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Tailoring optimal treatment for individual cancer patients remains a
significant challenge. To address this issue, we developed PERCEPTION
(PERsonalized Single-Cell Expression-Based Planning for Treatments In
ONcology), a precision oncology computational pipeline. Our approach
uses publicly available matched bulk and single-cell (sc) expression profiles
fromlarge-scale cell-line drug screens. These profiles help build treatment
response models based on patients’ sc-tumor transcriptomics. PERCEPTION
demonstrates success in predicting responses to targeted therapiesin
cultured and patient-tumor-derived primary cells, as well as in two clinical
trials for multiple myeloma and breast cancer. It also captures the resistance
development in patients with lung cancer treated with tyrosine kinase
inhibitors. PERCEPTION outperforms published state-of-the-art sc-based
and bulk-based predictorsinall clinical cohorts. PERCEPTION is accessible
at https://github.com/ruppinlab/PERCEPTION. Our work, showcasing
patient stratification using sc-expression profiles of their tumors, will
encourage the adoption of sc-omics profiling in clinical settings, enhancing
precision oncology tools based on sc-omics.

In recent years, precision oncology has made important strides in
advancing treatment for patients with cancer, as described in several
reviews' ®. Much of the focus in the field has been on efforts to use
FDA-approved sequencing assays to identify ‘actionable’ mutations
in cancer driver genes, to match patients to treatments'. These efforts
have been further boosted by the progress made in DNA-based liquid
biopsies, which can further help guide and monitor treatment’®. How-
ever, a large fraction of patients with cancer still do not benefit from
suchtargeted therapies, and therefore efforts are needed to find ways
to analyze other molecular omics data types to benefit more patients.
Addressing this challenge, recent studies have begun to explore the

benefit of collecting and analyzing bulk tumor transcriptomics data
to guide cancer treatment'*™”. Expression-based studies have dem-
onstrated the potential to complement DNA sequencing approaches
in increasing the benefit of omics-guided precision treatments
to patients.

One key limitation of current genomic and transcriptomic treat-
ment approaches is that they are mostly based on bulk tumor data.
Tumors are typically heterogeneous and composed of numerous
clones, making treatments targeting multiple clones more likely
to diminish the likelihood of resistance emerging owing to clonal
selection, and hence potentially enhancing the overall response of
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the patients'®. Intra-tumor heterogeneity has been driving two major
developmentsinrecentyears: the search for effective treatment com-
binations and the advent of single-cell (sc)-profiling of the tumor and
itsmicroenvironment.

Large-scale combinatorial pharmacological screens have been
performed in patient-derived primary cells (PDCs), xenografts and
organoids, and have already given rise to numerous combination
treatment candidates” . Concomitantly, the characterization of the
tumor microenvironment via sc-omics has led to important insights
regarding the complex network of tumor-microenvironmentinterac-
tions involving both stromal and immune cell types'. It also offers a
promising way to learn and predict drug response at an sc resolution.
Thelatter, if successful, could guide the design of drug treatments that
target multiple tumor clones disjointly**** and help us understand
the ensuing resistance to better overcome it. However, building such
predictors of drug response at an sc resolution is currently challeng-
ing owing to the paucity of large-scale preclinical or clinical training
datasets. Previous efforts, including arecent computational method,
termed Beyondcell, that identifies tumor cell subpopulations with
distinctdrug responses fromsingle-cell RNA sequencing (scRNA-seq)
data for proposing cancer-specific treatments, have focused on pre-
clinical models but lack validation in patients at the clinical level** 5,
Additional efforts to identify biomarkers of response and resistance
atthe patientlevel using sc-expression are emerging for both targeted
therapies and immunotherapies, with remarkable results®~'. How-
ever, to date, harnessing the sc tumor transcriptomics of patients for
tailoring their treatmentin a direct, systematic manner has remained
animportant open challenge.

Aiming to address this challenge, here we present a precision
oncology framework for PERsonalized Single-Cell Expression-based
Planning for Treatments In ONcology (PERCEPTION). This approach
builds upon the recent availability of large-scale pharmaco-
logical screens and sc-expression data in cancer cell lines to build
machine-learning-based predictors of drug response based on the
gene expression of single cells. We first show that PERCEPTION can
predict the response to single and combination treatments in three
independent screens performed in cancer and patient-tumor-derived
primary cells, based on their sc-expression profiles. Secondly, we show
that PERCEPTION can stratify the responders versus non-respondersin
two cohorts, multiple myeloma and breast cancer, with patients’ tumor
sc-expression profiles and can capture the development of resistance
using longitudinal tumor sc-expression profiles during treatment
in a cohort of lung cancer patients. Notably, PERCEPTION markedly
outperforms state-of-the-art sc-based and bulk-based predictors in
all three sc clinical cohorts considered. Finally, we provide a guide
for using PERCEPTION for a new clinical cohort with sc-expression
to select patients for receiving treatment. In sum, we present a com-
putational approach that showcases the exciting potential of sc-gene
expression-based precision oncology.

Results
Overview of PERCEPTION
To predict patient response to therapy from the tumor’s sc-expression
profile, we built athree-step machine-learning pipeline called PERCEP-
TION (Fig.1a; adetailed descriptionis provided in the Methods). One of
thekey challenges inbuilding asupervised machine-learning model to
predict clinical response using sc-expression is the lack of large-scale
sc-expression datawith clinical response labels. To overcome thisissue,
we used the concept of transfer learning, amachine-learning technique
whereamodeltrained on one task (for which considerable data are avail-
able) isused as the starting point for amodel on asecond, related task
for which less training data are available. Transfer learning allows the
second model to benefit from the knowledge learned by the first model.
We built PERCEPTION response prediction models for each
drugin three steps. In step one, a bulk-expression model is trained to

predict drugresponse in cell lines from the large-scale bulk-RNA-seq.
In step two (tuning), the bulk-expression models are tuned using the
cell-lines’ sc-expression and drug response to build sc-expression
models. Finally, in step three, we identify a heuristic strategy to predict
clinical response by analyzing a clinical cohort with treatment response
and sc-expression. For a given drug, we provide the input of its drug
response and matched bulk-expression in cell lines for the first step,
matched drug response and sc-expression in cell lines, and finally,
sc-expression of the patient in the third step.

To gather cell line data for building the predictorsin the first two
steps, we mined bulk-expression®*’ and drug-response profiles (PRISM)
of 488 cancer cell lines (Supplementary Table 1) from the DepMap
database®. The sc-expression profiles of these cell lines (n = 205; Sup-
plementary Table 1) were obtained from a previous publication®*. Drug
efficacy (alsoreferred to as viability) ismeasured by the areaunder the
curve (AUC) of the viability-dosage curve, where lower AUC values
indicate increased sensitivity to treatment (Supplementary Table1).

For a given drug, PERCEPTION uses the above data to build a
drug-specific response predictor in cell lines through the following
two steps. Step one involves building bulk-expression models. We first
build a linear model with elastic net regularization of drug response
using the bulk-expression and drug-response data available for 318
PRISM cancer cell lines from 21 cancer types (Extended Data Fig. 1a).
Step twoinvolves building sc-expression models. The goal of this step
is to build sc-expression-based prediction models of drug response.
Tothis end, we determine the number of genes used as predictive fea-
tures (hyperparameter tuning) that maximize the ability to predict the
response from sc-expression data, analyzing the 169 cancer cell lines
for which both scRNA-seq profiles and drug response dataare available
(Extended DataFig. 1b). To evaluate the performance of ansc modelin
acellline, PERCEPTION predicts the response toagiven drug foreach
ofitsindividual cells, and the mean response over all those individual
cellsis taken as the predicted sc-based response of that cell line to that
specificdrug. The output of this machine-learning pipelineis hence a
drug-specific sc-response model and a quantification of its predictive
accuracy from sc-expression in cell lines. We evaluate this model’s
performancein anunseentest subset of the cell lines, using astandard
leave-one-out (onecell line) cross-validation procedure. As described
inthe Methods, the models for some drugs will be deemed sufficiently
predictive and the models for other drugs will not. Only drugs with
predictive models from step two are considered in step three.

In the third and final step, we predict the clinical response in
patients, which is the ultimate goal of our study. This is done using
the following heuristic procedure: (1) We first identify the major
cancer cell clusters in the patient’s tumor using the sc-expression
(transcriptional clones, a cluster of single cells whose transcription
profile looks similar). (2) We then compute the mean expression of
each transcriptional clone and use this as an input to the predictive
drug-specific models yielded from step two to predict drug response
for each transcriptional clone (if a combination of drugs is used in
the treatment, we take the maximum predicted killing among those
drugsasthe predictedkilling effect on that clone, following the inde-
pendent drug action (IDA) principle®). (3) Finally, the overall patient
response is predicted as the minimum response among all clones,
taking the stance that the clone predicted to be most resistant will
likely determine the overall clinical response. As we describe later in
the Results, this prediction strategy was determined in a cohort of
patients with multiple myeloma by studying five different potential
strategies and was then fixed and applied as-is to two other patient
cohorts. For any new drug in a new cancer type cohort, the response
model (steps 1and 2) should also be built using all cell lines available in
the screen (pan-cancer model), as we found that this pan-cancer model
construction performs better during cross-validation than building
cancer-type-specific models that use cell lines belonging only to the
patient’s cancer type (Extended Data Fig. 1c).
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Fig.1|Overview of the PERCEPTION framework and its performance during
cross-validation. a, PERCEPTION builds drug-specific models in three steps.
(1) Bulk-expression response models are built based on drug response data
measured in large-scale drug screens performed on cancer cell lines and their
matched bulk expression. (2) Then sc-expression models are built by tuning
the bulk-expression models, determining the optimal number of genes used
as predictive features that maximize its prediction performance based on
sc-expression of cancer cell lines. (3) In the third and final step, the clinical
response in patientsis predicted following a three-step heuristic procedure.
Given a patient’s SCRNA-seq data from the tumor, identify the major cancer cell
clusters (called a transcriptional clone) and their mean expression. Use this mean
expression as aninput to the PERCEPTION model built in step two, yielding a
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predicted drug response for each transcriptional clone separately.

The minimum response among all clonesis predicted to be the patient’s
response. b, The number of PERCEPTION predictive models of FDA-approved
drugs (y axis), when built from sc-expression (blue), bulk-expression (red),
and pseudo-bulk, as a function of the Pearson correlation between predicted
and observed response values (x axis, the dashed vertical line denotes the 0.3
threshold selected). ¢, The distribution of predictive performance (x axis) of
the models. Inthe boxplots, the center line, box edges and whiskers denote
the median, interquartile range and the rest of the distribution, respectively,
asinstandard boxplots. Interestingly, the predictive performanceis overall
considerably higher for targeted therapies than for chemotherapies. A two-sided
Wilcoxon rank-sum test was performed to compare groups with n =44 drugs.

