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Applications of Artificial Intelligence in Breast Pathology

Yueping Liu, MD; Dandan Han, MD; Anil V. Parwani, MD, PhD; Zaibo Li, MD, PhD

® Context.—Increasing implementation of whole slide
imaging together with digital workflow and advances in
computing capacity enable the use of artificial intelligence
(Al) in pathology, including breast pathology. Breast
pathologists often face a significant workload, with
diagnosis complexity, tedious repetitive tasks, and semi-
quantitative evaluation of biomarkers. Recent advances in
developing Al algorithms have provided promising ap-
proaches to meet the demand in breast pathology.
Objective.—To provide an updated review of Al in
breast pathology. We examined the success and challenges
of current and potential Al applications in diagnosing and
grading breast carcinomas and other pathologic changes,

athology is the gold standard for disease diagnosis.
Pathologists are committed to assisting clinicians in the
precise treatment of various diseases, especially malignant
tumors. The advance in individualized treatment requires
higher standards for pathologic diagnosis. The pathologic
diagnosis of tumors involves many aspects of analysis and
interpretation, such as morphologic identification of tumor
cells, evaluation of mitotic counts, determination of lymph
node metastasis, interpretation of various biomarkers, etc.
However, the accuracy of pathologic diagnosis is limited by
a shortage of pathologists, differences in pathologists’
diagnostic skill, and the availability of ancillary studies.'™
The emergence of whole slide imaging together with a
digital workflow has brought many changes to pathology
practice, including digital primary sign-out, remote consul-
tations, archiving slides for teaching, research, and confer-
ences, etc. More importantly, a digital workflow with whole
slide images (WSIs) paves the road to implement Al
algorithms in routine pathology practice. Al can reduce
tedious workload for pathologists, improve their efficiency
and accuracy, provide new information of disease prognosis
and therapy response, etc. Machine learning (ML), a
subfield of Al, develops algorithms to learn repetitive data
patterns from a large data set of cases and then to match
new cases to the learned data patterns. In recent years, deep
learning (DL) algorithms have gained increasing attention
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detecting lymph node metastasis, quantifying breast cancer
biomarkers, predicting prognosis and therapy response,
and predicting potential molecular changes.

Data Sources.—We obtained data and information by
searching and reviewing literature on Al in breast
pathology from PubMed and based our own experience.

Conclusions.—With the increasing application in breast
pathology, Al not only assists in pathology diagnosis to
improve accuracy and reduce pathologists’ workload, but
also provides new information in predicting prognosis and
therapy response.

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0457-RA)

in big data and image processing. DL is a subset of ML
using artificial neural networks composed of multiple layers
(input layer, hidden layers, and output layer) to extract
progressively higher-level features from data. The neural
network learns data patterns by generating multiple hidden
variables from data and also learns hierarchical representa-
tions of sophisticated data patterns that cannot be easily
identified by humans. DL includes supervised learning,
semisupervised learning, unsupervised learning, and trans-
fer learning.>® Deep convolutional neural network, one of
the DL algorithms, has shown superiority in image
recognition and analysis and been used in image-based
detection and segmentation to identify and quantify
different cells. It can also provide accurate prognosis and
identify potential drug target indicators.”!® Currently,
research using ML and pathologic images is a hot topic in
medical fields.'™*?

Breast pathologists often face a significant workload, with
diagnosis complexity and tedious repetitive tasks, such as
the quantification of biomarkers and the evaluation of
lymph node metastasis. These tasks are time-consuming,
labor-intensive, and subjected to interobserver variability.
Recent advances in digital pathology workflow integrated
with Al have provided promising approaches to solve these
challenges. In this review, we summarize current and
potential Al applications in diagnosing and grading breast
carcinomas, predicting prognosis and therapy response,
quantifying breast cancer biomarkers, detecting lymph node
metastasis, and predicting potential molecular changes.

