
Nature Cancer

nature cancer

https://doi.org/10.1038/s43018-024-00756-7Analysis

PERCEPTION predicts patient response and 
resistance to treatment using single-cell 
transcriptomics of their tumors

Sanju Sinha    1,16,17  , Rahulsimham Vegesna1,17, Sumit Mukherjee    1, 
Ashwin V. Kammula    1,2, Saugato Rahman Dhruba    1, Wei Wu    3, 
D. Lucas Kerr    3, Nishanth Ulhas Nair    1, Matthew G. Jones4,5,6,7, Nir Yosef4,5, 
Oleg V. Stroganov8, Ivan Grishagin8,9, Kenneth D. Aldape    10, 
Collin M. Blakely    3,11, Peng Jiang    1, Craig J. Thomas    9,12, Cyril H. Benes    13, 
Trever G. Bivona    3,11,14,15, Alejandro A. Schäffer    1 & Eytan Ruppin    1 

Tailoring optimal treatment for individual cancer patients remains a 
significant challenge. To address this issue, we developed PERCEPTION 
(PERsonalized Single-Cell Expression-Based Planning for Treatments In 
ONcology), a precision oncology computational pipeline. Our approach 
uses publicly available matched bulk and single-cell (sc) expression profiles 
from large-scale cell-line drug screens. These profiles help build treatment 
response models based on patients’ sc-tumor transcriptomics. PERCEPTION 
demonstrates success in predicting responses to targeted therapies in 
cultured and patient-tumor-derived primary cells, as well as in two clinical 
trials for multiple myeloma and breast cancer. It also captures the resistance 
development in patients with lung cancer treated with tyrosine kinase 
inhibitors. PERCEPTION outperforms published state-of-the-art sc-based 
and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible 
at https://github.com/ruppinlab/PERCEPTION. Our work, showcasing 
patient stratification using sc-expression profiles of their tumors, will 
encourage the adoption of sc-omics profiling in clinical settings, enhancing 
precision oncology tools based on sc-omics.

In recent years, precision oncology has made important strides in 
advancing treatment for patients with cancer, as described in several 
reviews1–6. Much of the focus in the field has been on efforts to use 
FDA-approved sequencing assays to identify ‘actionable’ mutations 
in cancer driver genes, to match patients to treatments1. These efforts 
have been further boosted by the progress made in DNA-based liquid 
biopsies, which can further help guide and monitor treatment7–9. How-
ever, a large fraction of patients with cancer still do not benefit from 
such targeted therapies, and therefore efforts are needed to find ways 
to analyze other molecular omics data types to benefit more patients. 
Addressing this challenge, recent studies have begun to explore the 

benefit of collecting and analyzing bulk tumor transcriptomics data 
to guide cancer treatment10–17. Expression-based studies have dem-
onstrated the potential to complement DNA sequencing approaches 
in increasing the benefit of omics-guided precision treatments  
to patients.

One key limitation of current genomic and transcriptomic treat-
ment approaches is that they are mostly based on bulk tumor data. 
Tumors are typically heterogeneous and composed of numerous 
clones, making treatments targeting multiple clones more likely 
to diminish the likelihood of resistance emerging owing to clonal 
selection, and hence potentially enhancing the overall response of  
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predict drug response in cell lines from the large-scale bulk-RNA-seq. 
In step two (tuning), the bulk-expression models are tuned using the 
cell-lines’ sc-expression and drug response to build sc-expression 
models. Finally, in step three, we identify a heuristic strategy to predict 
clinical response by analyzing a clinical cohort with treatment response 
and sc-expression. For a given drug, we provide the input of its drug 
response and matched bulk-expression in cell lines for the first step, 
matched drug response and sc-expression in cell lines, and finally, 
sc-expression of the patient in the third step.

To gather cell line data for building the predictors in the first two 
steps, we mined bulk-expression32 and drug-response profiles (PRISM) 
of 488 cancer cell lines (Supplementary Table 1) from the DepMap 
database33. The sc-expression profiles of these cell lines (n = 205; Sup-
plementary Table 1) were obtained from a previous publication34. Drug 
efficacy (also referred to as viability) is measured by the area under the 
curve (AUC) of the viability–dosage curve, where lower AUC values 
indicate increased sensitivity to treatment (Supplementary Table 1).

For a given drug, PERCEPTION uses the above data to build a 
drug-specific response predictor in cell lines through the following 
two steps. Step one involves building bulk-expression models. We first 
build a linear model with elastic net regularization of drug response 
using the bulk-expression and drug-response data available for 318 
PRISM cancer cell lines from 21 cancer types (Extended Data Fig. 1a). 
Step two involves building sc-expression models. The goal of this step 
is to build sc-expression-based prediction models of drug response. 
To this end, we determine the number of genes used as predictive fea-
tures (hyperparameter tuning) that maximize the ability to predict the 
response from sc-expression data, analyzing the 169 cancer cell lines 
for which both scRNA-seq profiles and drug response data are available 
(Extended Data Fig. 1b). To evaluate the performance of an sc model in 
a cell line, PERCEPTION predicts the response to a given drug for each 
of its individual cells, and the mean response over all those individual 
cells is taken as the predicted sc-based response of that cell line to that 
specific drug. The output of this machine-learning pipeline is hence a 
drug-specific sc-response model and a quantification of its predictive 
accuracy from sc-expression in cell lines. We evaluate this model’s 
performance in an unseen test subset of the cell lines, using a standard 
leave-one-out (one cell line) cross-validation procedure. As described 
in the Methods, the models for some drugs will be deemed sufficiently 
predictive and the models for other drugs will not. Only drugs with 
predictive models from step two are considered in step three.

In the third and final step, we predict the clinical response in 
patients, which is the ultimate goal of our study. This is done using 
the following heuristic procedure: (1) We first identify the major 
cancer cell clusters in the patient’s tumor using the sc-expression 
(transcriptional clones, a cluster of single cells whose transcription 
profile looks similar). (2) We then compute the mean expression of 
each transcriptional clone and use this as an input to the predictive 
drug-specific models yielded from step two to predict drug response 
for each transcriptional clone (if a combination of drugs is used in 
the treatment, we take the maximum predicted killing among those 
drugs as the predicted killing effect on that clone, following the inde-
pendent drug action (IDA) principle35). (3) Finally, the overall patient 
response is predicted as the minimum response among all clones, 
taking the stance that the clone predicted to be most resistant will 
likely determine the overall clinical response. As we describe later in 
the Results, this prediction strategy was determined in a cohort of 
patients with multiple myeloma by studying five different potential 
strategies and was then fixed and applied as-is to two other patient 
cohorts. For any new drug in a new cancer type cohort, the response 
model (steps 1 and 2) should also be built using all cell lines available in 
the screen (pan-cancer model), as we found that this pan-cancer model 
construction performs better during cross-validation than building 
cancer-type-specific models that use cell lines belonging only to the 
patient’s cancer type (Extended Data Fig. 1c).

the patients18. Intra-tumor heterogeneity has been driving two major 
developments in recent years: the search for effective treatment com-
binations and the advent of single-cell (sc)-profiling of the tumor and 
its microenvironment.

Large-scale combinatorial pharmacological screens have been 
performed in patient-derived primary cells (PDCs), xenografts and 
organoids, and have already given rise to numerous combination 
treatment candidates19–21. Concomitantly, the characterization of the 
tumor microenvironment via sc-omics has led to important insights 
regarding the complex network of tumor–microenvironment interac-
tions involving both stromal and immune cell types18. It also offers a 
promising way to learn and predict drug response at an sc resolution. 
The latter, if successful, could guide the design of drug treatments that 
target multiple tumor clones disjointly22–24 and help us understand 
the ensuing resistance to better overcome it. However, building such 
predictors of drug response at an sc resolution is currently challeng-
ing owing to the paucity of large-scale preclinical or clinical training 
datasets. Previous efforts, including a recent computational method, 
termed Beyondcell, that identifies tumor cell subpopulations with 
distinct drug responses from single-cell RNA sequencing (scRNA-seq) 
data for proposing cancer-specific treatments, have focused on pre-
clinical models but lack validation in patients at the clinical level24–28. 
Additional efforts to identify biomarkers of response and resistance 
at the patient level using sc-expression are emerging for both targeted 
therapies and immunotherapies, with remarkable results29–31. How-
ever, to date, harnessing the sc tumor transcriptomics of patients for 
tailoring their treatment in a direct, systematic manner has remained 
an important open challenge.

Aiming to address this challenge, here we present a precision 
oncology framework for PERsonalized Single-Cell Expression-based 
Planning for Treatments In ONcology (PERCEPTION). This approach 
builds upon the recent availability of large-scale pharmaco-
logical screens and sc-expression data in cancer cell lines to build 
machine-learning-based predictors of drug response based on the 
gene expression of single cells. We first show that PERCEPTION can 
predict the response to single and combination treatments in three 
independent screens performed in cancer and patient-tumor-derived 
primary cells, based on their sc-expression profiles. Secondly, we show 
that PERCEPTION can stratify the responders versus non-responders in 
two cohorts, multiple myeloma and breast cancer, with patients’ tumor 
sc-expression profiles and can capture the development of resistance 
using longitudinal tumor sc-expression profiles during treatment 
in a cohort of lung cancer patients. Notably, PERCEPTION markedly 
outperforms state-of-the-art sc-based and bulk-based predictors in 
all three sc clinical cohorts considered. Finally, we provide a guide 
for using PERCEPTION for a new clinical cohort with sc-expression 
to select patients for receiving treatment. In sum, we present a com-
putational approach that showcases the exciting potential of sc-gene 
expression-based precision oncology.

Results
Overview of PERCEPTION
To predict patient response to therapy from the tumor’s sc-expression 
profile, we built a three-step machine-learning pipeline called PERCEP-
TION (Fig. 1a; a detailed description is provided in the Methods). One of 
the key challenges in building a supervised machine-learning model to 
predict clinical response using sc-expression is the lack of large-scale 
sc-expression data with clinical response labels. To overcome this issue, 
we used the concept of transfer learning, a machine-learning technique 
where a model trained on one task (for which considerable data are avail-
able) is used as the starting point for a model on a second, related task 
for which less training data are available. Transfer learning allows the 
second model to benefit from the knowledge learned by the first model.

We built PERCEPTION response prediction models for each 
drug in three steps. In step one, a bulk-expression model is trained to 
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We test and demonstrate PERCEPTION’s performance in predict-
ing the response to monotherapy and combination treatments in 
screens performed in cancer and patient-tumor-derived primary cells. 
Then, focusing on patient data as the main goal of this investigation, we 
study its ability to predict treatment response in two clinical cohorts 
and to predict the emergence of resistance in a third clinical cohort. 
We additionally compare PERCEPTION’s prediction performance with 
published state-of-the-art sc-based and bulk-based methods. Finally, 
we provide a guide for using PERCEPTION to predict responses in  
new datasets.