Wetestand demonstrate PERCEPTION'’s performancein predict-
ing the response to monotherapy and combination treatments in
screens performed in cancer and patient-tumor-derived primary cells.
Then, focusing on patient data as the main goal of this investigation, we
study its ability to predict treatment response in two clinical cohorts
and to predict the emergence of resistance in a third clinical cohort.
We additionally compare PERCEPTION’s prediction performance with
published state-of-the-art sc-based and bulk-based methods. Finally,
we provide a guide for using PERCEPTION to predict responses in
new datasets.

Cross-validation and independent performance in cell lines

We applied PERCEPTION to build response models for 133 US
FDA-approved oncology drugs tested in the PRISM drug screen (Sup-
plementary Table 2 and Extended Data Fig. 1d) and computed their
performance to predict response in a leave-one-out cross-validation
and tenfold cross-validation. Prediction performances for each of
these drugs are provided in Fig. 1b. We deemed models to be suffi-
ciently predictive if the Pearson correlation between their predicted

(mean sc-response per cell line) versus the observed viability on the
test data was greater than 0.3. This threshold was chosen as it corre-
spondstothe mean cross-screen replicate correlation observed among
three major pharmacological screens and confirmed by us, as well as
being previously reported (average cross-platform correlation across
GDSC*, CTD¥ and PRISM* is ~0.30). We were able to build predictive
models for 33% of the drugs tested (44 out of 133 drugs; Supplemen-
tary Table 2 and Fig. 1b). The mean performance of PERCEPTION’s
leave-one-out cross-validation and tenfold cross-validation are 0.39
and 0.36 for 44 drugs with predictive models (Fig. 1b). Studying this
subset, inwhich we are able to build predictive models, we found that
the drugs in this subset are more likely to be targeted therapy (mean
Pearson’s Rho, 0.43 vs 0.35 for chemo) and have a higher variance in
response profile (Wilcoxon P=5 x107) and bimodality index in their
response profile during training (reflecting the presence of both sensi-
tive and resistant cell lines).

Studying the predictive accuracy of these 44 predictive modelsin
across-validation manner for different kinds of transcriptomicsinputs,
including sc-expression, bulk-expression and pseudo-bulk-expression
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(generated by summing the gene-mapped reads across single cells;
Methods), wereassuringly find that the predictive performance of PER-
CEPTION for sc-expression as inputs on these cell lines is comparable
to the performance obtained using bulk-expression or pseudo-bulk
as inputs (Fig. 1c). Importantly, we note that a model built on only
scRNA-seq without any pre-training on bulk-RNA-seq has markedly
lower prediction accuracy (Pearson’s Rho, 0.22vs 0.39 for the 44 predic-
tive drugsintheleft-out test cell lines), highlighting theimportance of
pre-training on bulk. We visualized PERCEPTION’s predicted killing lev-
elsatscresolution for eight FDA-approved drugs with high-confidence
mechanisms of action and the activity of each pathway they are target-
ing (Extended DataFig. 2).

We next asked what are the identities of the genes that these
44 models are using to predict drug response. An average of 76 genes
areused as featuresin the above models after regularization, in which
the key pathways enriched include apical junction pathway, including
genes like ABCB1, encoding multi-drug resistance 1 (MDR1) a trans-
porterimplicatedin resistance to many drugs, cell-cycle-related targets
and more (Extended DataFig. le).

Wenextevaluated PERCEPTION’s performance on threeindepend-
entlarge-scale cell-line screens, two cultured (Nair*” and GDSC) and one
PDC, to stratify the resistant versus sensitive cell lines (top vs bottom
33% by viability, respectively). We built PERCEPTION models for each
drugacross thethree screens individually. We note that we were unable
to build predictive models for any drugs in the PDC screens using
PRISM data and therefore used GDSC data (-800 cell lines). Detailed
methods on how PERCEPTION models were built and used are provided
in the Methods. PERCEPTION was able to stratify the resistant versus
sensitive cell lines withanaverage AUC under receiving operator curve
(henceforth referred to as AUC) of 0.81 (AUC = 0.87 for cultured cell
lines, Extended Data Fig. 3a-g; AUC = 0.75 for PDCs, Extended Data
Fig. 3h-k). A detailed performance evaluation including drug-level
performance measures is provided in Extended Data Figs. 4 and 5.
Predicted and observed viabilities are also strongly correlated in all
three datasets (Pearson’s Rho, 0.36 for Nair, 0.28 for GDSC and 0.64 for
PDCs; Extended Data Figs. 5and 6). We note that acontrol PERCEPTION
model that is not tuned on sc-expression yielded a modestly inferior
performance in this test (average AUC = 0.71, for cultured cell lines
AUC = 0.81, for PDCs AUC = 0.62).

Predicting treatment response in a multiple myeloma trial
After showing that PERCEPTION's cell-line-based model can predict
the response of monotherapy and combination in cultured and PDC
lines, we next ask how we can use the cell-line-based models to predict
patient response using the pre-treatment sc transcriptomics from
their tumors. To this end, we mined the largest such dataset published
to date, including data from 41 patients with multiple myeloma. The
patients were treated with a DARA-KRD combination of four drugs:
daratumumab (monoclonal antibody targeting CD38), carfilzomib
(proteasome inhibitor), lenalidomide (immunomodulator) and dexa-
methasone (anti-inflammatory corticosteroid)®. The sc-expression and
clonal (transcriptional cluster) composition and treatment response
labels, as determined in the original study”, were available for 28 tumor
samples from these patients (Fig. 2a). Patient response was measured
by tumor size estimates in radiological images.

As explained above in the PERCEPTION overview, to predict
the clinical response from a tumor’s sc-expression, PERCEPTION
first finds the major transcriptional clones (provided in the original
publication?’) and predicts the treatment response for each clone
separately (response is defined as the predicted reduction in viabil-
ity after treatment; see Methods). Figure 2b shows the predicted
viability of the combination at a clonal level for each patient. We
designed and tested five different strategies to predict the clinical
response from clone-level killing to find the most optimal strategy.
We tested their performance for stratifying responders (n = 7) versus

non-responders (n = 21) (Fig. 2c, see Methods). In brief, the clinical
response of a patient is determined by computing one of the follow-
ing strategies: (1) weighted average response, an average of response
across all the clones weighted by their abundance in the tumor;
(2) unweighted average response, an average of response across all
the clones; (3) most-sensitive clone response, the response of the
most-sensitive clone; that is, the clone with the highest predicted
response; (4) unweighted most-resistant clone response, the response
of the most-resistant clone; that s, the clone with the least response;
(5) most-resistant clone response, the response of the most-resistant
clone, weighted by its abundance proportion. The resulting AUCs
for these strategies were 0.59, 0.55, 0.64, 0.75 and 0.83, respectively
(Fig. 2¢). This analysis revealed that the fifth strategy best predicts
the clinical response. In celllines, this strategy also stratified resistant
versus sensitive, albeit with lower performance (AUC = 0.79; Extended
DataFig. 6i) than the mean-response strategy (AUC = 0.89).

Asanillustrative example using the most-resistant clone strategy
(Fig. 2b), in a sample from patient Kydar19, there are three clones: c1,
c2 and c3. Here, c2 and ¢3, two low-abundance clones, are predicted
to be relatively responsive to the treatment, whereas c1, the most
abundant clone, is predicted to be resistant. In this case, cl is likely
to drive the patient response, and thus, the patient will be predicted
to be resistant or have alow response to the treatment. The resulting
predicted response scores from this strategy are significantly higher
in responders versus non-responders (Fig. 2d), successfully predict-
ingthe treatment response (AUC = 0.83; Fig. 2e). This may be the case
because the most resistant clone is most likely to be selected upon
treatment and end up dominating the tumor, thus best reflecting the
clinical response. From here onwards, we fixed this most-resistant
clone response strategy for predicting clinical response and tested it
intwo additional cohorts. The top pathways enriched among the gene
features used by the PERCEPTION model are surfactant metabolism
and O-linked glycosylation of mucins.

Predicting CDK inhibition response in a breast cancer trial
Using the most-resistant clone response prediction approachdescribed
in the previous subsection, we next tested PERCEPTION’s ability to
predict patient response in the FELINE breast cancer clinical trial*°. This
clinical trial includes three treatment arms: endocrine therapy with
letrozole (arm A), anintermittent high-dose combination of letrozole
and CDK inhibitor ribociclib (arm B) and a continuous lower dose com-
bination of the latter (arm C). sc-expression and treatment response
labels were available for 33 patients (arms A, Band C having 11 samples
each; Supplementary Table 7). Patient response was determined by
tumor growth measurements from mammogram, MRl and ultrasound
ofthe breast.

We could build a (borderline) predictive PERCEPTION response
model for only the CDK4/6 inhibitor ribociclib (Pearson’s R=0.26,
P=1.5x107),and therefore we focused our analysis on the combination
arms B and C thatinclude it (Fig. 3a). We processed the sc-expression
profiles of the tumor cells as previously described*’ and identified 38
transcriptional clusters or clones that are shared across the patients
(Extended DataFig.7a-c; see Methods). Patient response was predicted
based on the pre-treatment samples, following the same strategy
used in the multiple myeloma case. As the number of patientsin each
arm (B and C) is quite small, we predicted the response of the patient
pre-treatment samplesin aggregate. The resulting predicted viability
ofthe non-respondersis higher than that of the responders (Wilcoxon
rank-sum test, one-sided P= 0.05; Fig. 3b), as expected. PERCEPTION
successfully stratified the responders versus non-responders with an
AUC of 0.776 (Fig. 3c). Aligning to our known mechanism of action of
ribociclib’s inhibition of CDK4/6 activity, leading to cell cycle arrest,
PERCEPTION’s signature comprising 72 genesis enriched in pathways
involvedin cell cycle, specifically, TNF receptor family (P= 0.004) and
regulation of p53 (P=0.004).
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Fig.2|PERCEPTION predictions of DACA-KRD combination therapy

in patients with multiple myeloma. a, Distribution of abundance of the
transcriptional clones (y axis) in each patient with multiple myeloma (x axis);
the color code for the clonesis provided at the top. b, Predicted viability of the
combination at a clonal level for each patient; the response status is provided at
the bottom strip of each facet. The left-to-right order of patients is the same as
inpanel a. ¢, The stratification performance in distinguishing responders versus
non-responders from the clone-level predicted response information (y axis)

of five different strategies (x axis). d, The predicted combination response in

Patients with multiple

myeloma 1 - specificity

28 patients with multiple myeloma stratified by responder (n = 21) versus non-
responder (n =7) status. A two-sided Wilcoxon rank-sum test was performed to
compare groups. The boxplot shows median (center), 25th and 75th percentiles
(bounds of box) and minima and maxima (whiskers). e, Receiver operating
characteristic curve displaying the predicted combination response; AUC
denotes the overall stratification power in distinguishing responders versus non-
responders. The gray dashed line represents the line of no discrimination, which
illustrates the performance of a purely random classifier with an AUC of 0.5.

