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A B S T R A C T   

Cancer is traditionally diagnosed and treated on the basis of its organ of origin (e.g., lung or colon cancer). 
However, organ-of-origin diagnostics does not reveal the underlying oncogenic drivers. Fortunately, molecular 
diagnostics have advanced at a breathtaking pace, and it is increasingly apparent that cancer is a disease of the 
genome. Hence, we now have multiple genomic biomarker-based, tissue-agnostic Food and Drug Administration 
approvals for both gene- and immune-targeted therapies (larotrectinib/entrectinib, for NTRK fusions; selperca
tinib, RET fusions; dabrafenib plus trametinib, BRAFV600E mutations; pembrolizumab/dostarlimab, microsatellite 
instability; and pembrolizumab for high tumor mutational burden; pemigatinib is also approved for FGFR1- 
rearranged myeloid/lymphoid neoplasms). There are emerging targets as well, including but not limited to ALK, 
BRCA and/or homologous repair deficiency, ERBB2 (HER2), IDH1/2, KIT, KRASG12C, NRG1, and VHL. Many 
tissue-agnostic approvals center on rare/ultra-rare biomarkers (often < 1 % of cancers), necessitating screening 
hundreds of tumors to find a single one harboring the cognate molecular alteration. Approval has generally been 
based on small single-arm studies (<30–100 patients) with high response rates (>30 % to > 75 %) of remarkable 
durability. Because of biomarker rarity, single-gene testing is not practical; next generation sequencing of 
hundreds of genes must be performed to obtain timely answers. Resistance to biomarker-driven therapeutics is 
often due to secondary mutations or co-driver gene defects; studies are now addressing the need for customized 
drug combinations matched to the complex molecular alteration portfolio in each tumor. Future investigation 
should expand tissue-agnostic therapeutics to encompass both hematologic and solid malignancies and include 
biomarkers beyond those that are DNA-based.   

Introduction 

Historically, cancer has been classified and treated on the basis of its 
organ of origin (e.g., breast or colon or lung cancer), which is deter
mined by light microscopy. However, light microscopy does not uncover 
the factors that drive tumor formation and progression. Understanding 
tumor drivers requires molecular technology, which has fortunately 
advanced at a remarkable rate over the last two decades. As a result, 
there are now multiple tissue-agnostic Food and Drug Administration 

(FDA) approvals for patients with cancer (Fig. 1) [1–18] Tissue-agnostic 
approvals imply that the organ of origin is not considered germane for 
the FDA approval. In other words, a treatment is approved for its ability 
to target a specific molecular abnormality, and all patients with that 
abnormality, regardless of the organ of origin of their tumor, can receive 
that treatment.[19,20] These approvals have been enabled by the 
advent of molecular genomic testing and, more recently, clinical-grade 
next-generation sequencing (NGS), which can simultaneously probe 
tumors for thousands of possible abnormalities in any one of hundreds of 
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cancer-causing genes. In addition to established tissue-agnostic ap
provals, multiple new gene anomalies are emerging as potential tissue- 
agnostic targets. Importantly, we posit that all genomic markers may 
be candidate tumor-agnostic biomarkers—tissue is not the issue. 

The molecular microscope and the reclassification of cancer 

Although the light microscope was invented over 400 years ago, and 
the hematoxylin and eosin stain, which is the gold standard for histo
logic identification, was developed about 150 years ago, the human 
genome was only first sequenced in 2001.[21–24]. Still, oncologists, 
pathologists, and researchers have embraced the compelling evidence 
that cancer is a disease of the genome. 

NGS is akin to a molecular microscope. Interrogation of cancers at a 
molecular level and their prosecution with gene-targeted therapies has 
led to the reclassification of cancer, which in turn has led to multiple 
regulatory authorizations that require a genomic biomarker.[19,20] 
While most of these approvals are still within the context of organ of 
origin, e.g. approval of ALK inhibitors for patients with non-small cell 
lung cancer (NSCLC) harboring ALK fusions [25,26], more recently, FDA 
approvals have shed the focus on organ of origin and have concentrated 
on genomic anomalies, giving rise to tissue-agnostic approvals. 
[1–18,27–29]. 

