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AI-Powered Biomolecular-Specific and Label-Free
Multispectral Imaging Rapidly Detects Malignant

Neoplasm in Surgically Excised Breast Tissue Specimens
Rishikesh Pandey, PhD; David Fournier, MS; Gary Root, MS, MBA; Machele Riccio, BS; Aditya Shirvalkar, MS;

Gianfranco Zamora, BA; Noel Daigneault; Michael Sapack, BS; Minghao Zhong, MD, PhD; Malini Harigopal, MD

Context.—Repeated surgery is necessary for 20% to
40% of breast conservation surgeries owing to the
unavailability of any adjunctive, accurate, and objective
tool in the surgeon’s hand for real-time margin assessment
to achieve the desired balance of oncologic and cosmetic
outcomes.

Objective.—To assess the feasibility of using a multi-
spectral autofluorescence imaging device for discriminat-
ing malignant neoplasm from normal breast tissue in
pathology as a critical step in the development of a device
for intraoperative use, and to demonstrate the device’s
utility for use in processing and prioritizing specimens
during frozen section and in the pathology grossing room.

Design.—We performed a preliminary assessment of our
device, called the TumorMAP system, on 172 fresh tissue

blocks from 115 patients obtained from lumpectomy
specimens at the time of initial gross examination and
compared the device results with gold standard pathology
evaluation.

Results.—The preliminary results demonstrate the po-
tential of our device in detecting breast cancer in fresh
tissue samples with a sensitivity of 82%, a specificity of
91%, a positive predictive value of 84%, and a negative
predictive value of 89%.

Conclusions.—Our results suggest that the TumorMAP
system is suitable for the detection of malignant neoplasm
in freshly excised breast specimens and has the potential to
evaluate resection margins in real time.

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0228-
OA)

There are approximately 300 000 women per year in the
United States alone who are diagnosed with breast

cancer1 and a significant number of patients undergo breast-
conserving surgery (BCS) as part of the standard of care for
the treatment for the disease. BCS followed by postoperative
radiation provides the same long-term survival as mastec-
tomy2 and is recommended over mastectomy.3 Studies have
shown that repeated surgery is necessary in 20% to 40% of
BCS cases after the postoperative histopathologic examina-
tion of positive margins.4–6 The standard of care for
identifying cancerous tissue at the margins during BCS
remains the gross visual examination of the ex vivo
lumpectomy specimen, palpation of the ex vivo lumpectomy
specimen, and palpation of the lumpectomy cavity. The
effectiveness of visual/palpation techniques is limited by the
human senses and individual surgical expertise and varies

depending on the cancer type. Frozen section analysis,
which is practiced clinically for other cancers in an
intraoperative setting, is considered less suitable for BCS
specimens owing to adipose-induced artifacts, high costs,
low tissue sampling percentage, and the requirement of
dedicated laboratory staff near the operating room (OR).
While various technologies have been proposed for intra-
operative assessment,7 including for breast neoplasm,8 no
technique has been widely adopted by surgeons so far for
use in the OR for margin assessment during surgery.
Consequently, there is a large unmet need for an accurate
and real-time intraoperative tool for cancer margin detec-
tion.

Advanced optical imaging approaches have been pro-
posed for the determination of margin status.9 These include
the use of fluorescence,10–14 diffuse reflectance imaging,15

Raman spectroscopy,16,17 hyperspectral imaging,18 optical
coherence tomography,19 and quantitative microelastogra-
phy.20 Among the optical techniques, fluorescence offers a
straightforward approach to providing diagnostic informa-
tion that is interpretable and attributable to known biology.
More recently, fluorescence-guided surgery (FGS) has been
used for the detection of cancer during surgery and margin
assessment.21,22 Cancer imaging using FGS typically in-
volves the use of nonspecific or targeted fluorescent imaging
agents/tracers such as those that bind to cell surface
carbohydrates, free proteins, specific enzymes, or expressed
cell surface receptors of cancer cells. However, the clinical
adaptation of FGS has been hindered owing to limited
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photostability, concern over chemical toxicity, poor tumor to
background ratio, and the need for administration of a tracer
before surgery.