Capturing emergence of resistance in lung cancer patients

We next tested whether PERCEPTION can capture the development
of clinical resistance during targeted therapy treatment in patients.
To this end, we analyzed a published cohort with scRNA-seq pro-
files of 24 patients with non-small cell lung cancer (NSCLC) with 14
pre-treated and 25 post-treated biopsies (Extended Data Fig. 8a—f
and Supplementary Table 8)*.. In total, patients in this cohort were
treated with four different tyrosine kinase inhibitors, including
erlotinib (a first-generation EGFR inhibitor), dabrafenib (a serine/
threonine kinase inhibitor), osimertinib (a third-generation EGFR
inhibitor) and trametinib (a MEK inhibitor). Based on the notion that
theresistance to these targeted therapies frequently increases as the
treatment time grows, we reasoned that the predicted response for a

given post-treatment biopsy would decrease (reflecting anincreasein
resistance to that treatment) as time elapses from the treatment start.

Totest this hypothesis, for each post-treatment biopsy, we defined
its estimated ‘extent of resistance’ to a given treatment as the differ-
ence between its PERCEPTION-predicted response and the baseline
predicted response. The latter was computed as the mean predicted
viability across all pre-treatment biopsies (as the majority of the sam-
ples were not matched, precluding an overall pairwise matched com-
parison). We found that the extent of resistance to treatment increases
with the elapsed time since the start of treatment, but only in those
patients reported to acquire resistance (progressive disease; Spear-
man’sRho =0.634,P=0.026,n =17; Fig.4a). We also found that this pos-
itive correlation between the elapsed treatment time and the estimated
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Fig.3 | PERCEPTION prediction of the combination therapy in the FELINE
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color code for the clones is provided at the top. On the x axis, the labels are
acombination of the patient identification and the time point at which the
sample was collected (“_S”, day O; “_E”, day 180). b, The predicted combination
response in 14 patients with breast cancer (samples collected at day 0), stratified
by their responder (n = 7) versus non-responder (n = 7) status. Two-sided
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Wilcoxon rank-sum tests were performed to compare groups. The boxplot
shows median (center), 25th and 75th percentiles (bounds of box), and minima
and maxima (whiskers). ¢, Receiver operator characteristic curve displaying the
predicted combination response; AUC denotes the overall stratification power
in distinguishing responders versus non-responders. The gray dashed line
represents the line of no discrimination, whichillustrates the performance of a
purely random classifier withan AUC of 0.5.

extent of resistance holds true when patients receiving different drugs
are analyzed separately (Extended Data Fig. 9a), when controlling for
prior treatments (Extended DataFig. 9b), whenindividual patients are
analyzed separately (Extended Data Fig. 9c) and when controlling for
tumor stage (Extended Data Fig. 9d). The extent of predicted resistance
is significantly higher in post-treatment biopsies collected from the
patients with progressive disease versus residual disease (Wilcoxon
rank-sum P < 0.002, stratification AUC = 0.88; Fig. 4b). Notably, we do
not observe this strong positive correlation but rather anegative trend
inpatients who responded well to the treatment (residual disease,n=7,
Spearman’sRho =-0.67,P=0.11; Fig. 4a). The observedincreasein the
predicted extent of resistance to treatment with elapsed treatment
time occurred specifically in patients who had acquired resistance.
We next analyzed the subset of patients with matched biopsies,
including five patients with two biopsies each and one patient with
four biopsies. Analyzing these samples in a matched manner, we find
that the correlation between treatment elapsed time and the esti-
mated extent of resistance holds true in the matched cases, and only
in the patients who have acquired resistance (regression interaction
P=0.003). Of particular interest is a case of a single patient (TH179),
treated with dabrafenib, who had four biopsies at two different time
points and developed progressive disease. The predicted viabilities
to dabrafenib of the four tumor biopsies taken after 331 and 463 days
of start of treatment are significantly higher than pre-treatment biop-
sies (Fig. 4c). Furthermore, the predicted viabilities of all three biop-
sies from day 463 are significantly higher than the biopsy from day
331. Notably, we find that the abundance of the top 50% of predicted
resistant clones increases while the abundance of the bottom 50%
of predicted resistant clones decreases with the elapsed time since
the start of treatment, as one would expect (Fig. 4d and Methods).

The rate of increase of abundance is significantly higher in the top
50% of the predicted resistant clones than in the bottom 50% (Fig. 4d
and Methods). Taken together, these results testify that PERCEPTION
can capture and quantify the emergence of treatment resistance as
the disease progresses.

We next found that the features or genes used by the above models
are enriched in pathways involved in cell junction organization and
cell-cell communication, including extracellular matrix organiza-
tion, RHO GTPase cycle,and NOTCH signaling. We also found that this
signature is enriched in the recently reported resistance mechanism
for EGFR-inhibitors (EGFRi) via hypermutators driven by AXL*. Spe-
cifically, our prediction signature is enriched in the three resistance
pathways identified in that study*’: AXL overexpression signature
(P=3x107%),MYC overexpression (P=2.1x 1072 signature and purine
synthesis (P=1.6 x107).

To prioritize candidate drugs available in this cohort whose treat-
ment may overcome the resistance acquired, we asked whether the
development of resistance toadrug caninduce either cross-sensitivity
or cross-resistance to the other drugs*. We focused on the patients
(Supplementary Table 8) who acquired resistance and computed
the PERCEPTION response predictions for each of these drugs and
the correlations between these drug sensitivity predictions across
these patients (Fig. 4e and Methods). PERCEPTION predictions sug-
gest that the development of resistance to erlotinib would induce
a cross-sensitivity to gemcitabine (Fig. 4f, top-left panel; Pearson’s
R=-0.94,P=0.06) and cross-resistance to dabrafenib (Fig. 4f, top-left
panel; Pearson’s R =0.91, P=0.09). A literature survey (Methods)
revealed that gemcitabine treatment can overcome erlotinib resist-
ance in cancer cell lines through the downregulation of Akt**. In
patients, a combination of gemcitabine + erlotinib in pancreatic
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Fig. 4| Predicting the development of resistance to tyrosine kinase inhibitors
inlung cancer patients. a, The extent of predicted reduced killing (as a corollary
of resistance) to a treatment from the baseline (x axis) is correlated with the

time elapsed (days from start of treatment until biopsy) (y axis). The points and
line colors denote whether the biopsy is from patients with progressive disease
or fromresponders. Error bars, 95% confidence intervals of the fit. b, Receiver
operating characteristic (ROC) curve depicting PERCEPTION predictive power
indistinguishing progressive (n =17) versus responding (n = 7) patients. The

gray dashed line represents the line of no discrimination, whichillustrates the
performance of a purely random classifier with an AUC of 0.5. ¢, The case of
patient TH179 with multiple biopsies is presented, where the predicted viability
in14 pre-resistant (day 0) and 4 post-resistant tumors at day 331 (n =1) and day
463 (n=23) todabrafenib is shown. Error bars, minimum and maximum values
owing to the small sample size of three data points. d, The rate of changein
abundance of top versus bottom 50% predicted resistant clones (n = 21 each)

Cross-resistance
correlation

Trametinib Gemcitabine
Predicted cross-resistance

with elapsed time since the start of treatment. Boxplot shows median (center),
25th and 75th percentiles (bounds of box), and minima and maxima (whiskers).
e, Correlation matrix of the extent of resistance among drugs available in the trial
across all patients who have acquired resistance. The strength of the correlation
(Pearson’s R) is provided in the respective box, represented by the size of the
circle, where the color represents whether the correlation coefficient is negative
or positive (red and blue, respectively). This is computed for drugs with at least
three resistant patients (no. of patients, 4, 4 and 3, respectively). The drugs with
correlations of P< 0.1 (before false discovery rate correction) are indicated

by colored circles. In both cand d, two-sided Wilcoxon rank-sum tests were
performed to compare groups. f, Correlation matrix illustrating cross-resistance
between various drugs. The matrix represents the results of our analysis to
identify pairs of drugs A and B, where resistance to drug A may induce cross-
resistance to drug B. The cross-resistance relationship can be asymmetric.

The Pvalue associated with Pearson’s R denotes correlation significance.

cancer in phase Il trial has shown higher overall and progression-free
survival**¢, By contrast, the addition of trametinib to erlotinib did
notsignificantly improve survivalinaphase /Il clinical trial”. In sum,
our analysis supports the possibility that erlotinib resistance may
induce cross-sensitivity to gemcitabine, which may be of interest for
future testing.

Predicting combination therapies targeting disjoint clones

We next turned to investigate PERCEPTION’s capability to identify
effective combination treatments in clinics. To this end, we curated
clinical trial data of various combinations tested for NSCLC with survival
information to assess the predictive power of PERCEPTION models.
The trial data were curated from TrialTrove (Methods). We found that
PERCEPTION’s predicted improvement in response to combinations
versus the pertaining monotherapies is correlated with the survival
improvement owing to the combination observed in the respective
clinical trials (see Extended Data Fig. 10a-c for multiple myeloma
and Extended Data Fig. 10e-k for lung cancer; weighted Pearson’s
Rho=0.66, P=0.02, weighted by the number of patients in a trial).

The only targeted therapy with enough unique combination trials is
erlotinib, and repeating this analysis for erlotinib yielded concord-
antresults (Pearson’s Rho = 0.76, P= 0.08; Extended Data Fig. 10h).
Aside fromthe trials tested, among all possible combinations tested of
approved drugs, the top-ranking pathways composing combinations
pairs are the tyrosine kinase pathway and the tubulin polymerization
pathway (Extended Data Fig. 10i-k). This analysis was also done for
multiple myeloma, and the results are presented in Extended Data
Fig.10a-d. Our top-ranked combination pair is niraparib and ponatinib,
an EGFR inhibitor and a canonical BCR-ABL inhibitor, respectively
(disjoint killing score (DKS) = 0.25, empirical P=1x107*). The next
top combination pair with the high DKS is lapatinib and thioguanine
(DKS =0.24, empirical P=1x10*),adual HER2 and EGFR inhibitor and
a purine inhibitor, respectively. Analogously, we next looked for all
possible triplets of drug combinations exhaustively (Extended Data
Fig.10b; n =13,244). Our top hits include the combination of gefi-
tinib, icotinib and trametinib (DKS = 0.21, empirical P=1x10™*) and
gefitinib, lapatinib and trametinib (DKS = 0.19, empirical P=1x107%)
(Extended Data Fig.10d).
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performances of differentiating responders and non-responders are provided
on theyaxis for each model versus the PERCEPTION in three clinical cohorts:
MM (multiple myeloma, 21responders, 7 non-responder), BRCA (breast cancer,
n=7eachofresponders and non-responders) and lung cancer (17 progressive
and 7 responding). The dotted blue line denotes the mean performance of
PERCEPTION across the three cohorts.