Cross-validation and independent performance in cell lines
We applied PERCEPTION to build response models for 133 US 
FDA-approved oncology drugs tested in the PRISM drug screen (Sup-
plementary Table 2 and Extended Data Fig. 1d) and computed their 
performance to predict response in a leave-one-out cross-validation 
and tenfold cross-validation. Prediction performances for each of 
these drugs are provided in Fig. 1b. We deemed models to be suffi-
ciently predictive if the Pearson correlation between their predicted  

(mean sc-response per cell line) versus the observed viability on the  
test data was greater than 0.3. This threshold was chosen as it corre-
sponds to the mean cross-screen replicate correlation observed among 
three major pharmacological screens and confirmed by us, as well as 
being previously reported (average cross-platform correlation across 
GDSC36, CTD37 and PRISM38 is ~0.30). We were able to build predictive 
models for 33% of the drugs tested (44 out of 133 drugs; Supplemen-
tary Table 2 and Fig. 1b). The mean performance of PERCEPTION’s 
leave-one-out cross-validation and tenfold cross-validation are 0.39 
and 0.36 for 44 drugs with predictive models (Fig. 1b). Studying this 
subset, in which we are able to build predictive models, we found that 
the drugs in this subset are more likely to be targeted therapy (mean 
Pearson’s Rho, 0.43 vs 0.35 for chemo) and have a higher variance in 
response profile (Wilcoxon P = 5 × 10−7) and bimodality index in their 
response profile during training (reflecting the presence of both sensi-
tive and resistant cell lines).

Studying the predictive accuracy of these 44 predictive models in 
a cross-validation manner for different kinds of transcriptomics inputs, 
including sc-expression, bulk-expression and pseudo-bulk-expression 
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Fig. 1 | Overview of the PERCEPTION framework and its performance during 
cross-validation. a, PERCEPTION builds drug-specific models in three steps. 
(1) Bulk-expression response models are built based on drug response data 
measured in large-scale drug screens performed on cancer cell lines and their 
matched bulk expression. (2) Then sc-expression models are built by tuning 
the bulk-expression models, determining the optimal number of genes used 
as predictive features that maximize its prediction performance based on 
sc-expression of cancer cell lines. (3) In the third and final step, the clinical 
response in patients is predicted following a three-step heuristic procedure. 
Given a patient’s scRNA-seq data from the tumor, identify the major cancer cell 
clusters (called a transcriptional clone) and their mean expression. Use this mean 
expression as an input to the PERCEPTION model built in step two, yielding a 

predicted drug response for each transcriptional clone separately.  
The minimum response among all clones is predicted to be the patient’s 
response. b, The number of PERCEPTION predictive models of FDA-approved 
drugs (y axis), when built from sc-expression (blue), bulk-expression (red), 
and pseudo-bulk, as a function of the Pearson correlation between predicted 
and observed response values (x axis, the dashed vertical line denotes the 0.3 
threshold selected). c, The distribution of predictive performance (x axis) of 
the models. In the boxplots, the center line, box edges and whiskers denote 
the median, interquartile range and the rest of the distribution, respectively, 
as in standard boxplots. Interestingly, the predictive performance is overall 
considerably higher for targeted therapies than for chemotherapies. A two-sided 
Wilcoxon rank-sum test was performed to compare groups with n = 44 drugs.
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(generated by summing the gene-mapped reads across single cells; 
Methods), we reassuringly find that the predictive performance of PER-
CEPTION for sc-expression as inputs on these cell lines is comparable 
to the performance obtained using bulk-expression or pseudo-bulk 
as inputs (Fig. 1c). Importantly, we note that a model built on only 
scRNA-seq without any pre-training on bulk-RNA-seq has markedly 
lower prediction accuracy (Pearson’s Rho, 0.22 vs 0.39 for the 44 predic-
tive drugs in the left-out test cell lines), highlighting the importance of 
pre-training on bulk. We visualized PERCEPTION’s predicted killing lev-
els at sc resolution for eight FDA-approved drugs with high-confidence 
mechanisms of action and the activity of each pathway they are target-
ing (Extended Data Fig. 2).

We next asked what are the identities of the genes that these  
44 models are using to predict drug response. An average of 76 genes 
are used as features in the above models after regularization, in which 
the key pathways enriched include apical junction pathway, including 
genes like ABCB1, encoding multi-drug resistance 1 (MDR1) a trans-
porter implicated in resistance to many drugs, cell-cycle-related targets 
and more (Extended Data Fig. 1e).

We next evaluated PERCEPTION’s performance on three independ-
ent large-scale cell-line screens, two cultured (Nair39 and GDSC) and one 
PDC, to stratify the resistant versus sensitive cell lines (top vs bottom 
33% by viability, respectively). We built PERCEPTION models for each 
drug across the three screens individually. We note that we were unable 
to build predictive models for any drugs in the PDC screens using 
PRISM data and therefore used GDSC data (~800 cell lines). Detailed 
methods on how PERCEPTION models were built and used are provided 
in the Methods. PERCEPTION was able to stratify the resistant versus 
sensitive cell lines with an average AUC under receiving operator curve 
(henceforth referred to as AUC) of 0.81 (AUC = 0.87 for cultured cell 
lines, Extended Data Fig. 3a–g; AUC = 0.75 for PDCs, Extended Data 
Fig. 3h–k). A detailed performance evaluation including drug-level 
performance measures is provided in Extended Data Figs. 4 and 5. 
Predicted and observed viabilities are also strongly correlated in all 
three datasets (Pearson’s Rho, 0.36 for Nair, 0.28 for GDSC and 0.64 for 
PDCs; Extended Data Figs. 5 and 6). We note that a control PERCEPTION 
model that is not tuned on sc-expression yielded a modestly inferior 
performance in this test (average AUC = 0.71, for cultured cell lines 
AUC = 0.81, for PDCs AUC = 0.62).

Predicting treatment response in a multiple myeloma trial
After showing that PERCEPTION’s cell-line-based model can predict 
the response of monotherapy and combination in cultured and PDC 
lines, we next ask how we can use the cell-line-based models to predict 
patient response using the pre-treatment sc transcriptomics from 
their tumors. To this end, we mined the largest such dataset published 
to date, including data from 41 patients with multiple myeloma. The 
patients were treated with a DARA–KRD combination of four drugs: 
daratumumab (monoclonal antibody targeting CD38), carfilzomib 
(proteasome inhibitor), lenalidomide (immunomodulator) and dexa-
methasone (anti-inflammatory corticosteroid)29. The sc-expression and 
clonal (transcriptional cluster) composition and treatment response 
labels, as determined in the original study29, were available for 28 tumor 
samples from these patients (Fig. 2a). Patient response was measured 
by tumor size estimates in radiological images.

As explained above in the PERCEPTION overview, to predict 
the clinical response from a tumor’s sc-expression, PERCEPTION 
first finds the major transcriptional clones (provided in the original 
publication29) and predicts the treatment response for each clone 
separately (response is defined as the predicted reduction in viabil-
ity after treatment; see Methods). Figure 2b shows the predicted 
viability of the combination at a clonal level for each patient. We 
designed and tested five different strategies to predict the clinical 
response from clone-level killing to find the most optimal strategy. 
We tested their performance for stratifying responders (n = 7) versus 

non-responders (n = 21) (Fig. 2c, see Methods). In brief, the clinical 
response of a patient is determined by computing one of the follow-
ing strategies: (1) weighted average response, an average of response 
across all the clones weighted by their abundance in the tumor;  
(2) unweighted average response, an average of response across all 
the clones; (3) most-sensitive clone response, the response of the 
most-sensitive clone; that is, the clone with the highest predicted 
response; (4) unweighted most-resistant clone response, the response 
of the most-resistant clone; that is, the clone with the least response; 
(5) most-resistant clone response, the response of the most-resistant 
clone, weighted by its abundance proportion. The resulting AUCs 
for these strategies were 0.59, 0.55, 0.64, 0.75 and 0.83, respectively 
(Fig. 2c). This analysis revealed that the fifth strategy best predicts 
the clinical response. In cell lines, this strategy also stratified resistant 
versus sensitive, albeit with lower performance (AUC = 0.79; Extended 
Data Fig. 6i) than the mean-response strategy (AUC = 0.89).

As an illustrative example using the most-resistant clone strategy 
(Fig. 2b), in a sample from patient Kydar19, there are three clones: c1, 
c2 and c3. Here, c2 and c3, two low-abundance clones, are predicted 
to be relatively responsive to the treatment, whereas c1, the most 
abundant clone, is predicted to be resistant. In this case, c1 is likely 
to drive the patient response, and thus, the patient will be predicted 
to be resistant or have a low response to the treatment. The resulting 
predicted response scores from this strategy are significantly higher 
in responders versus non-responders (Fig. 2d), successfully predict-
ing the treatment response (AUC = 0.83; Fig. 2e). This may be the case 
because the most resistant clone is most likely to be selected upon 
treatment and end up dominating the tumor, thus best reflecting the 
clinical response. From here onwards, we fixed this most-resistant 
clone response strategy for predicting clinical response and tested it 
in two additional cohorts. The top pathways enriched among the gene 
features used by the PERCEPTION model are surfactant metabolism 
and O-linked glycosylation of mucins.

Predicting CDK inhibition response in a breast cancer trial
Using the most-resistant clone response prediction approach described 
in the previous subsection, we next tested PERCEPTION’s ability to 
predict patient response in the FELINE breast cancer clinical trial40. This 
clinical trial includes three treatment arms: endocrine therapy with 
letrozole (arm A), an intermittent high-dose combination of letrozole 
and CDK inhibitor ribociclib (arm B) and a continuous lower dose com-
bination of the latter (arm C). sc-expression and treatment response 
labels were available for 33 patients (arms A, B and C having 11 samples 
each; Supplementary Table 7). Patient response was determined by 
tumor growth measurements from mammogram, MRI and ultrasound 
of the breast.