Tissue-agnostic approvals for gene- and immune-targeted therapies 

Tissue-agnostic approvals are based on genomic biomarkers 
including mutations, fusions/rearrangements, and tumor mutational 
burden (TMB)/microsatellite instability. The approved agents encom
pass small molecule inhibitors and antibodies. Both gene- and immune- 
targeted drugs have attained tissue-agnostic approvals, and the ap
provals have been applied for solid cancers and for hematologic ma
lignancies (Fig. 1). 

In the solid tumor field, the tissue-agnostic FDA gene-targeted ap
provals are as follows: [1–18,27–29] TRK inhibitors larotrectinib and 
entrectinib for NTRK fusions; the RET inhibitor selpercatinib for RET 

fusions; and the BRAF inhibitor dabrafenib combined with the MEK 
inhibitor trametinib for BRAF V600E mutations. In the hematologic 
field, the FGFR inhibitor pemigatinib targets FGFR1 rearrangement in 
myeloid lymphoid neoplasms. In the immunotherapy field, the anti-PD1 
antibodies pembrolizumab and dostarlimab are each approved for solid 
tumors with microsatellite instability-high (MSI-H), and pembrolizumab 
is also approved for solid tumors with high TMB (≥10 mutations/mb). 
All these approvals are partial, as they include solid tumors but not 
hematologic malignancies or vice versa; moreover, in the case of BRAF 
V600E, colorectal cancer is excluded [1–21,27–29]. 

Tissue-agnostic FDA approvals have several key features: (i) they 
require a genomic biomarker for both gene-targeted therapy and for 
immunotherapy; (ii) they are established on the basis of single-arm 
studies with small numbers of patients (<30 to 100); (iii) the genomic 
biomarker may be rare or ultra-rare and hence hundreds of patients may 
need to be screened to find single cancers harboring the cognate 
anomaly; and (iv) response rates are high (>30 % to > 75 %) and benefit 
is remarkably durable. 

The rarity of the genomic biomarkers that underly tissue-agnostic 
approvals is important. RET fusions appear in only 0.23 % of all can
cers, and roughly 1–2 % of all patients with NSCLCs.[30–34] Similarly, 
NTRK fusions are discerned in only 0.31 % of adult tumors and in 0.34 % 
of pediatric tumors.[35] BRAF V600E alterations are seen in ~ 2.5 % of 
cancers.[36] Microsatellite instability is observed in about 4 % of can
cers [37] and TMB ≥ 10 mutations/mb is found in 5 to 13 % of patients. 
[38,39]. 

The fact that these molecular biomarkers are rare or ultra-rare has 
important real-world implications. Notably, single gene tests are not 
practical in the clinic as the physician cannot possibly “guess” which 
gene test to order, and tissue is soon exhausted by running single tests. 
Furthermore, the patient’s disease is generally progressing and there is 
no time to serially order tests. Fortunately, NGS is a comprehensive 
profiling technique that allows hundreds of cancer-causing genes to be 
tested at once, and returns results within 2–3 weeks, without using 
substantially more tissue than single tests. Both tumor tissue and blood 
can be evaluated by NGS. 

Fig. 1. Tissue-agnostic FDA approval. Figure Legend: This figure represents tissue-agnostic FDA-approvals. Colorectal cancer was excluded from the BRAF V600E- 
drected trametinib plus dabrafenib approval. Created with BioRender.com. 
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Emerging tissue-agnostic biomarker targets 

There are multiple up-and-coming tissue-agnostic targets including 
but not limited to, ALK, BRCA, ERBB2 (HER2), IDH1/2, KIT, and KRAS 
G12C, NRG, and Von Hippel-Lindau (VHL) as well as homologous repair 
deficiency (HRD) (Table 1 and Fig. 2).[25,40–71] They can be effec
tively targeted by several types of medications: antibodies, antibody- 
drug conjugates and small molecule inhibitors. Each of these genes, 
when aberrant, can be impacted by one or more medications, and there 
are already approvals in distinct cancers bearing the cognate biomarker 
and/or robust clinical evidence for activity in diverse cancer types. 