AI-BASED DETECTION AND CLASSIFICATION OF
BREAST CARCINOMA AND OTHER LESIONS
With the advent of the era of precision medicine, the
accurate classification, grading, and determination of the
tumor extent of breast cancers have become important for
clinical management. Histopathologic diagnosis of breast
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IBEX CALEN Breast detects invasive lobular carcinoma in breast core biopsy. A, Hematoxylin-eosin (H&E) slide. B, Annotated images with

invasive lobular carcinoma area highlighted in red (H&E, original magnifications X0.5 [A] and X10 [B]).

cancer is the basis for clinical management, and accurate
classification of breast cancer is crucial for treatment
options. Recently, researchers have developed ML/DL
algorithms to detect and classify breast cancers. Han et
al proposed a novel DL model to automate multi-
classification of breast cancer histopathologic types, such
as ductal carcinoma, lobular carcinoma, mucinous carcino-
ma, papillary carcinoma, etc. The model was validated on a
large-scale data set with a high level of performance
(average accuracy of 93.2%). Cruz-Roa et al®® built a
convolutional neural network (CNN) model to classify
image blocks (“patches”) from breast cancer WSIs contain-
ing invasive ductal carcinoma, and then used a ConvNet
classifier to estimate the extent of invasive foci and degree of
infiltration on entire WSIs. The study used manually
annotated region labels from 400 slides from multiple
institutions to train the model and validated it on 200
annotated slides obtained from The Cancer Genome Atlas
(TCGA) with a pixel-level F1 score of 75.86%. The model
was able to detect invasive carcinoma regions on WSIs with
high accuracy, even when tested on a validation set from a
different cohort. They found that lesions of invasive
carcinoma mixed with in situ carcinoma were most
challenging, but the performance could be improved by
training a more complex algorithm on a data set with more
in situ carcinomas.

Several Al platforms (algorithms) are commercially
available to detect/screen breast lesions from breast core
biopsy specimens. One example is the GALEN Breast
algorithm (IBEX; (Figure 1). The algorithm can screen entire
breast core needle biopsy WSIs to produce heat maps for
different breast lesions, including invasive carcinoma (ductal
and lobular), in situ carcinoma (ductal and lobular), and
atypical hyperplasia (ductal and lobular), and benign
findings, such as sclerosing adenosis, fat necrosis, etc. The
algorithm was based on an ensemble of CNNs trained on
more than 2 million labeled image patches that were
extracted from manual annotations on 2153 hematoxylin-
eosin (H&E) slides. A separate different data set of 436
breast biopsies was used to test the algorithm’s performance
and the results demonstrated an area under the curve (AUC)
of 0.99 for the detection of invasive carcinoma and an AUC
of 0.98 for the detection of ductal carcinoma in situ (DCIS).
The algorithm differentiated well between subtypes/grades
of invasive and in situ carcinoma, with an AUC of 0.97 for
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invasive ductal carcinoma versus invasive lobular carcinoma
and an AUC of 0.92 for high-grade DCIS versus low-grade
DClIS/atypical ductal hyperplasia, respectively.'®

AI-BASED GRADING OF BREAST CARCINOMA

The Nottingham histologic grading system is the most
used grading system for invasive breast carcinoma and is
well correlated with prognosis and outcome. The Notting-
ham grading system includes 3 components: tubule
formation, nuclear pleomorphism, and mitotic activity.
Pathologists usually evaluate these 3 components manually,
and interobserver variability does exist.!” Several studies had
shown that DL neural networks can improve the accuracy of
histologic grading assessment.'® %!

