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Abstract 

Precision medicine aims to provide personalized care based on individual patient 

characteristics, rather than guideline-directed therapies for groups of diseases or patient 

demographics. Images—both radiology- and pathology-derived—are a major source of 

information on presence, type, and status of disease. Exploring the mathematical relationship 

of pixels in medical imaging (“radiomics”) and cellular-scale structures in digital pathology 

slides (“pathomics”) offers powerful tools for extracting both qualitative, and increasingly, 

quantitative data. These analytical approaches, however, may be significantly enhanced by 

applying additional methods arising from fields of mathematics such as differential geometry 

and algebraic topology that remain underexplored in this context.  

 

Geometry's strength lies in its ability to provide precise local measurements, such as 

curvature, that can be crucial for identifying abnormalities at multiple spatial levels. These 

measurements can augment the quantitative features extracted in conventional radiomics, 

leading to more nuanced diagnostics. By contrast, topology serves as a robust shape 

descriptor, capturing essential features such as connected components and holes. The field of 

topological data analysis was initially founded to explore the shape of data, with functional 

network connectivity in the brain being a prominent example. Increasingly, its tools are now 

being used to explore organizational patterns of physical structures in medical images and 

digitized pathology slides. By leveraging tools from both differential geometry and algebraic 

topology, researchers and clinicians may be able obtain a more comprehensive, multi-layered 

understanding of medical images and contribute to precision medicine’s armamentarium. 

 

Keywords: Precision medicine, pathomics, radiomics, topological data analysis, geometry  
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Introduction 

In the era of precision medicine, medical researchers and practitioners continue to seek 

improvements in diagnostic accuracy, prognosis prediction, and treatment selection. Image-

based tools that allow caregivers to visualize and interpret anatomical structures and identify 

abnormalities represent a major arena in which such advances are being explored. Recent 

developments in the field of radiomics and pathomics can transform 2- and 3-dimensional 

images into elaborate matrices of data and information that can generate insights with 

potential clinical benefit 1-3. Radiomics is a rapidly evolving discipline that focuses on the 

extraction and analysis of quantitative features from medical images, employing algorithms 

to extract a wide range of quantitative features including shape, intensity, texture, and spatial 

patterns. These features can provide valuable information about tumor heterogeneity, 

treatment response and patient outcome. By utilizing machine learning and artificial 

intelligence techniques radiomics may allow development of novel predictive models and 

personalized medicine approaches 4,5. Pathomics, similarly, delves into the analysis of 

digitized histopathology slides. Histopathology has long been considered the gold standard 

for cancer diagnosis and grading, but the manual interpretation of histological images is both 

subjective and time-consuming. Pathomics techniques aim to overcome these limitations by 

leveraging computational techniques to analyze digitized slides and extract quantitative 

information related to tissue morphology, cellular architecture, and molecular markers. By 

quantifying histological features, pathomics can similarly enable objective assessment while 

providing insights into disease progression, response to treatment, and patient prognosis 6-8. 

Combining information from multiple modalities allows for a more comprehensive 

understanding of diseases and the integration of radiomics and pathomics into decision-

making workflows has the potential to advance precision medicine by bridging the gap 

between imaging, pathology, and clinical data. Furthermore, radiomics and pathomics offer 

the opportunity to uncover previously hidden patterns and biomarkers that may have 

significant clinical implications, paving the way for personalized therapeutic interventions 

and improved patient outcomes 3,9-12. 

 

In this overview, we will explore how algebraic topology and differential geometry can 

augment the fields of radiomics, pathomics, and multiomics-based techniques, delving into 

the various applications and challenges associated with these emerging disciplines, including 

new tools from geometry and topology to improve model accuracy and integration with other 

data sources. We will discuss the potential benefits and examine the current state of research 

and clinical implementation. In particular, with respect to machine (or deep) learning 

approaches methods being developed and deployed 6,13,14, it appears that prior extraction of 

topological and geometric features can help improve both training times and performance in 

certain cases. 

 

Overview of Precision Medicine 

Precision medicine, also known as personalized medicine or stratified medicine, is an 

evolving approach to healthcare that aims to provide tailored medical interventions to 

individual patients based on their unique characteristics. Unlike the traditional one-size-fits-

all approach, precision medicine recognizes that each patient's genetic makeup, lifestyle 
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factors, environmental influences, and disease characteristics are distinct and should be taken 

into account when making diagnostic and treatment decisions 15-18. This comprehensive 

approach ideally allows healthcare providers to develop a holistic understanding of a patient's 

health status and disease progression. Despite its potential, precision medicine faces several 

challenges. The interpretation and integration of vast amounts of data, the need for robust 

analytical tools, ethical considerations regarding data privacy and consent, and equitable 

access to personalized treatments are only some of the hurdles that need to be addressed. 

