotypes are graded in space but not causes of this variation. One 

unexpected finding involved the “invasive” state of melanoma cells, which is often described as being 

MITFlow with slow proliferation. Spatial lag modeling showed that MITFhigh KI67high cells were common 

in MEL1 in the immediate proximity of the invasive front and mrSEQ showed that these cells were 

significantly enriched in EMT-associated programs, which are common along the invasive boundaries of 

many other types of tumors. Future studies on paired primary and metastatic tumors will be required 

understand how these data relate to previous analysis of MITF high and low states, which has largely 

been performed in cell lines. 

 

CyCIF and mrSEQ revealed a pattern of cytokine production and receptor expression at the invasive 

boundary of MEL1 consistent with paracrine regulation of both tumor and immune cells (Fig. 7J). The 

dermis in this region was rich in TILs (corresponding to a brisk TIL response in the Clark grading 

system) and was the site of highest IFNɣ production. A band of cells ~2 cell diameters wide in the 

adjacent invasive melanoma stained positive for nuclear-localized IRF1, the master regulator of 

interferon response (yellow cells in Fig. 7I); mrSEQ showed that JAK-STAT signaling was active in 

this region and IDO1 was differentially expressed. IDO1 converts tryptophan into kynurenine, which 

activates Tregs and MDSCs, and is known to be immunosuppressive in melanoma (98). MHC-II was 

also expressed in both immune and tumor cells at the invasive boundary, in a band roughly twice as 

wide as IRF1, and is known to function in this context by binding to LAG3 on TILs, leading to 

inhibition of TCR signaling and T cell activation (99,100). MIF1 was another inflammatory cytokine 
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found at the invasive front and was expressed primarily in the invasive tumor region; responsive 

CXCR4-expressing immune cells were found in the stroma. MIF1 may also have an autocrine activity 

since expression of the MIF1 receptor CD74 was detected in the tumor itself. CXCR4-expressing 

immune cells are also responsive to CXCL12, which was expressed in the TIL-rich stroma. CXCR4 is 

the cytokine receptor most commonly found on melanoma and other types of cancer cells, and CXCR4-

CXCL12 signaling is thought to promote metastasis (95), but we did not observe CXCR4 expression in 

MEL1 by mrSEQ. We conclude that the immunosuppressive activity of IFNɣ manifests itself in MEL1 

in a spatially restricted manner involving a sheath of tumor and myeloid cells surrounding the invasive 

tumor. Undoubtedly, the magnitude of these effects will vary among primary tumors but our analysis 

illustrates how reciprocal cytokine signaling between tumor and immune cells can shape the local TME. 

 

Performing spatial proximity analysis on imaging data (with a 10 - 20 µm cutoff) made it possible to 

identify cells that are sufficiently close to each other that physical contact is probable. We were able to 

visualize these contacts and infer function using high-resolution 3D imaging of ~5 x103 cells. The most 

informative images were those involving cytotoxic T and melanoma cells that resulted in the 

polarization of CD8 (a co-receptor for the T-cell receptor) at the point of contact, suggesting the 

formation of a synapse. PD1+ CTLs cells were also observed in contact with PDL1-expressing 

macrophages and dendritic cells resulting in receptor-ligand co-localization. In some cases, these 

contacts involved surprisingly extended processes (>10 µm) in which macrophages appeared to stretch 

towards T cells. In other cases, multiple CTLs, T helper, and myeloid cells were found to be in physical 

contact with each other and with tumor cells with evidence of receptor or ligand polarization. The 

functional significance of these clusters awaits further analysis using a greater diversity of immune 

markers, but they are presumably a physical manifestation of the competing activating and inhibitory 

effects of other immune cells on CTLs. 

 

Overall, we found evidence of at least six immunosuppressive mechanisms operating near the invasive 

front. Particularly striking was the overlap in the binding of PD1+CTLs to PDL1+ macrophages and 

dendritic cells and tumor cell-intrinsic phenotypes such as MHC-II and IDO1 expression. Unexpectedly 

we only rarely detected high expression of PDL1 on tumor cells by either whole-slide imaging or high-

resolution microscopy (even when IFNɣ expression was detected). This finding was validated using a 

separate cohort of 25 primary cutaneous melanomas and contrasts with data collected in parallel from 

metastases, in which strongly PDL1+ tumor cells are common. We conclude that myeloid cells are likely 

to provide the predominant source of PDL1 bound to PD1+ T cells in the tumors in our cohort. Data 
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obtained by Oh et al. (52) in mouse models suggest that the functionally significant cell type is likely to 

be PDL1+ dendritic cells, but in our specimens, dendritic cells and macrophages appear to be similar in 

abundance at tumor invasive boundaries. 

 

CTLs were found to engage tumor cells in a region of inflammatory regression adjacent to MIS in 

MEL1. The additional presence of an adjacent region of complete regression, which was rich in immune 

cells but free of tumor cells, suggests that immune editing was ongoing and successful. However, these 

regions also had a preponderance of terminally exhausted CTLs, showing that the characteristics of a 

successful and self-limiting anti-tumor immune response in data such as that presented here can 

resemble those of immunosuppression in invasive melanoma. The primary difference we observed 

between regions of regression and invasion with immunosuppression was a substantially lower level of 

PDL1+ myeloid cells, but further research will be required to determine if this is generally true. 

 

Limitations of this study 

One challenge encountered in molecular analysis of primary melanoma is that, as a diagnostic necessity, 

specimens are available only in FFPE form, generally precluding scRNA-Seq for research purposes. 

Sequencing of carefully selected micro-regions by mrSEQ provides meaningful information on activated 

pathways and differential gene expression linked to histological features but is not yet single-cell 

resolution. A second challenge is that meaningful outcome analysis requires long follow-up: all patients 

whose tumors were analyzed in this study were diagnosed between 2017 and 2019 and were alive at the 

time of the last follow-up; ~75% were disease-free. Thus, we used histologic progression not outcome to 

organize the data in a biologically meaningful fashion. A final limitation in any molecular study of 

patient-derived specimens is that only one-time point can be evaluated per patient. Our analysis of tumor 

samples exhibiting progression within the same specimen helps to mitigate this issue. 

 

Despite the scope of the current data collection effort, 13 specimens are too few to be representative of 

the diversity of cutaneous melanoma. We estimate that data collection will need to be scaled up 5 to 10-

fold to determine whether many of the features observed in MEL1 are significantly associated with 

progression in other specimens. Moreover, spatially resolved mRNA expression and high-plex imaging 

data support each other in many cases, but this was not always true. This is not unexpected because 

mRNA and protein expression are known to be uncorrelated in many cases (101) and cell morphology 

represents a hyper-dimensional feature in gene expression space (97). 3D image data has provided 

valuable insight into cell-to-cell interactions, but automated segmentation of these data remains difficult, 
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and most conclusions were derived from a human inspection of images. More generally, the greatest 

limitation in the current work is related to the underdevelopment of software tools for characterizing 

large high-plex tissue images. Much, therefore, remains to be discovered from the images we have 

collected. Full resolution Level 3 images (102) and associated single-cell data are therefore being 

released in their entirety, without restriction, for follow-on analysis. 

 

METHODS 

Contact for reagent and resource sharing 

This manuscript does not contain any unique resources and reagents; all data is provided for download 

without restrictions. Any questions should be directed to the lead contact Peter Sorger 

(peter_sorger@hms.harvard.edu). 

Clinical samples 

Using medical records and pathological review of hematoxylin and eosin (H&E) stained diagnostic 

specimens, we retrospectively identified 13 patients with tissue samples containing various stages of 

melanoma progression (Supplementary Table S1 and S2). The samples were retrieved from the 

archives of the Department of Pathology at Brigham and Women’s Hospital and collected under the 

Institutional Review Board approval (FWA00007071, Protocol IRB18-1363), under a waiver of consent. 

Fresh formalin-fixed paraffin-embedded (FFPE) tissue sections were cut from each tumor block. The 

first section of each block was H&E stained and used to annotate regions of interest (ROIs; 

Supplementary Table S3). The remaining subsequent FFPE slides were used for cyclic multiplex 

immunofluorescence imaging (CyCIF) experiments to characterize markers of melanoma progression 

and the features of the immune microenvironment within various stages of melanoma. A specimen from 

a single patient MEL1 (samples MEL1-1, MEL1-2, and MEL1-3) was selected for deeper profiling with 

CyCIF and high-resolution imaging, in addition to microregion transcriptomics (PickSeq, GeoMX). The 

clinical, biospecimen, and imaging level metadata were all collected following the MITI standards 

(102). 