We could build a (borderline) predictive PERCEPTION response 
model for only the CDK4/6 inhibitor ribociclib (Pearson’s R = 0.26, 
P = 1.5 × 10−3), and therefore we focused our analysis on the combination 
arms B and C that include it (Fig. 3a). We processed the sc-expression 
profiles of the tumor cells as previously described40 and identified 38 
transcriptional clusters or clones that are shared across the patients 
(Extended Data Fig. 7a–c; see Methods). Patient response was predicted 
based on the pre-treatment samples, following the same strategy 
used in the multiple myeloma case. As the number of patients in each 
arm (B and C) is quite small, we predicted the response of the patient 
pre-treatment samples in aggregate. The resulting predicted viability 
of the non-responders is higher than that of the responders (Wilcoxon 
rank-sum test, one-sided P = 0.05; Fig. 3b), as expected. PERCEPTION 
successfully stratified the responders versus non-responders with an 
AUC of 0.776 (Fig. 3c). Aligning to our known mechanism of action of 
ribociclib’s inhibition of CDK4/6 activity, leading to cell cycle arrest, 
PERCEPTION’s signature comprising 72 genes is enriched in pathways 
involved in cell cycle, specifically, TNF receptor family (P = 0.004) and 
regulation of p53 (P = 0.004).
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Capturing emergence of resistance in lung cancer patients
We next tested whether PERCEPTION can capture the development 
of clinical resistance during targeted therapy treatment in patients. 
To this end, we analyzed a published cohort with scRNA-seq pro-
files of 24 patients with non-small cell lung cancer (NSCLC) with 14 
pre-treated and 25 post-treated biopsies (Extended Data Fig. 8a–f 
and Supplementary Table 8)41. In total, patients in this cohort were 
treated with four different tyrosine kinase inhibitors, including 
erlotinib (a first-generation EGFR inhibitor), dabrafenib (a serine/
threonine kinase inhibitor), osimertinib (a third-generation EGFR 
inhibitor) and trametinib (a MEK inhibitor). Based on the notion that 
the resistance to these targeted therapies frequently increases as the 
treatment time grows, we reasoned that the predicted response for a 

given post-treatment biopsy would decrease (reflecting an increase in 
resistance to that treatment) as time elapses from the treatment start.

To test this hypothesis, for each post-treatment biopsy, we defined 
its estimated ‘extent of resistance’ to a given treatment as the differ-
ence between its PERCEPTION-predicted response and the baseline 
predicted response. The latter was computed as the mean predicted 
viability across all pre-treatment biopsies (as the majority of the sam-
ples were not matched, precluding an overall pairwise matched com-
parison). We found that the extent of resistance to treatment increases 
with the elapsed time since the start of treatment, but only in those 
patients reported to acquire resistance (progressive disease; Spear-
man’s Rho = 0.634, P = 0.026, n = 17; Fig. 4a). We also found that this pos-
itive correlation between the elapsed treatment time and the estimated 
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Fig. 2 | PERCEPTION predictions of DACA–KRD combination therapy 
in patients with multiple myeloma. a, Distribution of abundance of the 
transcriptional clones (y axis) in each patient with multiple myeloma (x axis); 
the color code for the clones is provided at the top. b, Predicted viability of the 
combination at a clonal level for each patient; the response status is provided at 
the bottom strip of each facet. The left-to-right order of patients is the same as 
in panel a. c, The stratification performance in distinguishing responders versus 
non-responders from the clone-level predicted response information (y axis) 
of five different strategies (x axis). d, The predicted combination response in 

28 patients with multiple myeloma stratified by responder (n = 21) versus non-
responder (n = 7) status. A two-sided Wilcoxon rank-sum test was performed to 
compare groups. The boxplot shows median (center), 25th and 75th percentiles 
(bounds of box) and minima and maxima (whiskers). e, Receiver operating 
characteristic curve displaying the predicted combination response; AUC 
denotes the overall stratification power in distinguishing responders versus non-
responders. The gray dashed line represents the line of no discrimination, which 
illustrates the performance of a purely random classifier with an AUC of 0.5.
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extent of resistance holds true when patients receiving different drugs 
are analyzed separately (Extended Data Fig. 9a), when controlling for 
prior treatments (Extended Data Fig. 9b), when individual patients are 
analyzed separately (Extended Data Fig. 9c) and when controlling for 
tumor stage (Extended Data Fig. 9d). The extent of predicted resistance 
is significantly higher in post-treatment biopsies collected from the 
patients with progressive disease versus residual disease (Wilcoxon 
rank-sum P < 0.002, stratification AUC = 0.88; Fig. 4b). Notably, we do 
not observe this strong positive correlation but rather a negative trend 
in patients who responded well to the treatment (residual disease, n = 7, 
Spearman’s Rho = −0.67, P = 0.11; Fig. 4a). The observed increase in the 
predicted extent of resistance to treatment with elapsed treatment 
time occurred specifically in patients who had acquired resistance.

We next analyzed the subset of patients with matched biopsies, 
including five patients with two biopsies each and one patient with 
four biopsies. Analyzing these samples in a matched manner, we find 
that the correlation between treatment elapsed time and the esti-
mated extent of resistance holds true in the matched cases, and only 
in the patients who have acquired resistance (regression interaction 
P = 0.003). Of particular interest is a case of a single patient (TH179), 
treated with dabrafenib, who had four biopsies at two different time 
points and developed progressive disease. The predicted viabilities 
to dabrafenib of the four tumor biopsies taken after 331 and 463 days 
of start of treatment are significantly higher than pre-treatment biop-
sies (Fig. 4c). Furthermore, the predicted viabilities of all three biop-
sies from day 463 are significantly higher than the biopsy from day 
331. Notably, we find that the abundance of the top 50% of predicted 
resistant clones increases while the abundance of the bottom 50% 
of predicted resistant clones decreases with the elapsed time since 
the start of treatment, as one would expect (Fig. 4d and Methods).  

The rate of increase of abundance is significantly higher in the top  
50% of the predicted resistant clones than in the bottom 50% (Fig. 4d 
and Methods). Taken together, these results testify that PERCEPTION 
can capture and quantify the emergence of treatment resistance as 
the disease progresses.

We next found that the features or genes used by the above models 
are enriched in pathways involved in cell junction organization and 
cell–cell communication, including extracellular matrix organiza-
tion, RHO GTPase cycle, and NOTCH signaling. We also found that this 
signature is enriched in the recently reported resistance mechanism 
for EGFR-inhibitors (EGFRi) via hypermutators driven by AXL42. Spe-
cifically, our prediction signature is enriched in the three resistance 
pathways identified in that study42: AXL overexpression signature 
(P = 3 × 10−3), MYC overexpression (P = 2.1 × 10−2) signature and purine 
synthesis (P = 1.6 × 10−4).

To prioritize candidate drugs available in this cohort whose treat-
ment may overcome the resistance acquired, we asked whether the 
development of resistance to a drug can induce either cross-sensitivity 
or cross-resistance to the other drugs43. We focused on the patients 
(Supplementary Table 8) who acquired resistance and computed 
the PERCEPTION response predictions for each of these drugs and 
the correlations between these drug sensitivity predictions across 
these patients (Fig. 4e and Methods). PERCEPTION predictions sug-
gest that the development of resistance to erlotinib would induce 
a cross-sensitivity to gemcitabine (Fig. 4f, top-left panel; Pearson’s 
R = −0.94, P = 0.06) and cross-resistance to dabrafenib (Fig. 4f, top-left 
panel; Pearson’s R = 0.91, P = 0.09). A literature survey (Methods) 
revealed that gemcitabine treatment can overcome erlotinib resist-
ance in cancer cell lines through the downregulation of Akt44. In 
patients, a combination of gemcitabine + erlotinib in pancreatic 
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cancer in phase III trial has shown higher overall and progression-free 
survival45,46. By contrast, the addition of trametinib to erlotinib did 
not significantly improve survival in a phase I/II clinical trial47. In sum, 
our analysis supports the possibility that erlotinib resistance may 
induce cross-sensitivity to gemcitabine, which may be of interest for 
future testing.

Predicting combination therapies targeting disjoint clones
We next turned to investigate PERCEPTION’s capability to identify 
effective combination treatments in clinics. To this end, we curated 
clinical trial data of various combinations tested for NSCLC with survival 
information to assess the predictive power of PERCEPTION models. 
The trial data were curated from TrialTrove (Methods). We found that 
PERCEPTION’s predicted improvement in response to combinations 
versus the pertaining monotherapies is correlated with the survival 
improvement owing to the combination observed in the respective 
clinical trials (see Extended Data Fig. 10a–c for multiple myeloma 
and Extended Data Fig. 10e–k for lung cancer; weighted Pearson’s 
Rho = 0.66, P = 0.02, weighted by the number of patients in a trial). 

The only targeted therapy with enough unique combination trials is 
erlotinib, and repeating this analysis for erlotinib yielded concord-
ant results (Pearson’s Rho = 0.76, P = 0.08; Extended Data Fig. 10h). 
Aside from the trials tested, among all possible combinations tested of 
approved drugs, the top-ranking pathways composing combinations 
pairs are the tyrosine kinase pathway and the tubulin polymerization 
pathway (Extended Data Fig. 10i–k). This analysis was also done for 
multiple myeloma, and the results are presented in Extended Data 
Fig. 10a–d. Our top-ranked combination pair is niraparib and ponatinib, 
an EGFR inhibitor and a canonical BCR-ABL inhibitor, respectively 
(disjoint killing score (DKS) = 0.25, empirical P = 1 × 10−4). The next 
top combination pair with the high DKS is lapatinib and thioguanine 
(DKS = 0.24, empirical P = 1 × 10−4), a dual HER2 and EGFR inhibitor and 
a purine inhibitor, respectively. Analogously, we next looked for all 
possible triplets of drug combinations exhaustively (Extended Data 
Fig. 10b; n = 13,244). Our top hits include the combination of gefi-
tinib, icotinib and trametinib (DKS = 0.21, empirical P = 1 × 10−4) and 
gefitinib, lapatinib and trametinib (DKS = 0.19, empirical P = 1 × 10−4)  
(Extended Data Fig. 10d).
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Benchmarking PERCEPTION versus state-of-the-art methods
We compared the prediction performance of PERCEPTION in the 
above three clinical cohorts versus two different published predic-
tors and four other alternatives that we implemented (Fig. 5a): (1) a 
state-of-the-art model based on sc-expression (Beyondcell27); (2) a 
state-of-the-art bulk-expression-based model (ATLANTIS33); (3) usage 
of pseudo-bulk-RNA-seq (Pseudo-Bulk); (4) taking the mean viability 
across all single cells in a tumor sample (mean viability, the strategy we 
used for predicting response in cell lines and PDCs (mean-response-sc)); 
(5) Bulk-based-only PERCEPTION models that are not tuned on 
sc-expression; and (6) three kinds of random models created using 
shuffled viability labels, random gene signatures and random coef-
ficients (Methods). Notably, across the three cohorts as well as in each 
individual cohort, PERCEPTION was the best-performing model by 
a considerable margin (mean AUC = 0.828; Fig. 5b) compared to the 
published state-of-the-art methods. The other models studied here 
achieved mean AUCs as follows: state-of-the art models (Beyondcell, 
0.67; ATLANTIS, 0.64); the three bulk expression-based models that we 
generated (Pseudo-bulk, 0.63; mean viability, 0.663; bulk-based-only 
PERCEPTION models, 0.63) and finally, three randomly generated 
models (as expected, shuffled viability labels, 0.51; random gene sig-
nature, 0.55; random coefficient model, 0.53). Notably, across the three 
clinical cohorts studied, the mean AUC improvement of PERCEPTION 
over the previous best-published model, Beyondcell, is considerable 
(0.15, P = 0.002).