One notable example of an emerging tissue-agnostic target derives 
from the FDA approval of the hypoxia-inducible factor 2 alpha (HIF-2α) 
inhibitor belzutifan for patients with germline VHL mutations; these 
mutations induce NF-κB activity through the accumulation of HIFα 
expression.[40] The belzutifan approval simultaneously included 
several different solid tumors (renal cell carcinoma, central nervous 
system hemangioblastomas, and pancreatic neuroendocrine tumors) in 
patients with germline VHL disease, with objective response rates 
(ORRs) ranging from 49 % to 85 %.[41,42]. 

There are multiple other biomarkers susceptible to inhibition by 
gene-targeting agents that are active across tissue types. For example, 
ALK genomic alterations are found in ~ 3.3 % of malignancies, though 
ALK fusions/rearrangements, which are especially vulnerable to effec
tive targeting, are less common, occurring in ~ 0.5–0.8 % of cancers. 
[25] To date, multiple ALK inhibitors have been granted approval by the 

FDA for ALK-altered NSCLC treatment: first-generation inhibitors (cri
zotinib), second-generation (ceritinib, alectinib, and brigatinib) and 
third generation ALK inhibitors (lorlatinib). Moreover, ALK inhibitors 
have demonstrated activity in a range of solid and blood cancers and 
have been garnered FDA approval in inflammatory myofibroblastic tu
mors and in anaplastic large cell lymphomas. The approved ALK in
hibitors yield ORRs between ~ 44 % to ~ 90 % across malignant solid 
and hematologic conditions.[25]. 

BRCA is a tumor suppressor gene and is one of a set of genes impli
cated in double-stranded DNA repair by homologous recombination. 
Testing for HRD is possible and is a functional way to detect the 
downstream effects of BRCA mutations (germline or somatic) as well as 
alterations in several other genes that are critical for DNA repair. The 
incidence of BRCA1 or BRCA2 germline mutations within the general 
population is low (~1 out of every 300 to 800 people.) While the risk of 
breast cancer development is the highest of the epithelial malignancies 
(between 40 % and 80 %), the chance of developing other cancers 
including ovarian, pancreatic, and prostate is also increased in patients 
carrying germline BRCA1 and BRCA2 mutations.[45] BRCA mutations 
may also be somatic. Tumors with defects in BRCA or elevated HRD are 
sensitive to platinum agents and to PARP inhibitors, with several of the 
latter approved: olaparib, rucaparib, niraparib, and talazoparib. These 
drugs are authorized for diverse cancers such as breast, ovarian, prostate 
and pancreatic cancer.[46]. 

ERBB2/HER2 is another target with ample data supporting cross- 
tumor activity. HER2 overexpression (mostly but not exclusively due 

Table 1 
Examples of Emerging Tissue-Agnostic Biomarker Targets and Medications [25,40–71].  

Gene Examples of drugs that target the 
alteration 

Examples of tumors with FDA approvals or activity 
in clinical trials based on the cognate aberrant 
biomarker 

Comment 

ALK Crizotinib, ceritinib alectinib, 
brigatinib, lorlatinib (all FDA 
approved) 

Non-small cell lung cancer, inflammatory 
myofibroblastic tumors, and anaplastic large cell 
lymphomas (FDA approved; all with ALK fusions) 

Most activity is for ALK fusions 

BRCA (and 
homologous repair 
deficiency (HRD)) 

Olaparib, rucaparib, niraparib, 
talazoparib (all FDA approved) 
Platinums  
(FDA approved) 