However, in the meantime, it is becoming practical to combine insights from closely related 

arenas, such as radiomics and pathomics; combining quantitative features from both medical 

images and histopathology slides is already providing valuable insights into tumor 

characteristics, treatment response, and prognosis 2,19,20. 

 

Some FDA-approved, mathematically sophisticated tools are already available. 3D Slicer, an 

early example of a biomedical image analysis platform 21 demonstrates the integration of 

mathematical principles into radiology. PathAI 22 employs deep learning and AI to assist 

pathologists in diagnosing diseases more accurately, highlighting the growing influence of 

mathematical algorithms in pathology. TexRAD 23 is an FDA-cleared radiomics software that 

utilizes texture analysis to extract intricate patterns from PET scans, providing quantitative 

insights into tissue heterogeneity. Texture analytics are also promising, especially when 

combined with multimodal information 24. Many tools are also emerging in the AI-pathology 

space, and their development may democratize the availability of high-quality healthcare 

analytics and diagnostics, bridging gaps in global health disparities while maintaining privacy 

and data protection. 

 

Radiomics 

Radiomics pipelines focus on extracting and analyzing quantitative features from medical 

images and have recently demonstrated promise across several areas, including tumor 

characterization, treatment response assessment, prognostic prediction, and treatment 

planning 9,25. By combining radiomics features with clinical data including as patient 

demographics, laboratory values, and histopathological information, these models can be 

further enriched. Radiomics has also shown promise in treatment response assessment by 

analyzing changes in quantitative features over time as part of monitoring treatment 

effectiveness. For example, in the context of cancer patients undergoing chemotherapy, 

radiomics analysis of serial imaging scans plays a crucial role in assessing treatment 

response, allowing for timely adjustments to the treatment regimen 26. Additionally, if a 

treatment regimen can be initiated earlier, this can impact prognosis. Traditional radiomics 

features, such as first-order statistics, shape-based features, and texture-based features, are 

employed to quantify various aspects of the medical images 3,5,7,9,26. While radiomics has 

made significant strides, several challenges remain, including a lack of topology and 

geometry-based analytics. Radiomics feature extraction and analysis methods can vary across 

studies, leading to inconsistent results and limited comparability. Efforts are underway to 

establish standardized protocols and feature sets to improve reproducibility and facilitate 

multicenter collaborations 3,27. 
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Pathomics 

Pathomics focuses on the analysis of digitized histopathology slides, and more recently, on 

developing methods for slide-free histology in digital pathology. With the increasing 

availability of whole-slide imaging scanners and advancements in computational pathology, 

pathomics has gained momentum in recent years. Pathomics allows for the extraction of 

quantitative histology-based information, enabling objective assessment of tissue 

morphology, cellular characteristics, and molecular markers, aiding in the classification and 

grading of tumors. By quantifying histological features from tissue samples using image 

processing techniques, machine learning algorithms, and deep learning models, pathomics 

can assist in identifying patients who may benefit from specific treatments or who are at 

higher risk of disease recurrence 9. Pathomics has been used to identify lung cancer subtypes 
28,29, lung adenocarcinoma 30, and, combined with a variety of genomic techniques such as 

transcriptomics 31, represents an opportunity for highly multiplexed (tens to thousands of 

analytes), high spatial resolution (“spatial omics”) data to be investigated 32,33. Despite its 

potential, pathomics faces challenges like those confronting radiomics, including 

standardization, reproducibility, and scalability. The digitization of histopathology slides, 

data storage and management, and the integration of pathomics with other data modalities 

pose technical and logistical hurdles. Moreover, the transition from manual pathology 

evaluation to computational analysis requires rigorous validation and regulatory acceptance. 

