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A B S T R A C T   

Model calibration, critical to the success and safety of clinical prediction models, deteriorates over time in 
response to the dynamic nature of clinical environments. To support informed, data-driven model updating 
strategies, we present and evaluate a calibration drift detection system. Methods are developed for maintaining 
dynamic calibration curves with optimized online stochastic gradient descent and for detecting increasing 
miscalibration with adaptive sliding windows. These methods are generalizable to support diverse prediction 
models developed using a variety of learning algorithms and customizable to address the unique needs of clinical 
use cases. In both simulation and case studies, our system accurately detected calibration drift. When drift is 
detected, our system further provides actionable alerts by including information on a window of recent data that 
may be appropriate for model updating. Simulations showed these windows were primarily composed of data 
accruing after drift onset, supporting the potential utility of the windows for model updating. By promoting 
model updating as calibration deteriorates rather than on pre-determined schedules, implementations of our drift 
detection system may minimize interim periods of insufficient model accuracy and focus analytic resources on 
those models most in need of attention.   

1. Introduction 

Electronic health record-embedded predictive analytics promise to 
improve health outcomes by supporting clinical care, patient and pro-
vider decision-making, and population management [1–3]. Realizing 
this promise requires methods to address key challenges to widespread, 
effective implementation. Much of the work establishing best practices 
for clinical prediction applications focuses on the crucial phases of 
model development and validation [4–6]. However, the utility of pre-
diction models is critically dependent on successful implementation, 
maintenance, and de-implementation strategies [3]. Best practices 
addressing these later phases of the clinical predictive analytics cycle are 
yet to be fully developed and further research is needed to address the 
unique challenges of clinical environments [3,7]. 

One such challenge results from model calibration, increasingly 

recognized as critical to the success and safety of clinical deployment of 
prediction models [1,8–10], deteriorating over time [11–17]. This 
calibration drift is a consequence of deploying models in non-stationary 
clinical environments where differences arise over time between the 
population on which a model was developed and the population to 
which that model is applied [5,18–23]. Abrupt changes result when 
models are transported across clinical settings, new clinical guidelines 
are implemented, or information systems are updated. More gradual 
changes in clinical environments may occur as demographics shifts, new 
practice patterns emerge, or workflows evolve [5,18,20,21,23]. Most 
recently, the sweeping changes in care delivery during the COVID-19 
pandemic highlight how quickly and significantly the environment in 
which models function can shift under simultaneous changes in data 
collection, patient case mix, and clinical decision-making [24–27]. 

There are existing strategies for mitigating these impacts, most 
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commonly predefining the interval and method for model updating or 
refitting [19,28,29]. However, this approach pays little or no attention 
to model performance between scheduled maintenance points; over-
looks guidance recommending recalibration over model refitting 
[5,21,22,30,31]; and fails to account for variations in the response of 
different learning algorithms to changes in clinical environments 
[11,12,32]. As a result, these types of fixed updating or refitting methods 
are inefficient and sometimes even detrimental [5,7,19,20,33]. 

Data-driven updating strategies can address the limitations of 
scheduled refitting by tailoring updates around the timing, extent, and 
form of observed performance drift. Such strategies require methods to 
determine both how and when models should be updated. Testing pro-
cedures addressing the former question can provide data-driven 

guidance on selecting between refitting and recalibration [31,33]. 
Scheduled updates applying such test recommendations improved cali-
bration over time compared to a predefined refitting approach 
[31,33,34]. However, these testing procedures do not address when 
updating should be considered nor what window of recent observations 
may be appropriate for updating. During periods of rapid performance 
drift, waiting for scheduled updating points may allow for unacceptably 
long durations of reduced accuracy in the interim. On the other hand, 
during periods of relatively stable performance, scheduled updates may 
result in unnecessary efforts updating well-performing models. 

We developed a calibration drift detection system to alert users to 
deteriorating model performance. Our detector monitors a detailed, 
stringent calibration measure through the implementation of dynamic 

Fig. 1. Overview of the calibration drift detection process. (A) Flow of the process for a single observation. (B) Illustration of evolving dynamic calibration curves and 
calculation of the error metric as deviation of the curve from ideal calibration line. (C) Illustration of the drift detection process highlighting the sequence paired 
subwindows evaluated for differences in error. 
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calibration curves, a new method to maintain an up-to-date represen-
tation of model performance as it evolves over time. In accumulating 
observations, this calibration measure is monitored for drift by a 
customized adaptive windowing (Adwin) [35] implementation that 
provides a one-sided test for increasing miscalibration. In addition to 
alerting users to the presence of calibration drift, our system further 
supports model managers by providing actionable alerts with informa-
tion on a window of recent data that may be appropriate for model 
updating. In this paper, we describe our dynamic calibration curves and 
Adwin implementation for calibration drift detection and evaluate the 
properties of this approach in both simulated and real-world data. 