Label-free approaches offer significant advantages to
patients by avoiding potential toxicologic issues, US Food
and Drug Administration (FDA) approval of contrast agents,
the cost of contrast agents, and increased surgical time
associated with administering fluorescence imaging agents.
In contrast to the use of tracers, the endogenous autofluo-
rescence (AF) signatures of tissue offer useful information
that can be mapped to the molecular, metabolic, and
morphologic attributes of a biological specimen23 and have
therefore been used for diagnostic purposes. Biomolecules
such as tryptophan, collagen, elastin, nicotinamide adenine
dinucleotide, flavin adenine dinucleotide, and porphyrins
present in tissue provide discernible and repeatable AF
spectral patterns24 that can be interpreted as a ‘‘biomolecular
optical fingerprint.’’ Biomolecular changes occurring in the
cell and tissue microenvironment during pathologic pro-
cesses and disease progression result in alterations in the
amount and distribution of endogenous fluorophores and
form the basis for diagnosis. In the oncologic surgical
setting, many approaches that leverage AF attributes of the
tissue have been proposed for neoplasm detection including
breast cancer,25 brain cancer,26 bladder cancer,27 oral
cancer,28 and lung cancer.29 In addition to fluorescence
intensities, fluorescence lifetime imaging (FLIM), which
measures the lifetime of the intrinsic fluorophores, has been
demonstrated to discern positive breast cancer margin in a
preclinical study12 and visual inspection of oral cancers
during transoral robotic surgery.30 However, FLIM devices
require 1 or more pulsed laser sources, a very complex
detection and read-out system, and therefore may not be
compatible with the surgical workflow and may also be
cost-prohibitive.

While tissue AF spectroscopy has been proposed and
demonstrated previously for cancer detection, its practical
use has been hindered primarily owing to limited diagnostic
accuracy and slow processing time, and therefore has not
been suitable for real-time surgical use. The scanning speed
has been primarily limited by the traditional use of fiber
probes with single-point measurement capability. The use
of AF imaging, which marries biomolecular information
with spatial mapping information, allows increased infor-
mation content to be captured and processed. Further, most
of the prior studies have used either visible or UVA
(ultraviolet A, 315–400 nm) for fluorescence excitation and
the use of UVC has been limited by the limited availability,
cost, and complexity of suitable excitation sources. The
advent of UVC light-emitting diodes (LEDs) and advance-
ments in UV optical technology have recently allowed full
exploitation of the rich fluorescence from endogenous
biomolecular fluorophores embedded in tissues. This
enables optimal excitation of certain biomolecules and
efficient and selective collection of the emitted light.

Artificial intelligence (AI) and machine learning (ML)
have enabled analyzing and retrieving the nearly imper-
ceivable and subtle differences in complex data sets that are
beyond human interpretability.31,32 AI has also been
proposed for clinical uses including cancer diagnosis,33

radiology,34 pathology,35 and even risk prediction.36 With
the recent FDA approval of AI-based Paige Prostate to
detect prostate cancer from digitally scanned slides, AI and
ML hold promise to assist pathologists in their practice.37

We leverage the recent advancements in AI to capture latent

biomolecular and morphologic differences that are encoded
in multispectral images. We hypothesize that UV-excited
multispectral AF images of tissue comprise more informa-
tion than is readily apparent, and this information can be
leveraged by using advanced AI/ML approaches, paving the
way for clinical application.

In this proof-of-concept study, we sought to determine if
multispectral AF imaging when combined with advanced
AI/ML approaches can detect malignant neoplasm in real-
time from excised breast tissue blocks. We performed a
preliminary assessment of our TumorMAP system (Cyto-
Veris Inc) powered with OncoSight AI classifier (CytoVeris
Inc), on 172 tissue blocks originated from 115 patients and
compared the results with the hematoxylin-eosin (H&E)
evaluations of the same tissue block. The preliminary results
are promising in detecting cancer with a sensitivity of 82%,
specificity of 91%, a positive predictive value of 84%, and a
negative predictive value of 89%. Owing to the widefield
and single-shot imaging with no sample preparation
requirement, this preclinical study in the grossing laboratory
forms the basis for a feasibility study in the OR. We intend
to validate the use of an intraoperative imaging system for
the ex vivo examination of excised specimens in a future
feasibility study. If validated, our device will accurately
detect whether cancer is present on the specimen surface,
enabling the surgeon to resect additional tissue if the
resection is incomplete, thereby obviating the need for re-
excision of positive margins found subsequently on patho-
logic examination. We intend to test this technology for
other types of cancer surgery, which are typically performed
with minimally invasive/robotic techniques. Our long-term
goal is to develop an optical imaging probe-based platform
to provide the surgeon with additional intraoperative
visualization of cancer in vivo.