Breast, ovarian, prostate and pancreatic cancer (FDA 
approved, all with BRCA mutations) 

Both BRCA1 and BRCA2 can manifest as somatic or 
germline mutationsHomologous repair deficiency 
(HRD high)  
is a functional consequence of mutations in BRCA and 
other DNA repair genes and sensitizes to PARP 
inhibitors or to platinum agents 

ERBB2/HER2 Multiple drugs  

Tucatinib and trastuzumab 
deruxtecan have approvals outside of 
breast and gastric cancers 
(FDA approved drug) 

Breast, non-small lung cancer, gastric, colorectal 
cancer 
(FDA approved, all with ERBB2/HER2 expression or 
ERBB2/HER2 mutations depending on the indication) 

The antibody-drug conjugate trastuzumab deruxtecan 
has shown activity across cancers with ERBB2 
expression. 

IDH1 and IDH2 Ivosidenib and olutasidenib (IDH1 
inhibitors) and enasidenib (IDH2 
inhibitor) 
(FDA approved) 
Vorasidenib  
(IDH1 and IDH2 inhibitor) 
(clinical trial activity 

Acute myeloid leukemia, myelodysplastic syndrome, 
cholangiocarcinoma (FDA approved indications, all 
with IDH mutations) 
Vorasidenib (gliomas)  
(IDH-mutant)  

KIT Imatinib, avapritinib, ripretinib, 
sunitinib, regorafenib 
(FDA approved drug) 

Gastrointestinal stromal tumors and systemic 
mastocytosis 
(FDA approved, tumors typically have KIT mutations)  

KRAS G12C Sotorasib, adagrasib 
(FDA approved) 
Divarasib  
(clinical trial activity)  

Glecirasib (clinical trial activity) 

FDA approvals for non-small cell lung cancer with 
KRAS G12C mutations 
Activity for divarasib seen across KRAS G12C-mutated 
solid cancers 
(clinical trial activity)  

Activity for glecirasib seen across KRAS G12C-mutated 
solid cancers 
(clinical trial activity)  

NRG1 Zenocutuzumab 
(Investigational antibody) 

Multiple tumor types with NRG1 fusions 
(clinical trial activity)  

VHL Belzutifan (FDA approved) VHL-mutated associated renal cell cancer, central 
nervous system hemangioblastomas and pancreatic 
neuroendocrine tumors (FDA approved) 

FDA approval is for germline VHL-mutated 
diseaseBelzutifan is also FDA approved for renal cell 
carcinoma  
(no biomarker)  
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to ERBB2 (HER2) amplification) is found in ~ 3 % of tumors.[47–50] 
Similarly, ERBB2 mutations (which generally result in kinase enzyme 
overactivation rather than increased expression) also occur in ~ 3 % of 
cancers.[51,52] The antibody-drug conjugate trastuzumab deruxtecan 
has salutary effects in multiple tumor types that express HER2 
(including low levels of HER2, i.e., <3 + by immunohistochemistry 
[IHC]) and tumors that have ERBB2 (HER2) mutations.[53–55] Tras
tuzumab deruxtecan is approved for adults with advanced/metastatic 
HER2-positive breast cancer (including 1+/2 + HER2 IHC), NSCLC with 
ERBB2 (HER2) mutations, and HER2-positive gastric or gastroesopha
geal junction adenocarcinoma.[56] The small molecule HER2 inhibitor 
tucatinib combined with the HER2-targeting antibody trastuzumab is 
also approved for RAS wild-type HER2-positive unresectable or meta
static colorectal cancer.[57]. 