2. A system for calibration monitoring and drift detection 

2.1. Design overview 

We designed a scalable system for use in prospective, production 
environments that monitors a set of risk prediction models by providing 
data-driven guidance on the timing of and data to be used for model 
updating. This design required adapting and extending multiple 
methods in order to (1) prospectively and iteratively update the 
assessment of model calibration as data accumulates over time; (2) 
evaluate sequential calibration assessments for significant drift; and (3) 
determine the interval of data that should be used to update the existing 
model. Throughout the design, we emphasize practical, efficient 
methods to avoid computational or analytical resource burdens; gener-
alizable methods to support diverse prediction models developed using a 
variety of learning algorithms; and customizable methods to address the 
unique needs of clinical use cases. 

Fig. 1 provides an overview of our calibration drift detection system 
and illustrates the process at two unique timepoints. A prediction is 
generated as a new patient’s data becomes available. The error of this 
prediction is estimated from the current dynamic calibration curve. The 
dynamic calibration curve is subsequently updated once the patient’s 
outcome becomes available. The calibration error for the observation is 
submitted to an adaptive windowing [35] monitor which triggers an 
alert when a significant increase in error is discovered. In addition to 
alerting the user to calibration drift, the system returns a window of 
recent data in which there are no further statistically significant in-
creases in error [35]. We propose this returned window as a candidate 
for use in any subsequent updating process. Although our system is 
designed to support model updating, for the purposes of this study, we 
focus on detecting calibration drift and leave the updating response to 
other ongoing research. 

2.2. Dynamic calibration curves 

2.2.1. Motivation 
Calibration curves are graphical representations of model perfor-

mance across the range of predicted probability. These curves are con-
structed by regressing observed outcomes on predicted probabilities 
with loess smoothing or logistic regression. For perfectly calibrated 
models, such curves fall along the bisector of a plot of observed outcome 
rates against predicted probabilities [36–38]. The fitted value of a 
calibration curve at a given predicted probability thus provides an es-
timate of the observed probability of the outcome among patients with 
similar predicted risk [37]. Calibration curves are typically constructed 
once on a prespecified cohort of validation data. However, when 
applying prediction models prospectively, validation data arrives in a 
streaming fashion as new patient encounters are recorded. Building new 
calibration curves on recent data as each new observation arrives could 
become computationally burdensome and would require assumptions 
regarding the appropriate batch of recent observations to consider when 
building each new curve. Given these challenges, implementing cali-
bration curves in the streaming context and with an interest in how these 
curves change over time requires a new approach to curve construction. 

2.2.2. Approach 
Our method for dynamic calibration curves maintains evolving lo-

gistic calibration curves using online stochastic gradient descent with 
Adam optimization [39]. Gradient descent estimates the coefficients of a 
logistic regression by incrementally adjusting coefficients toward those 
values that minimize the logistic loss function [40]. As a model’s cali-
bration changes over time, the true coefficients of the logistic calibration 
curve change to reflect the new, current association between predictions 
and observed outcomes. Online gradient descent can respond to such 
changes by processing observations in temporal order and stepping co-
efficient estimates toward newly optimal values that reflect the current 
the loss observed among recent data [41,42]. The learning rate of the 
gradient descent process is critical to determining how quickly coeffi-
cient estimates would step toward new optimal values. In non-stationary 
environments, a constant learning rate may not be appropriate given 
preferences to learn more quickly during periods of change and more 
slowly during periods of stability [41]. Adam addresses this concern by 
scaling each coefficient’s learning rate by the exponentially weighted 
moving averages of the gradient and squared gradient [39]. The step 
size, or initial learning rate, of an Adam implementation allows users to 
balance speed of learning and variability of the fitted curve. Small step 
sizes reduce the speed at which parameters can move toward ideal 
values, whereas large step sizes may lead to variability in parameter 
values from iteration to iteration. Adam optimization is fast, computa-
tionally efficient, and widely implemented in machine learning 
applications. 