 

Algebraic Topology and Differential Geometry 

Advanced mathematical concepts from algebraic topology and differential geometry are still 

being explored within healthcare; these are two branches of mathematics with diverse 

applications. Topology aims to uncover characteristic properties—invariants—of a space (or 

data when connections and relationships can be defined spatially). These invariants serve to 

characterize a space up to certain transformations: for instance, the number of points in a 

dataset is a simple invariant that remains unchanged under rotation. One of the more involved 

but also more powerful invariants is homology, a concept central to algebraic topology. It 

permits making statements about connectivity characteristics of a space by means of 

algebraic calculations. Tools commonly applied in data analysis have been extended to cover 

actual physical structures, such as those visible in various forms of imaging. By analyzing 

anatomical structures' connectivity and relationships, topology helps identify disease patterns, 

predict outcomes, and optimize treatment strategies through network-based modeling 27,34. 

Thus, in general, algebraic topology connects geometric spaces to algebraic structures, while 

differential geometry examines curves and surfaces via differential calculus 27,34,35. These 

methods are similar in that they analyze spaces and structures, yet they differ in methods and 

applications. Unique areas include topological data analysis and its flagship algorithm, 

persistent homology, topological signatures in algebraic topology, and fractal geometry in 

differential geometry. 

 

Topological data analysis (TDA) is an umbrella term for a set of methods that aim to make 

topological information in data sets apparent 36-40. The flagship method of TDA is termed, 

“persistent homology,” a method that provides an intuitive view on topological features in the 

data at multiple scales, described by a scale parameter ∈ (epsilon). The scale parameter 
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defines the radii of balls expanding from the data points (show in Figure 1). Betti numbers 

enumerate the features that exist at different dimension levels (connected components, cycles, 

voids, higher dimensional voids). 

 

For ∈=0 in Figure 1, all points in the dataset are considered disconnected. As ∈ grows, data 

points become progressively connected to each other, giving birth to features at the 0th Betti 

number level. Importantly, while the diagram shows this process at the 0th Betti number, any 

Betti number can change as ∈ grows. Persistent homology tracks the “evolution” of shapes 

across Betti numbers as ∈ increases; increasing ∈ gives rise to a filtration across the dataset. 

The crucial insight of persistent homology is that there is no one scale to consider data, but 

rather, that one should consider data at all scales, thus tracking the changes in shape that are 

characteristic across all of them. Fig. 1 illustrates this process by means of a simple circular 

dataset. With a small ∈ parameter, i.e., from a close distance, the circular structure of the data 

is not apparent. As we “zoom out,” though, increasing the ∈ parameter, the circular structure 

becomes apparent and data points become connected with each other. Topological features 

that “survive” to a given parameter value ∈ are termed “persistent.” While Figure 1 illustrates 

how increasing ∈ affects the connectedness of a point cloud, this concept can also be readily 

applied to medical images when investigating the connectedness of pixel data. 

 

In the example shown here (Fig. 1), a cycle is the feature that is persistent across a range of ∈ 

parameters, appearing at ∈ value 0.2 and disappearing at 1.0. While not apparent from this 

simple example, topological features afford different interpretations depending on their 

dimensionality. In low dimensions, topological features correspond to connected components, 

cycles, and voids, but their mathematical description generalizes to spaces of arbitrary 

dimension that elude our intuition. Computationally, this process can be applied to point 

clouds and only involves matrix operations, for example, Gaussian elimination, a technique 

for reducing the number of equations and variables required to characterize the data. It is 

possible, however, to generalize and extend persistent homology to a wide variety of 

modalities, including images. 

 

Regardless of the modality and the computational details, the multi-scale topological features 

identified and extracted via persistent homology are typically summarized in topological 

descriptors such as persistence diagrams. A 𝑑-dimensional persistence diagram is a set of 

points in the plane, with each point (𝑎, 𝑏) representing the scale of a topological feature. 

Often, 𝑎 is referred to as the “creation” or “birth” time, while 𝑏 is called the “destruction” or 

“death” time of the feature. The absolute difference between those two, i.e., |𝑏 − 𝑎|, is called 

known as the persistence of the topological feature. Features of high persistence are typically 

considered to be more relevant or trustworthy (i.e., likely to be of biological/clinical 

significance as they recur throughout data) than features of low persistence, which are 

typically seen as topological noise 36,37. These are described in more detail below. 

 

One limitation of current radiomics and pathomics tools is the ever-present potential for 

overfitting, whereby models may perform exceptionally well on the training data but fail to 
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generalize to new patient populations. Fortunately, this issue can be mitigated using 

techniques based on persistent homology, which, because they allow for the identification of 

stable features in complex data sets, reduce the risk of overfitting by providing features that 

generalize better. Furthermore, radiomics and pathomics often rely on predefined image and 

tissue features; while these improve explainability, especially for AI approaches, they can 

limit their adaptability to evolving medical knowledge. Topology and geometry offer the 

means to develop dynamic and data-driven approaches that can respond to emerging trends in 

healthcare. 