Benchmarking PERCEPTION versus state-of-the-art methods
We compared the prediction performance of PERCEPTION in the
above three clinical cohorts versus two different published predic-
tors and four other alternatives that we implemented (Fig. 5a): (1) a
state-of-the-art model based on sc-expression (Beyondcell”); (2) a
state-of-the-art bulk-expression-based model (ATLANTIS*); (3) usage
of pseudo-bulk-RNA-seq (Pseudo-Bulk); (4) taking the mean viability
acrossallsingle cellsinatumor sample (mean viability, the strategy we
used for predicting responsein cell lines and PDCs (mean-response-sc));
(5) Bulk-based-only PERCEPTION models that are not tuned on
sc-expression; and (6) three kinds of random models created using
shuffled viability labels, random gene signatures and random coef-
ficients (Methods). Notably, across the three cohorts aswell asineach
individual cohort, PERCEPTION was the best-performing model by
a considerable margin (mean AUC = 0.828; Fig. 5b) compared to the
published state-of-the-art methods. The other models studied here
achieved mean AUCs as follows: state-of-the art models (Beyondcell,
0.67; ATLANTIS, 0.64); the three bulk expression-based models that we
generated (Pseudo-bulk, 0.63; mean viability, 0.663; bulk-based-only
PERCEPTION models, 0.63) and finally, three randomly generated
models (as expected, shuffled viability labels, 0.51; random gene sig-
nature, 0.55; random coefficient model, 0.53). Notably, across the three
clinical cohorts studied, the mean AUC improvement of PERCEPTION
over the previous best-published model, Beyondcell, is considerable
(0.15,P=0.002).

How to use PERCEPTION for new a cohort or anew drug
We provide predictive pan-cancer drug models for 44 FDA-approved
drugs in our source data. For a new clinical trial dataset with
sc-expression that involves drugs with existing predictive models,
PERCEPTION can be run using a single script (Running_PERCEPTION_
for_new_dataset) in our GitHub repository.

When the drugs involved do not have given predictive models,
one can still aim to build PERCEPTION models, as follows. First, this

process requires the following two inputs: sc-expression of can-
cer cells from the tumor and treatment information. Second, the
process involves three steps: step one: the user should first build a
bulk-expression-based model for the given treatment. One can readily
aim to build models for any of the 1,500 drugs currently available in
DepMap. We recommend that the user only consider using models
that surpassthe predictive threshold we used (Pearson’s correlation
of >0.3 between observed and predicted). We also recommend train-
ing such models on all cell lines available (pan-cancer model) versus
training on the subset of cell lines from the pertaining specific cancer
type of the patient’s cohort, as we found that pan-cancer models
performbetterinboth patients and cell lines (Extended Data Fig. 1c;
AUC=0.75vs 0.88 and AUC = 0.52 vs 0.77 inlung and breast cohort,
respectively; decrease of Pearson’s correlation of 0.38 to 0.25in cell
lines). A similar approach and guidelines should be applied for build-
ing sc-based models. Step two: the user will next cluster the cancer
cellsavailable from the tumor, identify each cluster mean expression
in the default setting and rank-normalize it. Step three: based on
the sc-models, the user can now predict patient response using the
three-step heuristic approach described in previous sections. The
resulting response scores are predicted to stratify patients who are
more likely torespond to the given treatment, whereby the higher the
score, the higher the likelihood of response. The code for building
and testing models for new drugs is provided (Running_PERCEP-
TION for_new_dataset (mode 2)).

Discussion

We present PERCEPTION, a computational pipeline for systemati-
cally predicting patient response to cancer drugs at sc resolution. We
demonstrateits application for predicting response to monotherapy
and combination treatment at the level of cell lines and PDCs as well
asin predicting patient response in three recent sc clinical cohorts
spanning multiple myeloma, breast cancer and lung cancer. We find
thatincorporating the transcriptional clonal information of the tumor
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into the prediction processimproves the overall accuracy. For agiven
patient, the transcriptional clone with the worst response (that is, the
most resistant pre-treatment clone) best explains the overall response
totreatment. Performing an extensive and systematic comparison with
other expression-based models, we show that PERCEPTION achieves
markedly superior performance compared to two previously pub-
lished methods.

The observation that the most-resistant-clone strategy (the one
used for predicting the response in clinical trials) can also stratify
resistant versus sensitive in cell lines, albeit with lower power than the
mean-response strategy might be because the clinical responses are
measured at much longer time scales with the patients (months) thanin
the celllines (within days). Passage of more time is probably better for
the selection of the most-resistant clone. This underscores theimpor-
tance of considering the repertoire of a given tumor’s transcriptional
clonesin predictingits response to therapy. Furthermore, the observa-
tion that pseudo-bulk and bulk-based models performed better than
scRNA-seq-based modelsin cell lines during cross-validation might be
because of the relative homogeneity of cell lines, whereby scRNA-seq
may not offer advantages over bulk-seq, sometimes resulting in com-
parable or worse predictions.

Our study’s limitations include the use of homogeneous 2D cell
lines and sparse pre-treatment sc datasets with response labels to
train our models. As data availability increases, so will our predic-
tors’ accuracy and scope. Hence, the current demonstration of their
potential value will hopefully serve to drive the generation of more
pre-treatment sc datasets with clinical annotationsin the future. Given
the US$150,000 average yearly cost for cancer treatment in the US*,
US$15,000 for tumor sequencing seems justified, despite additional
costs. This option should be explored further, through more sc dataset
collection and predictive model development. Another limitation of
our study is that our model was learned over the in vitro dosages whose
translation to clinical response is non-trivial, and therefore we chose
the AUC measure, a response measure over multiple dosages (n=8),
asitis morelikely tolead to a more robust approach.

PERCEPTION’s predictions may be furtherimproved by consider-
ing cancer type-specific cell lines, whenever a large number of such
models become available for each cancer type. The quality of our
response models depends on the quality of the sc-expression pro-
files available; for example, their depth, drop-out rates, and so forth.
We deliberately did not impute the sc data given the recent reports
that dropouts are limited to non-unique molecular identifier-based
sc-expression methods and otherwise probably reflect true biologi-
cal variation*>*°, A key limitation of our pipeline is a lack of ability to
predict drug effects onimmune and normal cells in the tumor micro-
environment, whichis needed to estimate the toxicity and side effects
of different combinations. A major push to future sc-based precision
oncology development will come from large-scale drug screens of
drugs in non-cancerous cell lines, which are currently very scarcely
available. Those cell lines will enable the construction of predictors
of drug killing of non-tumor cells, using an analogous pipeline to the
one presented here for tumor cells.

Finally, our results demonstrate that tracking the drug response
expression in post-treatment biopsies could help follow the evolution
of drugresistance at sc resolution and help guide the design of future
personalized combination treatments that could significantly diminish
thelikelihood of resistance emergence. Going beyond patient stratifi-
cation, weidentify new combination therapies that different individual
clonal clusters for multiple myeloma and lung cancer. However, we
must note that these predictions require further validation.

In summary, this study demonstrates that the high resolution of
information from scRNA-seq couldindeed be harnessed to predict the
treatment response of individual patients with cancer in a systematic,
data-driven manner. It is our hope that the results shown will herald
many more suchstudies, sooner rather thanlater. Retrospective studies

on additional clinical datasets need to be done to better assess the
utility of sc prediction approaches like PERCEPTION and its accuracy
before it may be studied prospectively.

Methods

Data collection

We first collected the bulk-expression and drug response profiles
generated in cancer cell lines curated in the DepMap* consortium
from the Broad Institute (version 20Q1; https://depmap.org/portal/
download/). The drug response is measured by the AUC across eight
dosages and measures, using a sequencing technique called PRISM?®,
Intotal, we mined 488 cancer cell lines with both bulk-transcriptomics
and drug response profiles. We next mined sc-expression of 205 can-
cer cell lines (280 cells per cell line) generated in a previous study®*
distributed by the Broad Single-cell Portal. The metadata, identifica-
tion and clustering information were also mined from the same por-
tal (https://singlecell.broadinstitute.org/single_cell/study/SCP542/
pan-cancer-cell-line-heterogeneity#study-download). Data collection
and analysis were not performed blind to the conditions of the experi-
ments. Furtherinformationonresearchdesignisavailableinthe Nature
Portfolio Reporting Summary linked to this article.

For the multiple myeloma dataset and the breast cancer data-
set, the data from all human subjects are coded from two published
papers**°,For the lung cancer data, we used only previously published
data* (Supplementary Table 1). The published lung cancer data we
used were obtained with informed consent from all study participants
based on humansubject protocols (CC13-6512 and CC17618; principal
investigator, C.M.B.) approved by an IRB at the University of California,
San Francisco, andbased on clinical trial NCT03433469. The details of
the three clinical cohorts, including trial status and endpoint extraction
process, are provided in Supplementary Table 9.

The PERCEPTION pipeline

A response model for a drug is built into the PERCEPTION pipeline
through two steps: learn from bulk, and optimize using sc-expression.
In step three, we use the models from step two to predict response in
patients.

We first divided all the cancer cell lines into two sets. The first
set comprised cell lines for which bulk-expression is available and
sc-expression is not available (n = 318), and the second set comprised
cell lines for which sc-expression is available (n =170). The first set is
used during learning from bulk (step one, expanded below) and the
second is used in optimizing using sc-expression (step two).

Step one, learn from bulk. As afeature selection step, wefirstiden-
tified genes whose bulk expression is correlated with a drug viability
profile (using the Pearson correlation). We considered the Pearson
correlation Pc(d, g) between drug d and gene g as a measure of infor-
mation in a gene expression profile and ranked each gene based on
the strength of the correlation. Considering the top X genes, where
Xis a hyperparameter optimized in the next step, we built a linear
regression model regularized using elastic net to predict the response
todin fivefold cross-validation, asimplemented in R’s glmnet®".