Mitotic activity is an important component of Nottingham
grading system and a key predictor for breast carcinoma
aggressiveness. Mitotic activity is mainly determined by
manual count, which is time-consuming and labor-inten-
sive. Recently, studies have reported Al-assisted mitotic
count in breast cancer.?* Nateghi et al® proposed a fully
automated system to count mitosis. They first constructed a
DL model to detect regions of interest (ROIs) by selecting
hotspot regions from WSIs, then trained deep neural
networks to identify nuclear mitosis in the selected ROIs.
Their results showed the model significantly improved the
accuracy of tumor proliferation. Li et al** proposed an Al
model to identify mitosis by using a novel multistage DL
framework with the following components: (1) a deep
segmentation network for dividing mitotic regions when
only weak markers were present, (2) a deep detection
network for locating mitoses using information from the
upper and lower regions, and (3) a validation network that
improved the detection accuracy by eliminating false
positive mitosis. They validated their method on the 2012
international conference on pattern recognition (ICPR)
grand challenge data set and the 2014 ICPR MITOS-
ATYPIA challenge data set to achieve the highest F-score of
0.832 on the ICPR 2012 grand challenge data set and F-
score of 0.572 on the 2014 ICPR MITOS-ATYPIA challenge
data set. Sebai et al® developed “MaskMitosis” DL
framework to estimate mitosis on 2012 ICPR grand
challenge and 2014 ICPR MITOS-ATYPIA challenge data
sets and their method outperformed all state-of-the-art
mitosis detection approaches on the 2014 ICPR data set by
achieving an F-score of 0.475. Mahmood et al* developed a
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mitotic cell detection method based on Faster region CNN
(Faster R-CNN) and deep CNNs using ICPR 2012 and ICPR
2014 (MITOS-ATYPIA-14) data sets and demonstrated their
method achieved the results of 0.876 precision, 0.841 recall,
and 0.858 F1-measure for the ICPR 2012 data set, and 0.848
precision, 0.583 recall, and 0.691 Fl-measure for the ICPR
2014 data set, which were higher than those obtained using
previous methods.

Nuclear pleomorphism is another component of the
Nottingham grading system. Morphologic features of
nuclear pleomorphism include nuclear size, nuclear contour,
nucleolus, vesicular nuclei, and chromatin clump. Al
algorithms have the potential to objectively assess these
features with improved reproducibility compared with
pathologists’” visual assessment.?”

There has been a paucity of studies to evaluate tubule
formation, another component of the Nottingham grading
system. One study developed a DL classifier to automati-
cally identify tubule nuclei from whole slide imaging and
then obtain the ratio of tubule nuclei to overall number of
nuclei (a tubule formation indicator) to correlate with the
corresponding Oncotype DX (Genomic Health, Redwood
City, California) risk categories. The study demonstrated a
good correlation between a larger tubule formation indica-
tor and low Oncotype DX score.?® The Oncotype DX assay
assesses the expression levels of 21 genes involved in the
pathways of proliferation, invasion, estrogen and human
epidermal growth factor receptor 2 (HER2) signaling to
generate a recurrent score (RS) to predict possibility of
recurrence and chemotherapy benefit.*** Oncotype DX RS
has been widely accepted in clinical practice across the
United States and Canada to guide decisions on adjuvant
systemic chemotherapy if a patient has ER", HER2™ breast
cancer.”!

Furthermore, Elsharawy et al** proposed a supervised
CNN model to render an Al grade of breast cancers based
on nuclear features. Both Al grade and routine Nottingham
grade were used to train models to evaluate their correlation
with molecular changes and prognosis. Their results showed
that Al grade was helpful to identify genetic changes with
important prognostic significance. Wang et al'” developed
and validated a novel histologic grading model using a DL
method trained on WSIs and DL to analyze Nottingham
grade 2 breast carcinomas. Their results demonstrated
prognostic significance for stratifying patients with Notting-
ham grade 2 breast cancers.

AI-BASED DETECTION OF LYMPH NODE METASTASIS

Accurate assessment of axillary lymph node metastasis in
breast cancer patients is crucial for their clinical manage-
ment because lymph node metastasis status is significantly
correlated with prognosis. Lymph node metastasis evalua-
tion is time-consuming and labor-intensive. Although
identifying macrometastasis is straightforward, it may be
challenging to manually detect micrometastasis or isolated
tumor cells. Recent studies have demonstrated Al algo-
rithms can improve the accuracy and efficiency of lymph
node assessment.?**