 

Persistent Homology – Applications in Radiomics and Pathomics 

 

Persistent homology is a powerful method that has demonstrated utility in the analysis of 

medical images and histopathology slides 41-43. Persistent homology is concerned with the 

study of topological features that persist across multiple spatial scales in a dataset. Persistence 

diagrams summarize the birth and death points within a filtration for topological features in 

the data. Persistence diagrams allow for easy visualization of topological features and can be 

compared through straightforward distance metrics, such as the Wasserstein distance, to 

discern statistically different images based on persistent features. 

 

Persistence Landscapes 

The persistence landscapes approach builds upon this theory by generating persistence 

diagrams that capture the “birth” and “death” of topological features; these are viewed as a 

series of landscapes. These landscapes provide a comprehensive vector-based representation 

of the topological structure of the data 41,42, which permits integration of persistent feature 

summaries with many common machine-learning methods. In addition to implicit 

representations, so-called kernels 44, there are other efficient methods for obtaining vectorial 

representations of persistence diagrams. Three common approaches, visualized in Fig. 2, are 

persistence images 45, Betti curves 45,46, and persistence landscapes 47. Except for the 

persistence landscapes, all transformations are inherently lossy, i.e., it is not possible in 

general to reconstruct the original persistence diagram from a persistence image or from a 

Betti curve. Nevertheless, all these descriptors can be quickly calculated and are well-suited 

to integration into standard data science tools. They can thus be used to classify data based on 

topological features, find anomalies, predict outcomes, and more. 

 

The persistence landscape approach has been applied to extract topological features from 

medical images 47,48. When assessing the topology of glioblastoma, for example, homology 

would explain the interconnectedness of pixel data in 2D or 3D volumes. Alternatively, 

persistent homology would provide information on the interconnectedness of the pixel data in 

2D or 3D volume across varying scale parameters, assessed, for example, by increasing the 

radius surrounding segmented data points. Finally, persistence landscapes can help visually 

explain the multi-scale topological features obtained from persistent homology by depicting 

how interconnectedness changes at different scales. Such persistence landscapes can be 

readily integrated with classical machine learning or deep learning algorithms. 

 

Jo
urn

al 
Pre-

pro
of



Persistence Landscapes – Applications in Medicine 

For example, in the analysis of breast cancer lesions, persistence landscapes have been 

employed to extract radiomics features that characterize the spatial distribution of tumor 

subregions and their connectivity, metrics usable for predicting treatment response and 

patient outcomes 49. Similarly, in lung cancer, persistence landscapes have been used to 

quantify the spatial relationships between tumor regions, allowing for the identification of 

high-risk subregions 6 and personalized treatment strategies. Gao et al. introduced an 

innovative algorithm to segment high-resolution CT images of cardiac left ventricles, 

focusing on complex papillary muscle and trabeculae features 50. By utilizing methods from 

computational topology, including persistent homology, their algorithm identified missing 

topological structures, improving segmentation performance. Wu et al. addressed the 

challenge of reconstructing ventricular trabeculae in cardiac image analysis 51. Their novel 

approach detected salient topological handles, refined by a classifier, enhancing segmentation 

compared to traditional methods, emphasizing the value of topological priors in cardiac 

image analysis. 

 

In pathomics, persistence landscapes have been used to analyze digitized histopathology 

slides, converting morphological features into persistence landscapes to provide quantitative 

representations of tissue morphology and cellular structures. This allows for the identification 

of biomarkers and patterns that are associated with disease progression and patient outcomes 
9. Persistent homology has also been applied to prostate cancer histopathology, clustering 

architectural subtypes independently of Gleason patterns. These topological representations 

offer higher granularity and reproducibility, making them valuable inputs for machine 

learning methods aimed at enhancing prostate cancer diagnosis and prognosis 6,52. The 

derived pathomics features have also shown potential in predicting tumor aggressiveness and 

guiding treatment decisions. In addition, the persistence landscape approach has been used to 

analyze immunohistochemistry slides, allowing for the quantification of biomarker 

expression patterns and the identification of subtypes with different molecular characteristics 
53,54. One recent study using pathology images has demonstrated utility in combining 

persistent homology profiles and CNNs to classify specimens from tumor-bearing and normal 

patients 55. 