 

Based on the melanoma diagnostic criteria, the histopathological annotations included normal skin (N), 

melanoma precursor lesions (P: melanocytic atypia, dysplasia, and hyperplasia), melanoma in situ 

(MIS), vertical growth phase of melanoma (VGP), radial growth phase of melanoma (RGP), invasive 

(IM) and nodular melanoma (NM); the exophytic component of the polypoid melanoma was labeled as 

exophytic melanoma (EM). These ROIs were further classified and subdivided based on the presence of 
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immune infiltrate (brisk TIL (bTIL), inflammatory regression (IR), none) and various histologically 

distinct structures (epidermis, dermis, invasive front (IB)). The bTIL region was defined as a dense 

lymphocytic infiltrate in the stroma adjacent to the invasive tumor. IB was defined as the tumor region 

extending ~20 μm from the tumor-stroma interface. The most representative regions of each histologic 

category from each specimen were selected in order to avoid inter-observer variability. In the case that a 

single specimen contained more than one histologic region in each category (e.g., precursor regions on 

both sides of VGP melanoma), we performed neighborhood analyses separately since these regions were 

not physically adjacent. 

Imaging (H&E and t-CyCIF) 

H&E stained FFPE slides were digitized using an Olympus VS-120 automated microscope using a 20x 

objective (0.75 NA) at the Neurobiology Imaging core at Harvard Medical School. CyCIF was 

performed as described in (31) and at protocols.io (dx.doi.org/10.17504/protocols.io.bjiukkew). In brief, 

the BOND RX Automated IHC Stainer was used to bake FFPE slides at 60°C for 30 min, dewax using 

Bond Dewax solution at 72°C, and perform antigen retrieval using Epitope Retrieval 1 (LeicaTM) 

solution at 100°C for 20 min. Slides underwent multiple cycles of antibody incubation, imaging, and 

fluorophore inactivation. Antibodies were incubated overnight at 4°C in the dark; in contrast to the 

protocol.io method, this was performed using a solution that also included Hoechst 33342 for DNA 

staining. Before imaging, glass coverslips were wet-mounted using 100 μL of 70% glycerol in 1x PBS. 

Images were acquired using a CyteFinder® slide scanning fluorescence microscope (RareCyte Inc., 

Seattle WA) with a 20x/0.75 NA objective. Slides were soaked in 42°C PBS to facilitate coverslip 

removal; then fluorophores were inactivated by incubating slides in a solution of 4.5% H2O2 and 24 mM 

NaOH in PBS and placing them under an LED light source for 1 hr. The list of all antibody panels used 

in the experiments is presented in Supplementary Table S4. All the used antibodies were validated 

with a multi-step process including comparing multiple antibodies with each other and with clinical 

standards, and by visual inspection on individual stained FFPE tissue sections. Antibodies that passed 

these criteria and followed the expected staining pattern were only included in downstream anslysis. 

 

One FFPE section from sample MEL1-1 was imaged with CyCIF at high-resolution using a DeltaVision 

ELITE microscope (Cytiva; formerly GE Sciences) equipped with a 60x/1.42NA oil-immersion 

objective and an Edge 4.2 (PCO) sCMOS camera. For accurate deconvolution, an oil refractive index of 

1.524 was selected through optimizing multiple acquired point-spread functions as it provided the 

highest image quality. The slide was wet-mounted with a high-precision 1.5-grade coverslip (ThorLabs 
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CG15KH1) using 105 μL of 90% glycerol. The fields for image acquisition were selected by evaluating 

SOX10 staining to locate and identify melanocytes and tumor cells, yielding a total of 42 fields across 

the annotated regions (Fig. 1C and Supplementary Fig. S1D). Images were acquired in 5 μm Z-stacks 

at 200 nm step size to create a 3D representation of the sample. Excitation wavelengths were: 

632/22 nm, 542/27 nm, 475/28 nm, 390/18 nm for four-channel imaging. 

 

PD-L1 expression was also quantified in an additional cohort of 25 additional primary melanomas 

(cohort 2; Fig. 4F and G) selected from the BWH tissue bank using the same criteria as the 13 

specimens described above. These specimens were subjected to lower-plex CyCIF imaging using 

antibodies listed in Supplementary Table 4. The frequency of PDL1 positivity on tumor and myeloid 

cells was then visually quantified as the percentage of PDL1-positive SOX10+ tumor cells (binned as 

follow: 0-5%, 5-20%, >20%) or CD11C+ myeloid cells (binned as follows: <1%, 1-25%, >25%). Broad 

bins were chosen to make the results robust to counting errors in regions of tissue where cells were 

densely packed. 

Microregion transcriptomics 

For the microregion transcriptomic profiling (mrSEQ) using PickSeq and GeoMX, we identified micro-

regions (mROIs) of MIS, EM, IM, IB, IR, and bTIL from samples MEL1-1, -2, and -3 based on the 

corresponding H&E-stained sections. Freshly cut serial sections from the corresponding tissue blocks 

were used for the mrSEQ experiments. 

 

PickSeq processing and library preparation 

PickSeq is a method by which 40 µm mROIs of interest are physically extracted using a robotic arm 

followed by mRNA extraction and RNA sequencing (32). 222 ROIs representing five morphologically 

distinct sites (MIS, IM, IB, bTIL, EM; Supplementary Fig. S6D) were selected for collection and 

library preparation. The FFPE sections were deparaffinized and rehydrated using the Histogene Refill 

Kit (Arcturus). Slides were immersed in xylene for 5 min, a second jar of xylene for 5 min then 

incubated in a series of ice-cold solutions with 0.0025% RNasin Plus (Promega): 100% ethanol for 1 

min, 95% ethanol for 1 min, 75% ethanol for 1 min, 1X PBS for 1 min, and another tube of 1X PBS for 

1 min. Slides were stained with 50 µM DRAQ5™ a Far-Red DNA Dye (ThermoFisher) in PBS, with 

0.1% RNasin Plus for 2 min on ice. Sections were dehydrated in a series of ice-cold solutions with 

0.0025% RNasin Plus: 1X PBS for 1 min, 1X PBS for 1 min, 75% ethanol for 1 min, 95% ethanol for 1 

min, 100% ethanol for 1 min. Slides were left in ice-cold 100% ethanol before mROI retrieval. 
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For mROI retrieval, the slides were loaded into a CyteFinder instrument (RareCyte) and retrieved using 

the integrated CytePicker module with 40 µm diameter needles. The retrieved tissue mROIs were 

deposited with 2 µl PBS into PCR tubes containing 18 µl of lysis buffer: 1:16 mix of Proteinase K 

solution (QIAGEN) in PKD buffer (QIAGEN), with 0.1% RNasin Plus. After deposit, tubes were 

immediately placed in dry ice and stored at -80°C until ready for downstream RNA sequencing 

workflow. 

 

PCR tubes containing tissue microregions in the lysis buffer were removed from the freezer, allowed to 

thaw at room temperature for 5 min, and incubated at 56°C for 1 hr. Tubes were briefly vortexed, spun 

down, and placed on ice. Dynabeads Oligo(dT)25 beads (ThermoFisher) were washed three times with 

ice-cold 1X hybridization buffer (NorthernMax buffer (ThermoFisher) with 0.05% Tween 20 and 

0.0025% RNasin Plus) and resuspended in original bead volume with ice-cold 2x hybridization buffer 

(NorthernMax buffer with 0.1% Tween 20 and 0.005% RNasin Plus). A volume of 20 µl of washed 

beads was added to each lysed sample, mixed by pipette, and incubated at 56°C for 1 min followed by 

room temperature incubation for 10 min. Samples were placed on a magnet and washed twice with an 

ice-cold 1X hybridization buffer, then once with ice-cold 1X PBS with 0.0025% RNasin Plus. The 

supernatant was removed, and the pellet was resuspended in 10.5 µl nuclease-free water. Samples were 

incubated at 80°C for 2 min and immediately placed on a magnet. The supernatant was transferred to 

new PCR tubes or plates, and placed on ice for subsequent whole transcriptome amplification or stored 

at -80°C. 

 

Reverse transcription and cDNA amplification were performed using the SMART-Seq v4 Ultra Low 

Input RNA Kit for Sequencing (Takara Bio, Kusatsu, Shiga, Japan). The resulting amplified cDNA 

libraries were assessed for DNA concentration using the Qubit dsDNA HS Assay Kit (ThermoFisher) 

and for fragment size distribution using the BioAnalyzer 2100 High Sensitivity DNA Kit (Agilent). The 

sequencing libraries were prepared with ThruPLEX DNA-seq Kit (Takara Bio). The resulting libraries 

were characterized by using the Qubit dsDNA HS Assay Kit and BioAnalyzer 2100 High Sensitivity 

DNA Kit, pooled at equimolar ratios, and sequenced using a MiSeq (Illumina) or NextSeq (Illumina) 

sequencer. 