How to use PERCEPTION for new a cohort or a new drug
We provide predictive pan-cancer drug models for 44 FDA-approved 
drugs in our source data. For a new clinical trial dataset with 
sc-expression that involves drugs with existing predictive models, 
PERCEPTION can be run using a single script (Running_PERCEPTION_
for_new_dataset) in our GitHub repository.

When the drugs involved do not have given predictive models, 
one can still aim to build PERCEPTION models, as follows. First, this 

process requires the following two inputs: sc-expression of can-
cer cells from the tumor and treatment information. Second, the 
process involves three steps: step one: the user should first build a 
bulk-expression-based model for the given treatment. One can readily 
aim to build models for any of the 1,500 drugs currently available in 
DepMap. We recommend that the user only consider using models 
that surpass the predictive threshold we used (Pearson’s correlation 
of >0.3 between observed and predicted). We also recommend train-
ing such models on all cell lines available (pan-cancer model) versus 
training on the subset of cell lines from the pertaining specific cancer 
type of the patient’s cohort, as we found that pan-cancer models 
perform better in both patients and cell lines (Extended Data Fig. 1c; 
AUC = 0.75 vs 0.88 and AUC = 0.52 vs 0.77 in lung and breast cohort, 
respectively; decrease of Pearson’s correlation of 0.38 to 0.25 in cell 
lines). A similar approach and guidelines should be applied for build-
ing sc-based models. Step two: the user will next cluster the cancer 
cells available from the tumor, identify each cluster mean expression 
in the default setting and rank-normalize it. Step three: based on 
the sc-models, the user can now predict patient response using the 
three-step heuristic approach described in previous sections. The 
resulting response scores are predicted to stratify patients who are 
more likely to respond to the given treatment, whereby the higher the 
score, the higher the likelihood of response. The code for building 
and testing models for new drugs is provided (Running_PERCEP-
TION_for_new_dataset (mode 2)).

Discussion
We present PERCEPTION, a computational pipeline for systemati-
cally predicting patient response to cancer drugs at sc resolution. We 
demonstrate its application for predicting response to monotherapy 
and combination treatment at the level of cell lines and PDCs as well 
as in predicting patient response in three recent sc clinical cohorts 
spanning multiple myeloma, breast cancer and lung cancer. We find 
that incorporating the transcriptional clonal information of the tumor 
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into the prediction process improves the overall accuracy. For a given 
patient, the transcriptional clone with the worst response (that is, the 
most resistant pre-treatment clone) best explains the overall response 
to treatment. Performing an extensive and systematic comparison with 
other expression-based models, we show that PERCEPTION achieves 
markedly superior performance compared to two previously pub-
lished methods.

The observation that the most-resistant-clone strategy (the one 
used for predicting the response in clinical trials) can also stratify 
resistant versus sensitive in cell lines, albeit with lower power than the 
mean-response strategy might be because the clinical responses are 
measured at much longer time scales with the patients (months) than in 
the cell lines (within days). Passage of more time is probably better for 
the selection of the most-resistant clone. This underscores the impor-
tance of considering the repertoire of a given tumor’s transcriptional 
clones in predicting its response to therapy. Furthermore, the observa-
tion that pseudo-bulk and bulk-based models performed better than 
scRNA-seq-based models in cell lines during cross-validation might be 
because of the relative homogeneity of cell lines, whereby scRNA-seq 
may not offer advantages over bulk-seq, sometimes resulting in com-
parable or worse predictions.

Our study’s limitations include the use of homogeneous 2D cell 
lines and sparse pre-treatment sc datasets with response labels to 
train our models. As data availability increases, so will our predic-
tors’ accuracy and scope. Hence, the current demonstration of their 
potential value will hopefully serve to drive the generation of more 
pre-treatment sc datasets with clinical annotations in the future. Given 
the US$150,000 average yearly cost for cancer treatment in the US48, 
US$15,000 for tumor sequencing seems justified, despite additional 
costs. This option should be explored further, through more sc dataset 
collection and predictive model development. Another limitation of 
our study is that our model was learned over the in vitro dosages whose 
translation to clinical response is non-trivial, and therefore we chose 
the AUC measure, a response measure over multiple dosages (n = 8), 
as it is more likely to lead to a more robust approach.

PERCEPTION’s predictions may be further improved by consider-
ing cancer type-specific cell lines, whenever a large number of such 
models become available for each cancer type. The quality of our 
response models depends on the quality of the sc-expression pro-
files available; for example, their depth, drop-out rates, and so forth. 
We deliberately did not impute the sc data given the recent reports 
that dropouts are limited to non-unique molecular identifier-based 
sc-expression methods and otherwise probably reflect true biologi-
cal variation49,50. A key limitation of our pipeline is a lack of ability to 
predict drug effects on immune and normal cells in the tumor micro-
environment, which is needed to estimate the toxicity and side effects 
of different combinations. A major push to future sc-based precision 
oncology development will come from large-scale drug screens of 
drugs in non-cancerous cell lines, which are currently very scarcely 
available. Those cell lines will enable the construction of predictors 
of drug killing of non-tumor cells, using an analogous pipeline to the 
one presented here for tumor cells.

Finally, our results demonstrate that tracking the drug response 
expression in post-treatment biopsies could help follow the evolution 
of drug resistance at sc resolution and help guide the design of future 
personalized combination treatments that could significantly diminish 
the likelihood of resistance emergence. Going beyond patient stratifi-
cation, we identify new combination therapies that different individual 
clonal clusters for multiple myeloma and lung cancer. However, we 
must note that these predictions require further validation.

In summary, this study demonstrates that the high resolution of 
information from scRNA-seq could indeed be harnessed to predict the 
treatment response of individual patients with cancer in a systematic, 
data-driven manner. It is our hope that the results shown will herald 
many more such studies, sooner rather than later. Retrospective studies 

on additional clinical datasets need to be done to better assess the 
utility of sc prediction approaches like PERCEPTION and its accuracy 
before it may be studied prospectively.

Methods
Data collection
We first collected the bulk-expression and drug response profiles 
generated in cancer cell lines curated in the DepMap33 consortium 
from the Broad Institute (version 20Q1; https://depmap.org/portal/
download/). The drug response is measured by the AUC across eight 
dosages and measures, using a sequencing technique called PRISM38. 
In total, we mined 488 cancer cell lines with both bulk-transcriptomics 
and drug response profiles. We next mined sc-expression of 205 can-
cer cell lines (280 cells per cell line) generated in a previous study34 
distributed by the Broad Single-cell Portal. The metadata, identifica-
tion and clustering information were also mined from the same por-
tal (https://singlecell.broadinstitute.org/single_cell/study/SCP542/
pan-cancer-cell-line-heterogeneity#study-download). Data collection 
and analysis were not performed blind to the conditions of the experi-
ments. Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

For the multiple myeloma dataset and the breast cancer data-
set, the data from all human subjects are coded from two published 
papers29,40. For the lung cancer data, we used only previously published 
data41 (Supplementary Table 1). The published lung cancer data we 
used were obtained with informed consent from all study participants 
based on human subject protocols (CC13-6512 and CC17618; principal 
investigator, C.M.B.) approved by an IRB at the University of California, 
San Francisco, and based on clinical trial NCT03433469. The details of 
the three clinical cohorts, including trial status and endpoint extraction 
process, are provided in Supplementary Table 9.

The PERCEPTION pipeline
A response model for a drug is built into the PERCEPTION pipeline 
through two steps: learn from bulk, and optimize using sc-expression. 
In step three, we use the models from step two to predict response in 
patients.

We first divided all the cancer cell lines into two sets. The first 
set comprised cell lines for which bulk-expression is available and 
sc-expression is not available (n = 318), and the second set comprised 
cell lines for which sc-expression is available (n = 170). The first set is 
used during learning from bulk (step one, expanded below) and the 
second is used in optimizing using sc-expression (step two).

Step one, learn from bulk. As a feature selection step, we first iden-
tified genes whose bulk expression is correlated with a drug viability 
profile (using the Pearson correlation). We considered the Pearson 
correlation Pc(d, g) between drug d and gene g as a measure of infor-
mation in a gene expression profile and ranked each gene based on 
the strength of the correlation. Considering the top X genes, where 
X is a hyperparameter optimized in the next step, we built a linear 
regression model regularized using elastic net to predict the response  
to d in fivefold cross-validation, as implemented in R’s glmnet51.

Step two, optimize using sc-expression. We built the above model 
using a Bayesian-like grid search of various possible values for X (range, 
10–500), whereby the model with the best performance using an 
sc-expression input of 169 cell lines (left one out for testing) was cho-
sen. Finally, we measured the model performance by leave-one-out 
cross-validation using the left-out cell line, which was not used in either 
model building or hyperparameter optimization. Here, the model is 
trained on all data except for one sample, which is held out for test-
ing; that is, its viability is predicted by the model. The cross-validation 
process is then repeated n times, with a different sample being held out 
each time, on which the prediction is made. After running this n times, 
the Pearson correlation coefficient is calculated between the predicted 
and the observed drug response values for all n held-out samples. 

http://www.nature.com/natcancer
https://depmap.org/portal/download/
https://depmap.org/portal/download/
https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity#study-download
https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity#study-download
https://clinicaltrials.gov/ct2/show/NCT03433469


Nature Cancer

Analysis https://doi.org/10.1038/s43018-024-00756-7

Performance was measured using Pearson’s correlation between the 
predicted response and the actual response.

Step three. In the third and final step of PERCEPTION, we pre-
dict clinical response in patients using a cell line-based model and 
sc-expression profiles of the patient’s tumor. We identify the major 
cancer cell clusters using sc-expression, compute the mean expres-
sion for each clone and use this as input for the model to predict drug 
response for each clone. The overall patient response is predicted as 
the minimum response among all clones, as we reason that the most 
resistant clone will determine the clinical response. Our prediction 
strategy was determined through trial and error in a cohort of patients 
with multiple myeloma and was fixed and applied to all other patient 
cohorts in the study. For a given treatment, we interpret this to mean 
that the predicted response of the most resistant clone in the patient’s 
tumor determines the clinical response. We converged on this strategy 
by using a trial-and-error approach, testing five different strategies to 
predict a patient’s response from individual clone-level responses. This 
strategy is then fixed. During the comparison of PERCEPTION perfor-
mance versus state-of-the-art methods, we used the following three 
types of random models: shuffling the viability labels in the cell lines, 
by randomly selected gene signatures and finally using non-predictive 
models of other drugs.