MATERIALS AND METHODS

TumorMAP

The TumorMAP system relies on the intrinsic tissue AF of
various endogenous fluorophores found in different tissue types.
The TumorMAP system leverages changes in a matrix of these
fluorophores that form the basis for tissue analysis and discerning
cancerous tissue. It uses multispectral excitation and detection not
only to increase the information content but also to produce
differential and specific emission signals. This widefield system
captures multispectral images and does not require any X-Y
movement or scanning to evaluate the specimen. The multi-
excitation in the UV region and multidetection strategy allows the
acquisition of comprehensive and rich biomolecular and morpho-
logic information from both cells and the extracellular matrix. The
TumorMAP system is contact-free, fully automated, does not
require sample preparation, and provides tissue imaging in quasi–
real-time.

Tissue Collection

This preclinical research study was approved by the Institutional
Review Board of Yale Smilow Cancer Center (New Haven,
Connecticut). Under the study protocol, following tissue excision
during breast lumpectomy surgery, the fresh breast tissue
specimens are sent to the surgical pathology laboratory where
they are inked and grossed by the pathology assistant or resident
per the institution’s established surgical pathology process. After
grossing into blocks and before tissue fixation, a selected set of the
tissue blocks were imaged with the TumorMAP system. To
maintain tissue integrity and to preserve the routine clinical
workflow, no chemicals or other processing steps were applied to
the tissue block. The total imaging time for a tissue block was only

2 Arch Pathol Lab Med AI-Powered and Label-Free Multispectral Imaging—Pandey et al



~32 seconds, ensuring that no undue drying of specimens took
place during imaging, and that the process did not impact the cycle
time of the tissue grossing to fixation process. After the imaging,
the tissue blocks were sent through the routine formalin-fixation
and paraffin-embedding (FFPE) process. The corresponding H&E
slides of the tissue blocks imaged by the TumorMAP system were
digitized and used for histopathologic investigation and label
creation for algorithm development. All patient identifying data
were de-identified for this study.

Algorithm Training

A subset of multispectral images was combined in a certain way
to generate a composite image for registration with H&E images.
The original H&E image of the tissue block was geometrically
transformed to match with AF composite image measured from the
same block; 2 mm 3 2 mm ‘‘tiles’’ containing areas of high tissue
homogeneity on the H&E images were identified and transcribed
onto the UV composite image. Each tile comprises 50 3 50¼ 2500
image pixels, each of which represents a measure of the
‘‘biomolecular optical fingerprint’’ of the tissue at that spatial
location. The selected homogeneous areas from the H&E images
were then cropped and independently scored by 2 board-certified
pathologists.

The primary inclusion criterion for malignant cases was that the
2 mm 32 mm ‘‘tiles’’ should have a ‘‘cancer infiltration score’’ (CIS)
of 80% or greater and no case selections were made on the basis of
cancer type, grades or stages, receptor status, neoadjuvant status, or
any other patient metadata. The benign category was represented
by tiles that included different types of benign tissue with
homogeneity of 80% or greater as ground truth.

The 2 pathologists examined the targeted homogeneous areas
(tiles) to identify the tissue types and scored the tiles for tissue
identification. In the case of a cancer tile, a CIS was also noted. The
CIS is defined as the percentage area of the tile that has cancer or is
affected by the cancer field, including local cancer-associated
desmoplasia. In case of a discrepancy between the 2 pathologists
about the tissue-type assignment, a joint scoring was performed to
reach a consensus. Also, if the 2 pathologists’ scores were
discordant by 15% or more, it was rescored by the same 2

pathologists to reach a consensus. A mean infiltration score was
used for training the algorithm. The detailed tissue processing and
algorithm training workflow is illustrated in Figure 1. The system
was trained and tested by using a leave-one-patient-out validation
process, and a CIS of 80% or greater was used for the training.

RESULTS

We measured multispectral AF images of breast tissue
specimens, which resulted in 417 tiles obtained from 115
patients in the age range of 34 to 93 years. These specimens
comprise both benign and cancerous tissues. The benign
category includes adipose, fibrous, glandular, along with
different types of other nonmalignant tissues such as
desmoplasia and inflammation (not associated with fat
necrosis). Of these 417 tiles, the pathologists identified 156
tiles containing cancer from 55 patients. The Table shows
the patient demographic details, cancer types, Nottingham
score, cancer stage, estrogen receptors, human epidermal
growth factor receptor 2 (HER2) scores, and neoadjuvant
therapy status. Of the 55 patients’ cancer tiles, the
pathologic read indicated N ¼ 44 patients with primarily
invasive ductal carcinoma (IDC), N ¼ 7 with only ductal
carcinoma in situ (DCIS), and N ¼ 4 with invasive lobular
carcinoma (ILC). Notably, this cancer type distinction is
based on postoperative histopathology, not on the diagnosis
before surgery. As evident in the Table, the patients have
significant diversity in Nottingham scores, cancer stages,
estrogen receptor and HER2 expression levels, and neo-
adjuvant therapy status.