 

GeoMX processing and data collection 
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NanoString GeoMx gene expression analysis utilizing the cancer transcriptome array (CTA) probe set 

was performed by the Technology Access Program at NanoString using previously described methods 

(103). Briefly, a 5 μm section of FFPE melanoma was dewaxed and stained overnight with antibodies 

targeting melanocytes (PMEL), epithelial (pan-cytokeratin), and immune cells (CD45) defining cell 

morphology and highlighting regions of interest. The section was hybridized with the CTA probes 

before being loaded into the instrument. Seventy ROIs representing five morphologically distinct sites 

(MIS, IM, IB, bTIL, EM; Supplementary Fig. S6D) were selected for collection and library 

preparation. All sample processing and sequencing were performed by the Technology Access Program 

at NanoString. Probe measurements, and quality control data were provided by NanoString. 

 

3D image processing, alignment, and visualization 

Acquired images were deconvolved using constrained iterative in SoftWorx to reassign photons to the 

focal plane and increase image contrast. Maximum intensity projections were also generated. 

Subsequently, cycles were aligned using a custom script written in MATLAB (Mathworks). Briefly, 2D 

image registration was first carried out using the Hoechst channel maximum intensity projections. This 

was followed by registration along the z-axis. The registered 3D datasets were visualized in Imaris 

(Bitplane) and surface rendered for visualization. 

 

PickSeq data Alignment and expression matrix generation 

The raw FASTQ files were examined for quality issues using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure library generation and sequencing 

were suitable for further analysis. The reads were processed using the bcbio pipeline v.1.2.1 software 

(104). Briefly, reads were mapped to the GRCh38 human reference genome using HISAT2 and Salmon. 

Length scaled transcripts per million (TPM) derived from Salmon were used for the downstream 

analysis.  

 

Differential gene expression and pathway analysis 

DESeq2 R package was used to generate the normalized read count table based on their 

estimateSizeFactors() function with default parameters by calculating a pseudo-reference sample of the 

geometric means for each gene across all samples and then using the "median ratio" of each sample to 

the pseudo-reference as the sizeFactor for that sample. The sizeFactor was then applied to each gene's 

raw count to get the normalized count for that gene. DESeq2 (105) was used for differential gene 

expression analysis. A corrected P-value cut-off of 0.05 was used to assess significant genes that were 
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up-regulated or down-regulated using Benjamini-Hochberg (BH) method. Principal component analysis 

(PCA) was performed using the prcomp R package. A compendium of biological and immunological 

signatures was identified from publicly available databases or published manuscripts for performing 

enrichment analysis. To perform gene set enrichment analysis, two previously published methods (Gene 

Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA)) were primarily used. The R 

package clusterProfiler was used to perform GSEA and the R package GSVA was used to perform 

ssGSEA which calculates the degree to which the genes in a particular gene set are coordinately up- or 

down-regulated within a sample. The KRAS and JAK-STAT were curated from MSigDB (106), and 

immune cell-related and melanoma-related signatures were curated from published studies (7,107,108).  

 

Network analysis to identify genes within S100B module 

The normalized expression matrix (PickSeq data) was loaded into the network analysis tool BioLayout 

(109). Within the tool, a Pearson correlation matrix was generated, i.e., an all versus all comparison of 

expression profiles across all samples. A gene correlation network (GCN) was then generated using a 

correlation threshold value 0.6. In the context of a GCN, nodes represent genes and edges represent the 

correlations between them. A single-step neighbor walk was performed within the tool from S100B to 

determine the S100B module. 

CyCIF image preprocessing and quality control 

The complete preanalytical CyCIF image processing (stitching, registration, illumination correction, 

segmentation, and single-cell feature extraction) was performed using the MCMICRO pipeline (36) an 

open-source multiple-choice microscopy pipeline, versions 60929d5b82 and 7547d0c42a (full codes 

available on GitHub https://github.com/labsyspharm/mcmicro). For the generation of probability maps 

and the nuclei segmentation, a trained U-Net model UnMicst v1 was used followed by a marker-

controlled watershed used for single-cell segmentation (110). A diameter range of 3 to 60 pixels was 

used for nuclei detection. The cytoplasmic area was captured by expanding the nuclei mask by 3 pixels. 

After generating the segmentation masks, the mean fluorescence intensities of each marker for each cell 

were computed, resulting in a single-cell data table for each acquired whole-slide CyCIF image. The 

X/Y coordinates of annotated histologic regions on the whole-slide image were used to extract the 

quantified single-cell data of cells that lie within the ROI range.  

Multiple approaches were taken to ensure the quality of the single-cell data. At the image level, the 

cross-cycle image registration and tissue integrity were reviewed; regions that were poorly registered or 
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contained severely deformed tissues and artifacts were identified, and cells inside those regions were 

excluded. Antibodies that gave low confidence staining patterns by visual evaluation were excluded 

from the analyses. The quality of the segmentation was assessed and the segmentation parameters were 

iteratively modified to improve the accuracy of the segmentation masks. On the single-cell data level, 

correlations of DNA staining intensities in different cycles were used to filter out cells that were lost in 

the cyclic process with a threshold of correlation coefficient less than 0.8. 

Single-cell phenotyping 

We developed a gating-based phenotyping approach to classify cells (111). First, an open-source 

OpenSeadragon based visual gating tool (https://github.com/labsyspharm/cycif_viewer) was used to 

derive gates (the cut-off value that distinguishes cells that express and do not express a particular 

marker). The identified gates for each marker were subsequently used to rescale (similar to batch 

correction) the single-cell data between 0 and 1 such that the values above 0.5 identify cells that express 

the marker and vice-versa (rescale function within scimap). We repeated this process on every image 

independently and merged them into a single large single-cell dataset. The scaled single-cell data was 

used for cell-type calls.  

We built an algorithm (phenotype_cells function within the scimap python package) that assigns 

phenotype labels to individual cells based on a sequential probability classification approach. The 

underlying assumption is that the probability of a real signal would be higher than the bleed-through/ 

artifact signals that arise due to chromatic or segmentation artifacts. For example, if a B cell (CD20+) 

and T cell (CD3+) are physically next to each other with some bleed-through of CD3 signal into the B 

cell (CD20+ cell), the algorithm compares the scaled intensity of CD3 and CD20 and assigns the cell as 

a B cell due to higher levels of CD20 expression. It is sequential as we follow a tree structure, whereby 

the cells are initially classified into large groups such as tumor (e.g., based on SOX10/S100B) and 

immune (CD45 expression) and as a second step, the immune cells are further divided into cell-types 

such as T cells, B cells, etc. which are further divided into finer subtypes in a sequential step. An input 

to this algorithm is a relationship chart (phenotyping workflow, Supplementary Fig. S1C, S2B, and 

Supplementary Table S5) between markers and cell types (phenotypes). Each cell is binned into a 

phenotype class based on the highest expression of a given marker. If a cell does not express any of the 

markers (i.e., < 0.5) in the phenotyping workflow sheet, it is assigned to an unknown class. On average 

we found that ~25% of cells (15% to 39% across all 13 patients) were classified as unknown. Based on 

inspection of H&E images these cells are likely to include fibroblasts, adipocytes, muscle, and other 
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stromal cells. By using “AND, OR, ANY, ALL” as parameters, in combination with “POS or NEG” 

expression patterns, we were able to define the desired cell types identified via unsupervised clustering 

and manual inspection of the images. The assigned cell types were then verified by overlaying the 

phenotypes onto the image using Napari (image_viewer function within scimap). In total, we assigned 

phenotype labels to 1.7*106 single cells from 70 CyCIF ROIs corresponding to all progression stages 

(specimens MEL2-MEL13) and a whole slide dataset from specimen MEL1-1. 

Phenotype co-occurrence analysis 

For each cell in the CyCIF dataset, its local neighborhood was captured by querying a radius of 20 µm 

from the cell centroid as measured by Euclidean distance between X/Y coordinates. The phenotypes of 

these cellular neighbors were mapped to generate a neighborhood matrix containing the neighbor 

phenotype for every cell. We then randomly permutated (1,000 times) the neighborhood phenotypes 

without changing the number of neighbors (to maintain the tissue structure) and generated 1,000 random 

cell-cell neighborhood matrices. The frequency of all cell-to-cell pairwise proximity from the real 

neighborhood matrix was compared with the 1,000 randomly generated neighborhood matrices to 

identify significant proximity or avoidance between pairs of cell types. The p-values were derived for 

every pairwise proximity according to the following formulas: 

𝑧𝑖𝑗 =  
(𝑐𝑖𝑗 − 𝜇𝑖𝑗)

𝜎𝑖𝑗
 

cij is the number of times the ith cell type was found proximal to the jth cell type. Its associated P-value 

pij was calculated by 

𝑝𝑖𝑗 =  erfc (
𝑧𝑖𝑗

√2
) 

where erfc is the complementary error function calculated using the python function 

‘scipy.stats.norm.sf’. The method is implemented under the spatial_interaction function in the scimap 

python package. 