Description of the method and optimization formula. We used an 
iterative approach using elastic net regression to identify the optimal 
number of genes that maximize the predictive performance of our 
model. By performing elastic net regression with different subsets of 
genes, we were able to determine the optimal combination of L1 and 
L2 penalty hyperparameters and gene features that contribute to the 
best predictive performance. The objective function for each iteration 
remains the same as the elastic net regression:

minβ (
1
2N

||||Y − Xβ||||
2

2
+ λ (α ||||β||||1 +

1 − α
2

||||β||||22))

The process involves the following steps:

	1.	 Select a subset of genes and form the design matrix X  with  
that subset.

	2.	 Perform elastic net regression using the objective function 
above, optimizing the hyperparameters λ and α.

	3.	 Evaluate the performance of the model using cross-validation.
	4.	 Repeat steps 1–3 for different numbers of genes.
	5.	 Choose the model with the number of genes that gives the 

maximum predictive performance.

The final chosen model would thus have the coefficients or weights 
of the selected genes as parameters and would be associated with 
optimal hyperparameters λ  and α  as well as the optimal number of 
genes.

Data choices in step one and step two of PERCEPTION. The first step 
of PERCEPTION (model building) used bulk-RNA-seq of 318 cell lines to 
build an initial set of bulk-based models based on a large set of genes as 
features. The second step used scRNA-seq of 169 different cell lines to 
further select an optimal set of predictive features, resulting in a final 
set of drug-specific sc-based models. This approach was designed to 
make sure information would not leak between two steps, leading to 
overfitted performance, by building the models on two entirely disjoint 
sets of cell lines. For some cell lines, both scRNA-seq and bulk-RNA-seq 
are available, and in these cases, only their scRNA-seq was used during 
the second step.

Evaluating PERCEPTION on three independent cell-line screens
PERCEPTION’s performance on GDSC. The pharmacological drug 
screens performed by the PRISM and GDSC studies are based on two 

independent platforms. The GDSC data were downloaded from the 
DepMap portal on 15 April 2020 (https://depmap.org/portal/down-
load). By testing the performance of PERCEPTION on these independ-
ent screening platforms, we can measure the extent to which the 
expression signature captured by our drug response models can be 
translated across the platforms. The following steps were performed 
to achieve this goal:

Step one, quality check to select cell lines and drugs. Out of the 
347 cell lines in common with drug response in both GDSC and PRISM, 
there are 120 cell lines with sc-expression data in a previous study34. 
We considered only the drugs shared by GDSC and PRISM that have 
a concordant response (Pearson’s Rho > 0.3, P < 0.05), resulting in 28 
drugs. Among these 28 drugs shared between GDSC and PRISM, we 
were able to build predictive models for 16 drugs.

Step two, model building and parameter optimization. For each of 
the drugs selected above, we ran the PERCEPTION pipeline, optimizing 
parameters based on the sc-expression of 90 out of 170 cell lines, using 
the other 80 cell lines as test data.

Step three, prediction and normalization. For the drugs for which 
PERCEPTION could build models, we applied the models on the cell 
lines and obtained predictions for each individual cell. Monother-
apy response for a given drug in a cell line was represented by the 
mean response of all the single cells (n = 318). Given that the range of 
PERCEPTION-predicted values is typically smaller than those observed 
in the screens (Extended Data Fig. 3g), we used scaled, predicted AUC 
scores (z-scores) in further analyses.

Step four, testing and performance analysis. The resulting 
response models were applied to the testing dataset, and the pre-
dicted AUC values were compared to the experimental responses 
from GDSC and PRISM. We computed two performance measures: 
AUC, stratifying top versus bottom 33% as resistance versus sensitive, 
and a correlation between predicted versus observed response. The 
former is provided in the main text and the latter in Extended Data 
Fig. 4. We note that the performance of the PRISM-based models in 
the GDSC test set is correlated with the concordance between the 
experimentally measured drug’s viability profiles in the two screens 
(Pearson’s R = 0.49).

PERCEPTION’s performance on monotherapy and combinations. 
The process was carried out in distinct steps as described below:

Step one, quality check to select cell lines, drugs and data points. 
The Nair dataset comprising monotherapy and combination response 
was mined from a recent study39 in which the response was measured 
via the AUC of the dosage–viability curve across eight dosages. As with 
our GDSC quality check, we only considered drugs with a concord-
ant response profile across the Nair dataset and PRISM (Pearson’s 
Rho > 0.3). AUC values > 1 were removed as they are likely caused by 
noise in the fitting of the viability curve, owing to noise and higher 
variability in doses that do not inhibit. This criterion yielded 14 
FDA-approved drugs in 21 cell lines, and we focused on them.

Step two, building models. The standard PERCEPTION workflow 
was used to build a model for these 14 drugs.

Step three, combination response prediction. We extended the 
prediction to the response to combinations of these 14 drugs stud-
ied in this screen (Supplementary Table 5). A combination response 
in a cell line was predicted by adopting the IDA model across all the 
single cells from that cell line52; that is, the predicted combination 
response of n drugs is the effect of the single most effective drug in 
the combination. Performance was measured using AUC. Through-
out our work, the combination response was predicted using the  
IDA principle.

Step four, performance measurement. As above, we converted the 
continuous measures of viability to sensitive versus resistant labels. 
Using these labels, we computed the stratification AUC for mono-
therapy and combination response prediction.
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PERCEPTION’s performance on head and neck cancer cell lines. 
The approach for this prediction was undertaken through specific 
stages.

Step one, data collection and initial analysis. We obtained the 
sc-expression data for five head and neck squamous cell cancer PDCs 
lines, along with their treatment response for eight drugs and com-
bination therapy at two different dosages26. An initial assessment 
revealed that PERCEPTION was unable to build drug response models 
with a Spearman correlation greater than 0.3 between predicted and 
experimental viability using PRISM screens. Therefore, we introduced 
changes to the PERCEPTION pipeline.

Step two, modification of the PERCEPTION pipeline: building 
models from GDSC screens. We turned to GDSC screens to build models 
for drug response, using data from more than approximately 800 cell 
lines specific to these drugs.

Step three, building models. We considered only the top 3,000 
highly expressed genes (with fewer dropouts in the head and neck 
squamous cell cancer dataset) in common between the bulk expres-
sion and PDC datasets to ensure a focused analysis on relevant genes. 
We then built a PERCEPTION model using these 3,000 genes and GDSC 
response profiles. The monotherapy and combination responses were 
calculated following the same methodology used in the GDSC and Nair 
dataset cases.

Step four, performance measurement. As in the analyses above, 
we calculated both stratification AUC and correlations for assessing 
the performance.

Predicting combinations response in patients with  
multiple myeloma
Response labels, sc-expression of patients’ tumors, clustering annota-
tion and mean cluster expression for the multiple myeloma data were 
mined from the original publication29. No statistical methods were used 
to pre-determine sample sizes; we used all available samples. We only 
used the cells annotated as malignant. Predicting the combination 
response of a patient can be divided into a two-step process: step one, 
predict the combination response of each clone in that tumor; step 
two, predict the patient’s response from the clone-level combination 
response. To this end, we first tried to build PERCEPTION response 
models for the four treatments used in the combination therapy. 
We succeeded in building PERCEPTION response models for two of 
the four drugs in the trial that are predictive in cell lines (carfilzomib 
and lenalidomide; Methods) and used them to predict the treatment 
response in patients. We first predicted the combination response for 
each transcriptional cluster (simply referred to here as a clone). To this 
end, we predicted the response for each of the two drugs separately 
and computed the killing using the IDA principle; that is, the predicted 
combination response of n drugs is simply the effect of the single most 
effective drug in the combination52. To overcome the challenge of the 
discrepancy of dosages used in the clinic versus preclinical testing 
where our models are built, we z-scale our predicted response profile 
of a drug across clones; this z-score-predicted response represents 
the relative response of a clone compared to all others available in 
the cohort.

In step two, we use this clone-level combination killing profile 
in a patient to predict the overall patient’s response. We considered 
the predicted response of the least responsive clone found in each 
patient as that patient’s response. This is based on the notion that 
it would be selected by the treatment and eventually dominate the 
overall tumor. Performance was measured using AUC. For our model 
building control, we built random models using either shuffled labels, 
randomized features in the regression model or a non-predictive 
model of another drug in the screen for 1,000 times and computed 
the number of times that the stratification power denoted by AUC 
is higher than our original model. This proportion is provided as an 
empirical P value.

Testing prediction strategies for multiple myeloma. Five different 
strategies were designed to translate clone-level killing into an over-
all clinical response prediction. These strategies were (1) weighted 
average response, calculating the average response across all the 
clones, with each clone’s response weighted by its abundance in the 
tumor; (2) unweighted average response, taking a simple average of 
the response across all the clones; (3) most-sensitive clone response, 
using the response of the clone with the highest predicted response; 
(4) unweighted most-resistant clone response, using the response 
of the most-resistant clone (the clone with the least response), with-
out weighting; and (5) most-resistant clone response, choosing the 
response of the most-resistant clone but weighted by its abundance 
proportion. The performance of these strategies was tested in a cohort 
comprising responders (n = 7) and non-responders (n = 21) to the treat-
ment. The accuracy of each strategy was measured using AUC.

Predicting combinations response in breast cancer clinical 
trial analysis
The pre-filtered 10×-based scRNA-seq count data and the cell type 
annotations of the 65 breast cancer samples (34 patients) were down-
loaded from GEO (GSE158724). No statistical methods were used to 
pre-determine sample sizes; we used all available samples. Samples 
were collected at different time points during the patients' treatments: 
at the time of screening (S), on day 14 (M) and on day 180 at the end of 
the trial (E). In our analysis, we considered only the cells annotated 
as tumor cells. As defined in the primary publication of the dataset40, 
we applied Seurat (v.4.0.5)53. We filtered out samples with fewer than 
100 cells. The 38 transcription clusters identified in all 65 samples 
post-filtering and data processing are as presented in Extended Data 
Fig. 7a,b. We used the reciprocal principal-component analysis inte-
gration workflow to integrate the tumor cells from the remaining 
samples53. The data were normalized using the SCTransform function, 
and the top 5,000 variably expressed genes and the first 50 principal 
components were used in the anchor-based integration step. The 
first 50 principal components and a k.param value of 20 were used to 
identify neighbors and the resolution was set to 0.8 to find distinct 
clusters. We identified 36 different clones, of which only 16 clones 
were found in the pre-treated samples from patients in arms B and C. 
The sc-expression of 16 clones was considered in the drug response 
prediction analysis. The patient response information was obtained 
from Supplementary Table 12 of the original publication40.