On a related note, NRG1 binds to ERBB3/HER3 and ERBB4/HER4. 
ERBB3/HER3 lacks or has little intrinsic tyrosine kinase enzymatic ac
tivity; however, it often forms heterodimers with other ERBB/HER 
tyrosine kinases including ERBB2/HER3 and, in neoplastic cells, can 
stimulate oncogenic signaling. Activating NRG1 fusions can be dis
cerned in diverse malignancies, albeit at a very low rate – ~0.15–0.5 % – 
across cancers [58] Drugs targeting the consequences of NRG1 fusions 
are currently under development. The HER2-HER3 bispecific antibody 
zenocutuzumab has received FDA fast-track designation; it docks on 
ERBB2/HER2, and then binds to and blocks the NRG1 fusion-ERBB3/ 
HER3 interaction and ERBB3/HER3 heterodimerization with ERBB2/ 
HER2. The ORR was 34 % and median duration of response of 9.1 
months across multiple NRG1 fusion-bearing solid tumors (e.g., NSCLC, 
pancreas cancer, breast cancer, cholangiocarcinoma).[59]. 

KIT is a tyrosine kinase receptor. Activating KIT mutations occur in 
~ 3 % of cancers.[60] There are now multiple approved KIT inhibitors 
including imatinib, avapritinib, ripretinib, sunitinib, and regorafenib. 

These agents are approved for KIT-mutated disease such as gastroin
testinal stromal tumors (GIST) and systemic mastocytosis.[63,64] In the 
case of GIST, which previously had response rates approaching zero for 
cytotoxic chemotherapy, KIT inhibitors matched to specific KIT muta
tions result in responses in the majority of patients, transforming the 
outlook for people afflicted with GIST.[64]. 

KRAS is an especially interesting target. Previously it was considered 
undruggable, but this has rapidly changed, with two specific KRAS G12C 
inhibitors (sotorasib and adagrasib) now FDA approved, and others in 
development for KRAS G12C and multiple other types of KRAS muta
tions.[61,62] KRAS alterations activate the MEK pathway. Multiple MEK 
pathway inhibitors are also approved and have some, albeit limited, 
activity in KRAS-altered cancers, in part perhaps because of the frequent 
co-occurrence of other driver genomic alterations that need to be co- 
targeted in order to observe anti-tumor activity.[65] KRAS is 
frequently aberrant in cancer. Amongst > 79,000 tumors, 17 % had 
KRAS mutations with 12 % being KRASG12C (2 % of the total mutations). 
[66] The KRAS protein acts as a signaling GTPase, transitioning between 
active GTP-bound and inactive GDP-bound conformations. KRAS mu
tants hinder the guanine exchange cycle, leading to its detention in an 
active state that promotes oncogenic signals. As mentioned, both 
sotorasib and adagrasib are FDA approved for NSCLCs bearing KRAS 
G12C mutations, but activity across cancers can be seen for these drugs 
as well as the investigational agent divarasib and glecirasib.[67,72] 
Recently it was also reported that a patient with NRAS G12C mutated 
colorectal cancer had a marked response to sotorasib with cetuximab. 
[73]. 

Finally, some of the most frequently mutated metabolic genes in 
human cancer are those encoding the isocitrate dehydrogenase (IDH1 
and IDH2) enzymes. IDH mutations lead to a change in enzyme function, 
enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate 

Fig. 2. Examples of emerging tissue-agnostic targets. Figure Legend: This figure represents multiple potential tissue-agnostic targets. Created with BioR 
ender.com. 
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(R-2-HG). Elevated cellular R-2-HG suppresses enzymes that regulate 
transcription and metabolism.[68] Mutations in the genes for IDH1 or 
IDH2 have been detected in > 20 tumor types. They are prevalent in 
grade II and III gliomas (>70 %) and secondary glioblastoma (55 %–88 
%) (but not primary GBMs (5 %–14 %)), certain cartilaginous and bone 
tumors such as chondrosarcomas (20 %–80 %), acute myeloid leukemia 
(AML) (15 %–30 %), intrahepatic cholangiocarcinoma (6 %–30 %), 
angioimmunoblastic T cell lymphoma (20 %–30 %), sinonasal undif
ferentiated carcinoma (35 %–80 %) and solid papillary carcinoma with 
reverse polarity (>77 %).[69] Approved drugs include the oral IDH1 
inhibitors ivosidenib and olutasidenib and the IDH2 inhibitor enaside
nib.[70] Starting in 2018, ivosidenib has received a series of FDA ap
provals, including for IDH1-mutated AML, myelodysplastic syndrome, 
and cholangiocarcinoma. Similarly, the IDH2 inhibitor enasidenib is 
approved to treat IDH2-mutated AML. Olutasidenib is approved for 
patients with AML with a susceptible IDH1 mutation. Vorasidenib, a 
brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, has shown 
activity in IDH-mutant gliomas.[71]. 