Spatial lag analysis to define tumor cell communities 

For each tumor cell in the CyCIF dataset (MEL1-1), its local neighborhood was captured by querying a 

radius of 20µm from the center cell as measured by Euclidean distance between X/Y coordinates. A 
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spatial lag vector was derived for each neighborhood by taking the product of the expression matrix and 

a weighted proximity matrix. The weights were assigned such that the closest cell within a neighborhood 

received the highest weight (weight = 1) and the farthest received the lowest weight (weight = 0). The 

weights were then normalized to account for the number of cells within each neighborhood. The spatial 

lag matrix was then clustered using Python’s scikit-learn implementation of KMeans with k = 20 and 

manually grouped (hierarchical clustering assisted) into meta-clusters (10 clusters) based on similar 

expression patterns visualized using a heatmap. The method is implemented under the 

spatial_expression function in scimap python package. 

 

Proximity volume scoring 

To quantify the abundance of cell-to-cell proximity between cell types of interest (COI) observed in 

CyCIF images, we developed a scoring system that weighs user-defined proximity patterns. The 

proximity volume score is defined as the proportion of COI found in proximity to each other (10 µm) 

compared to the total number of cells within that image. We calculated the spatial volume score between 

cell types of interest (tumor and CD11C+ myeloid cells) for each image and averaged them across 

images belonging to the same stage. The scoring is implemented under the spatial_pscore function in 

scimap python package. 

 

Recurrent cellular neighborhood (RCN) analysis to identify microenvironmental communities 

For every single cell from specimens MEL1 to MEL13, its local neighborhood was captured by 

querying a radius of 20µm from the center cell as measured by Euclidean distance between X/Y 

coordinates. The cells within each neighborhood were mapped to the cell-type assignment made and 

their frequency within each neighborhood was computed. The frequency matrix was then used for 

microenvironment modeling using a method called Latent Dirichlet Allocation (LDA) which is 

commonly used in the natural language processing (NLP) and information retrieval (IR) community. 

Python’s gensim (https://pypi.org/project/gensim/) implementation of LDA model estimation was used 

to train the algorithm. The number of latent motifs to be extracted from the training corpus was 

determined empirically (motifs = 10). The latent vectors (weights) were recovered from the model and 

clustered using scikit-learn implementation of KMeans with k = 30. The optimal number of KMeans 

clustering was determined by looking for the elbow point in the computed cluster heterogeneity during 

convergence (Supplementary Fig. S2D). A fairly lenient elbow point (k = 30) was used to capture the 

maximal variance in our dataset and to account for smaller communities. The clusters were then 

manually grouped (hierarchical clustering assisted) into meta-clusters (11 clusters) based on similar 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022

https://pypi.org/project/gensim/


Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 30 

microenvironmental community patterns. To validate the RCN assignment, these meta-clusters were 

overlaid on the original tissue H&E-stained and fluorescent images. For example, RCN1 generally 

mapped to the epidermis capturing structural components of the data whereas RCN8 mapped to regions 

of immune suppression (with a high abundance of PD1+ T cells) capturing communities of functional 

importance. In parallel, we also derived RCNs using an alternative approach, whereby we directly 

cluster the cell-type frequency table generated before feeding into the LDA model. We were able to 

identify similar communities (Supplementary Fig. S2E) thereby validating the communities that we 

describe using an alternative approach. However, we believe the LDA model was more robust to noise 

compared to directly clustering the cell-type frequency table. The method is implemented under the 

spatial_count function and the LDA approach is implemented under the spatial_lda function in scimap 

python package.  

 

Statistical tests 

All statistical tests to infer P-value for significant differences (P < 0.05) in mean were performed using 

Python’s scipy implementation of the t-test.  

 

Data and software availability 

Micro-region sequencing (mrSEQ) data is available via GEO (GSE171888). All full resolution images 

derived from image data (e.g., segmentation masks) and all cell count tables are available via the NCI- 

Human Tumor Atlas Network data portal (https://data.humantumoratlas.org/). These data are also 

available via the Harvard Tissue Atlas Portal (https://www.tissue-atlas.org/atlas-datasets/nirmal-maliga-

vallius-2021/). Note that individual files are ~100GB in size so an AWS S3-compatible download tool 

should be used. Several of the figure panels in this paper are available with text and audio narration for 

anonymous online browsing using MINERVA software (112), which supports zoom, pan, and selection 

actions without requiring the installation of software. 

 

 

ACKNOWLEDGEMENTS 

We thank David Liu, Genevieve Boland, Jeremy Muhlich, David Weinstock, Robert Krueger, Jared 

Jessup, and Simon Warchol for their help in multiple stages of this project; we are deeply grateful to 

Keith Ligon for hosting our clinical research coordinator.  

 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022

https://data.humantumoratlas.org/
https://www.tissue-atlas.org/atlas-datasets/nirmal-maliga-vallius-2021/
https://www.tissue-atlas.org/atlas-datasets/nirmal-maliga-vallius-2021/


Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 31 

 

 

 

 

 

REFERENCES 

1.  Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117:1137–46.  

2.  O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based 
immunotherapy. Nat Rev Clin Oncol. 2019;16:151–67.  

3.  Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A Structured Tumor-
Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam 
Imaging. Cell. 2018;174:1373-1387.e19.  

4.  Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The Genetic Evolution 
of Melanoma from Precursor Lesions. N Engl J Med. 2015;373:1926–36.  

5.  Lian CG, Murphy GF. The Genetic Evolution of Melanoma. N Engl J Med. 2016;374:994–5.  

6.  Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, et al. A Landscape of 
Driver Mutations in Melanoma. Cell. 2012;150:251–63.  

7.  Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the 
multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–
96.  

8.  Martincorena I, Roshan A, Gerstung M, Ellis P, Loo PV, McLaren S, et al. High burden and 
pervasive positive selection of somatic mutations in normal human skin. Science. American 
Association for the Advancement of Science; 2015;348:880–6.  

9.  Smoller BR. Histologic criteria for diagnosing primary cutaneous malignant melanoma. Mod 
Pathol. 2006;19 Suppl 2:S34-40.  

10.  Cichorek M, Wachulska M, Stasiewicz A, Tymińska A. Skin melanocytes: biology and 
development. Postepy Dermatol Alergol. 2013;30:30–41.  

11.  Moreci RS, Lechler T. Epidermal structure and differentiation. Curr Biol. 2020;30:R144–9.  

12.  Elder DE. Precursors to melanoma and their mimics: nevi of special sites. Mod Pathol. 2006;19 
Suppl 2:S4-20.  

13.  Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, et al. Loss of 5-hydroxymethylcytosine is an 
epigenetic hallmark of melanoma. Cell. 2012;150:1135–46.  

14.  Higgins HW, Lee KC, Galan A, Leffell DJ. Melanoma in situ: Part II. Histopathology, treatment, 
and clinical management. J Am Acad Dermatol. 2015;73:193–203; quiz 203–4.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 32 

15.  Guerry D, Synnestvedt M, Elder DE, Schultz D. Lessons from tumor progression: the invasive 
radial growth phase of melanoma is common, incapable of metastasis, and indolent. J Invest 
Dermatol. 1993;100:342S-345S.  

16.  Hikawa RS, Kanehisa ES, Enokihara MMS e S, Enokihara MY, Hirata SH. Polypoid melanoma 
and superficial spreading melanoma different subtypes in the same lesion. An Bras Dermatol. 
2014;89:666–8.  

17.  Bergman W, van Voorst Vader PC, Ruiter DJ. [Dysplastic nevi and the risk of melanoma: a 
guideline for patient care. Nederlandse Melanoom Werkgroep van de Vereniging voor Integrale 
Kankercentra]. Ned Tijdschr Geneeskd. 1997;141:2010–4.  

18.  Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. 
Oncogene. 2017;36:5771–92.  

19.  Pampena R, Kyrgidis A, Lallas A, Moscarella E, Argenziano G, Longo C. A meta-analysis of 
nevus-associated melanoma: Prevalence and practical implications. J Am Acad Dermatol. 
2017;77:938-945.e4.  

20.  Swetter SM, Tsao H, Bichakjian CK, Curiel-Lewandrowski C, Elder DE, Gershenwald JE, et al. 
Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol. 
2019;80:208–50.  

21.  Keung EZ, Gershenwald JE. The eighth edition American Joint Committee on Cancer (AJCC) 
melanoma staging system: implications for melanoma treatment and care. Expert Rev Anticancer 
Ther. 2018;18:775–84.  

22.  Fu Q, Chen N, Ge C, Li R, Li Z, Zeng B, et al. Prognostic value of tumor-infiltrating lymphocytes 
in melanoma: a systematic review and meta-analysis. Oncoimmunology. 2019;8:1593806.  

23.  Mihm MC, Mulé JJ. Reflections on the Histopathology of Tumor-Infiltrating Lymphocytes in 
Melanoma and the Host Immune Response. Cancer Immunol Res. 2015;3:827–35.  