We developed an ensemble classifier consisting of
multiple base learners that were then combined through a
meta learner for final classification. The classifier was tested
by using leave-one-patient-out cross-validation. Figure 2
illustrates the confusion matrix reflecting the performance of
the OncoSight AI classifier. Of a total of 417 labeled tiles,
156 tiles contained cancer, and the remaining 261 tiles were

Figure 1. Tissue scanning and algorithm training workflow. Abbreviations: CIS, cancer infiltration score; Dev, development; H&E, hematoxylin-
eosin; MSI, multispectral image.

Arch Pathol Lab Med AI-Powered and Label-Free Multispectral Imaging—Pandey et al 3



labeled as benign as per histologic ground truth. Our
classifier yielded a sensitivity of 82%, specificity of 91%,
positive predictive value of 84%, and negative predictive
value of 89% with cancer prevalence of 38%. We also
calculated the Matthews correlation coefficient (MCC),
which is known as one of the reliable and robust
performance metrics of a binary classifier and has recently
been recommended over diagnostic odds ratio.38 A coeffi-
cient of þ1 represents a perfect prediction and our MCC
value was 0.73.

We used the trained OncoSight AI classifier to create a
heatmap at the full specimen level. This is performed by
using a sliding window approach in which we selected a
square patch of a specific pixel size. This patch is used as the
input for our trained model, and the model calculates the
probability of cancer in this patch. The probability score is
assigned to the center pixel, the window then slides across
all the pixels in the test image to create a probability map.
The final probability map is displayed as a heatmap to show
cancer probability of 0% to 100% from blue to red.

Figure 3, A, shows a representative heatmap displaying
the probability of cancer computed by using the above
classifier on a tissue block that did not have any cancer. The
corresponding ground truth H&E is shown in Figure 3, B. As
evident, the predicted heatmap is in good concordance with
the H&E image devoid of identifiable cancer features. The
small black points/areas within the cancer probability map
represent background or dye correction artifacts.

Figure 4, A, and Figure 5, A, depict the cancer heatmap on
histologically confirmed positive IDC blocks along with
corresponding H&E images Figure 4, B, and Figure 5, B. The
tissue block in Figure 4 was from a 69-year-old woman with
grade T2 cancer and known diabetes. The cancer heatmap in
Figure 5, A, is generated from another patient’s tissue block
with no diabetic history and with cancer grade T1. The
heatmaps show the presence of cancer on the tissue blocks
and spatially correlate well with the corresponding H&E
slides.

Figure 6, A, shows cancer heatmap on predominantly ILC
block with corresponding H&E image (Figure 6, B). The
heatmap indicates the presence of cancer on the tissue block
and spatially correlates well with the corresponding H&E
slide except for the top right area, which shows false
positive. This false positive can be attributed to deformation
and distortion of imaged tissue block during FFPE process
and microtoming.

Patient Demographic Data and Details of the
Measured Tissues

No. of
Patients Percentagea

Patient information for all tissue blocks

Nonmalignant 60 52

Cancer 55 48

Patient information for cancer-only blocks

Age, y

Mean 64

Postmenopausal status

Yes 41 75

No 13 23

Not known 1 2

Race

White 49 89

Black or African American 5 9

Asian 1 2

Cancer type

IDC 44 80

DCIS 7 13

ILC 4 7

Nottingham score

Grade I (3–5) 11 20

Grade II (6–7) 29 53

Grade III (8–9) 10 18

NA (DCIS) 5 9

Stage

T1 35 64

T2 14 25

T3 1 2

Tis 5 9

ER (Allred)

Negative (0–2) 1 2

Positive (3–8) 54 98

HER2

Negative (0) 20 36

Negative (1) 14 26

Equivocal (2) 15 27

Positive (3) 0 0

NA 6 11

Neoadjuvant therapy status

Yes 3 5

No 52 95

Abbreviations: DCIS, ductal carcinoma in situ; ER, estrogen receptor;
HER2, human epidermal growth factor receptor 2; IDC, invasive ductal
carcinoma; ILC, invasive lobular carcinoma; NA, not applicable.
a Calculated from a total patient number of 115 and 55 for all tissue

blocks and cancer-only tissue blocks, respectively.