The logistic model underlying dynamic calibration curves may be 
parameterized with any number of linear, spline, or polynomial ex-
pansions of model predictions [37,38,43,44]. Here we define a default 
parameterization with fractional polynomials. This parameterization 
avoids concern that the knots of splines may require repositioning over 
time and better captures complex nonlinear associations than traditional 
polynomials [45]. In simulations (see Appendix A), we found a 5-degree 
fractional polynomial of the form {0.5, 0.5, 0.5, 0.5, 0.5} was able to 
represent both simple and complex forms of miscalibration. This frac-
tional polynomial curve takes the following form: 

logit(y)=β0+β1
̅̅̅
p

√
+β2

̅̅̅
p
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where p is the predicted probability and y is the observed dichotomous 
outcome. We note, however, our method is generalizable to custom, 
user-specified parametrizations. 

Adam requires initial values for each curve coefficient. Randomly 
generated values may suffice for some use cases. However, we can 
provide more informative starting points. Prediction models would have 
been validated prior to implementation and before any subsequent 
ongoing assessment with dynamic calibration curves. We recommend 
leveraging information from such validation sets to initialize dynamic 
calibration curve coefficients. Initial coefficient estimates can be deter-
mined by fitting a curve with the preferred parameterization on the 
validation data using general linear modeling methods. 

2.3. Adaptive windowing drift detection 

2.3.1. Motivation 
Concept drift detection is an established area of research providing 

methods to identify changes over time in the performance of prediction 
models [46]. However, the development and validation of these 
methods have focused on identifying changes in misclassification rates 
[46–49]. This focus on discrimination rather than calibration does not 
provide a sufficiently nuanced assessment of model performance for 
many clinical use cases [8,14,43,50,51]. 

Several drift detection methods may be extensible to detect cali-
bration drift. We identified several key requirements for calibration drift 
detection in the context of model updating. First, the algorithm must be 
applicable to streaming data in which observations may arrive and be 
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processed individually rather than in batches that would require users to 
make assumptions regarding the speed of drift. Second, the algorithm 
should be flexible in terms of the calibration metric evaluated to support 
multiple modeling use cases. Third, upon detecting calibration drift, the 
method should inform a response to drift by providing insight into a 
window of recent observations that may be appropriate for updating the 
model. 

Given these requirements, we implemented a novel variation of the 
Adwin drift detection algorithm. Adwin uses an adaptive sliding window 
method to detect drift by comparing error distributions among sliding 
pairs of subwindows [35]. Adwin adheres to all our requirements, being 
designed for streaming data, evaluating any bounded error metric, and 
inherently reporting a window of recent data that may be suitable for 
updating in response to any detected performance drift [35]. Further, 
Adwin provides intuitive parameterization, does not require users to 
prespecify expected performance during periods of stability, and pro-
vides statistical bounds on detection accuracy [35]. Extensions to the 
original Adwin algorithm also support parallel processing, minimize 
computational requirements, and account for delays between prediction 
generation and outcome observation [35,52]. Other methods, such as 
those used for statistical process control [47,53,54] could also be 
adapted to these requirements. 

2.3.2. Approach 
Adwin aims to maintain a window (W) of recent data which appears 

to be produced by a stable generating process. When a new observation 
arrives, the error in the observation’s prediction is appended to the 
current window. Sliding divisions of W into pairs of temporal sub-
windows (i.e., W1 containing newer data and W0 containing older data; 
see Fig. 1C) allow for a sequence of comparison between a growing set of 
older data and a shrinking set of newer data. If a significant difference in 
the distribution of error between a pair of subwindows is discovered, 
Adwin shrinks W by dropping the older observations (W0). Any time W 
shrinks, the process has identified drift and the retained data (W1), in 
which no statistically significant shift in performance is observed, may 
be appropriate for updating the model to restore performance. Further 
details of the Adwin algorithm are provided in Appendix B. 

We customized our Adwin implementation in two ways. In this work, 
we are interested in identifying increases in miscalibration that may 
require model updating, and are less concerned with potential im-
provements the calibration of predictions. Thus, we adjusted Adwin’s 
test comparing pairs of subwindows to perform a one-sided test. Second, 
although Adwin was originally described using classification error [35], 
to focus our detector on calibration, we implemented Adwin with a 
stringent measure of calibration based on calibration curves maintained 
with the approach described in Section 2.2.2. 