24.  Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE, Schenk M. Tumor-Infiltrating Lymphocytes 
and Their Prognostic Value in Cutaneous Melanoma. Front Immunol. 2020;11:2105.  

25.  Thomas NE, Busam KJ, From L, Kricker A, Armstrong BK, Anton-Culver H, et al. Tumor-
infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-
specific survival in the population-based genes, environment and melanoma study. J Clin Oncol. 
2013;31:4252–9.  

26.  Clark WH, Elder DE, Guerry D, Braitman LE, Trock BJ, Schultz D, et al. Model predicting 
survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989;81:1893–904.  

27.  Aung PP, Nagarajan P, Prieto VG. Regression in primary cutaneous melanoma: etiopathogenesis 
and clinical significance. Laboratory Investigation. Nature Publishing Group; 2017;97:657–68.  

28.  Guitart J, Lowe L, Piepkorn M, Prieto VG, Rabkin MS, Ronan SG, et al. Histological 
characteristics of metastasizing thin melanomas: a case-control study of 43 cases. Arch Dermatol. 
2002;138:603–8.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 33 

29.  Bosisio FM, Antoranz A, van Herck Y, Bolognesi MM, Marcelis L, Chinello C, et al. Functional 
heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell 
multiplexing. Elife. 2020;9.  

30.  Fattore L, Ruggiero CF, Liguoro D, Mancini R, Ciliberto G. Single cell analysis to dissect 
molecular heterogeneity and disease evolution in metastatic melanoma. Cell Death & Disease. 
Nature Publishing Group; 2019;10:1–12.  

31.  Lin J-R, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. Highly multiplexed 
immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional 
optical microscopes. eLife Sciences. 2018;7:e31657.  

32.  Maliga Z, Nirmal AJ, Ericson NG, Boswell SA, U’Ren L, Podyminogin R, et al. Micro-region 
transcriptomics of fixed human tissue using Pick-Seq [Internet]. bioRxiv; 2021 [cited 2022 Mar 
23]. page 2021.03.18.431004. Available from: 
https://www.biorxiv.org/content/10.1101/2021.03.18.431004v1 

33.  Demirkan G, Hood T, Reeves J, Norgaard Z, Hoang M, Warren S, et al. Enabling pathway 
analysis of RNA expression in formalin-fixed paraffin embedded tissues with the GeoMx DSP 
Platform. J Biomol Tech. 2020;31:S18.  

34.  Lin J-R, Wang S, Coy S, Tyler MA, Yapp C, Chen Y-A, et al. Multiplexed 3D atlas of state 
transitions and immune interactions in colorectal cancer. bioRxiv. Cold Spring Harbor 
Laboratory; 2021;2021.03.31.437984.  

35.  Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Mass Cytometry Imaging for 
the Study of Human Diseases-Applications and Data Analysis Strategies. Front Immunol. 
2019;10:2657.  

36.  Schapiro D, Sokolov A, Yapp C, Chen Y-A, Muhlich JL, Hess J, et al. MCMICRO: a scalable, 
modular image-processing pipeline for multiplexed tissue imaging. Nat Methods. Nature 
Publishing Group; 2021;1–5.  

37.  Cirenajwis H, Lauss M, Ekedahl H, Törngren T, Kvist A, Saal LH, et al. NF1‐mutated melanoma 
tumors harbor distinct clinical and biological characteristics. Mol Oncol. 2017;11:438–51.  

38.  Stoltzfus CR, Filipek J, Gern BH, Olin BE, Leal JM, Wu Y, et al. CytoMAP: A Spatial Analysis 
Toolbox Reveals Features of Myeloid Cell Organization in Lymphoid Tissues. Cell Reports. 
2020;31:107523.  

39.  Calvo V, Izquierdo M. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T 
Lymphocytes. Front Immunol. 2018;9:684.  

40.  Gadeyne L, Van Herck Y, Milli G, Atak ZK, Bolognesi MM, Wouters J, et al. A Multi-Omics 
Analysis of Metastatic Melanoma Identifies a Germinal Center-Like Tumor Microenvironment in 
HLA-DR-Positive Tumor Areas. Front Oncol. 2021;11:636057.  

41.  Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT co-inhibitory receptors with 
specialized functions in immune regulation. Immunity. 2016;44:989–1004.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 34 

42.  Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3:993–1022.  

43.  Valle D, Baiser B, Woodall CW, Chazdon R. Decomposing biodiversity data using the Latent 
Dirichlet Allocation model, a probabilistic multivariate statistical method. Ecology Letters. 
2014;17:1591–601.  

44.  Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, et al. The single-cell 
pathology landscape of breast cancer. Nature. 2020;578:615–20.  

45.  Xiong T, Pan F, Li D. Expression and clinical significance of S100 family genes in patients with 
melanoma. Melanoma Res. 2019;29:23–9.  

46.  Hauschild A, Engel G, Brenner W, Gläser R, Mönig H, Henze E, et al. S100B protein detection in 
serum is a significant prognostic factor in metastatic melanoma. Oncology. 1999;56:338–44.  

47.  Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells attenuates T 
cell activation and regulates response to immune checkpoint blockade. Nat Commun. 
2020;11:4835.  

48.  Obeid JM, Erdag G, Smolkin ME, Deacon DH, Patterson JW, Chen L, et al. PD-L1, PD-L2 and 
PD-1 expression in metastatic melanoma: Correlation with tumor-infiltrating immune cells and 
clinical outcome. Oncoimmunology. 2016;5:e1235107.  

49.  Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab 
plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.  

50.  Placke J-M, Soun C, Bottek J, Herbst R, Terheyden P, Utikal J, et al. Digital Quantification of 
Tumor PD-L1 Predicts Outcome of PD-1-Based Immune Checkpoint Therapy in Metastatic 
Melanoma. Front Oncol. 2021;11:741993.  

51.  Liu D, Lin J-R, Robitschek EJ, Kasumova GG, Heyde A, Shi A, et al. Evolution of delayed 
resistance to immunotherapy in a melanoma responder. Nat Med. 2021;27:985–92.  

52.  Oh SA, Wu D-C, Cheung J, Navarro A, Xiong H, Cubas R, et al. PD-L1 expression by dendritic 
cells is a key regulator of T-cell immunity in cancer. Nature Cancer. Nature Publishing Group; 
2020;1:681–91.  

53.  Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma. 2018;127:175–86.  

54.  Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and 
melanoma oncogene. Trends in Molecular Medicine. 2006;12:406–14.  

55.  Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative 
genomic analyses identify MITF as a lineage survival oncogene amplified in malignant 
melanoma. Nature. 2005;436:117–22.  

56.  Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from 
the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol. 2019;16:549–62.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 35 

57.  Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A 
melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer 
Discov. 2014;4:816–27.  

58.  Rogers KW, Schier AF. Morphogen gradients: from generation to interpretation. Annu Rev Cell 
Dev Biol. 2011;27:377–407.  

59.  Oudin MJ, Weaver VM. Physical and Chemical Gradients in the Tumor Microenvironment 
Regulate Tumor Cell Invasion, Migration, and Metastasis. Cold Spring Harb Symp Quant Biol. 
2016;81:189–205.  

60.  Rey SJ. Mathematical Models in Geography. In: Smelser NJ, Baltes PB, editors. International 
Encyclopedia of the Social & Behavioral Sciences [Internet]. Oxford: Pergamon; 2001 [cited 
2022 Mar 23]. page 9393–9. Available from: 
https://www.sciencedirect.com/science/article/pii/B008043076702516X 

61.  Laga AC, Murphy GF. Cellular heterogeneity in vertical growth phase melanoma. Arch Pathol 
Lab Med. 2010;134:1750–7.  

62.  Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK, et al. The epithelial-mesenchymal 
transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in 
promoting melanoma cell invasion. PLoS One. 2012;7:e40378.  

63.  Li FZ, Dhillon AS, Anderson RL, McArthur G, Ferrao PT. Phenotype switching in melanoma: 
implications for progression and therapy. Front Oncol. 2015;5:31.  

64.  Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from 
the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol. 2019;16:549–62.  

65.  Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability 
and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431–5.  

66.  Bauer T, Zagórska A, Jurkin J, Yasmin N, Köffel R, Richter S, et al. Identification of Axl as a 
downstream effector of TGF-β1 during Langerhans cell differentiation and epidermal 
homeostasis. J Exp Med. 2012;209:2033–47.  

67.  Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, et al. Multi-stage Differentiation Defines 
Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative 
Stress. Cancer Cell. 2018;33:890-904.e5.  

68.  Zollinger DR, Lingle SE, Sorg K, Beechem JM, Merritt CR. GeoMxTM RNA Assay: High 
Multiplex, Digital, Spatial Analysis of RNA in FFPE Tissue. Methods Mol Biol. 2020;2148:331–
45.  