Step two, optimize using sc-expression. We built the above model
using a Bayesian-like grid search of various possible values for X (range,
10-500), whereby the model with the best performance using an
sc-expression input of 169 cell lines (left one out for testing) was cho-
sen. Finally, we measured the model performance by leave-one-out
cross-validation using the left-out cell line, which was not used ineither
model building or hyperparameter optimization. Here, the model is
trained on all data except for one sample, which is held out for test-
ing; thatis, its viability is predicted by the model. The cross-validation
processisthenrepeated ntimes, with adifferent sample being held out
eachtime, onwhichthe predictionis made. After running this ntimes,
the Pearson correlation coefficientis calculated between the predicted
and the observed drug response values for all n held-out samples.
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Performance was measured using Pearson’s correlation between the
predicted response and the actual response.

Step three. In the third and final step of PERCEPTION, we pre-
dict clinical response in patients using a cell line-based model and
sc-expression profiles of the patient’s tumor. We identify the major
cancer cell clusters using sc-expression, compute the mean expres-
sion for each clone and use this as input for the model to predict drug
response for each clone. The overall patient response is predicted as
the minimum response among all clones, as we reason that the most
resistant clone will determine the clinical response. Our prediction
strategy was determined through trialand errorina cohort of patients
with multiple myeloma and was fixed and applied to all other patient
cohortsinthe study. For a given treatment, we interpret this to mean
that the predicted response of the most resistant clonein the patient’s
tumor determines the clinical response. We converged on this strategy
by usingatrial-and-error approach, testing five different strategies to
predictapatient’sresponse fromindividual clone-level responses. This
strategy is then fixed. During the comparison of PERCEPTION perfor-
mance versus state-of-the-art methods, we used the following three
types of random models: shuffling the viability labels in the cell lines,
by randomly selected gene signatures and finally using non-predictive
models of other drugs.

Description of the method and optimization formula. We used an
iterative approach using elastic net regression toidentify the optimal
number of genes that maximize the predictive performance of our
model. By performing elastic net regression with different subsets of
genes, we were able to determine the optimal combination of L1 and
L2 penalty hyperparameters and gene features that contribute to the
best predictive performance. The objective function for eachiteration
remains the same as the elastic net regression:

2
ming (%V 1y = X8I +A(alBll, + 1‘7"‘”/3”2))

The process involves the following steps:

1. Selectasubset of genes and form the design matrix X with
that subset.

2. Perform elastic net regression using the objective function
above, optimizing the hyperparameters 1 and a.

3. Evaluate the performance of the model using cross-validation.

Repeat steps 1-3 for different numbers of genes.

Choose the model with the number of genes that gives the

maximum predictive performance.

vk

Thefinal chosen model would thus have the coefficients or weights
of the selected genes as parameters and would be associated with
optimal hyperparameters 1 and « as well as the optimal number of
genes.

Data choices in step one and step two of PERCEPTION. Thefirst step
of PERCEPTION (model building) used bulk-RNA-seq of 318 cell lines to
build aninitial set of bulk-based models based on alarge set of genes as
features. The second step used scRNA-seq of 169 different cell lines to
further select an optimal set of predictive features, resulting in a final
set of drug-specific sc-based models. This approach was designed to
make sure information would not leak between two steps, leading to
overfitted performance, by building the models on two entirely disjoint
sets of celllines. For some cell lines, both scRNA-seq and bulk-RNA-seq
areavailable, and in these cases, only their scRNA-seq was used during
the second step.

Evaluating PERCEPTION on three independent cell-line screens
PERCEPTION's performance on GDSC. The pharmacological drug
screens performed by the PRISM and GDSC studies are based on two

independent platforms. The GDSC data were downloaded from the
DepMap portal on 15 April 2020 (https://depmap.org/portal/down-
load). By testing the performance of PERCEPTION on these independ-
ent screening platforms, we can measure the extent to which the
expression signature captured by our drug response models can be
translated across the platforms. The following steps were performed
to achieve this goal:

Step one, quality check to select cell lines and drugs. Out of the
347 celllines incommon with drug response inboth GDSC and PRISM,
there are 120 cell lines with sc-expression data in a previous study**.
We considered only the drugs shared by GDSC and PRISM that have
a concordant response (Pearson’s Rho > 0.3, P< 0.05), resulting in 28
drugs. Among these 28 drugs shared between GDSC and PRISM, we
were able to build predictive models for 16 drugs.

Step two, model building and parameter optimization. For each of
the drugs selected above, we ran the PERCEPTION pipeline, optimizing
parameters based onthe sc-expression of 90 out of 170 cell lines, using
the other 80 cell lines as test data.

Step three, prediction and normalization. For the drugs for which
PERCEPTION could build models, we applied the models on the cell
lines and obtained predictions for each individual cell. Monother-
apy response for a given drug in a cell line was represented by the
mean response of all the single cells (n = 318). Given that the range of
PERCEPTION-predicted values is typically smaller thanthose observed
inthe screens (Extended Data Fig. 3g), we used scaled, predicted AUC
scores (z-scores) in further analyses.

Step four, testing and performance analysis. The resulting
response models were applied to the testing dataset, and the pre-
dicted AUC values were compared to the experimental responses
from GDSC and PRISM. We computed two performance measures:
AUC, stratifying top versus bottom 33% as resistance versus sensitive,
andacorrelation between predicted versus observed response. The
former is provided in the main text and the latter in Extended Data
Fig. 4. We note that the performance of the PRISM-based models in
the GDSC test set is correlated with the concordance between the
experimentally measured drug’s viability profilesin the two screens
(Pearson’s R = 0.49).

PERCEPTION's performance on monotherapy and combinations.
The process was carried out in distinct steps as described below:

Step one, quality check to select cell lines, drugs and data points.
The Nair dataset comprising monotherapy and combinationresponse
was mined from a recent study® in which the response was measured
viathe AUC of the dosage-viability curve across eight dosages. Aswith
our GDSC quality check, we only considered drugs with a concord-
ant response profile across the Nair dataset and PRISM (Pearson’s
Rho >0.3). AUC values > 1 were removed as they are likely caused by
noise in the fitting of the viability curve, owing to noise and higher
variability in doses that do not inhibit. This criterion yielded 14
FDA-approved drugs in 21 cell lines, and we focused on them.

Step two, building models. The standard PERCEPTION workflow
was used to build amodel for these 14 drugs.

Step three, combination response prediction. We extended the
prediction to the response to combinations of these 14 drugs stud-
ied in this screen (Supplementary Table 5). A combination response
in a cell line was predicted by adopting the IDA model across all the
single cells from that cell line®; that is, the predicted combination
response of n drugs is the effect of the single most effective drug in
the combination. Performance was measured using AUC. Through-
out our work, the combination response was predicted using the
IDA principle.

Step four, performance measurement. As above, we converted the
continuous measures of viability to sensitive versus resistant labels.
Using these labels, we computed the stratification AUC for mono-
therapy and combination response prediction.
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PERCEPTION's performance on head and neck cancer cell lines.
The approach for this prediction was undertaken through specific
stages.

Step one, data collection and initial analysis. We obtained the
sc-expression data for five head and neck squamous cell cancer PDCs
lines, along with their treatment response for eight drugs and com-
bination therapy at two different dosages®. An initial assessment
revealed that PERCEPTION was unable to build drug response models
with a Spearman correlation greater than 0.3 between predicted and
experimental viability using PRISM screens. Therefore, we introduced
changes to the PERCEPTION pipeline.

Step two, modification of the PERCEPTION pipeline: building
models from GDSC screens. We turned to GDSC screens to build models
for drug response, using data from more than approximately 800 cell
lines specific to these drugs.

Step three, building models. We considered only the top 3,000
highly expressed genes (with fewer dropouts in the head and neck
squamous cell cancer dataset) in common between the bulk expres-
sionand PDC datasets to ensure a focused analysis on relevant genes.
We thenbuilta PERCEPTION model using these 3,000 genes and GDSC
response profiles. The monotherapy and combination responses were
calculated following the same methodology used in the GDSC and Nair
dataset cases.

Step four, performance measurement. As in the analyses above,
we calculated both stratification AUC and correlations for assessing
the performance.

Predicting combinations response in patients with

multiple myeloma

Response labels, sc-expression of patients’ tumors, clustering annota-
tionand mean cluster expression for the multiple myeloma datawere
mined from the original publication®. No statistical methods were used
to pre-determine sample sizes; we used all available samples. We only
used the cells annotated as malignant. Predicting the combination
response of a patient can be divided into a two-step process: step one,
predict the combination response of each clone in that tumor; step
two, predict the patient’s response from the clone-level combination
response. To this end, we first tried to build PERCEPTION response
models for the four treatments used in the combination therapy.
We succeeded in building PERCEPTION response models for two of
the four drugs in the trial that are predictive in cell lines (carfilzomib
and lenalidomide; Methods) and used them to predict the treatment
responsein patients. We first predicted the combination response for
eachtranscriptional cluster (simply referred to here asaclone). To this
end, we predicted the response for each of the two drugs separately
and computed thekilling using the IDA principle; thatis, the predicted
combinationresponse of ndrugsis simply the effect of the single most
effective drugin the combination®?. To overcome the challenge of the
discrepancy of dosages used in the clinic versus preclinical testing
where our models are built, we z-scale our predicted response profile
of a drug across clones; this z-score-predicted response represents
the relative response of a clone compared to all others available in
the cohort.

In step two, we use this clone-level combination killing profile
ina patient to predict the overall patient’s response. We considered
the predicted response of the least responsive clone found in each
patient as that patient’s response. This is based on the notion that
it would be selected by the treatment and eventually dominate the
overall tumor. Performance was measured using AUC. For our model
building control, we built random models using either shuffled labels,
randomized features in the regression model or a non-predictive
model of another drug in the screen for 1,000 times and computed
the number of times that the stratification power denoted by AUC
is higher than our original model. This proportion is provided as an
empirical Pvalue.

Testing prediction strategies for multiple myeloma. Five different
strategies were designed to translate clone-level killing into an over-
all clinical response prediction. These strategies were (1) weighted
average response, calculating the average response across all the
clones, with each clone’s response weighted by its abundance in the
tumor; (2) unweighted average response, taking a simple average of
the response across all the clones; (3) most-sensitive clone response,
using the response of the clone with the highest predicted response;
(4) unweighted most-resistant clone response, using the response
of the most-resistant clone (the clone with the least response), with-
out weighting; and (5) most-resistant clone response, choosing the
response of the most-resistant clone but weighted by its abundance
proportion. The performance of these strategies was tested ina cohort
comprising responders (n = 7) and non-responders (n = 21) to the treat-
ment. The accuracy of each strategy was measured using AUC.