We used data from patients with paired samples at time points S 
and E to study the change in post-treatment response. Extended Data 
Fig. 7b shows the clonal distribution in each sample processed; all 
sub-clones (which represent <5% of the cells in the sample) are excluded 
from our analysis. The default PERCEPTION pipeline was used to build 
drug response models except for a single change. The top ~2,500 highly 
expressed genes (ranked by the total number of non-zeroes across all 
the cancer cells) in the breast cancer dataset that are in common with 
the cancer cell line bulk expression data were used in the pipeline. The 
resulting models were used to predict responses at the patient level in 
a similar manner to what we did for the multiple myeloma data. The 
controls for the model building were also tested for the breast cancer 
data, similar to the testing we did for the multiple myeloma data. We 
note that the number of clusters identified using the standard Seurat 
pipeline slightly changed when the initial seed for random number 
generation was changed. These changes did influence the performance 
by up to 1 in the first significant digit (AUC varied from 0.70 to 0.83 
when the seed was changed), but the overall inferences were consistent.

Response models to distinguish responders versus 
non-responders
We built bulk-based drug response models to compare their perfor-
mance versus PERCEPTION models in stratifying responders from 
non-responders in the two clinical trials. To build drug response models 
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based on bulk expression data, we considered all ~500 cell lines with 
bulk expression and PRISM-based drug response. For each drug, we 
randomly divided the data into training (one-third of the cell lines) 
and test sets (two-thirds of the cell lines). As a feature selection step, we 
first identified genes whose bulk expression is correlated with the drug 
viability profile (Pearson’s R) in the training set. We considered the cor-
relation for each gene as a measure of information in a gene expression 
profile and ranked each gene based on the strength of the correlation. 
While considering the top 100 genes, we built a linear regression model 
regularized using an elastic net to predict the response to leave-one-out 
cross-validation, as implemented in R’s glmnet51. The resulting model 
performance was validated on the testing dataset.

To build state-of-the-art bulk-based drug response models as 
defined in a previous study33, we generated random-forest-based mod-
els in a similar framework as defined above. To make sure that the gene 
features used in the resulting model predictors are detected to be 
expressed in the patient sc dataset, we consider genes that overlap in 
both the cell line bulk expression data and patient sc dataset to build 
the models. For each drug, we repeated the above model-building 
steps 100 times and presented the mean and standard error of their 
performances in stratifying responders from non-responders in their 
respective clinical trials.

Predicting resistance to tyrosine kinase inhibitors in NSCLC
The sc-expression profiles of 39 biopsies from 25 patients with NSCLC 
were provided by the original study authors41. The clinical annota-
tions used for this analysis were mined from the original publication41 
(their Table S1). As in the previous sections, we focused only on the 
subset of single cells labeled as malignant in the publication. Seurat 
clustering was performed with resolution = 0.8, dims = 10, number of 
features = 2,000, scale.factor = 10,000, log-normalization method 
with minimum cells in a cluster required to be >3 and minimum fea-
tures required to be >200, to identify a total of 16 clones (Extended 
Data Fig. 8a). The expression of each transcriptional cluster or clone 
in a patient is the averaged expression across all single cells associ-
ated with that cluster in that given patient and a rank normaliza-
tion is performed. We successfully built drug response models for 
dabrafenib, erlotinib, gemcitabine, osimertinib and trametinib. The 
response observed in the most resistant clone of a patient is consid-
ered PERCEPTION’s predicted response. We primarily studied the 
development of drug resistance in the trial. To this end, we defined 
a term called ‘extent of resistance’ of a drug, which is the difference 
between a drug’s predicted viability from PERCEPTION and the pre-
dicted baseline viability. The predicted baseline viability is defined 
as the average predicted viability of the respective treatments in all 
treatment-naive samples. This difference in response from the naive 
state denotes the extent of resistance and is thus named accordingly. 
We computed both Spearman and Pearson correlations to identify 
robust correlations.

Literature survey of cross-resistance and cross-sensitivity
To search for evidence available in published papers for a cross-resistant 
or cross-sensitive drug pair, we used the search term ‘drug X AND drug 
Y’ (for example, erlotinib AND gemcitabine) in the PubMed search 
portal (https://pubmed.ncbi.nlm.nih.gov) on 26 December 2021. 
The resulting clinical trials in the first 50 matches, sorted by best 
match, were manually curated for outcomes. For preclinical evidence 
for or against, non-clinical studies testing the combinations were  
manually curated.

Change of abundance versus predicted resistance of a clone
We first computed and ranked all clones with at least two data points 
at different time points by their mean predicted resistance across all 
samples in which they are present. For each clone, we next computed 
the rate of change of abundance (slope) of the best-fit line of abundance 

versus biopsy time from the start of treatment. Finally, we compared 
this ‘rate of change of abundance’ with the ‘mean predicted resistance’ 
of each clone.

Comparing PERCEPTION’s performance on three clinical 
cohorts
We identified relevant, competing state-of-the-art sc methods for 
benchmarking PERCEPTION by searching PubMed using the search 
term ‘single-cell expression prediction’. This search yielded only Beyon-
dcell, a state-of-the-art model based on sc-expression27. Additionally, 
we tested a state-of-the-art bulk model (ATLANTIS) and four alternative 
methods. The implementation of Beyondcell was downloaded from 
https://github.com/cnio-bu/beyondcell and the default signatures 
provided by Beyondcell’s authors were used. The random-forest-based 
ATLANTIS was downloaded from https://github.com/cancerdatasci/
atlantis/releases and used with the default settings. Benchmarking 
PERCEPTION against these tools to predict patient response, we cal-
culated the AUC for each model in the three clinical cohorts (multiple 
myeloma, breast cancer and lung cancer). We then calculated the mean 
AUC across the three cohorts for each model to determine the overall 
performance.

Testing the most-resistant clone strategy in cell lines
We tested the performance in cell lines for the most-resistant clone 
strategy to stratify resistant versus sensitive cell lines. To this end, 
we first clustered the 200 cell lines with Seurat using uniform param-
eters used across the study, noting 29 clusters and four clusters per 
cell line. We repeated this process for the head and neck PDCs. The 
transcriptional cluster or clonal information was obtained from the 
original publication. We analyzed the sc-expression of primary cells 
derived from five different patients treated with eight different drugs 
at two concentrations (Supplementary Table 6), including both mono-
therapy and combination therapies9. We could build PERCEPTION 
response models for four out of the eight drugs tested (docetaxel, 
epothilone-b, gefitinib and vorinostat; Pearson’s R > 0.25). Resistant 
versus sensitive cells were the top versus bottom 40% cell lines ranked 
by viability. Our predictions were performed for two dosages × four 
monotherapies × five cell lines. The predicted viability over the 20 
(monotherapy, cell line) pairs, comprising four monotherapies × 
five cell lines, is correlated with the observed viability, and individual 
drug-level correlations are provided in Extended Data Fig. 5. We 
plotted the predicted versus experimental correlations obtained 
for all data points, and drug levels are provided in Extended Data 
Figs. 5 and 6.

Drug combinations targeting multiple myeloma clones
To predict combinations for multiple myeloma patients that target 
multiple clones in the tumor disjointly, and thus have a low likeli-
hood for resistance emergence, we began with all combinations of 
two drugs with the predictive PERCEPTION model (n = 44 drugs) and 
ranked every pair by a score denoting the extent of their disjoint killing, 
termed its DKS. This score quantifies the increase in predicted killing 
compared to the expected (better killing of the two monotherapies) of 
a drug combination. Out of the 946 possible combinations scanned, 
842 pairs showed no improvement over the expected (DKS = 0). Analo-
gously, we next looked for all possible triplets of drug combinations 
exhaustively (n = 13,244). Once validated, this design can be used for 
creating optimal combinations targeting multiple clones in a patient. 
Applying this approach to the lung cancer model, we ranked every 
pair (n = 946) by the DKS computed across the four different sc lung 
cancer cohorts. Out of the 946 possible combinations evaluated, 
915 pairs showed no improvement over the monotherapy treatment 
(DKS = 0). The remaining combinations, with DKS > 0, are shown in 
Extended Data Fig. 10a,c. We also computed therapy types that are 
more likely to have high DKS.
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Using TrialTrove to test PERCEPTION on predicting response
We reasoned that it would be possible to curate clinical trial data to 
assess the predictive power of PERCEPTION models in a clinical set-
ting. We used a licensed database, TrialTrove, which has more trials 
and more detailed and structured information than ClinicalTrials.gov, 
better facilitating our data extraction54. We assembled a collection of 
clinical trials data of combination therapy, using software we built to 
parse the TrialTrove database. No statistical methods were used to 
pre-determine sample sizes.

To test our model, our general approach was to identify combina-
tion, multi-arm trials in which one patient arm was administered two 
drugs, A + B, and another patient arm was administered only drug A. 
Specifically, we mined trials meeting three criteria: (1) uniform and con-
sistent trial efficacy labels for either median progression-free survival 
or median-overall survival, (2) having at least two arms with treatment 
design of drug A versus drug A + drug B and (3) targeted therapy treat-
ments (drugs A and B) with predictive PERCEPTION models. Among 
the several cancer types we investigated, NSCLC was the type for which 
we could find sufficient and the most abundant homogeneous data for 
n > 10 trials, partly because the median survival data are more read-
ily available for cancers such as NSCLC with poor survival; therefore, 
we focused on NSCLC in this subsection. An additional filter that was 
applied is that we must be able to build a PERCEPTION model for both 
drugs A and B. We next predicted the improvement in response to such 
combinations over whichever monotherapy was tested in the trial, 
computed as the response difference between the combination and 
monotherapy (survival improvement owing to combination), in patients 
from four NSCLC cohorts with sc-expression55–57, serving as representa-
tive samples of sc tumor data of NSCLC patients (total of 18 patients).