Our Adwin implementation monitors and evaluates a curve-based 
calibration error metric defined as the absolute difference between the 
predicted probability and the fitted value of the calibration curve (see 
Fig. B.1, details in Appendix B). The values evaluated by the Adwin al-
gorithm are defined as follows for an observation at time t: 

et =

⃒
⃒
⃒
⃒p̂t − pt

⃒
⃒
⃒
⃒

where et is the calibration error, ptthe predicted probability generated 
from the prediction model, and p̂t is the fitted value of the calibration 
curve estimated using the most recent coefficients of the dynamic cali-
bration curve. This calibration error metric is bounded on the [0, 1] 
interval as required by the Adwin algorithm and is interpretable as the 
magnitude of deviation of the calibration curve from the ideal (similar to 
the integrated calibration index [37]). We selected a stringent curve- 
based metric to align our detector with the clinical decision-making 
context. However, we note any bounded calibration or accuracy 
metric could be monitored. 

Adwin requires users to specify a significance level (δ) for detecting a 

difference in mean error between pairs of subwindows. Adwin adjusts 
for multiple comparisons to bound the error rate at the specified δ. As a 
default, we specify δ = 0.05, which sets the theoretical upper bound of 
the false positive rate (i.e., detecting drift during periods of stable model 
performance) at the common Type I error threshold of 5%. Simulations 
providing some guidance on reasonable ranges of δ are available in 
Appendix B. 

3. System evaluation 

3.1. Simulation study 

We conducted simulation studies to illustrate the performance 
properties of both dynamic calibration curves and our calibration drift 
detection approach. We simulated timeseries transitioning from cali-
brated predictions to predictions generated from one of four mis-
calibrated models. To reflect the notion that many clinical applications 
have predictions clustered in low risk regions, and that risk models 
operating with clustered high risk observations would present similar 
challenges, we generated true probabilities from a skewed Beta(1.25,5)
distribution, which enriched for low probability predictions. Simulated 
outcomes were drawn from Bernoulli(p), where p is the true probability. 
Miscalibrated probabilities were constructed by transforming the true 
probabilities with calibration curves that deviated from ideal calibration 
(see Fig. 2). These transformations created systematic overprediction, 
overfitting, miscalibration that fluctuated between over and under-
prediction over the range of probability, or miscalibration resulting from 
a subset of low risk observations being systematically overpredicted. 
The miscalibrated subset scenario was designed to reflect the possibility 
of changes in clinical guidelines or data capture methods that impact a 
model’s ability to be accurately applied in particular subset of patients. 

3.1.1. Dynamic calibration curves 
To illustrate the evolution of dynamic calibration curves in response 

to performance changes, we documented the location of calibration 
curves after an abrupt change in model performance. Simulated times-
eries included 1000 observations with calibrated predicted probabilities 
and a subsequent 5000 observations with miscalibrated predicted 
probabilities. For each of 1000 timeseries, we recorded values of the 
coefficients of the dynamic calibration curves after each observation. 

In addition to visualizing the progression of curves over the times-
eries, we calculated the proportion of the true, known calibration curve 
represented by the dynamic curve. After processing each observation, 
we estimated fitted values from the dynamic calibration curves on an 
evaluation set (n = 5000) from the current performance context. Across 

Fig. 2. Simulated forms of miscalibration.  
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repeated simulations for each scenario, we determined whether the 95% 
sampling intervals of these fitted values captured the true location of the 
calibration curve. We then calculated the proportion of the true cali-
bration curve represented by the dynamic curve, weighted by the dis-
tribution of predicted probabilities. 

During the pre-drift period, curves did not diverge from initial 
values. After drift onset, curves shifted in response to changes in cali-
bration. For the shift to overprediction, curves illustrated the new post- 
drift form of calibration except at the highest range of probability (see 
Fig. 3; see Appendix C for corresponding plots for other forms of mis-
calibration) and captured 95% of the true calibration curve within 
approximately 600 observations after the abrupt change in performance. 
For the overfitted model, dynamic curves represented the calibration 
relationship in data-dense regions within 150 observation of the shift. 
Dynamic calibration curves were least responsive to the transition to 
miscalibration that fluctuated between over and underprediction across 
the range of probability. For this miscalibration scenario, the proportion 
of the true curve represented by dynamic curves remained above 80% 
after drift onset and slowly increased to 95% over the 5000 post-drift 
observations. This finding is likely due to this form of miscalibration 
not deviating far from the ideal calibration line in the high density, low 
probability regions. 