Predicting combinations response in breast cancer clinical
trial analysis

The pre-filtered 10x-based scRNA-seq count data and the cell type
annotations of the 65 breast cancer samples (34 patients) were down-
loaded from GEO (GSE158724). No statistical methods were used to
pre-determine sample sizes; we used all available samples. Samples
were collected at different time points during the patients' treatments:
atthe time of screening (S), on day 14 (M) and on day 180 at the end of
the trial (E). In our analysis, we considered only the cells annotated
as tumor cells. As defined in the primary publication of the dataset*’,
we applied Seurat (v.4.0.5)*, We filtered out samples with fewer than
100 cells. The 38 transcription clusters identified in all 65 samples
post-filtering and data processing are as presented in Extended Data
Fig. 7a,b. We used the reciprocal principal-component analysis inte-
gration workflow to integrate the tumor cells from the remaining
samples®’. The datawere normalized using the SCTransform function,
and the top 5,000 variably expressed genes and the first 50 principal
components were used in the anchor-based integration step. The
first 50 principal components and a k.param value of 20 were used to
identify neighbors and the resolution was set to 0.8 to find distinct
clusters. We identified 36 different clones, of which only 16 clones
were found in the pre-treated samples from patientsin arms B and C.
The sc-expression of 16 clones was considered in the drug response
prediction analysis. The patient response information was obtained
from Supplementary Table 12 of the original publication*’.

We used data from patients with paired samples at time points S
and E to study the change in post-treatment response. Extended Data
Fig. 7b shows the clonal distribution in each sample processed; all
sub-clones (which represent <5% of the cellsin the sample) are excluded
fromour analysis. The default PERCEPTION pipeline was used to build
drugresponse models except for asingle change. Thetop~2,500 highly
expressed genes (ranked by the total number of non-zeroes across all
the cancer cells) in the breast cancer dataset that are in common with
the cancer cellline bulk expression data were used in the pipeline. The
resulting models were used to predict responses at the patient levelin
a similar manner to what we did for the multiple myeloma data. The
controls for the model building were also tested for the breast cancer
data, similar to the testing we did for the multiple myeloma data. We
note that the number of clusters identified using the standard Seurat
pipeline slightly changed when the initial seed for random number
generationwas changed. These changes did influence the performance
by up to 1in the first significant digit (AUC varied from 0.70 to 0.83
whenthe seed was changed), but the overall inferences were consistent.

Response models to distinguish responders versus
non-responders

We built bulk-based drug response models to compare their perfor-
mance versus PERCEPTION models in stratifying responders from
non-respondersinthe two clinical trials. To build drug response models
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based on bulk expression data, we considered all ~-500 cell lines with
bulk expression and PRISM-based drug response. For each drug, we
randomly divided the data into training (one-third of the cell lines)
and test sets (two-thirds of the cell lines). As afeature selection step, we
firstidentified genes whose bulk expressionis correlated with the drug
viability profile (Pearson’s R) in the training set. We considered the cor-
relation for each gene as ameasure of informationinagene expression
profileand ranked each gene based on the strength of the correlation.
While considering the top 100 genes, we built alinear regression model
regularized using an elastic net to predict the response toleave-one-out
cross-validation, asimplemented in R’'s glmnet’". The resulting model
performance was validated on the testing dataset.

To build state-of-the-art bulk-based drug response models as
defined ina previous study*, we generated random-forest-based mod-
elsinasimilar framework as defined above. To make sure that the gene
features used in the resulting model predictors are detected to be
expressed in the patient sc dataset, we consider genes that overlap in
both the cell line bulk expression data and patient sc dataset to build
the models. For each drug, we repeated the above model-building
steps 100 times and presented the mean and standard error of their
performancesin stratifying responders fromnon-respondersin their
respective clinical trials.

Predicting resistance to tyrosine kinase inhibitorsin NSCLC
The sc-expression profiles of 39 biopsies from 25 patients with NSCLC
were provided by the original study authors*. The clinical annota-
tions used for this analysis were mined from the original publication*
(their Table S1). As in the previous sections, we focused only on the
subset of single cells labeled as malignant in the publication. Seurat
clustering was performed with resolution = 0.8, dims = 10, number of
features =2,000, scale.factor =10,000, log-normalization method
with minimum cells in a cluster required to be >3 and minimum fea-
tures required to be >200, to identify a total of 16 clones (Extended
DataFig.8a). The expression of each transcriptional cluster or clone
in a patient is the averaged expression across all single cells associ-
ated with that cluster in that given patient and a rank normaliza-
tion is performed. We successfully built drug response models for
dabrafenib, erlotinib, gemcitabine, osimertinib and trametinib. The
response observed in the most resistant clone of a patient is consid-
ered PERCEPTION’s predicted response. We primarily studied the
development of drug resistance in the trial. To this end, we defined
aterm called ‘extent of resistance’ of a drug, which is the difference
between adrug’s predicted viability from PERCEPTION and the pre-
dicted baseline viability. The predicted baseline viability is defined
as the average predicted viability of the respective treatments in all
treatment-naive samples. This difference inresponse from the naive
state denotes the extent of resistance and is thus named accordingly.
We computed both Spearman and Pearson correlations to identify
robust correlations.

Literature survey of cross-resistance and cross-sensitivity
Tosearchforevidenceavailablein published papers for across-resistant
or cross-sensitive drug pair, we used the search term ‘drug XAND drug
Y’ (for example, erlotinib AND gemcitabine) in the PubMed search
portal (https://pubmed.ncbi.nlm.nih.gov) on 26 December 2021.
The resulting clinical trials in the first 50 matches, sorted by best
match, were manually curated for outcomes. For preclinical evidence
for or against, non-clinical studies testing the combinations were
manually curated.

Change of abundance versus predicted resistance of aclone

We first computed and ranked all clones with at least two data points
at different time points by their mean predicted resistance across all
samplesin which they are present. For each clone, we next computed
therate of change of abundance (slope) of the best-fit line of abundance

versus biopsy time from the start of treatment. Finally, we compared
this ‘rate of change of abundance’ with the ‘mean predicted resistance’
ofeachclone.

Comparing PERCEPTION’s performance on three clinical
cohorts

We identified relevant, competing state-of-the-art sc methods for
benchmarking PERCEPTION by searching PubMed using the search
term ‘single-cell expression prediction’. This search yielded only Beyon-
dcell, a state-of-the-art model based on sc-expression®. Additionally,
wetested astate-of-the-art bulk model (ATLANTIS) and four alternative
methods. The implementation of Beyondcell was downloaded from
https://github.com/cnio-bu/beyondcell and the default signatures
provided by Beyondcell’'s authors were used. The random-forest-based
ATLANTIS was downloaded from https://github.com/cancerdatasci/
atlantis/releases and used with the default settings. Benchmarking
PERCEPTION against these tools to predict patient response, we cal-
culated the AUC for each modelin the three clinical cohorts (multiple
myeloma, breast cancer and lung cancer). We then calculated the mean
AUC across the three cohorts for each model to determine the overall
performance.

Testing the most-resistant clone strategy in cell lines

We tested the performance in cell lines for the most-resistant clone
strategy to stratify resistant versus sensitive cell lines. To this end,
we first clustered the 200 cell lines with Seurat using uniform param-
eters used across the study, noting 29 clusters and four clusters per
cell line. We repeated this process for the head and neck PDCs. The
transcriptional cluster or clonalinformation was obtained from the
original publication. We analyzed the sc-expression of primary cells
derived from five different patients treated with eight different drugs
attwo concentrations (Supplementary Table 6), including both mono-
therapy and combination therapies’. We could build PERCEPTION
response models for four out of the eight drugs tested (docetaxel,
epothilone-b, gefitinib and vorinostat; Pearson’s R > 0.25). Resistant
versus sensitive cells were the top versus bottom 40% cell lines ranked
by viability. Our predictions were performed for two dosages x four
monotherapies x five cell lines. The predicted viability over the 20
(monotherapy, cell line) pairs, comprising four monotherapies x
five celllines, is correlated with the observed viability, and individual
drug-level correlations are provided in Extended Data Fig. 5. We
plotted the predicted versus experimental correlations obtained
for all data points, and drug levels are provided in Extended Data
Figs.5and 6.

Drug combinations targeting multiple myeloma clones

To predict combinations for multiple myeloma patients that target
multiple clones in the tumor disjointly, and thus have a low likeli-
hood for resistance emergence, we began with all combinations of
two drugs with the predictive PERCEPTION model (n = 44 drugs) and
ranked every pair by ascore denoting the extent of their disjointkilling,
termed its DKS. This score quantifies theincrease in predictedkilling
compared to the expected (better killing of the two monotherapies) of
adrug combination. Out of the 946 possible combinations scanned,
842 pairs showed noimprovement over the expected (DKS = 0). Analo-
gously, we next looked for all possible triplets of drug combinations
exhaustively (n=13,244). Once validated, this design can be used for
creating optimal combinations targeting multiple clonesin a patient.
Applying this approach to the lung cancer model, we ranked every
pair (n =946) by the DKS computed across the four different sc lung
cancer cohorts. Out of the 946 possible combinations evaluated,
915 pairs showed no improvement over the monotherapy treatment
(DKS = 0). The remaining combinations, with DKS > 0, are shown in
Extended Data Fig. 10a,c. We also computed therapy types that are
more likely to have high DKS.
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Using TrialTrove to test PERCEPTION on predicting response
We reasoned that it would be possible to curate clinical trial data to
assess the predictive power of PERCEPTION models in a clinical set-
ting. We used a licensed database, TrialTrove, which has more trials
and more detailed and structured information than ClinicalTrials.gov,
better facilitating our data extraction®. We assembled a collection of
clinical trials data of combination therapy, using software we built to
parse the TrialTrove database. No statistical methods were used to
pre-determine sample sizes.

To test our model, our general approach was to identify combina-
tion, multi-arm trials in which one patient arm was administered two
drugs, A + B, and another patient arm was administered only drug A.
Specifically, we mined trials meeting three criteria: (1) uniform and con-
sistent trial efficacy labels for either median progression-free survival
or median-overall survival, (2) having at least two arms with treatment
design of drug A versus drug A + drug B and (3) targeted therapy treat-
ments (drugs A and B) with predictive PERCEPTION models. Among
the several cancer types weinvestigated, NSCLC was the type for which
we could find sufficient and the most abundant homogeneous datafor
n>10 trials, partly because the median survival data are more read-
ily available for cancers such as NSCLC with poor survival; therefore,
we focused on NSCLC in this subsection. An additional filter that was
applied is that we must be able to build a PERCEPTION model for both
drugs A and B. We next predicted theimprovementinresponsetosuch
combinations over whichever monotherapy was tested in the trial,
computed as the response difference between the combination and
monotherapy (survivalimprovement owing to combination), in patients
from four NSCLC cohorts with sc-expression® ¥, serving as representa-
tive samples of sc tumor data of NSCLC patients (total of 18 patients).