 

Topological approaches, specifically topological image modification (TIM) and topological 

image processing (TPI), have been shown to enhance object detection and characterization of 

skin lesions in clinical images (Fig. 4), offering an efficient, unsupervised approach to isolate 

significant objects within relevant regions 56. Topological approaches can also track spatial 

data of cell locations over time to predict malignant behaviors in tumors, offering insights 

into the intricate patterns and dynamics between tumor and immune cells, and accurately 

identifying early signs of perivascular niche formation, a proxy for metastasis 57. The 

integration of AI with advanced analytics of histological images can also provide insights 

into the tumor microenvironment (TME). Various deep-learning algorithms including 

attention-based and multimodal models have been applied for characterizing TME patterns, 

linking image features with clinical outcomes. Although the majority of AI models are 

evaluated retrospectively, newly available datasets and increasing computational power can 
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assist in prospective validation and demonstration of actual benefits in both statistical and 

clinical modes 58. 

 

Abousamra et al. explored digital pathology's intricacies by utilizing spatial statistics and 

topological data analysis to model cell contexts 59. They introduced new mathematical tools 

combining a location-specific function with topological features, enabling the generation of 

high-quality multi-class cell layouts. These layouts, a novelty in the field, demonstrated 

potential for data augmentation and improving cell classification. Lawson et al. pioneered 

prostate cancer histology assessment with topological data analysis, clustering images into 

architectural groups beyond familiar Gleason patterns 52. Their persistent homology approach 

showed sensitivity in identifying sub-architectural groups, offering a refined quantification 

method with applications in diagnosis and prognosis determination. 

 

Topological Signatures 

Topological signatures involving homology profiles represent another promising method that 

leverages concepts from algebraic topology to characterize topological properties of complex 

data, providing valuable insights into disease characterization and prediction. As touched on 

above, rather than converting a persistence diagram into a vector-compatible format to 

integrate with other datasets, as persistence landscapes do, topological signatures capture a 

vector of features in an image, focusing less on start and end appearances. These signatures 

offer a compact summary of the "topological activity" within the data filtration, improving 

image analysis, for instance 60. While persistence landscapes map how the interconnectedness 

of data points change over differing scales, measuring when they appear and disappear, 

topological signatures typically focus on the total number of new connections that can be 

formed. Long-lived topological features are captured, stored, and then parsed into a relational 

database as either a vector feature or as individual features, with a number given for each 

column representing a feature dimension.  

 

Despite its promise, however, persistence landscape-based approaches are challenged by 

issues involving computational hurdles and complex interpretation. Additionally, the 

selection of appropriate parameters and the standardization of persistence landscapes across 

various datasets and applications require care. 

 

Topological Signatures – Applications in Medicine 

These signatures can help determine more comprehensive and robust predictive tumor 

characterization and patient stratification 27. In the case of gliomas, topological features can 

distinguish between different subtypes as well as predict patient survival 34. Similarly, for 

breast cancer, the approach has been utilized to analyze mammographic images and extract 

topological features related to the spatial arrangement and connectivity of 

microcalcifications, aiding in the detection and characterization of malignancies 61,62. Fig. 5 

illustrates three groups of brain scans: a young (top left), aging (middle left), and Alzheimer’s 

disease patient (bottom left), along with a diagram of filtration features for each group. Note 

the smaller peak found in the young group. 
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In prostate cancer grading, a histology-centric task, it is possible to extract topological 

features that capture architectural patterns and glandular structures that encapsulate 

differences between low- and high-grade tumors. A 2020 study by Yan et al. introduced 

statistical representations of homology profiles (SRHP), a persistent-homology-based 

method, for automating Gleason grading in prostate cancer assessment 63. They achieved a 

remarkable accuracy of 0.89 and an AUC of 0.96 in distinguishing between Grade 3 and 

Grade 4 patterns on prostate biopsy slides. What sets SRHP apart is its ability to provide not 

only effective results but also interpretability, aligning well with the practices of pathologists 

(Fig. 6). This advancement holds significant promise for enhancing the accuracy and 

consistency of prostate cancer diagnosis and prognosis. 

 

In lymph node analysis, a topological signatures approach has been used to extract features 

that correlate with metastatic potential, aiding in the identification of high-risk patients 64. 