3.1.2. Calibration drift detection 
To evaluate the behavior of our Adwin-based calibration drift 

detection approach, we simulated timeseries with 5000 observations 
over which calibration deteriorated at varying speeds. The speed of 
calibration drift took four forms – an abrupt transition, a rapid transition 
over a short period (1000 observations), a gradual transition over an 
extended period (4000 observations), and a recurrent/seasonal transi-
tion in which observations transitioned back and forth between two 
calibration settings (every 1000 observations). With the exception of the 
recurrent case, the first 1000 observations in each series were generated 
from calibrated predictions and temporal transitions began immediately 
following this stable period. For each combination of temporal transition 

pattern and post-drift miscalibration, we applied our calibration drift 
detection system to 1000 timeseries with δ = 0.05. 

We evaluated our calibration drift detection approach for false pos-
itives, false negatives, and detection delays. False positives are de-
tections occurring prior to drift onset. False negatives, missed 
opportunities to detect calibration drift, are any timeseries for which no 
drift was detected. Since varying transition speeds lead to differences in 
the speed of accumulated change in calibration, we evaluated detection 
delays as both time to detection (number of observations from drift onset 
to drift detection) and lag to detection (number of observations from 
expected detection to observed detection). To specify expected detection 
points, we compared the mean calibration error from a pre-drift cali-
brated population to populations with varying mixtures of pre and post- 
drift observations. The minimum mixture rate at which a statistically 
significant difference in calibration error was detected (p < 0.05) 
determined the point along each temporal transition at which detection 
would be expected (see Appendix C for additional detail). We further 
documented properties of the data window returned by the Adwin al-
gorithm when drift was detected, including the size of the window and 
whether the window included observations occurring prior to drift 
onset. Sensitivity analyses using Adwin’s standard two-sided test for any 
change in calibration are presented in Appendix D. 

Each simulation provided a variety of details about the drift detec-
tion process. Fig. 4 illustrates these detailed results for transitions from a 
calibrated model toward one that systematically overpredicts. These 
plots illustrate the impact of speed of transition on the temporal error 
distribution evaluated by the Adwin algorithm. Fig. 4 further highlights 
the two critical aspects of the drift detection process: timing of detection 
and relevance of returned data windows. Box plots below the error 
distributions indicate the variable timing of detections across iterations, 
with the majority of detections occurring after drift onset and after ex-
pected detection points. In addition to the median window of observa-
tions returned at the time of detection, the figure also includes box plots 
presenting variability in the earliest observation included in returned 
windows. These results reveal the returned windows typically captured 
observations occurring after drift onset, with faster temporal transitions 
more likely to return some pre-drift observations. We discuss more de-
tails of each aspect of the simulation results for all drift scenarios below. 
Corresponding plots for other forms of miscalibration are also presented 
in Appendix C. 

Both false positives and false negatives were rare in most scenarios 
(see Table 1). False positive rates were well below the 5% threshold our 
δ might suggest, a finding consistent with prior studies [35]. False 
negatives were rare and only observed under recurrent transitions in 
most cases. As an exception, drift toward miscalibration that fluctuated 
between over and underprediction across the range of probability was 
often missed, with false negatives rates between 35 and 50%. This form 
of miscalibration did not deviate far from the ideal in the more densely 
populated low risk range. As a result, the magnitude of change in cali-
bration over time was small and more likely to be missed. 

Delays between drift onset and detection varied by speed of transi-
tion and form of post-drift miscalibration (see Fig. 5). Time to detection 
increased as the speed of transition slowed from abrupt to rapid to 
gradual. Recurrent transitions experienced the most variability in 
detection timing. Time to detection was longest for recurrent transitions 
toward miscalibration that fluctuated between over and under-
prediction across the range of probability (median time to detection: 
2575). Drifts toward this form of miscalibration consistently delayed 
detection, with a median of more than 1800 post-drift observations 
required for detections under all temporal transitions. 

Lags to detection were generally more consistent than time to 
detection across temporal transition speeds (see Fig. 5). This is high-
lighted by transitions toward overfitting in which the median lags 
ranged from 101 to 173 observations for abrupt through gradual tran-
sitions, while corresponding median times to detection ranged from 173 
to 640 observations. In contrast to this pattern, transitions toward 

Fig. 3. Dynamic calibration curves for timeseries abruptly transitioning from a 
calibrated to an overpredicted context. 
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miscalibration that fluctuated between over and underprediction across 
the range of probability exhibited longer lags to detection for faster 
transitions. For all forms of miscalibration, gradual transitions were 
frequently detected prior to the identified expected point, which may 
reflect an accumulation of performance change over the extended period 
of transition. 