We started with a repository of 66,116 oncology trials in phases
beyond phasel. Toidentify combination trials, we used a Pythonimple-
mentation of a modified form of a query suggested by a TrialTrove
curator. One of the three fields (Trial Title, Trial Objective, Treatment
Plan) should contain any one of the seven strings: ‘combination’, ‘both
drugs’, ‘with or without’, ‘combined’, ‘plus’, ‘withand without’, “alone or
with’and ‘concurrent’. Inaddition, the trial keywords must not contain
the string ‘single-arm’. To narrow down our list of applicable trials to
only those with results of interest, we required (through another Python
program) that the trial results field must contain any one of 93 strings
suchas ORR, OS, PFS, responserate, overall survival, progression-free
survival, disease control rate, and so on. To identify trials that used
drugs that PERCEPTION can model, we processed the fields named
‘primary tested drug’ and ‘other tested drug’ to require that together
these two fields must contain at least two drugs that can be modeled by
PERCEPTION and at least one drug that is a targeted therapy rather than
chemotherapy. The ‘primary tested drug’and ‘other tested drug’ fields
are already normalized for synonyms. The overall goal of the three
filters (combination trials, results available, PERCEPTION-suitable
drugs used) was to eliminate false negatives, trials that would not
be useful in testing PERCEPTION-built models. Trials that survived
these three filters were then curated manually to obtain accurate arm
information and results.

We measured our performance by computing a correlation
between PERCEPTION'’s predicted improvement to combination
versus survival improvement owing to the combination observed
in the respective clinical trials. Separate analyses for overall and
progression-free survival were also done. However, we note the small
cohorts available for these two analyses. Repeating this analysis in a
drug-specific manner, we focused on trials of different drug combina-
tions (n = 6) with erlotinib, the only targeted therapy with a sufficient
number of unique combination trials.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The entire collection of the processed datasets used in this manu-
script, including preclinical models of cancer cell lines and PDCs,
can be accessed in the Zenodo repository (https://zenodo.org/
record/7860559)%. We collected the bulk-expression and drug
response profiles generated in cancer cell lines curated from the Dep-
Map portal (https://depmap.org/portal/download) (version 20Q1).
The sc-expression of 205 cancer cell lines was generated ina previous
study** and was downloaded from https://singlecell.broadinstitute.
org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneit
y#study-download. The sc-expression profiles of patients with
multiple myeloma were downloaded from the original study
(their supplementary Table 2; https://static-content.springer.
com/esm/art%3A10.1038%2Fs41591-021-01232-w/MediaOb-
jects/41591.2021_1232_MOESM3_ESM.xIsx); data from patients with
breast cancer were downloaded from GEO (GSE158724) and data from
patients with NSCLC were provided by the original study authors*.

Code availability

The scripts to replicate each step of results and plots can be accessed
inaGitHub repository (https://github.com/ruppinlab/SCPO_submis-
sion). We used open-source R versions 4.0 through 4.2 to generate the
figures. Wherever required, commercially available Adobe Illustrator
was used to create the figure grids.
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trial cohorts from skin, lung, and breast cancer, we compared the pan-cancer
model with these three individual cancer-type models). No statistical test was
performed to compare groups. Error bars indicate the standard error of the mean
(SEM), reflecting data variability. D) Major classes of mechanism of action of the
133 FDA-approved drugs that were studied here. No statistical test was performed
to compare between groups. E) Top pathways enriched in frequently appearing
features/genesin the PERCEPTION models. This is computed using a GSEA rank
test across all hallmark pathways. To assess the statistical significance of these
scores, a permutation test was performed.
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Extended Data Fig. 2| Visualization of PERCEPTION’s ability to predict
viability at four recent EGFR inhibitors vs the EGFR pathway activity at
single-cell resolution. A) The top-most panel visualizes the PERCEPTION
predicted killing by nutlin-3, acanonical MDM2 antagonist and the expression
of MDM2 for every single cell (each point) in the top and bottom tSNE plot,
respectively. The intensity of the color denotes the extent of predicted killing in
the right panel and measured MDM2 expression in the left panel. 3566 single-
cells from nine p53 WT lung cancer cell lines are depicted. The tSNE clustering is
performed using the expression of all the genes. B) A similar display visualizes
PERCEPTION’s predicted killing and the EGFR pathway signature expression

across 12,482 individual lung cancer cells. C) The four panels visualize predicted
killing by four EGFRinhibitors, afatinib, icotinib, lapatinib, osimertinib, in every
single cell (each point) via a tSNE plot, respectively. Here, the color of each
point denotes the extent of predicted killing. In this figure, we provide data on
12,482 individual lung cancer cells. The tSNE clustering is performed using the
expression profiles of all the genes. D) We present here the correlation between
the predicted killing effect of nutlin-3 from the PERCEPTION prediction of each
cell (x-axis) and the MDM2 gene expression in that single cell, where they are
found to be strongly correlated. “MDM2 Activity” on the y-axis denotes MDM2

geneexpression.
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Extended DataFig. 3 | Evaluating PERCEPTION’s Efficacy in Unseen Lung
Cancer Cell Line Screens. A) A) Correlation Analysis: Examines the relationships
across three platforms - “GDSC vs. PRISM”, “PRISM vs. PERCEPTION”
(cross-validation), and “GDSC vs. PERCEPTION”". Drug response predictions at
single-cell resolution were aggregated to represent overall cell line responses.
B) These cross-platform correlations are provided at a drug level. Significance
of correlations assessed using Pearson’s r test. C) Monotherapy Predictions

by PERCEPTION: Showcases the predicted viability of monotherapies based

on cell line-specific sc-expression, comparing resistant (N = 72) and sensitive
(N =84) lines using boxplots. Significance determined by one-tailed Wilcoxon
rank-sum test. D) Sensitivity-Specificity Analysis: The receiver operator curve
illustrates the balance between sensitivity and specificity in distinguishing
between sensitive and resistant cell lines. Area under the curve (AUC) values are
noted, with the dashed line representing random-model performance. E) & F)

Drug Combination Response Predictions: Depict PERCEPTION’s predictions

for drug combination responses in resistant (N = 28) vs. sensitive (N = 24) cell
lines. G) Single-cell vs. Pseudo-bulk Level Analysis in PRISM Screens: Extends
the analysisin panel A to single-cell and pseudo-bulk levels, highlighting the
improved performance in pseudo-bulk data. The comparison includes predicted
AUC values at both levels and experimental AUC values in PRISM for dabrafenib,
AZD-7762, and trametinib, covering both testing (N = 80) and training cell lines
(N =318). H-K) Patient-Derived H&N Primary Cell Analysis: H) Prediction of
Monotherapy Response: PERCEPTION’s predicted viability in resistant (n = 16)
vs. sensitive (n =16) lines. I) ROC Curve Analysis: Illustrates model’s prediction
capability (sensitivity and specificity) for resistant vs. sensitive lines. AUC values
are presented. J) & K) Combination Treatment Response: Similar analysis for
combination treatments, comparing resistant (12) to sensitive (12) lines. Allbox
plots show median, 25th/75th percentiles, and range.
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Extended Data Fig. 4 | See next page for caption.

Nature Cancer


http://www.nature.com/natcancer

Analysis

https://doi.org/10.1038/s43018-024-00756-7

Extended Data Fig. 4 | Quality Control and Predictive Analyses in Lung
Cancer Cell Line Screens. A) Concordance between Lung Cancer and PRISM
Screens: lllustrates the correlation (Rho on x-axis) and significance (y-axis)
between our lung cancer screen and PRISM. Focuses on cell lines showing
significantly positive correlation, as indicated by Pearson’s r test p-value.

B) Predicted vs. Observed Viability Comparison: Analyzes the correlation
between predicted and observed cell viability (N = 94 viability observations

each, both centered and scaled). Pearson correlation and significance are noted.

Abestfitline with a 95% confidence interval is shown. C) Viability Predictionin
Top vs. Bottom 50% Cell Lines: Compares predicted viability in resistant (N =11,
bottom 50%) versus sensitive (N = 10, top 50%) cell lines for each drug. Uses
one-tailed Wilcoxon rank-sum test for statistical significance, presented for

each drug. D) Combination Response Prediction in 21 Lung Cancer Cell Lines:
Similar to panel B, this compares predicted versus observed combination
viability (N =49 viability observations each), with Pearson correlation and
significance provided. A best fit line with a 95% confidence intervalis included.
E) Combination Viability Prediction in Top vs. Bottom 50% Cell Lines: Analyzes
predicted combination viability (centered and scaled) for resistant (N =11) and
sensitive (N =10) cell lines (based on observed viability) across 7 drug pairs.
Uses one-tailed Wilcoxon rank-sum test for significance, presented for each
combination. F) Consolidated Analysis of Monotherapies and Combinations:
Integrates data from distinct drugs in panel E for combined analysis of
monotherapies (N =188) and drug combinations (N = 98). Allbox plots show
median, 25th/75th percentiles, and range.
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Extended Data Fig. 5| The predicted vs. experimental correlations obtained
forindividual treatments. Each scatter plot compares the experimentally
observed cell viability (x-axis; at median IC50 concentration) to the predicted
viability (y-axis; rescaled AUC value) for the four drugs docetaxel, epothilone-b,
gefitinib, and vorinostat (top four) and the pairwise combinations among
{docetaxel, epothilone-b, gefitinib} (bottom three). Each dot represents the

response of patient-derived cell lines (N = 5, color coded) for the drugs they were
screened with. The Spearman rank correlation (cor) is provided at the bottom of
each plot. These plots are provided for the following treatment concentrations -
A) medianIC50 B) one-third of median IC50. The error bands in all panels of this
figure show 95% confidence interval of the fit.
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Extended DataFig. 6 | Correlation of Predicted and Observed Viability in
Monotherapies and Combination Treatments in Cell Lines. Each scatter plot
compares experimental cell viability (N = 20, x-axis; scaled per drug treatment)
with predicted viability (N = 20, y-axis; rescaled AUC value). Points represent
patient-derived cell line responses, color-coded by line and shape-coded by
drug. Pearson correlation (R) is noted in each plot’s lower right corner. All
panels feature error bands showing the 95% confidence interval of the fit.