69.  Haq R, Yokoyama S, Hawryluk EB, Jönsson GB, Frederick DT, McHenry K, et al. BCL2A1 is a 
lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. 
Proc Natl Acad Sci U S A. 2013;110:4321–6.  

70.  Fei F, Qu J, Zhang M, Li Y, Zhang S. S100A4 in cancer progression and metastasis: A systematic 
review. Oncotarget. 2017;8:73219–39.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 36 

71.  Liu Z, Dou C, Jia Y, Li Q, Zheng X, Yao Y, et al. RIG-I suppresses the migration and invasion of 
hepatocellular carcinoma cells by regulating MMP9. Int J Oncol. 2015;46:1710–20.  

72.  Li T, Forbes ME, Fuller GN, Li J, Yang X, Zhang W. IGFBP2: integrative hub of developmental 
and oncogenic signaling network. Oncogene. 2020;39:2243–57.  

73.  Wu QW. Serpine2, a potential novel target for combating melanoma metastasis. Am J Transl Res. 
2016;8:1985–97.  

74.  Sui H, Shi C, Yan Z, Wu M. Overexpression of Cathepsin L is associated with chemoresistance 
and invasion of epithelial ovarian cancer. Oncotarget. 2016;7:45995–6001.  

75.  Sudhan DR, Pampo C, Rice L, Siemann DW. Cathepsin L inactivation leads to multimodal 
inhibition of prostate cancer cell dissemination in a preclinical bone metastasis model. Int J 
Cancer. 2016;138:2665–77.  

76.  Qi TF, Guo L, Huang M, Li L, Miao W, Wang Y. Discovery of TBC1D7 as a Potential Driver for 
Melanoma Cell Invasion. Proteomics. 2020;20:e1900347.  

77.  Moriarty WF, Kim E, Gerber SA, Hammers H, Alani RM. Neuropilin-2 promotes melanoma 
growth and progression in vivo. Melanoma Res. 2016;26:321–8.  

78.  Vivas-García Y, Falletta P, Liebing J, Louphrasitthiphol P, Feng Y, Chauhan J, et al. Lineage-
Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic 
Plasticity. Mol Cell. 2020;77:120-137.e9.  

79.  Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, et al. Critical role of 
CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. 
Cancer Cell. 2004;6:565–76.  

80.  Mus LM, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, et al. The ETS 
transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased 
tumour aggressiveness. Sci Rep. 2020;10:218.  

81.  Jané-Valbuena J, Widlund HR, Perner S, Johnson LA, Dibner AC, Lin WM, et al. An oncogenic 
role for ETV1 in melanoma. Cancer Res. 2010;70:2075–84.  

82.  Cook RW, Middlebrook B, Wilkinson J, Covington KR, Oelschlager K, Monzon FA, et al. 
Analytic validity of DecisionDx-Melanoma, a gene expression profile test for determining 
metastatic risk in melanoma patients. Diagn Pathol. 2018;13:13.  

83.  House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, et al. Macrophage-Derived CXCL9 and 
CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint 
Blockade. Clin Cancer Res. American Association for Cancer Research; 2020;26:487–504.  

84.  Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that 
May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine 
Receptor 3 Ligands. Front Immunol. 2017;8:1970.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 37 

85.  Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA, et al. Immunosuppressive IDO 
in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front Immunol. 
2020;11:1185.  

86.  Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, et al. Expression of 
indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to 
avoid immune detection and affects survival. Cell Cycle. 2009;8:1930–4.  

87.  Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, et al. Tumor-Expressed IDO 
Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Rep. 2015;13:412–24.  

88.  Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, et al. Low-dose IFN-gamma 
induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res. 2003;9:84–
92.  

89.  Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, et al. MHC class II 
engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J 
Immunol. 2011;186:5173–83.  

90.  Mojic M, Takeda K, Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer 
Immunoevasion. Int J Mol Sci. 2017;19:E89.  

91.  Smithy JW, Moore LM, Pelekanou V, Rehman J, Gaule P, Wong PF, et al. Nuclear IRF-1 
expression as a mechanism to assess “Capability” to express PD-L1 and response to PD-1 therapy 
in metastatic melanoma. J Immunother Cancer. 2017;5:25.  

92.  Balogh KN, Templeton DJ, Cross JV. Macrophage Migration Inhibitory Factor protects cancer 
cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One. 
2018;13:e0197702.  

93.  Tanese K, Hashimoto Y, Berkova Z, Wang Y, Samaniego F, Lee JE, et al. Cell Surface CD74-
MIF Interactions Drive Melanoma Survival in Response to Interferon-γ. J Invest Dermatol. 
2015;135:2775–84.  

94.  Noe JT, Mitchell RA. MIF-Dependent Control of Tumor Immunity. Front Immunol. 
2020;11:609948.  

95.  Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12/CXCR4/CXCR7 Chemokine 
Axis and Cancer Progression. Cancer Metastasis Rev. 2010;29:709–22.  

96.  Ou F-S, Michiels S, Shyr Y, Adjei AA, Oberg AL. Biomarker Discovery and Validation: 
Statistical Considerations. Journal of Thoracic Oncology. 2021;16:537–45.  

97.  Bray MA, Singh S, Han H, Davis CT, Borgeson B, Hartland C, et al. Cell Painting, a high-content 
image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protoc. 
2016;11:1757–74.  

98.  Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-Regulation of PD-L1, 
IDO, and Tregs in the Melanoma Tumor Microenvironment Is Driven by CD8+ T Cells. Sci 
Transl Med. 2013;5:200ra116.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 38 

99.  Hannier S, Tournier M, Bismuth G, Triebel F. CD3/TCR complex-associated lymphocyte 
activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol. 1998;161:4058–65.  

100.  Huard B, Mastrangeli R, Prigent P, Bruniquel D, Donini S, El-Tayar N, et al. Characterization of 
the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci 
U S A. 1997;94:5744–9.  

101.  Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. 
FEBS Letters. 2009;583:3966–73.  

102.  Schapiro D, Yapp C, Sokolov A, Reynolds SM, Chen Y-A, Sudar D, et al. MITI minimum 
information guidelines for highly multiplexed tissue images. Nat Methods. 2022;19:262–7.  

103.  Demirkan G, Hood T, Reeves J, Norgaard Z, Hoang M, Warren S, et al. Enabling pathway 
analysis of RNA expression in formalin-fixed paraffin embedded tissues with the GeoMx DSP 
Platform. J Biomol Tech. 2020;31:S18.  

104.  Guimera RV. bcbio-nextgen: Automated, distributed next-gen sequencing pipeline. 
EMBnet.journal. 2011;17:30.  

105.  Love MI, Huber W, Anders S. Moderated estimation of fold change and  dispersion for RNA-seq 
data with DESeq2. Genome Biol. 2014;15:550.  

106.  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.  

107.  Nirmal AJ, Regan T, Shih BB, Hume DA, Sims AH, Freeman TC. Immune Cell Gene Signatures 
for Profiling the Microenvironment of Solid Tumors. Cancer Immunol Res. 2018;6:1388–400.  

108.  Shih BB, Nirmal AJ, Headon DJ, Akbar AN, Mabbott NA, Freeman TC. Derivation of marker 
gene signatures from human skin and their use in the interpretation of the transcriptional changes 
associated with dermatological disorders. J Pathol. 2017;241:600–13.  

109.  Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of 
gene expression data using BioLayout Express(3D). Nat Protoc. 2009;4:1535–50.  

110.  Yapp C, Novikov E, Jang W-D, Chen Y-A, Cicconet M, Maliga Z, et al. UnMICST: Deep 
learning with real augmentation for robust segmentation of highly multiplexed images of human 
tissues. bioRxiv. 2021;2021.04.02.438285.  

111.  Baker GJ, Muhlich JL, Palaniappan SK, Moore JK, Davis SH, Santagata S, et al. SYLARAS: A 
Platform for the Statistical Analysis and Visual Display of Systemic Immunoprofiling Data and 
Its Application to Glioblastoma. Cell Syst. 2020;11:272-285.e9.  

112.  Rashid R, Chen Y-A, Hoffer J, Muhlich JL, Lin J-R, Krueger R, et al. Narrative online guides for 
the interpretation of digital-pathology images and tissue-atlas data. Nat Biomed Eng. Nature 
Publishing Group; 2021;1–12.  

 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-21-1357/3109882/cd-21-1357.pdf by guest on 21 April 2022



Nirmal-Maliga-Vallius-Sorger et al 2022; CD-21-1357  Atlas of primary melanoma 

 39 

 

 

 

 

 

FIGURE LEGENDS 

Figure-1: Multimodal profiling of cutaneous melanoma 

(A) Conceptual framework of sample processing for cyclic immunofluorescence (CyCIF), high-

resolution CyCIF, and micro-region transcriptomics: GeoMx and PickSeq (mrSEQ). Abbreviations for 

annotated histologies are shown below with color-coding used in subsequent figure panels.   