During the period from 2015 to 2016, a researcher
challenge competition (CAMELYON16) was launched to
develop automated solutions for detecting lymph node
metastases using a training data set of WSIs with (n = 110)
and without (n = 160) nodal metastases verified by immu-
nohistochemistry (IHC). Algorithm performance was eval-
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uated in an independent test set of 129 WSIs (49 with and 80
without metastases). The AUC for the submitted algorithms
ranged from 0.556 to 0.994 and the best algorithm (AUC =
0.994) performed significantly better than the pathologists.®
Recently, Huang et al** developed an Al-assisted lymph
node assessment workflow using CNNs trained on 5907
lymph node images. The results demonstrated the algorithm
identified metastatic lymph nodes in gastric cancer with an
AUC of 0.9936, and the algorithm was also highly robust
(AUC = 0.9829) on cross-site evaluation. Steiner et al®*
reported the results of 6 pathologists who interpreted 70
lymph node WSIs according to 2 assessment methods (with
and without Al assistance). The Al-assisted assessment
demonstrated higher accuracy than Al alone or visual
assessment by pathologists alone. The Al-assisted assess-
ment significantly improved the sensitivity of micrometas-
tasis detection (91% versus 83%, P = .02). Furthermore, the
mean interpretation time per image was significantly shorter
for Al-assisted assessment than for visual assessment alone.
Liu et al** developed and validated an Al algorithm using
270 lymph node images from 2 centers as a training set and
129 lymph node images as a validation set. The algorithm’s
optimal AUC reached 0.99, whereas the pathologist’s
optimal performance AUC was 0.88.

Several lymph node metastasis Al algorithms are com-
mercially available. One example is the Visiopharm lymph
node metastasis detection app. The app includes 4 steps:
tissue detection, metastasis detection, measurement, and
calculation. The process can be automated using directly
streamed WSIs from an image management system and
batch analysis. The results include annotated WSIs, calcu-
lated maximum length, and area of metastasis (Figure 2).
Our unpublished data have demonstrated that the Al
algorithm detected all 44 metastases (19 macrometastases,
25 micrometastases, 1 with isolated tumor cells) out of 233
lymph nodes with a sensitivity of 100%, specificity of 41.3%,
positive predictive value of 28.4%, and negative predictive
value of 100%, indicating its utility as a screening modality
in routine clinical practice.

AI-BASED BREAST CANCER BIOMARKER
QUANTIFICATION

Tissue biomarkers are surrogates for diagnosing disease,
predicting prognosis, and selecting patients for targeted
therapy. Protein biomarkers are commonly tested using
IHC, and nucleic acid biomarkers are tested using in situ
hybridization (ISH) or polymerase chain reaction. Clinically,
tissue biomarker stains are manually examined and inter-
preted. Since the wide implementation of digital pathology,
it is emerging that tissue biomarkers are assessed using Al
tools, which can provide more objective and reproducible
results.’ = In breast pathology, these tissue biomarkers
include estrogen receptor (ER), progesterone receptor (PR),
HER2/neu, Ki-67, and programmed death ligand-1 (PD-L1)
IHCs, as well as ISH analysis of HER2/neu.***

Estrogen Receptor and Progesterone Receptor
Immunohistochemistry

American Society of Clinical Oncology (ASCO)/College of
American Pathologists (CAP) guidelines recommend that all
primary and recurrent/metastatic breast carcinomas should
be tested for ER and PR expression, which has both
prognostic and predictive values.®®>* ER/PR expression is
tested by IHC and usually assessed by pathologists” manual
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Figure 2. Representative images of lymph node metastasis detected by artificial intelligence (Al) algorithm. A, One annotated lymph node with
macrometastasis from an invasive lobular carcinoma case. B, High magnification of the lymph node with macrometastasis from invasive lobular
carcinoma. C, One annotated lymph node with micrometastasis. D, One annotated lymph node with isolated tumor cells (hematoxylin-eosin,
original magnifications X2 [A], X40 [B], X10 [C], and X20 [D]). Arrows indicate metastatic carcinomas.

scoring, which has interobserver/intraobserver variabili-
ty.>**2 Computational assessment of ER/PR THC using Al
algorithms provides opportunities to improve precision
performance (Figure 3). Al algorithms not only demonstrate
excellent correlation with pathologists” manual scoring but
also yield higher reproducibility than pathologists” scor-
ing 34174363766 Eyrthermore, Al algorithms can be coupled
with a digital pathology laboratory information system to
provide an automated workflow.®”®® Like manual scoring,
Al algorithms provide the ratio of positively staining tumor
cells. Additionally, Al algorithms can further divide tumor
cells into different staining intensity and then calculate an
H-score by multiplying the percentages of nuclei with their
corresponding staining intensity. Challenges still exist in
evaluating ER/PR IHC using automated Al algorithms.
False-positive results can be caused by intermixed benign
glands in tumor area and DCIS components in invasive
carcinoma. False-negative results can be caused by faint IHC
staining that is not detected by Al algorithms.®® Therefore, a
pathologist’s final review to confirm Al algorithms” analysis
is necessary.