Characteristics of the data windows returned by the calibration drift 
detector are reported in Table 2. Window size increased as the speed of 
transition slowed and as the corresponding time to detection increased. 
For rapid and gradual transitions, less than 6% of detections included 
pre-drift observations in the returned window. Abrupt transitions more 
frequently included pre-drift observations in the returned data window. 
However, in all simulations, windows that extended into the pre-drift 
period were primarily composed of post-drift observations. We note 
that there is no pre-drift period in the recurrent case, and thus no pos-
sibility of the returned data window containing pre-drift observations. 

3.2. Case study 

We conducted a case study to illustrate these methods on clinical 
data. In real-world data, we do not, and cannot, establish a ground truth 
for when calibration drift began. However, we can compare the timing 
of detections with observed performance over time. As a result, this case 
study is not intended to validate the methods in terms of accuracy, but 
rather serves to demonstrate the methods in the a setting where they 
may be deployed. 

We applied our drift detection system to models for 30-day all-cause 
mortality among inpatient admissions to Department of Veterans Affairs 
(VA) facilities between 2006 and 2011 [11,12]. Detailed cohort eligi-
bility criteria and predictor definitions have been previously described 
[11,12,55]. We trained models to predict 30-day all-cause mortality on 
2006 admissions (n = 235,548) and evaluated calibration over the 
subsequent 5 years (n = 1,205,457). This study was approved by the 
Institutional Review Board and the Research and Development com-
mittee of the Tennessee Valley Healthcare System VA. 

Variations in the response of different learning algorithms to changes 
in clinical environments impact the timing, extent, and form of cali-
bration drift [11,12,32]. Such variability in calibration drift among 
learning algorithms may impact the timing of triggered updating using 
drift detection. To explore this in our case study, we applied our cali-
bration drift detection system to three version of the mortality model—a 
logistic regression, a random forest, and a neural network. For each 
model, we ran the calibration drift detector over the full 5 years 
following model development, restarting the detector after each alert 
and without any intervening updates. We documented the timing and 
frequency of drift detections; the window returned with each detection; 
and the magnitude of difference in performance that triggered each 

Fig. 4. Calibration error distribution (median and IQR) with detection characteristics for timeseries transitioning from calibrated to overpredicted at varying speeds. 
Distributions of detection points and the oldest observation included in returned windows, as well as a diagram of the speed of transition between calibration settings, 
are provided in box plots below the error distributions. The median window of recent data returned when drift was detected overlays the error distribution. 

Table 1 
False positive (FP) and false negative (FN) rates by temporal transition speed and 
post-drift calibration setting.  

Post-drift 
calibration setting 

Abrupt Rapid Gradual Recurrent 

% 
FP 

% 
FN 

% 
FP 

% 
FN 

% 
FP 

% 
FN 

% 
FP 

% 
FN 

Overpredicted 1.9 0 2.9 0 1.7 0 – 1.9 
Overfit 2.1 0 1.8 0 1.7 0 – 0.9 
Fluctuating 2.4 36.5 3.1 41 2.5 50.2 – 42.4 
Subgroup 2.8 0 2.3 0 1.3 0 – 0.6  
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detection. These detection characteristics were compared to calibration 
over the study period. 

Increases in miscalibration were detected at 6 points for the random 
forest model and 4 points for both the logistic regression and neural 
network models (see Fig. 6). Across all detection points, the mean in-
crease in curve-based calibration error that triggered the detection was 
0.0008. Detections aligned with observed increases in calibration error 
and were not noted during periods of stable calibration. The drift de-
tector returned smaller windows during periods of more rapid change in 
calibration, which is likely related to reduced time to detection during 
such periods (as was observed in our simulation study). 

4. Discussion 

To support timely, data-driven identification of performance drift in 
clinical prediction models, we designed a calibration drift detection 
system to continuously monitor calibration and inform the model 
updating process. Our customizable and model-agnostic approach is 
designed for use with streaming data, making it well-suited for clinical 
environments continuously managing new patients and care encounters. 
Dynamic calibration curves support monitoring of detailed calibration 
metrics while incorporating information from new observations and 
evolving in response to changes in model performance. The drift de-
tector alerts users to significant increases in miscalibration as informa-
tion accrues and provides insight into a window of recent data that may 
be appropriate for model updating. 