Taken together, there are multiple promising genomic biomarkers 
with FDA approvals across cancer types, and/or clinical trial data sup
porting a tissue agnostic approval. These biomarkers include aberrant 
VHL, BRCA (HRD), ERBB2 (HER2), IDH1/2, KIT, and KRAS G12C, and 
NRG1. Furthermore, specific abnormalities in the HGF/MET, cyclin, and 
ROS1 genes, and in multiple FGF/FGFR family members can be found in 
multiple cancer types, and cognate antagonists have shown activity in 
case reports, case series and in clinical trials in several cancers.[74–77]. 

Primary and secondary resistance: Tissue is not the issue 

A subject of considerable debate is whether specific molecular al
terations have distinct therapeutic impact in different tissues. For 
instance, BRAF V600E mutations correlate with response to BRAF in
hibitors with and without MEK inhibitors in cancers as different as hairy 
cell leukemia (~96 % response rate to the BRAF inhibitor vemurafenib) 
to melanoma (ORR ~ 50 % to vemurafenib).[78–80] Yet, disappoint
ingly, BRAF-mutated colorectal cancer is less responsive. An important 
question emerges. Is resistance to dabrafenib plus trametinib in BRAF 
V600E-aberrant colorectal cancer because colonic tissue confers resis
tance or because colorectal cancer has secondary genomic pathways that 
are activated? The evidence points to the latter possibility. Indeed, the 
FDA has approved the BRAF inhibitor encorafenib together with the 
EGFR antibody cetuximab for BRAF V600E-bearing colorectal cancer 
because co-targeting the activated EGFR signal along with the BRAF 
signal is effective.[81,82] Moreover, instead of withholding a tissue- 
agnostic approval, the FDA elected to approve the BRAF inhibitor dab
rafenib together with MEK inhibitor trametinib in solid tumors 
harboring BRAF V600E mutations, but to exclude colorectal cancer.[83]. 

A corollary to the question as to why some malignancies such as 
colorectal cancer may be unresponsive to BRAF/MEK inhibitors (i.e., 
due to co-activated pathways such as EGFR), is why do almost half of 
patients with BRAF V600E-mutant melanoma not respond to BRAF +/- 
MEK inhibitors (primary resistance) and most of the responders even
tually develop progression (secondary resistance)? Is it possible that the 
resistance mechanisms in the non-responsive melanomas are similar, in 
principle, to those in the non-responsive colorectal cancers, albeit 
occurring less frequently – i.e., is non-responsive (primary resistance) or 
for that matter the emergence of secondary resistance all or mostly due 
to co-driver genomic alterations? And, if that is the case, is the solution, 
combining BRAF +/- MEK inhibitors with agents that target the co- 
drivers, rather than abandoning the use of the BRAF +/- MEK in
hibitors in the non-responsive histologies and in the individuals with 
responsive histologies who show primary or secondary resistance? To 
date, studies that have targeted co-drivers across cancers have indeed 
shown that higher degrees of matching of drugs to molecular alterations 
via customized therapies correlate with improved outcomes.[84–86]. 