(B) A 30-plex CyCIF image of a section of specimen MEL1-1 showing selected markers for epidermis 

(PanCK: cyan) and tumor cells (SOX10: red), highlighting annotated histologies and microregions 

(mROIs) that were subjected to mrSEQ (white +s). This specimen was likely torn during slide 

processing and thus, spatial arrangements in the region marked with a blue dashed boundary are not 

considered reliable. Other mrSEQ sites are shown in Supplementary Fig. 2A.  

(C) CyCIF image of MEL1-1 corresponding to the MIS and adjacent regions of inflammatory and 

terminal regression (IR and TR, respectively; outlined by dashed white lines). Rectangles depict the 

positions of 110 x 110 µm regions of interest (ROIs) in which high-resolution 3D deconvolution 

microscopy was performed. The region highlighted with orange is magnified in panel G. 

(D) Uniform manifold approximation and projection (UMAP) of single-cell data derived from CyCIF of 

patient MEL1 labeled by cell type (upper panel) and the signal intensities of individual markers (lower 

panels). Markers used for cell-type calls are shown in Supplementary Fig. 1C. The UMAP plot was built 

using 50,000 single cells that were randomly sampled from the full data set (n=1.1 x 106).  

(E) Cell type assignments (with data points representing the centroids of cells) mapped to their physical 

locations in a portion of the bTIL region lying just beyond the IM in MEL1-1  

(F) H&E image of the same region as in panel E. Regions of tumor and stroma are `separated by dashed 

black lines. 
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(G) A 21-plex high-resolution CyCIF image of a MEL1-1 MIS region (orange square in panel C) with 

selected markers shown as a maximum intensity projection staining for DNA (blue), tumor (SOX10: 

white), and T cells (CD4: green, CD8: red). The dermal-epidermal junction is denoted with a white 

dashed line and all FOXP3+ cells (as determined from other image channels; see Supplementary Fig. 1F) 

are denoted with an asterisk. Scale bar, 25 µm. Note that all images in panels G to J derive from a single 

multiplex CyCIF 3D image stack.  

(H) Magnified regions from panel G (outlined with a yellow box) showing staining of DNA (blue) and 

CD4 (green), CD8 (red), and TIM3 (white). Four cell types are labeled including a regulatory T cell 

(Treg, green box – shown in panel 1J) and two CD8+ CTLs interacting with a tumor cell (shown in panel 

I). The dashed line follows the axis of immune synapse polarization and gives rise to the intensity plot in 

panel I. The orange box depicts the locations of representative images in panel I. Scale bar, 10 µm. 

(I) Single optical section images of the immune synapse in panel H showing staining of tumor (SOX10: 

white), DNA (blue), and cell membrane (HLA-A: magenta) along with a series of single-channel images 

of functional T cell markers. The right panel shows the quantified spatial distribution of CD8 and CD3 

along the dashed line in panel H.  

(J) Inset from panel H (outlined with a green square). Single optical section images of a tumor cell 

interacting with a Treg. Upper panels: staining for tumor (SOX10: white), cell membrane (HLA-A: 

magenta), and DNA (blue); lower panels: staining for Treg (ICOS: cyan). The two z-sections shown are 

spaced 2.2 µm apart. 

Figure-2: Recurrent cellular neighborhoods associated with melanoma progression 

(A) UMAP of single-cell data from 70 ROIs in 12 patients. The plot was generated using 50,000 single-

cells that were randomly sampled from the full dataset of 1.5x106 cells. The UMAP is colored based on 

the phenotype (left), disease progression stage (center), and patient ID (right).  

(B) UMAPs (shown also in panel A) representing feature plots of expression of selected protein 

markers.  

(C) The percentage of SOX10+ melanocytes or tumor cells expressing S100A within each stage of 

progression. 

(D) Heatmap showing the abundance of cell types within the 30 LDA-based cellular neighborhood 

clusters (numbers to the right of the plot); these were then reduced to the 10 meta-clusters (RCNs) 

shown to the left of the plot. The bar chart to the right of the heatmap depicts the distribution of 
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progression stages within each cluster, and the bar chart to the left of the heatmap represents the 

distribution of patients within each cluster. 

(E) Bar plot depicting the detailed breakdown of cell-type proportions within each RCN (RCN1-10; x-

axis). Pie charts depicting a simplified breakdown of cell types in each RCN; myeloid (green; dendritic 

cells, CD11C+ macrophages, macrophages, and Langerhans cells), lymphoid (light orange; cytotoxic T 

cell: CTL, regulatory T cells: Treg and helper T cell: T helper), immune-suppressive (dark orange; 

PDL1+ DCs, PDL1+ Macs, PD1+ CTL), melanocytes (dark blue) and keratinocytes (yellow). 

Figure-3  

(A) Scatter plot (top) showing a field of view of the IM region (specimen MEL1-1). The cells are 

colored based on recurrent cellular neighborhoods (RCN1-10) that they belong to. The yellow and blue 

boxes represent regions that are magnified in the bottom panel (left and right, respectively) depicted as 

Voronoi diagrams.  

(B) Exemplary CyCIF images highlighting RCNs in the invasive front of specimen MEL1-1. The top 

panel shows an overall view of the invasive front stained for tumor cells (S100B: blue), macrophages 

(CD163: cyan), T cells (CD3: red), and dendritic cells (CD11C: green). The inset squares correspond to 

magnified panels at the bottom. H&E staining of a serial section of the same region is represented in the 

top right corner. The bottom left panel (yellow) highlights RCN9 enriched for dendritic cells (CD11C: 

green) at the tumor-stroma junction; the bottom center panel (blue) highlights RCN5/8 enriched with 

PD1+ CTLs (CD8: green; PD1: red) and bottom right panel (red) highlights RCN3/4 enriched with 

myeloid cells (CD163: magenta; CD11C: green). Scale bar, 100 µm; the dashed grey line represents the 

tumor-stroma boundary. 

(C) Voronoi diagrams of a representative field of views compiled from regions of N, P, and MIS. Each 

cell is colored based on the recurrent cellular neighborhood (RCN1-10) to which it belongs (as in panel 

A). Examples of corresponding CyCIF images from one patient in each case are provided at the bottom 

row. A magnified view is available in panel S3A. 

(D) Bar plot depicting the proportional distribution of RCNs (RCN1-10) among the disease progression 

stages (N, P, MIS, IM, and EM). 

(E) Box plots of the distribution of the shortest distance between cells in RCN 2-7 and RCN10 grouped 

based on progression stages. T-test (*P <0.05) depicts significant changes in mean distances between the 

compared stages. The comparison made is described on the upper right corner of each plot (e.g., N vs P). 
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(F) Shift plot shows the distance between melanocytes and CTLs, PDL1+ myeloid cells, and Tregs in 

normal (top) and precursor (bottom) regions. Significance is calculated for each percentile (10, 20, 30, 

40, 50, 60, 70, 80, 90) using the robust Harrell-Davis quantile estimator. Red indicates a significant 

difference (P <0.05) and grey represents non-significance for each percentile. 

 

Figure-4 

(A) Field of MIS from a whole slide CyCIF image of MEL1-1. A PDL1+ melanocyte (SOX10: white, 

PDL1: green) and CTLs (CD8: red) are being highlighted with an orange box (left panel). The right 

panel illustrates the polarization of PD1 (red) and PDL1 (green) to the point of contact between the 

interacting cells. Scale bar, 5 or 10 µm. 

(B) Line plot showing the percentage of ROIs that displayed significant (P <0.05) co-occurrence based 

on proximity analysis performed between PDL1+ CD11C+ CD163- dendritic cells and PD1+ CTLs. 

(C) Field of IM from a whole slide CyCIF image of MEL1-1 stained for tumor (SOX10: red), 

macrophages (CD163: green), and CTLs (CD8: white), with three fields of macrophage-CTL contacts 

(yellow boxes). Maximum-intensity projections imaged at high-resolution in fields 1 and 2 are stained 

for DNA (blue), PDL1 (red), and PD1 (green) with cells labeled as myeloid cells (M) and engaged T 

cells (T); field 3 shows tumor cells (SOX10: red), CTLs (CD8: white) and a macrophage (CD163; 

green). Inset white boxes in the bottom right panel show concentration of PD1 (red) and PDL1 (red) to 

the point of contact and the long connection between a macrophage (CD163: white) and a CTL is shown 

in a 3D reconstruction of the field 3. Scale bar, 25 µm, 10 µm or 4 µm. 

(D) Left panel shows the same CyCIF field of view as in panel C, stained for DNA (blue), TIM3 (red), 

and CD8 (green). The white inset box illustrates the staining of one CD163+ CD11C+ TIM3+ myeloid 

cell next to a CTL (right panel). Scale bar, 25 µm. 