However, the vectorization of topological features in persistence diagrams requires 

significant computational resources and application of robust algorithms. The interpretation 

and integration of topological features in conjunction with other data modalities, such as 

genomics and clinical data, is also non-trivial. However, by integrating mathematical tools 

from spatial statistics and topological data analysis into a deep generative model, it becomes 

possible to create high-quality multi-class cell layouts. These topology-rich layouts enhance 

data augmentation, significantly improving downstream tasks such as cell classification 59. 

 

Geometric Feature Extraction – Applications in Radiomics and Pathomics 

While tools from topology capture global properties that are not affected by stretching, 

squishing, or other image manipulations, geometric properties such as curvature, distance 

between points, and volumes of objects change under such distortions of the underlying data 

manifold. However, in many cases, geometric features are important to capture. For instance, 

thickening of a blood vessel or development of plaques in that blood vessel do not change the 

topology of the vessel: it is still a tube with a hollow interior (unless the vessel is fully 

occluded to eliminate that hollow tube). Yet, the geometry certainly changes and may be of 

interest when studying the progression of stenosis and atherosclerosis. An aneurysm’s bubble 

within a vessel, similarly, does not change the fact that the vessel is still a tube. However, the 

bulge does affect vessel geometry and impacts blood flow and patient risk. Given these 

differences, many geometry-based feature extraction tools exist, and geometry-based image 

modelling is a growing field in medical imaging. 

 

The geometric feature extraction (GFE) approach is a powerful method used in radiomics and 

pathomics for the analysis of medical images and histopathology slides. This approach 

focuses on extracting quantitative geometric features that capture the spatial characteristics 

and shape properties of anatomical structures and cellular components 65,66, taking advantage 

of the wide range of quantitative features it generates. These features can be computed from 

region-based or contour-based segmentation approaches, depending on the specific task and 

dataset. Various geometric descriptors, including size-based features (e.g., volume, area, 

diameter), shape-based features (e.g., circularity, elongation, complexity), and spatial 
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distribution-based features (e.g., distance, clustering), can be extracted to capture various 

aspects of anatomical or cellular structures 27. 

 

Fusion of deep convolutional (CNN) and geometric features is an approach that increases 

boundary contrasts and enhances features, which can then be deployed downstream in CNN-

based modelling. This approach, applied to capsule-based endoscopy images, was shown to 

decrease training time five-fold compared to existing state-of-the-art methods, without 

sacrificing performance quality 67. Recent advancements in object recognition, such as 

hyperbolic visual embedding, which maps flat images onto hyperbolic spaces prior to 

modelling, have also shown promise in distinguishing features that exist in an image or set of 

images. While this has not yet been applied to pathomics, the potential for recognizing many 

types of cells and cellular aberrations with this method is promising 67. In all, differential 

geometry distinguishes itself from standard spatial analysis tools by seamlessly integrating 

basic methods, such as size-based and shape-based feature extraction, with advanced 

techniques such as hyperbolic or fractal mapping. This convergence not only optimizes 

compute time and accuracy but also paves the way for medical models to scale efficiently and 

incorporate diverse data sources 68. 

 

Integration with Other Data Sources 

Features arising just from imaging studies or biometric measurements often do not capture all 

relevant information that could contribute to diagnosis or modelling disease progression. 

Multimodal models including patient histories, biometric measurements, image features and 

other electronic health record data constitute a more complete biopsychosocial view of 

disease and patient histories. Topological signatures and persistence landscapes integrate well 

with other types of data—such as genomics data, biometric records, and extractions from 

clinical notes, as these can be expressed as vectors. Often, such combined models provide 

better insights and better patient management opportunities than models that only include one 

type of data (such as imaging) 69. However, integration of text features, imaging features, and 

relational data from electronic health record systems (such as biometric records or medication 

lists) is complicated. Thus, tools such as topological signatures that allow medical images to 

integrate easily with other data types will be helpful in creating powerful multimodal models 

at scale. However, caution is still required when multi-dimensional data is used to generate 

biological or clinical conclusions, because the opportunity of overfitting increases as the 

number of variables increases, potentially yielding results that may be misleading or entirely 

spurious. Though it is a prevalent belief that cross-validation acts as a safeguard against 

overfitting or “overhyping,” this is not always the case. Random data can still produce 

spurious results even when cross-validation is employed, for example by merely tweaking 

hyperparameters in ways that might otherwise seem harmless 70. 