Biomarkers and companion diagnostics for tissue-agnostic targeting 

Many gene-based drug approvals require the use of a companion 
diagnostic specific genomic test or, more recently, NGS, which assesses 
hundreds of genes. Early on, genomic companion diagnostics were often 
developed as single gene tests. However, as NGS gained widespread use, 
it quickly became apparent that testing serially for single genes was a 
piecemeal approach that was costly, used up tissue, and was time 
consuming. Instead, multiple (hundreds) of genes and their alterations 
could be tested simultaneously with a single NGS test. Therefore, labo
ratory developed clinical-grade tests and/or FDA-approved companion 
diagnostics that are NGS-based and interrogate either blood or tissue for 
hundreds of genes are most useful. These tests should provide results on 
genomic alterations including rearrangements/fusions, amplifications, 
and mutations, as well as about TMB and MSI status. NGS tests are 
crucial to find the biomarkers, including those that are rare or ultra-rare, 
for which medications exist, as well as to define specific mutations or co- 
drivers that mediate primary or secondary resistance, 

Future biomarkers, including those that might be exploitable for 
tissue-agnostic approvals, may also consider tests that evaluate the 
downstream or composite effects of a variety of genes. For instance, 
BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, RAD51, and the FANC genes 
may cause DNA repair defects leading to HRD.[44] The hallmark of HRD 
is the inability of a cell to successfully fix DNA double-strand breaks 
using the homologous recombination repair pathway. But, not all al
terations in BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, RAD51, and the 
FANC genes create the same degree of HRD. Testing for HRD is per
formed by probing the genome for evidence of genomic instability uti
lizing signatures that include: patterns of loss of heterozygosity, which 
are regions of intermediate size (over 15 MB and less than the whole 
chromosome); number of telomeric imbalances, which are the number 
of regions with allelic imbalance that extend to the sub-telomere but not 
across the centromere; and large-scale transitions, which are chromo
some breaks (deletions, translocations, and inversions).[87] Hence, a 
test for HRD might supplement NGS as a biomarker for drugs such as 
PARP inhibitors or platinums. 

Limitations 

Despite the promise of genomics to guide treatment, there are limi
tations to this approach. One such issue that can arise is when there is 
insufficient tissue for NGS. In these instances, using blood-derived 
ctDNA for NGS testing may be helpful; however, ctDNA-based NGS 
should be considered as complementary to tissue NGS and not a sub
stitute.[88–90] There can be discordance between what is found in tis
sue NGS versus blood-derived ctDNA, but these differences may reflect 
the different aspects of the tumor they are measuring, with blood ctDNA 
reflecting shed DNA from multiple tumor sites, while tissue NGS reflects 
the site of biopsy. Additionally, some patients may have aggressive 
cancers that need immediate treatment, which cannot wait for the 
average 2–4 weeks for NGS processing and reporting time. Reflex NGS 
testing at the time of biopsy might help with this situation. Another issue 
with the biomarker-guided approach is the cost of both NGS as well as 
obtaining the medications. NGS testing can cost between $1000-$4000 
per assay and each of the medications can cost over $10,000 each 
month. Whether or not patients have access to these tests and medica
tions is sometimes determined either by their insurance company’s 
coverage, the drug manufacturers willingness to provide compassionate- 
use drug, the diagnostic company providing financial assistance, the 
patient’s financial ability to pay, or the availability of clinical trials. 
Another limitation is the variety of techniques available to identify 
targets or matched medications; these techniques include fluorescence 
in situ hybridization, polymerase chain reaction, or IHCs, as well as 
functional assays. Each technique has differing costs and turnaround 
time, and specific potential targets may be more easily identifiable by 
one technique and not the others.[48] For instance, IHCs specifically 
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measures cell-derived proteins while NGS assesses the genome. 

Conclusions and future directions 

The observation of high response rates and benefit that is remarkably 
durable even in advanced cancers when drugs are matched to tumors 
based on biomarkers has powered a revolution in oncology clinical 
research and practice. This revolution has been enabled by sophisticated 
genomic-analyzing techniques such as NGS. NGS (the “molecular mi
croscope”) has uncovered pharmacologically tractable genomic aber
rations, including those that are rare and ultra-rare, appearing in well 
under 1 % of cancers. 