HER2 Immunohistochemistry

HER? is another important prognostic and therapeutic
biomarker in breast pathology. Up to 20% of breast
carcinomas harbor HER2 protein overexpression/gene am-
plification.”””® ASCO/CAP guideline recommends that
HER?2 status should be determined for all invasive breast
carcinomas by HER2 THC and/or by ISH.” Like ER/PR
IHCs, HER2 THC is usually evaluated by pathologists’
manual scoring, which often shows interobserver variabil-
ity.”*7® According to the guidelines, HER2 IHC is classified
into negative (0 and 1+4), equivocal (2+), and positive (3+)
based on HER2 membranous staining intensity together
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with the percentage of tumor cells with membranous
staining. Studies have demonstrated Al algorithms provide
equally accurate, but more objective and reproducible
assessments than manual scoring.***#"7 Different approach-
es have been applied in HER2 IHC AT algorithms. Some Al
algorithms segment tumor cells, classify each cell into a
different staining category, and then calculate to obtain a
final score. Other Al algorithms evaluate the connectivity of
HER2-stained membrane to determine HER2 THC score.**
(Figure 4) Studies have used such Al algorithms to
accurately determine HER2 IHC score, and to discriminate
HER2" and HER2™ cases.**”#® Most Al algorithms couple
with WSIs or ROI images to evaluate HER2 IHC. An Al-
assisted microscope has been developed by equipping a
conventional microscope with an HER2 scoring Al algo-
rithm and an augmented reality module. This Al-assisted
microscope enables pathologists to obtain real-time HER2
IHC results for each view field and improves the consistency
and accuracy of pathologist scoring.®! As the scientific
understanding of HER? in breast cancer is evolving, it may
become necessary to further stratify HER2 negative breast
cancers into HER2 THC 0 and HER2-low (HER2 THC 1+ and
HER2 IHC 2+/ISH negative) categories.*>® It is suggested
that Al may play an important role in classifying these
categories.

Finally, the ASCO/CAP guidelines have acknowledged Al
algorithms as diagnostic modalities to evaluate HER2 IHC,
and the CAP has published guidelines to facilitate the
adoption of Al algorithms into clinical practice.”**?

HER2 ISH

HER2 gene amplification is examined by HER2 ISH,
including fluorescence ISH (FISH), silver ISH, chromogenic
ISH, and dual ISH.®*%” Studies have demonstrated excellent
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Example of estrogen receptor (ER) quantification by artificial intelligence algorithm. The left panels (A, C, and E) show ER

immunohistochemistry staining, and the right panels (B, D, and F) show cell segmentation and ER quantification with pseudocolors (blue, negative
staining; red, positive staining). Invasive carcinoma is automatically detected and outlined by the algorithm. A and B, ER with <1% positive staining.
C and D, ER with 25% positive staining. E and F, ER with 90% positive staining (immunostains of ER, original magnification X10).

concordance between HER2 ISH and IHC in determining
HER?2 status.®® Al algorithms have been developed to assist
pathologists in detecting, classifying, and counting HER2
signals in cells of interest, and excellent concordance
between manual scoring and Al scoring of HER2 FISH
has been detected.®” The benefits of using Al to analyze
HER2 FISH include improved efficiency and productivity
because manual counting of HER2 FISH signals is time
consuming.®*-*

Ki-67 Immunohistochemistry

Ki-67 is a surrogate marker for cell proliferation and is
expressed in all cell cycle phases except in G0.7%7 Ki-67
expression is related to breast tumor grade and biologic
behavior, with high expression associated with worse
prognosis.”” 1% Cyclin-dependent kinases 4 and 6 (CDK4/
6) inhibitor was recently approved for early-stage ERY,
HER?2™ breast cancer with high risk of recurrence and a Ki67
score of 20% or higher.'% The Ki-67 IHC MIB-1
pharmDx assay was also approved as a companion
diagnostic test for this indication.