In evaluations, our system accurately detected drift in timeseries 
experiencing changes in calibration. Accurate detection is key to 
avoiding both missed opportunities to address model deterioration and 
alert fatigue from false alarms during periods of model stability. After 
drift onset, time to detection was associated with the speed and 
magnitude of calibration drift. This observation is to be expected, as 
slower transitions from a calibrated to a miscalibrated model require 
more observations before change can be distinguished from noise. 
However, lags to detection, a fairer comparison of any detection delay 

Fig. 5. Time to detection (left) and lag to detection (right) by speed and form of change.  

Table 2 
Properties of returned windows after drift detection.  

Post-drift 
calibration 
setting 

Transition 
pattern 

Size 
(median & 
IQR) 

% windows 
with any pre- 
drift obs* 

% obs from 
pre-drift 
period 

Overpredicted Abrupt 266 [217, 
356] 

44.3 8.8  

Rapid 302 [246, 
415] 

4.5 1.7  

Gradual 420 [284, 
585] 

2.2 1.0  

Recurrent 261 [223, 
331] 

– –  

Overfit Abrupt 137 [118, 
176] 

27.8 9.1  

Rapid 189 [140, 
256] 

4.5 1.8  

Gradual 274 [200, 
430] 

2.4 1.2  

Recurrent 168 [133, 
213] 

– –  

Fluctuating Abrupt 280 [216, 
422] 

7.2 3.5  

Rapid 287 [226, 
442] 

5.4 2.2  

Gradual 317 [229, 
481] 

5.7 2.3  

Recurrent 302 [225, 
462] 

– –  

Subgroup Abrupt 210 [146, 
313] 

69.2 17.9  

Rapid 282 [229, 
397] 

5.3 2.1  

Gradual 471 [330, 
621] 

3.3 1.7  

Recurrent 282 [228, 
394] 

– –  

* Pre-drift obs: observations before drift onset at t = 1000. 
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across differing speeds of drift, were generally consistent between 
abrupt, rapid, and gradual transitions. 

The form of miscalibration after drift onset was also associated with 
the accuracy of performance monitoring and drift detection. Mis-
calibration in low density, high probability ranges was not easily learned 
by the dynamic calibration curves due to a lack of information in the 
impacted probability range. However, we note that drift was still 
detected in those simulated scenarios in which the curves did not evolve 
to fully represent the true calibration form. These findings highlight that 
to detect calibration drift and the potential need for model updating, 
dynamic calibration curves need to reflect that a deterioration in per-
formance is occurring, but do not necessarily need to accurately reflect 
the specific form of that deterioration. Another challenging scenario was 
subtle miscalibration in high density probability ranges, as illustrated by 
our simulations involving miscalibration that fluctuated between over 
and underprediction across the range of probability. This scenario was 
most prone to missed detections and variable timing of detections due to 
the small magnitude of difference in calibration error before and after 
drift onset. Whether missed detections of small magnitude changes in 
performance are acceptable would depend on the accuracy requirements 
of specific clinical use case. Users may tune the system to increase the 
power to detect small changes as needed. 

In response to a detection of calibration drift, ideally we would 

update models based on observations occurring after drift onset. In our 
evaluations, the majority of windows returned by the drift detector did 
not include pre-drift observations, and those windows that did extend 
into the pre-drift period were primarily composed of post-drift obser-
vations. We note that in both the simulation and case studies, calibration 
drift was often detected during transitional periods and returned win-
dows represented a transitional state rather than data from a new, stably 
miscalibrated setting. While updating with such data may improve 
model performance, it may also require subsequent or even periodic 
updating as performance continues to evolve. This scenario is likely 
representative of how model updating would proceed in ever-evolving 
clinical environments where model performance may never experi-
ence extended periods of stability. 

Users may tune several parameters to tailor the calibration drift 
detection system to the needs of specific use cases. The step size, or 
initial learning rate, of the Adam algorithm allows users to balance the 
variability of dynamic calibration curves with how quickly these curves 
evolve in response to changes in model performance. In addition, the 
drift detector includes two parameters that can be adjusted to promote 
the utility of alerts. First, in response to detections of very small changes 
in calibration that may not warrant model updating, users can require a 
more strongly significant change in performance by reducing the test’s δ. 
Second, the minimum window size can be adjusted to avoid returning 
windows of insufficient sample size for updating based on model 
complexity. In future work, we will explore the impact of these pa-
rameters on both drift detection and resulting model updating to provide 
additional guidance. 