Genomic discoveries have now led to several tissue-agnostic regu
latory approvals, mostly (but not exclusively) in adult solid tumors. The 
approvals encompass gene product-targeted drugs such as NTRK or RET 
or BRAF inhibitors and immune-targeted drugs such as anti-PD1 agents 
in the solid tumor field, as well as an FGFR1 inhibitor in hematologic 
malignancies (Fig. 1). Furthermore, there are now a wealth of emerging 
tissue-agnostic targets: ALK, BRCA, ERBB2 (HER2), IDH1/2, KIT, KRAS 
G12C, NRG1 and VHL, as well as functional biomarkers such as HRD. 
Indeed, tissue-agnostic therapy may be a paradigm, rather than an 
exception, since it is the molecular defect that drives cancer. Despite this 
approach having validity in a great deal of settings, not all patients and 
settings derive salutary effects from genomically selected therapies. As 
with traditional organ-of-origin treatments and approvals, there can be 
considerable heterogeneity in terms of response rates; for example, 
targeting BRAF V600E may be effective in both solid tumors and he
matologic malignancies, but the response rates range from 12 % (colo
rectal cancer) to near 100 % (hairy cell leukemia). Consequently, the 
medication pair – dabrafenib (BRAF inhibitor) and trametinib (MEK 
inhibitor) – is FDA-approved for BRAF V600E-altered solid cancers that 
are not colorectal cancer. Importantly, in colorectal cancer, when an 
additional agent is added — the EGFR antibody cetuximab — the initial 
resistance to BRAF inhibition can be overcome and yield benefit for 
patients with BRAF V600E-altered colorectal cancer—with the BRAF 
inhibitor encorafenib together with cetuximab approved for BRAF 
V600E colorectal cancer. The latter data suggest that resistance to tar
geted agents may be due to secondary oncogenic drivers/signals that can 
be elucidated by molecular studies and must be co-targeted. Notably, 
resistance mediated by molecular co-drivers may exist on a continuum 
and, in addition to accounting for primary resistance in less responsive 
histologies such as BRAF-mutated colorectal cancer (when treated with 
BRAF/MEK inhibitors), may also explain primary and secondary resis
tance in BRAF inhibitor-responsive tissues such as melanoma as well. 
Moreover, primary, and secondary drug resistance due to co-drivers may 
be operative across cancers and account for treatment failure. If that is 
the case, the issue that may need to be addressed is understanding the 
molecular drivers in individual cancers, rather than just the tissue ori
gins of the cancer. 

One of the important benefits of tissue-agnostic approvals is that they 
provide the opportunity for drug access across multiple tissue types, 
including for patients afflicted with rare and ultra-rare cancers. Such 
conditions embody a huge unmet need in that it is improbable that they 
will have their own trials, especially in the setting of an infrequent/ 
ultra-rare molecular alteration. 

In summary, a wealth of data demonstrate that cancer is a disease of 
the genome and that biomarker-based tissue-agnostic strategies can 
yield responses rates that are high and benefit that is remarkably durable 
for both matched gene- and immune-targeted agents. Future consider
ation should be given to expanding tissue-agnostic basket clinical trials 
so that they become master platform studies that encompass both he
matologic and solid malignancies, germline and somatic alterations, and 
both children and adults. Furthermore, in order to fully interrogate tu
mors, multi-omic technology beyond that which is DNA based should be 
exploited in order to gain a better understanding of molecular drivers 
/co-drivers that mediate sensitivity and resistance across malignancies 

and the need for customized combinations. Finally, a large body of ev
idence now suggests that validated molecular biomarkers are pharma
cologically tractable across cancers – it it’s a target, it’s a pan-cancer 
target. 
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