We started with a repository of 66,116 oncology trials in phases 
beyond phase I. To identify combination trials, we used a Python imple-
mentation of a modified form of a query suggested by a TrialTrove 
curator. One of the three fields (Trial Title, Trial Objective, Treatment 
Plan) should contain any one of the seven strings: ‘combination’, ‘both 
drugs’, ‘with or without’, ‘combined’, ‘plus’, ‘with and without’, ‘alone or 
with’ and ‘concurrent’. In addition, the trial keywords must not contain 
the string ‘single-arm'. To narrow down our list of applicable trials to 
only those with results of interest, we required (through another Python 
program) that the trial results field must contain any one of 93 strings 
such as ORR, OS, PFS, response rate, overall survival, progression-free 
survival, disease control rate, and so on. To identify trials that used 
drugs that PERCEPTION can model, we processed the fields named 
‘primary tested drug’ and ‘other tested drug’ to require that together 
these two fields must contain at least two drugs that can be modeled by 
PERCEPTION and at least one drug that is a targeted therapy rather than 
chemotherapy. The ‘primary tested drug’ and ‘other tested drug’ fields 
are already normalized for synonyms. The overall goal of the three 
filters (combination trials, results available, PERCEPTION-suitable 
drugs used) was to eliminate false negatives, trials that would not 
be useful in testing PERCEPTION-built models. Trials that survived 
these three filters were then curated manually to obtain accurate arm 
information and results.

We measured our performance by computing a correlation 
between PERCEPTION’s predicted improvement to combination 
versus survival improvement owing to the combination observed 
in the respective clinical trials. Separate analyses for overall and 
progression-free survival were also done. However, we note the small 
cohorts available for these two analyses. Repeating this analysis in a 
drug-specific manner, we focused on trials of different drug combina-
tions (n = 6) with erlotinib, the only targeted therapy with a sufficient 
number of unique combination trials.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The entire collection of the processed datasets used in this manu-
script, including preclinical models of cancer cell lines and PDCs, 
can be accessed in the Zenodo repository (https://zenodo.org/
record/7860559)58. We collected the bulk-expression and drug 
response profiles generated in cancer cell lines curated from the Dep-
Map portal (https://depmap.org/portal/download) (version 20Q1). 
The sc-expression of 205 cancer cell lines was generated in a previous 
study34 and was downloaded from https://singlecell.broadinstitute.
org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneit
y#study-download. The sc-expression profiles of patients with 
multiple myeloma were downloaded from the original study 
(their supplementary Table 2; https://static-content.springer.
com/esm/art%3A10.1038%2Fs41591-021-01232-w/MediaOb-
jects/41591_2021_1232_MOESM3_ESM.xlsx); data from patients with 
breast cancer were downloaded from GEO (GSE158724) and data from 
patients with NSCLC were provided by the original study authors41.

Code availability
The scripts to replicate each step of results and plots can be accessed 
in a GitHub repository (https://github.com/ruppinlab/SCPO_submis-
sion). We used open-source R versions 4.0 through 4.2 to generate the 
figures. Wherever required, commercially available Adobe Illustrator 
was used to create the figure grids.
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Extended Data Fig. 1 | Overview of PERCEPTION model’s training data and 
features. A) Cancer type distribution of the 318 cell lines used during the bulk 
expression training of PERCEPTION (step 1). B) Similarly, showing the cancer 
type distribution of the 169 cell lines used during the sc-expression training of 
PERCEPTION (step 2) C) The performance of PERCEPTION in predicting response 
in unseen cell lines when built via (1) pan-cancer models: all available cell lines 
(N = 169) are used for training the model, (2) Cancer-type specific: trained only on 
cell lines of the same cancer type as those used in the testing (N = 16 melanoma 
cell lines, 37 lung cancer cell lines and 15 breast cancer cell lines, as we used 
the PERCEPTION to predict the patient’s treatment response in three clinical 

trial cohorts from skin, lung, and breast cancer, we compared the pan-cancer 
model with these three individual cancer-type models). No statistical test was 
performed to compare groups. Error bars indicate the standard error of the mean 
(SEM), reflecting data variability. D) Major classes of mechanism of action of the 
133 FDA-approved drugs that were studied here. No statistical test was performed 
to compare between groups. E) Top pathways enriched in frequently appearing 
features/genes in the PERCEPTION models. This is computed using a GSEA rank 
test across all hallmark pathways. To assess the statistical significance of these 
scores, a permutation test was performed.
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Extended Data Fig. 2 | Visualization of PERCEPTION’s ability to predict 
viability at four recent EGFR inhibitors vs the EGFR pathway activity at 
single-cell resolution. A) The top-most panel visualizes the PERCEPTION 
predicted killing by nutlin-3, a canonical MDM2 antagonist and the expression 
of MDM2 for every single cell (each point) in the top and bottom tSNE plot, 
respectively. The intensity of the color denotes the extent of predicted killing in 
the right panel and measured MDM2 expression in the left panel. 3566 single-
cells from nine p53 WT lung cancer cell lines are depicted. The tSNE clustering is 
performed using the expression of all the genes. B) A similar display visualizes 
PERCEPTION’s predicted killing and the EGFR pathway signature expression 

across 12,482 individual lung cancer cells. C) The four panels visualize predicted 
killing by four EGFR inhibitors, afatinib, icotinib, lapatinib, osimertinib, in every 
single cell (each point) via a tSNE plot, respectively. Here, the color of each 
point denotes the extent of predicted killing. In this figure, we provide data on 
12,482 individual lung cancer cells. The tSNE clustering is performed using the 
expression profiles of all the genes. D) We present here the correlation between 
the predicted killing effect of nutlin-3 from the PERCEPTION prediction of each 
cell (x-axis) and the MDM2 gene expression in that single cell, where they are 
found to be strongly correlated. “MDM2 Activity” on the y-axis denotes MDM2 
gene expression.
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Extended Data Fig. 3 | Evaluating PERCEPTION’s Efficacy in Unseen Lung 
Cancer Cell Line Screens. A) A) Correlation Analysis: Examines the relationships 
across three platforms - “GDSC vs. PRISM”, “PRISM vs. PERCEPTION” 
(cross-validation), and “GDSC vs. PERCEPTION”. Drug response predictions at 
single-cell resolution were aggregated to represent overall cell line responses. 
B) These cross-platform correlations are provided at a drug level. Significance 
of correlations assessed using Pearson’s r test. C) Monotherapy Predictions 
by PERCEPTION: Showcases the predicted viability of monotherapies based 
on cell line-specific sc-expression, comparing resistant (N = 72) and sensitive 
(N = 84) lines using boxplots. Significance determined by one-tailed Wilcoxon 
rank-sum test. D) Sensitivity-Specificity Analysis: The receiver operator curve 
illustrates the balance between sensitivity and specificity in distinguishing 
between sensitive and resistant cell lines. Area under the curve (AUC) values are 
noted, with the dashed line representing random-model performance. E) & F) 

Drug Combination Response Predictions: Depict PERCEPTION’s predictions 
for drug combination responses in resistant (N = 28) vs. sensitive (N = 24) cell 
lines. G) Single-cell vs. Pseudo-bulk Level Analysis in PRISM Screens: Extends 
the analysis in panel A to single-cell and pseudo-bulk levels, highlighting the 
improved performance in pseudo-bulk data. The comparison includes predicted 
AUC values at both levels and experimental AUC values in PRISM for dabrafenib, 
AZD-7762, and trametinib, covering both testing (N = 80) and training cell lines 
(N = 318). H-K) Patient-Derived H&N Primary Cell Analysis: H) Prediction of 
Monotherapy Response: PERCEPTION’s predicted viability in resistant (n = 16) 
vs. sensitive (n = 16) lines. I) ROC Curve Analysis: Illustrates model’s prediction 
capability (sensitivity and specificity) for resistant vs. sensitive lines. AUC values 
are presented. J) & K) Combination Treatment Response: Similar analysis for 
combination treatments, comparing resistant (12) to sensitive (12) lines. All box 
plots show median, 25th/75th percentiles, and range.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Quality Control and Predictive Analyses in Lung 
Cancer Cell Line Screens. A) Concordance between Lung Cancer and PRISM 
Screens: Illustrates the correlation (Rho on x-axis) and significance (y-axis) 
between our lung cancer screen and PRISM. Focuses on cell lines showing 
significantly positive correlation, as indicated by Pearson’s r test p-value.  
B) Predicted vs. Observed Viability Comparison: Analyzes the correlation 
between predicted and observed cell viability (N = 94 viability observations  
each, both centered and scaled). Pearson correlation and significance are noted. 
A best fit line with a 95% confidence interval is shown. C) Viability Prediction in 
Top vs. Bottom 50% Cell Lines: Compares predicted viability in resistant (N = 11, 
bottom 50%) versus sensitive (N = 10, top 50%) cell lines for each drug. Uses 
one-tailed Wilcoxon rank-sum test for statistical significance, presented for 

each drug. D) Combination Response Prediction in 21 Lung Cancer Cell Lines: 
Similar to panel B, this compares predicted versus observed combination 
viability (N = 49 viability observations each), with Pearson correlation and 
significance provided. A best fit line with a 95% confidence interval is included. 
E) Combination Viability Prediction in Top vs. Bottom 50% Cell Lines: Analyzes 
predicted combination viability (centered and scaled) for resistant (N = 11) and 
sensitive (N = 10) cell lines (based on observed viability) across 7 drug pairs. 
Uses one-tailed Wilcoxon rank-sum test for significance, presented for each 
combination. F) Consolidated Analysis of Monotherapies and Combinations: 
Integrates data from distinct drugs in panel E for combined analysis of 
monotherapies (N = 188) and drug combinations (N = 98). All box plots show 
median, 25th/75th percentiles, and range.
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Extended Data Fig. 5 | The predicted vs. experimental correlations obtained 
for individual treatments. Each scatter plot compares the experimentally 
observed cell viability (x-axis; at median IC50 concentration) to the predicted 
viability (y-axis; rescaled AUC value) for the four drugs docetaxel, epothilone-b, 
gefitinib, and vorinostat (top four) and the pairwise combinations among 
{docetaxel, epothilone-b, gefitinib} (bottom three). Each dot represents the 

response of patient-derived cell lines (N = 5, color coded) for the drugs they were 
screened with. The Spearman rank correlation (cor) is provided at the bottom of 
each plot. These plots are provided for the following treatment concentrations - 
A) median IC50 B) one-third of median IC50. The error bands in all panels of this 
figure show 95% confidence interval of the fit.
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Extended Data Fig. 6 | Correlation of Predicted and Observed Viability in 
Monotherapies and Combination Treatments in Cell Lines. Each scatter plot 
compares experimental cell viability (N = 20, x-axis; scaled per drug treatment) 
with predicted viability (N = 20, y-axis; rescaled AUC value). Points represent 
patient-derived cell line responses, color-coded by line and shape-coded by 
drug. Pearson correlation (R) is noted in each plot’s lower right corner. All 
panels feature error bands showing the 95% confidence interval of the fit. 
A) Monotherapy Response at Median IC50: Relation between monotherapy 
response and experimental response (N = 20 each). B) Combination Therapy 
Response at Median IC50: Similar analysis for combination therapy (N = 15 
each). C) Monotherapy Response at 3x Median IC50: Examines monotherapy 
response at higher concentration (N = 20 each). D) Combination Therapy 
at 3x Median IC50: Analyzes combination therapy response at increased 
concentration (N = 15 each). E-G) Monotherapy and Combination Response 
Prediction in Lung Cancer Cell Lines: E) UMAP Clustering: Represents 53,514 
cells from 199 cell lines (~300 cells/line) using sc-expression, identifying 29 