(E) Maximum intensity projection from bTIL region (upper left panel) stained for DNA (blue), 

macrophages (CD163: green), and T cells (CD3D: white). The white inset is magnified and stained for T 

cell polarity (CD4: green, CD8: red), PD1-PDL1 axis (PD1: green, PDL1: red), and exhaustion markers 

(TIM3: red, LAG3: green). A Treg in this field is indicated with a label Tr. Scale bars, 20 and 10 µm. 

(F) PDL1 positivity in SOX10+ tumor cells (top) and CD11C+ myeloid cells (bottom). The proportions 

of PDL1+ tumor cells to all tumor cells (0-5%, 5-20% and >20%) and PDL1+ myeloid cells to all 
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myeloid cells (<1%, 1-25% and >25%) are presented in both primary melanoma cohorts (cohort 1: 

MEL1-13 and cohort 2: 25 primary melanomas). 

(G) Fields of a primary melanoma and a melanoma metastasis from CyCIF images stained for DNA 

(blue), SOX10 (green), PDL1 (red), and CD11c (white). The upper panel shows an example of PDL1+ 

SOX10+ tumor cells at the deepest invasive region. PDL1+ metastasis is shown in the bottom panel. 

The tumor-stroma interface is indicated with a white dashed line. Scale bars, 100 and 10 µm. 

Figure-5: Single-cell analysis of invasive tumor 

(A) CyCIF images of MEL1-1 stained for S100A (top panel), MITF (middle panel) and S100B (bottom 

panel). Boxes represent regions highlighted in panel B. Scale bars, 3 mm. 

(B) Insets from panel A of tumor region (IM) showing gradient expression patterns for MITF (top panel) 

and S100B (bottom panel). Contours describe averaged quantified marker expression. 

(C) Heatmap showing median expression of protein markers identified within TCC1-10 tumor cell 

communities. The bar plot on top of the heatmap shows the proportional estimate of the TCCs within 

histological annotations (EM, IM, or IB). The heatmap at the bottom shows the properties related to the 

shape of the cells (area, solidity, extent, and eccentricity) derived from the segmentation masks. 

(D) Scatter plot mapping the physical location of the derived tumor cell clusters (TCC1-10: dark blue) in 

MEL1-1. Each subplot represents the location of cells within a tumor cell community and other cells in 

grey. 

(E) Scatter plot (left panel) showing a field of view of the IM region. Cells are colored based on their 

tumor cell community (TCC1-10). The yellow circle highlights the region in panel B. The right panel is 

a CyCIF image of the same field of view (from specimen MEL1-1) stained for CD163 (green), MITF 

(yellow), KI67 (red), and MHC-II (HLADPB1: blue). Scale bar, 200 µm. Voronoi diagram (right panel) 

generated from a field of view at the apex of the invasive front (inset highlighted in yellow). Cells are 

colored based on the tumor cell community (TCC1-10) that they belong to. 

(F) Bar plots showing the percentage of S100B, S100A, MITF, KI67, and MHC-II (HLADPB1) positive 

cells within each tumor cell community (TCC1-10). 

Figure-6: Micro-regional transcript profiling 

(A) Principal component analysis (PCA) plot of melanoma mrSEQ transcriptomes (GeoMX). Colors 

indicate regional histopathology: brisk TIL (bTIL: pink), inflammatory regression (IR: brown), MIS 
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(green), invasive front (IB: light green), exophytic melanoma (EM: grey), and center of invasive 

melanoma tumor (IM: yellow). EM and IM are enriched for tumor cells in this analysis and IB contains 

mostly tumor cells with marginal immune infiltration. 

(B) Expression of selected melanoma-related marker genes in mrSEQ data (PickSeq) split into three 

broad groups based on the PCA of GeoMx data (panel A). Data is mean ± SEM.  ***P <0.001; ns = not 

significant. 

(C) Single-sample gene set enrichment analysis (ssGSEA) on mrSEQ data (PickSeq). ssGSEA scores 

highlight enrichment of melanoma-related gene signatures in tumor mROIs (primarily IB, IM, and EM) 

and immune-related signatures in the immune-rich mROIs (IR, bTIL). 

(D) Fold-difference (log2) and significance (log 10 Padj) for expression of 19,500 genes between EM 

(n=34) and IM (n=16) mROIs (Pick-Seq). DEGs above (brown) and below (blue/grey) a significance 

threshold (P-adjusted = 0.05) and above a fold change threshold (log2 fold change = 10) are indicated. 

(E) GSEA for upregulation of KRAS pathway in IM (n=16) compared to EM (n=34) mROIs (PickSeq). 

FDR < 0.05. 

(F) Expression (log2) of MYC, NFKB1, IGFBP2, IGF1R, and BCL2A1 in IM and EM mROIs 

(PickSeq). Data is mean ± SEM; *P <0.05, **P <0.01, ***P <0.001. 

(G) Heatmap showing expression of genes (listed on the y-axis) known to play a role in epithelial to 

mesenchymal transition (PickSeq). All genes showed a significant difference between their mean 

expression in IM vs. EM mROIs (P <0.05). 

(H) CyCIF image showing a field of view in MIS (top panel) and EM (bottom panel) regions. The tissue 

is stained for melanocytes (SOX10: yellow), endothelial cells (CD31: green), keratinocytes (PanCK: 

white), and tumor cells (S100B: magenta). Arrows mark examples of melanocytes and tumor cells. 

Scale bar, 20 µm. 

(I) Correlation network sub-graph genes associated with S100B expression in mrSEQ data (PickSeq). 

Nodes represent genes, and the edges correspond to the correlation between them. Brown nodes 

represent the genes that belong to the S100B module. Selected genes are annotated. 

(J) Mean expression of 35 genes identified within the S100B module in mrSEQ data (PickSeq). The X-

axis represents the mROIs grouped into the histopathological annotation category from which they were 

isolated. 
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(K) Density plots illustrating the log scaled protein expression of PMEL and CD63 in MIS and tumor 

(EM&IM) regions imaged with CyCIF. ***P <0.001. 

Figure-7:  

(A) CyCIF image of specimen MEL1-1 showing a protruding edge of the invasive tumor (SOX10: 

violet, S100B: pink) into the dermis; outside the tumor boundary marked by a white line (dashed) is the 

brisk TIL region, which contains activated/exhausted T cells (CD3: green, PD1: red) and myeloid cells 

(CD11C: blue). Scale bar, 50 µm. 

 (B) Expression of CXCL10, CXCL11, IDO1, MIF, and CD74 among histological sites (PickSeq data). 

Values represent mean ± SEM; *P <0.05, **P <0.01, ***P <0.001, ns = not significant. 

(C) CyCIF field of view of MEL1-1 highlighting the spatial arrangement of MHC-II+ tumor cells at the 

invasive front. Tumor cells were stained with SOX10 (cyan), MHC-I (HLA-A: green), and MHC-II 

(HLADPB1: red). Magnified regions outlined in magenta and yellow squares illustrate MHC-II+ and 

MHC-II- staining of tumor cell membranes. Scale bars, 25 µm (main image) or 5 µm (insets). 

(D) CyCIF of specimen MEL1-1; (left) zoomed out view of invasive front stained for melanocytes 

(SOX10: blue), myeloid cells (CD11C: red), and interferon signaling (IRF1: green); (right-top) zoomed-

in view of invasive front apex stained for melanocytes (SOX10: blue), myeloid cells (CD11C: red) and 

interferon signaling (IRF5: yellow); (right bottom) zoomed-in view of invasive front apex stained for 

melanocytes (MART1: green), myeloid cells (CD11C: blue) and interferon signaling (IRF1: red). Scale 

bar, 50 µm. 

(E) Line plot showing scaled fluorescence intensity of SOX10 (blue) and IRF1 (pink) within (tumor; left 

of the dashed blue line) and outside (stroma; right of the dashed blue line) the invasive tumor front seen 

in panel D. 

(F) Stacked bar graph showing the proportions of lymphoid and myeloid cells between the histological 

regions (IR, MIS, bTIL) in specimen MEL1-1. 

(G) CyCIF maximum-intensity projection images of MEL1-1 of the region of inflammatory regression 

(shown in panel 1C). Fields are stained for DNA (blue), PD1 (green), and MHC-II (HLA-DPB1: 

magenta). The dermal-epidermal junction is indicated with a dashed white line. The bar plot shows the 

proportions of all cell types in the epidermis (upper plots), with lymphocyte and myeloid subset further 

highlighted, and in the dermis (lower plots); color code is as in panel F. Scale bar 25 µm. 
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(H) Heatmap showing expression of genes related to immune checkpoints and T cell activation between 

histological mROIs in patient MEL1 (GeoMX). Significant upregulation in comparison to the EM 

region (P <0.05) is highlighted in red, non-significant in grey. 

(I) Schematics of remodeling of the tumor microenvironment with disease progression; see text for 

details.  

(J) Summary of mechanisms of immune suppression detected in sample MEL1-1.  
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