We selected the Adwin algorithm as the basis for our drift detection 
method. However, we note that statistical process control (SPC) [53] 
may also be applicable. SPC methods have been implemented for a va-
riety of healthcare applications—including tracking outcome rates 
[56,57], device safety [56,58,59], quality improvement [56,60–63], and 
model performance [32,64]. Prior work specifically evaluating calibra-
tion drift with SPC focused on forensic evaluations of model deteriora-
tion rather than using these methods to trigger model updating [32,64]. 
Among SPC methods, exponentially weighted moving averages (EWMA) 
[47], and particularly risk-adjusted EWMA [54], most closely aligned 
with the requirements listed in Section 2.2.1. However, compared to 
Adwin, parameterization for EWMA may be less intuitive and estab-
lishing appropriate parameter values may require pre-implementation 
simulation studies for each use case [47]. Future work will explore the 
relative performance of risk-adjusted EWMA or EMWA with our dy-
namic calibration curve method as alternatives to Adwin. 

In designing this system, we focus the monitoring effort on calibra-
tion of the predictions generated by a model as a first-line indicator that 
the model may need attention. By emphasizing calibration signals, 
which are both susceptible to drift and linked to model utility, our 
approach supports efficient data-driven model updating when such 
updates may be most necessary. Alternatively, one could choose to 
monitor features of the dataset (e.g., case mix) and predictor-outcome 
associations. However, unless changes in these aspects of the data 
affect the accuracy of model predictions, such changes alone may not 
warrant model updating. On the other hand, if updating in response to 
detected calibration drift does not sufficiently correct performance, 
users would need to further investigate what may be driving the model’s 
failure. In such cases, visualizations of temporal performance and 
summaries of key data distributions may provide model managers with 
insights into structural issues in the input data stream (e.g., changes in 
data capture/coding practices) that warrant examination. Further, 
maintaining open communication with clinical users can provide insight 
into critical clinical practice changes that may require substantive model 
adjustment be undertaken regardless of a drift detector’s status. 

Finally, we note that this work further highlights the need to better 
define clinically relevant performance metrics and methods for deter-
mining use case specific acceptable performance levels. Our case study 
showed some detections may result from very small increases in 

Fig. 6. Calibration over time and drift detections for models of 30-day mor-
tality after hospital admission. 
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miscalibration. Such detections may be too sensitive if they do not 
represent clinically significant calibration drift or identify performance 
changes that are too small to be corrected through model updating. With 
our current system, users may want to consider decreasing δ to require 
larger increases in miscalibration to trigger detections. However, as 
methods develop for defining clinically acceptable performance and/or 
clinically significant drift, our system could be extended to provide 
warnings when statistically significant drift is detected and to alert only 
when the drift in calibration exceeds a minimum magnitude of concern. 

5. Conclusion 

We developed and evaluated a calibration drift detection system to 
monitor detailed calibration metrics and provide data-driven guidance 
on when clinical prediction models may require updating. Our system, 
applicable to clinical prediction models built on the diverse and growing 
suite of learning algorithms, is designed to support alignment of model 
updating with the timing of performance drift. By updating models as 
performance deteriorates rather than on pre-determined schedules, 
model managers may minimize interim periods of insufficient model 
accuracy and focus analytic resources on those models most in need of 
attention. Our calibration drift detection system also provides insight 
into a candidate updating set by returning a window of recent obser-
vations occurring after the point at which a change in performance was 
identified. This system can be used to initiate predefined model updating 
strategies or in conjunction with data-driven methods to select updating 
methods. 
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[46] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept 
drift adaptation, ACM Comput. Surv. (CSUR) 46 (4) (2014) 44. 

[47] G.J. Ross, N.M. Adams, D.K. Tasoulis, D.J. Hand, Exponentially weighted moving 
average charts for detecting concept drift, Pattern Recogn. Lett. 33 (2) (2012) 
191–198. 

[48] K. Chen, Y.S. Koh, P. Riddle, Tracking drift severity in data streams. Australasian 
Joint Conference on Artificial Intelligence, 2015. 
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