A) Monotherapy Response at Median IC50: Relation between monotherapy
response and experimental response (N =20 each). B) Combination Therapy
Response at Median IC50: Similar analysis for combination therapy (N =15
each). C) Monotherapy Response at 3x Median IC50: Examines monotherapy
response at higher concentration (N = 20 each). D) Combination Therapy

at 3x Median IC50: Analyzes combination therapy response atincreased
concentration (N =15 each). E-G) Monotherapy and Combination Response
Prediction in Lung Cancer Cell Lines: E) UMAP Clustering: Represents 53,514
cells from199 cell lines (-300 cells/line) using sc-expression, identifying 29

clusters with cells from four unique sub-clones. F-G) Predicted Viability Based
on Most-Resistant Clone: Viability predictions for 21 lung cancer cell lines (N =11
resistant &10 sensitive cell ines), considering the most resistant clone. Statistical
significance assessed with two-sided Wilcoxon rank-sum test. H-I) Monotherapy
and Combination Response Prediction in Patient-Derived HNSC Primary Cells

(N =5): H) Monotherapy Response Based on Most-Resistant Clone: Presents
PERCEPTION predicted viability and resistance vs. sensitivity stratification

(N =2resistant & 3 sensitive). Includes drugs docetaxel, epothilone-b, gefitinib,
and vorinostat. I) Combination Response: Similar analysis for combination
treatments. Both panelsinclude a left-side plot for predicted viability in resistant
(N =2)vs.sensitive (N =3) lines and aright-side ROC plot showing prediction
power (sensitivity and specificity). AUC values are provided, with the dashed
lineindicating random-model performance. Statistical analysis performed

with two-sided Wilcoxon rank-sum test. All box plots depict median, 25th/75th
percentiles, and range.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Comparing PERCEPTION with Existing Bulk Response
Models in aBreast Cancer Clinical Trial. A) tSNE Transcriptional Clustering:
Displays 36 transcriptional tumor clusters identified in the trial, integrating cells
from 34 patients at three time points. Clusters, color-coded and defined in the
legend, were derived using Seurat package. B) Malignant Sub-Clone Abundance:
Shows the distribution of malignant sub-clones (y-axis) in breast cancer
samples (x-axis), based on sc-expression. Different sub-clones are color-coded
inthelegend. Sample labels on the x-axis indicate patient id and time point of
collection (“S”-day 0,“_ M”-day 14, “_E” - day 180). C) Pre-Treatment Clone-Level
Response in Arms B and C: Predicted ribociclib viability (y-axis) versus various
clonesin pre-treatment samples (x-axis). Response status is displayed at the top
of each column, with sample names below. Dot sizes represent the proportion

of each cluster/clone, with a color scale indicating predicted viability (dark blue
for low, yellow for high). D-E) Stratification Power of PERCEPTION vs Published

Models: D) Bulk Expression-Based Models: Compares PERCEPTION with models
trained only on bulk expression (N = 7 responders and 7 non-responders).

E) Models Not Tuned on sc-Expression: PERCEPTION compared against models
without sc-expression tuning (N = 7 responders and 7 non-responders). Both
panels include deterministic model generation (seed=1) for training and test
sets. Left-side plots present PERCEPTION predicted viability in responders vs.
non-responders. Right-side ROC plots depict prediction power (sensitivity and
specificity), with AUC values near the lower right corner. The dashed diagonal
lineindicates performance of arandom model. Statistical significance assessed
using two-sided Wilcoxon rank-sum test. F) Stratification Using Average
sc-Viability: Stratifies responders (N = 7) vs. non-responders (N = 7) in
combination therapy arms using average sc-viability in the FELINE trial.
Statistical significance evaluated by two-sided Wilcoxon rank-sum test. Box plots
show median, 25th/75th percentiles, and range.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Pre-processing and predicting clone level responsein
lung cancer patient cohort. (A) AUMAP of 3671 malignant cells derived from 25
patients with 26,485 genes are clustered using Seurat considering the first 10 axes
with the most variance. Each clone (a transcriptional cluster) output is annotated
using a color where the legend is provided on the right. (B) The proportions of

these clones (y-axis) are provided in each patient (x-axis) faceted by the time
point at which these biopsies are collected. (C-F) Predicted viability of the four
tyrosine kinase inhibitors: erlotinib, dabrafenib, osimertinib, and trametinib,
inrespective order, is provided at a clonal level for each patient where response
status is provided at the bottom of each facet.
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Extended Data Fig. 10 | Identifying Optimal Drug Combinations for Multiple
Myeloma and Lung Cancer Patients. A) Median Disjoint Killing Score (DKS) in
Myeloma: For 94 drug pairs with positive DKS, the median DKS (y-axis) is plotted
against each pair (x-axis). Color intensity denotes the proportion of patients

(N =12) with DKS > 0, with the top pairs labeled. Legend for color intensity is
atthe top. B) DKS for Triplets: Similar analysis for drug triplets. C) Clone-Level
DisjointKilling for Top Pairs: Viability profiles of clones for top pairs from Care
shown for each patient (facet), with color intensity indicating post-treatment
viability of each clone (x-axis) for a given drug (y-axis). Legend on the right.

D) Clone-Level Disjoint Killing for Triplets: Analogous to C, but for drug triplets
(N =86, Triplets with DKS > 0). E-L) Analysis in Lung Cancer: E) Correlation

in Clinical Trials: Examines the correlation between response difference of
combination vs monotherapy (x-axis) and observed survival difference in
combination vs single-treatment arms. Dot size represents patient numbers,

with a best-fit line shown. Legend for dot sizes and error bands showing 95%
confidence interval are at the top. Weighted Pearson’s r test p-value denotes
correlation significance. F-H) Repeated for progression-free survival, overall
survival, and erlotinib combinations. I) DKS for Lung Cancer Drug Combinations:
Median DKS (y-axis) for 31 positive pairs plotted against each pair (x-axis). Color
intensity shows proportion of patients with positive DKS, top pairs labeled,
legend at the top. J-K) Disjoint Killing by Drug Class and Mechanism: Compares
DKS (log10 value ony-axis) by general drug classes (N = 3 chemo+chemo, 7
chemo+targeted, Stargeted+targeted) (J) and mechanisms of action (N=3

each MOA) (K). Evaluated by two-sided Wilcoxon rank-sum test. Box plots show
median, 25th/75th percentiles, and range. L) Clone-Level Response in Lung
Cancer: Shows post-treatment viability for top effective combinations, one facet
per patient. Color intensity indicates clone viability (x-axis) for each drug (y-axis),
for the top three patients ranked by highest DKS score per drug.
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Zenodo repository (https://zenodo.org/record/7860559). We collected the bulk-expression and drug response profiles generated in cancer cell lines curated from
https://depmap.org/portal/download/ (version 20Q1). The sc-expression of 205 cancer cell lines was generated in a previous study34 and was downloaded from:
https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity#study-download. The sc-expression profiles of multiple myeloma
patients were downloaded from the original study Supplementary Table 2 (https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-021-01232-w/
MediaObjects/41591_2021_1232_MOESM3_ESM.xlsx), of breast cancer were downlaoed from GEO (GSE158724), and, of NSCLC patients were provided by the
original study authors (Citation 41 from main text).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The reported sex was used in the study, but no analysis comparing males to females was done due to small numbers of
samples available. We also considered sex as a variable in our regression wherever available during modeling drug response.

Reported sex information for the three trials used can be found here: 1. NCT04065789 (https://static-content.springer.com/
esm/art%3A10.1038%2Fs41591-021-01332-w/MediaObjects/41591 2021 1232_MOESM1_ESM.pdf), NCT02712723
(https://static-content.springer.com/esm/art%3A10.1038%2Fs43018-021-00215-7/
MediaObjects/43018_2021_ 215 MOESM?2_ESM.pdf), NCT03433469 (https://clinicaltrials.gov/ct2/show/study/
NCT03433469?term=NCT03433469&draw=2&rank=1), NCT03088930 (https://clinicaltrials.gov/ct2/show/NCT03088930)

Reporting on race, ethnicity, or  We do not have access to patient's race, ethnicity or socially relevant grouping for the multiple myeloma or breast cancer

other socially relevant data sets. For the lung cancer data set, we could get access, but the sample size is too small to do any meaningful analyses.

groupings For the cell line data, we did not do analysis by sex because the cell lines are highly transformed, which is a noted exception
in the SAGER guidelines.

Population characteristics Population characteristics using the following link. 1. NCT04065789 (https://static-content.springer.com/esm/art%
3A10.1038%2Fs41591-021-01332-w/MediaObjects/41591_ 2021 1232_MOESM1_ESM.pdf), NCT02712723 (https://static-
content.springer.com/esm/art%3A10.1038%2Fs43018-021-00215-7/MediaObjects/43018 2021 215 MOESM2_ESM.pdf),
NCT03433469 (https://clinicaltrials.gov/ct2/show/study/NCT03433469?term=NCT03433469&draw=2&rank=1),
NCT03088930 (https://clinicaltrials.gov/ct2/show/NCT03088930)

Recruitment We did not contribute in the design of the trials. The outliers and exclusion criteria can be accessed using the above link
(Population Characteristics).

Ethics oversight NA.
The clinical trials data used in the study was downloaded from published studies: Cohen et al. 2020; Griffiths et al. 2021,
December 9th, 2021.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size No prior tool was used to determine sample size. We downloaded and used all the sc-expression profiles to us for both patients and cell lines.
For cell lines, we conclude the the number of cell line is enough for at leat 44 drugs, where we were able to build a predictive model. For the
rest of the drugs, we concluded that we do not have enough sample size to build a predictive models.

Data exclusions  No data was excluded either during training or testing.

Replication All analysis in the study are reproducible and all except two are deterministic. We provided a detailed and single-file execution to help users
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Replication replicate our studies and have tested the reproducibility with other co-authors.
We note that clustering of sc-RNA-seq is non-deterministic and can see slight changes every time it is repeated due to the non-determinstic
methods used. However, to ensure that users can replicate our findings, we provide the precise seeds used and also repeated this analysis
1000 times to ensure robustness of our findings.

Randomization  No randomization was performed for primary analysis of the clinical trial data in the usual meaning of 'randomization in clinical trials'.
However, for our model building control, we built random models using either shuffled labels, randomized features in the regression model,
or a non-predictive model of another drug in the screen for 1000 times and computed the number of times that the stratification power
denoted by AUC is higher than our original model. The comparison to other methods also used random sampling and replicates as described
in Methods (after the revision requested by the Editor on this point specifically).

Blinding No blinding was performed. The clinical data analysis is retrospective and thus no blinding was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-authentication-procedures foreach-seed-stock-used-ornovel-genotype-generated—-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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