 

Genomics 

Genomics approaches consist of data that can be processed by many machine learning 

methods to identify rare mutations, common tumor profiles, and other relevant diagnostic and 

prognostic features for modelling. Data topology approaches have played a role recently in 

tracking changes in tumor genetics over time 71 and in identifying genetic alterations and 
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markers in tumors 72. Certainly, one of the fastest growing fields today is radiogenomics, in 

which tumor imaging profiles are linked to tumor genetic profiles 73. By linking imaging with 

specific genetic profiles of tumors, it is possible to discern new cancer phenotypes and 

develop specialized treatments for rare tumor subtypes. However, the lack of accessible 

imaging and accessible genomics data often hinders collaboration between radiologists, 

pathologists, and geneticists studying the same diseases or working on management of the 

same patients 74. For example, the use of radiogenomics has led to successful prediction of 

glioblastoma survival time by modelling patient imaging data (via geometric feature 

extraction) and tumor genetic profiles; the combination can outperform survival models that 

use only imaging data or only tumor genetic profiles 75. It is possible that persistence 

landscapes and topological signatures can also play a role in integrating such data with the 

pathomics and radiomics information outlined above. 

 

Future Perspectives 

The potential of radiomics and pathomics tools to contribute to the goals of precision 

medicine is evident. As these fields continue to advance, we can expect exciting 

developments that will shape the landscape of medical imaging and histopathology analysis. 

The integration of radiomics and pathomics with other -omics data, such as genomics, 

proteomics, and metabolomics, along with other patient-associated data, will enrich our 

understanding and the utility of these approaches, leading to more accurate diagnosis, 

personalized treatment selection, and improved outcomes. Machine learning and artificial 

intelligence algorithms, particularly those rooted in geometry and topology, can play a crucial 

role in this process. The development of standardized protocols and guidelines for radiomics 

and pathomics analysis can address some reproducibility and generalizability issues, enabling 

increasingly diverse datasets to be explored and facilitating multicenter collaborations. 

Finally, a potential advantage is that geometry and/or topology provide additional prior 

information, which may obviate the need to collect ever-larger data sets. Together, these tools 

may help define the shape of things to come.  Jo
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Figure Legends 

 

Fig. 1: An overview of TDA and persistent homology, with ∈ indicating the local scale 

parameter, and 𝛽1 indicating the number of cycles “detected” at the given scale. 

 

Fig. 2: An overview of different representations of persistence diagrams40 

(a) Persistence images (on right) are constructed by “smoothing” the persistence diagrams 

(scatter plots on left). They provide a fast and effective way of using topological features for 

subsequent data analysis tasks. 

(b) Betti curves are a coarse summary of a diagram, obtained by counting the number of 

active topological features as a function of the overall scale. 

(c) Persistence landscapes enjoy stability properties akin to those of persistence diagrams; it 

is also possible to reconstruct the original features of data from them. 

There are no axes for the Persistence images because they are images and only have pixel 

coordinates. 

 

Fig. 3: Algorithm for persistent homology profiles for standard hematoxylin & eosin-stained 

slides 55. 

 

Fig. 4: Algorithm for persistent homology profiles for gross lesion images56. 

 

Fig. 5: Topological changes with aging and Alzheimer’s disease show the effects in grey 

matter (red) and white matter (white). Both aging and Alzheimer’s disease result in the loss 

of white matter volume and a thinning of the grey matter. Segmenting colors measures only 

area, missing intricate topologies. While the Betti number as such only captures coarse 

summary statistics about data, i.e., the number of connected components or cycles, they can 

be evaluated alongside a filtration (a growth process) to improve their expressivity. In the 

form of such Betti curves, the Betti numbers capture complex structures, offering deeper, 

more comprehensive insights than mere area measurements. Grey matter of the aging brain 

breaks down into smaller connected components, illustrated by the example of a dimension 1 

Betti curve computed from the grey matter. Mean subject ages were 56 for the “young” 

cohort, 83 for the aging cohort, and 65 for patients with Alzheimer’s disease. 

 

Fig. 6: This image describes a process involving binary image manipulation and the 

computation of Betti numbers. Initially, an H-stained component image is transformed into 

binary format using various threshold values, specifically 40, 100, and 150. The resulting 

binary images highlight connected components, represented as blue dots (b0), and empty 

spaces, marked with red stars (b1). This process helps visualize and quantify the structural 

characteristics of the images in terms of Betti numbers 63. 
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