clusters with cells from four unique sub-clones. F-G) Predicted Viability Based 
on Most-Resistant Clone: Viability predictions for 21 lung cancer cell lines (N = 11 
resistant & 10 sensitive cell ines), considering the most resistant clone. Statistical 
significance assessed with two-sided Wilcoxon rank-sum test. H-I) Monotherapy 
and Combination Response Prediction in Patient-Derived HNSC Primary Cells 
(N = 5): H) Monotherapy Response Based on Most-Resistant Clone: Presents 
PERCEPTION predicted viability and resistance vs. sensitivity stratification 
(N = 2 resistant & 3 sensitive). Includes drugs docetaxel, epothilone-b, gefitinib, 
and vorinostat. I) Combination Response: Similar analysis for combination 
treatments. Both panels include a left-side plot for predicted viability in resistant 
(N = 2) vs. sensitive (N = 3) lines and a right-side ROC plot showing prediction 
power (sensitivity and specificity). AUC values are provided, with the dashed 
line indicating random-model performance. Statistical analysis performed 
with two-sided Wilcoxon rank-sum test. All box plots depict median, 25th/75th 
percentiles, and range.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparing PERCEPTION with Existing Bulk Response 
Models in a Breast Cancer Clinical Trial. A) tSNE Transcriptional Clustering: 
Displays 36 transcriptional tumor clusters identified in the trial, integrating cells 
from 34 patients at three time points. Clusters, color-coded and defined in the 
legend, were derived using Seurat package. B) Malignant Sub-Clone Abundance: 
Shows the distribution of malignant sub-clones (y-axis) in breast cancer 
samples (x-axis), based on sc-expression. Different sub-clones are color-coded 
in the legend. Sample labels on the x-axis indicate patient id and time point of 
collection (“_S” - day 0, “_M” - day 14, “_E” - day 180). C) Pre-Treatment Clone-Level 
Response in Arms B and C: Predicted ribociclib viability (y-axis) versus various 
clones in pre-treatment samples (x-axis). Response status is displayed at the top 
of each column, with sample names below. Dot sizes represent the proportion 
of each cluster/clone, with a color scale indicating predicted viability (dark blue 
for low, yellow for high). D-E) Stratification Power of PERCEPTION vs Published 

Models: D) Bulk Expression-Based Models: Compares PERCEPTION with models 
trained only on bulk expression (N = 7 responders and 7 non-responders).  
E) Models Not Tuned on sc-Expression: PERCEPTION compared against models 
without sc-expression tuning (N = 7 responders and 7 non-responders). Both 
panels include deterministic model generation (seed=1) for training and test 
sets. Left-side plots present PERCEPTION predicted viability in responders vs. 
non-responders. Right-side ROC plots depict prediction power (sensitivity and 
specificity), with AUC values near the lower right corner. The dashed diagonal 
line indicates performance of a random model. Statistical significance assessed 
using two-sided Wilcoxon rank-sum test. F) Stratification Using Average  
sc-Viability: Stratifies responders (N = 7) vs. non-responders (N = 7) in 
combination therapy arms using average sc-viability in the FELINE trial. 
Statistical significance evaluated by two-sided Wilcoxon rank-sum test. Box plots 
show median, 25th/75th percentiles, and range.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Pre-processing and predicting clone level response in 
lung cancer patient cohort. (A) A UMAP of 3671 malignant cells derived from 25 
patients with 26,485 genes are clustered using Seurat considering the first 10 axes 
with the most variance. Each clone (a transcriptional cluster) output is annotated 
using a color where the legend is provided on the right. (B) The proportions of 

these clones (y-axis) are provided in each patient (x-axis) faceted by the time 
point at which these biopsies are collected. (C-F) Predicted viability of the four 
tyrosine kinase inhibitors: erlotinib, dabrafenib, osimertinib, and trametinib, 
in respective order, is provided at a clonal level for each patient where response 
status is provided at the bottom of each facet.
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Extended Data Fig. 9 | Correlation between the elapsed treatment time and 
estimated resistance holds true across different conditions. In A-D), The 
extent of resistance to a treatment from the baseline (x-axis) is correlated with 
the treatment elapsed time (Number of days from the start of the treatment 
before the biopsy was taken) (y-axis). (A) The points and line colors denote 
the treatment administered to the patients listed by the right legend. B) Color 
denotes prior treatment. C) Color denotes the patient’s ID. D) Color denotes 

whether the disease is metastatic or primary at the time of biopsy. E) Extent of 
Resistance was calculated using bulk-expression of the tumor, where the increase 
with “Treatment Elapsed time” is positive, however, insignificant, and weaker 
than when the patient response is taken as the most-resistant clone available 
response. The error bands in all panels of this figure show 95% confidence interval 
of the fit.
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Extended Data Fig. 10 | Identifying Optimal Drug Combinations for Multiple 
Myeloma and Lung Cancer Patients. A) Median Disjoint Killing Score (DKS) in 
Myeloma: For 94 drug pairs with positive DKS, the median DKS (y-axis) is plotted 
against each pair (x-axis). Color intensity denotes the proportion of patients 
(N = 12) with DKS > 0, with the top pairs labeled. Legend for color intensity is 
at the top. B) DKS for Triplets: Similar analysis for drug triplets. C) Clone-Level 
Disjoint Killing for Top Pairs: Viability profiles of clones for top pairs from C are 
shown for each patient (facet), with color intensity indicating post-treatment 
viability of each clone (x-axis) for a given drug (y-axis). Legend on the right.  
D) Clone-Level Disjoint Killing for Triplets: Analogous to C, but for drug triplets 
(N = 86, Triplets with DKS > 0). E-L) Analysis in Lung Cancer: E) Correlation 
in Clinical Trials: Examines the correlation between response difference of 
combination vs monotherapy (x-axis) and observed survival difference in 
combination vs single-treatment arms. Dot size represents patient numbers, 

with a best-fit line shown. Legend for dot sizes and error bands showing 95% 
confidence interval are at the top. Weighted Pearson’s r test p-value denotes 
correlation significance. F-H) Repeated for progression-free survival, overall 
survival, and erlotinib combinations. I) DKS for Lung Cancer Drug Combinations: 
Median DKS (y-axis) for 31 positive pairs plotted against each pair (x-axis). Color 
intensity shows proportion of patients with positive DKS, top pairs labeled, 
legend at the top. J-K) Disjoint Killing by Drug Class and Mechanism: Compares 
DKS (log10 value on y-axis) by general drug classes (N = 3 chemo+chemo, 7 
chemo+targeted, 5 targeted+ targeted) (J) and mechanisms of action (N = 3 
each MOA) (K). Evaluated by two-sided Wilcoxon rank-sum test. Box plots show 
median, 25th/75th percentiles, and range. L) Clone-Level Response in Lung 
Cancer: Shows post-treatment viability for top effective combinations, one facet 
per patient. Color intensity indicates clone viability (x-axis) for each drug (y-axis), 
for the top three patients ranked by highest DKS score per drug.

http://www.nature.com/natcancer







	PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors

	Results

	Overview of PERCEPTION

	Cross-validation and independent performance in cell lines

	Predicting treatment response in a multiple myeloma trial

	Predicting CDK inhibition response in a breast cancer trial

	Capturing emergence of resistance in lung cancer patients

	Predicting combination therapies targeting disjoint clones

	Benchmarking PERCEPTION versus state-of-the-art methods

	How to use PERCEPTION for new a cohort or a new drug


	Discussion

	Methods

	Data collection

	The PERCEPTION pipeline

	Description of the method and optimization formula
	Data choices in step one and step two of PERCEPTION

	Evaluating PERCEPTION on three independent cell-line screens

	PERCEPTION’s performance on GDSC
	PERCEPTION’s performance on monotherapy and combinations
	PERCEPTION’s performance on head and neck cancer cell lines

	Predicting combinations response in patients with multiple myeloma

	Testing prediction strategies for multiple myeloma

	Predicting combinations response in breast cancer clinical trial analysis

	Response models to distinguish responders versus non-responders

	Predicting resistance to tyrosine kinase inhibitors in NSCLC

	Literature survey of cross-resistance and cross-sensitivity

	Change of abundance versus predicted resistance of a clone

	Comparing PERCEPTION’s performance on three clinical cohorts

	Testing the most-resistant clone strategy in cell lines

	Drug combinations targeting multiple myeloma clones

	Using TrialTrove to test PERCEPTION on predicting response

	Reporting summary


	Acknowledgements

	Fig. 1 Overview of the PERCEPTION framework and its performance during cross-validation.
	Fig. 2 PERCEPTION predictions of DACA–KRD combination therapy in patients with multiple myeloma.
	Fig. 3 PERCEPTION prediction of the combination therapy in the FELINE clinical trial.
	Fig. 4 Predicting the development of resistance to tyrosine kinase inhibitors in lung cancer patients.
	Fig. 5 Performance of PERCEPTION versus state-of-the-art and RNA-seq models.
	Extended Data Fig. 1 Overview of PERCEPTION model’s training data and features.
	Extended Data Fig. 2 Visualization of PERCEPTION’s ability to predict viability at four recent EGFR inhibitors vs the EGFR pathway activity at single-cell resolution.
	Extended Data Fig. 3 Evaluating PERCEPTION’s Efficacy in Unseen Lung Cancer Cell Line Screens.
	Extended Data Fig. 4 Quality Control and Predictive Analyses in Lung Cancer Cell Line Screens.
	Extended Data Fig. 5 The predicted vs.
	Extended Data Fig. 6 Correlation of Predicted and Observed Viability in Monotherapies and Combination Treatments in Cell Lines.
	Extended Data Fig. 7 Comparing PERCEPTION with Existing Bulk Response Models in a Breast Cancer Clinical Trial.
	Extended Data Fig. 8 Pre-processing and predicting clone level response in lung cancer patient cohort.
	Extended Data Fig. 9 Correlation between the elapsed treatment time and estimated resistance holds true across different conditions.
	Extended Data Fig. 10 Identifying Optimal Drug Combinations for Multiple Myeloma and Lung Cancer Patients.