Figure 2. Confusion matrix summarizing classification results on
‘‘ground truth data.’’ The numbers of correct and incorrect predictions
are summarized with count values for cancer and benign samples.
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Figure 7, A, shows cancer heatmap on a tissue block
containing DCIS and compared with the corresponding
H&E image from the same block in Figure 7, B. The
heatmap shows the presence of cancer on the tissue block
and spatially correlates with the corresponding H&E slide.

Figure 8 presents the receiver operating characteristic
(ROC) curve for the ensemble classifier for neoplasm
detection. The ROC curve plots sensitivity (true positive
rate) versus false-positive rate (1 # specificity) for the
decision algorithm as the discrimination threshold is varied.
The area under the curve is computed to be 0.92.

DISCUSSION

We have developed a label-free optical imaging platform
that exploits the endogenous multispectral AF contrast of

tissue to discern neoplasms. The AF images reveal a
different biomolecular composition at each location in the
images and quantitative analysis of this spatial-spectral
content of tissue provides richer information than the
fluorescence spectrum. The advent and availability of UVC
LEDs, advancements in UV filter technology, and the
emergence of AI have recently enabled full exploitation of
the rich optical contrast of biomolecular fluorophores
embedded in tissues. The underlying rationale for AF
imaging-based tissue analysis is that multispectral AF
images would provide a snapshot of the integral information
of tissue fluorophores and, when combined with advanced
ML, would capture latent biomolecular and morphologic
differences that are encoded in the multispectral images.

Figure 3. Probability of cancer generated with OncoSight AI classifier (CytoVeris Inc) trained on panels of multispectral images (A), and
hematoxylin-eosin image of histologically confirmed ‘‘clear’’/negative tissue block (B).

Figure 4. Probability of cancer generated with OncoSight AI (CytoVeris Inc) on a tissue block containing invasive ductal carcinoma (A), with
corresponding hematoxylin-eosin image showing cancer regions (B).
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Figure 5. Probability of cancer generated with OncoSight AI (CytoVeris Inc) on a tissue block containing invasive ductal carcinoma (A), with
corresponding hematoxylin-eosin image (B).

Figure 6. Probability of cancer generated with OncoSight AI (CytoVeris Inc) on a tissue block with invasive lobular carcinoma (A), with
corresponding hematoxylin-eosin image (B).

Figure 7. Probability of cancer generated with OncoSight AI (CytoVeris Inc) on a tissue block containing ductal carcinoma in situ (A), with
corresponding hematoxylin-eosin image (B).
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In terms of clinical applications, fundus AF imaging is a
routinely used diagnostic tool in ophthalmology.39 Another
AF-based device, the PTeye40 system, has been cleared by
the FDA to aid surgeons in the identification of parathyroid
tissue during thyroid and parathyroid surgery. Further, the
feasibility of tissue AF imaging has been established in
clinical studies for real-time sampling and treatment
guidance of bioburden in chronic wounds.41 Apart from
the surgical space, AF microscopy has been used in the last
few years in conjunction with a deep learning framework to
create virtual histologic images.42,43 However, prior work
using AF to discriminate BCS has been limited, relying on
fiber probes and using simpler data analysis tools. Our
imaging platform effectively and optimally uses the com-
prehensive and rich biomolecular information embedded in
the tissue matrix both from cells and the extracellular matrix
and offers a potentially transformative assessment tool by
using the prior rigor of research in AF of tissue and
exploiting the very recent advancement in UV LEDs and AI/
ML framework.

Other device-based intraoperative methods used in BCS
include specimen imaging by radiography and by intraop-
erative ultrasonography. These devices provide some
information about the tissue microstructure. Presently, the
interpretation of these outputs requires trained personnel (a
radiologist). A hand-held device called MarginProbe (Dilon
Technologies, Inc.) that uses dielectric spectroscopy to
characterize tissue has been marketed for BCS margin
detection. In its pivotal clinical study, MarginProbe dem-
onstrated margin level device sensitivity of 75% and margin
level specificity of 46% with a positive predictive value of
22% and a negative predictive value of 90%. The standard-
of-care arm (ie, not aided by the device) recorded a
sensitivity of 34%, a specificity of 83%, a positive predictive
value of 30%, and a negative predictive value of 86%.44 As
reported by LeeVan et al,45 the MarginProbe, when used as
an adjunct to the standard operating procedure, does not
significantly reduce re-excision rates in the BCS.

There are 4 principal advantages of the TumorMAP
system: First, it is widefield imaging and therefore allows
near real-time detection. Second, it provides comprehensive

multispectral information that is interpretable and attribut-
able to the known biology and biochemical factors
associated with normal and malignant tissue. Third, a
successful demonstration of this approach will pave the way
for the realization of an accurate and label-free device for
neoplasm detection in the OR and in pathology. Fourth, its
cost-effectiveness and ease of use have the potential to
make effective BCS surgery more accessible to people not
served by major cancer centers.

The classification results shown in Figure 2 are very
encouraging. These models are trained and tested on highly
homogeneous data, and we achieved a classification
accuracy of 88%. As illustrated in the confusion matrix,
TumorMAP missed 28 tiles from 21 patients and 1 patient
was without a grade being DCIS. Of 20 patients with
histologic grades, 5 patients had grade I (Nottingham score
3–5) cancer, 11 patients had grade II cancer, and 4 patients
had grade III. We do not observe any marked association of
false-negative rate with cancer grade in view of a total
number of patients with various Nottingham scores as
mentioned in the Table—grade I: 11, grade II: 29, grade III:
10 patients.

Several inherent and known errors are attributable to
diminished classification performance. Error in the spatial
registration of the AF image with the H&E image presents a
significant challenge owing to distortion and deformation of
tissue during the FFPE process and is a major source of
error. Further, registration errors in the Z-axis due to
microtoming is inevitable given ~100-mm penetration
depth of UV light and the routine trimming of paraffin-
embedded tissue blocks for obtaining a flat tissue surface.
Furthermore, while we had applied dye masks and corrected
for the dye signals, either the residual uncorrected dye signal
or artifacts due to correction could have introduced a
confounding emission signal into the tissue AF data.

The cancer heatmaps shown in Figures 4 through 7
underscore that our TumorMAP system successfully detects
different kinds of cancer. We have trained and tested 156
cancer tiles from 55 patients and the classification accuracies
for IDC, ILC, and DCIS were 84% [101 of 120 tiles], 72% [18
of 25], and 82% [9 of 11], respectively. The low classification

Figure 8. Receiver operating characteristic
curve for the classifier, using OncoSight AI
(CytoVeris Inc). Abbreviation: AUC, area
under the curve.
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performance for ILC can be attributed to its unique
morphologic characteristics and growth pattern with dysco-
hesive cells dispersed diffusely in the fibroconnective stroma
without eliciting a desmoplastic host stromal response
unlike IDC.

While these results showcase the capability of the
TumorMAP system and show encouraging indications for
its clinical utility in the pathology laboratory for triaging the
sample, it is worth noting the limitations of the present
proof-of-principle study for application in surgery. First, the
data sets used for training and testing in this study were of a
high homogeneity threshold and it is yet to be seen how the
OncoSight AI classier performs on a mixed tissue sample.
Second, we have measured only 2D tissue blocks in the
grossing laboratory and the system and algorithm results
must be evaluated on freshly excised 3D tissue. Third, our
malignant class did not include rare cancer types, such as
mucinous carcinoma and sarcoma, owing to the prevalence
and high cancer homogeneity threshold used in this study.
We plan to address all the above issues in our planned
intraoperative feasibility study.

Taken together, we have demonstrated that the Tumor-
MAP system can accurately discern malignant neoplasm
from different types of benign tissues without disruption to
the clinical workflow. We are developing and moving to
commercialize a cost-effective, intraoperative imaging sys-
tem for the ex vivo examination of excised specimens. In
particular, this label-free approach has unique advantages
that allow the assessment of biomolecular and morphologic
differences between benign and cancer tissue to assist
surgeons in rapidly making intraoperative decisions. Com-
bining the rich biomolecular and morphologic features
derived from AF imaging with AI/ML would lead to the next
generation of real-time intraoperative assessment, improve
efficiencies, and potentially reduce the burden to the patient,
surgeon, and pathologist in determining and knowing
whether cancer has been left behind.

The authors acknowledge current and former CytoVeris em-
ployees for their help in the successful completion of this study. We
are thankful to Heather Couture, PhD, for her guidance in classifier
development. Finally, we show our appreciation to reviewers for
their constructive critique of the manuscript.
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