Arch Pathol Lab Med

Ki-67 expression is assessed by IHC and scored as a
percentage of tumor cells stained by Ki-67 antibody. Several
methodologies are used to score Ki-67 IHC, including visual
estimation, manual counting of ROIs, and manual compre-
hensive counting of the whole slide. Visual estimation has
notable interobserver variability.”®?”'% Similarly, interob-
server variability also exists in selecting ROIs for count-
ing.'®1% Manual comprehensive counting of the whole
slide improves reproducibility, but it is very time-consuming
and impractical during clinical routine practice.**®

Automated scoring methods using Al algorithms have
shown promise for assessing Ki-67 IHC.>%7"113 AT algo-
rithms automatically detect tumor nuclei based on their
shape and size, identify positively stained tumor nuclei
based on their color, and then calculate the positivity rate.
However, automated Al algorithms have pitfalls. First, Al
algorithms can confuse tumor cells with surrounding
stromal cells, inflammatory cells, or artefacts. Second, Al
algorithm can misclassify lesions, such as by including in
situ components as invasive carcinoma for analysis.
Therefore, pathologist intervention or extensive supervised
learning for sophisticated cell segmentation and classifica-
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Figure 4. Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and the connectivity analyzed by artificial intelligence
(Al) algorithm. A and B, One case with HER2 IHC 0. C and D, One case with HER2 IHC 1+ E and F, One case with HER2 IHC 2+. G and H, One
case with HER2 IHC 3+ HER2 IHC (A, C, E, and G); HER2 connectivity (green color line) detected by Al algorithm (B, D, F, and H) (immunostain of
HER2, original magnifications X5 [A and B] and X10 [C through C]).

tion may be necessary. Recently, new Al algorithms have
been developed to more accurately score Ki-67 using dual
IHC (Ki-67 plus cytokeratin stain for labeling tumor cells) or
sequential IHC stains followed by virtual image reconstruc-
tion."* Nevertheless, Al algorithms are capable of analyzing
the whole slide efficiently, which may result in higher
accuracy than counting on ROIs."®

PD-L1 IHC

PD-L1 IHC is an emerging test to select triple-negative
breast cancer (TNBC) patients for immunotherapy. Two PD-
L1 assays (SP142 and 22C3) had been approved as
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companion diagnostic tests in breast cancer; however,
SP142 was recently withdrawn because of failed clinical
trial."**?! Currently, only the 22C3 test is used for breast
cancer. PD-L1 22C3 (Agilent Technologies, Santa Clara,
California) uses a combined positive score (CPS) to assess
PD-L1 expression. The CPS score is calculated as the
number of PD-Ll-stained cells (tumor cells, lymphocytes,
and macrophages) divided by the total number of tumor
cells multiplied by 100.'*

Although studies have demonstrated Al algorithms’
assessment of PD-L1 THC showed excellent correlation
with pathologists’” manual scoring, only a few PD-L1 Al
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algorithms have been validated for clinical practice.'**'%
This may be due to the relatively short time of PD-L1 IHC in
clinical practice and the complexity of PD-L1 testing
(multiple antibodies and different scoring systems).

AI-BASED EVALUATION OF TUMOR-INFILTRATING
LYMPHOCYTES IN BREAST CANCER

In breast cancer, especially triple-negative breast cancer
and HER2" breast carcinoma, the presence of tumor-
infiltrating lymphocytes (TILs) in the tumor microenviron-
ment is associated with better response to therapy and
overall survival.’**'# TILs have been emerging as a
biomarker in breast carcinoma.’®®1? However, manual
assessment of TILs is subjective, with significant interob-
server variability and poor reproducibility.!?**%

With the widespread implementation of digital pathology,
AT algorithms have been developed to evaluate TILs aiming
for more accurate and reproducible results.’***** In 1 study,
a computer-aided diagnosis scheme was developed to
automatically detect and grade the extent of lymphocytic
infiltrate in HER2* breast carcinoma using WSIs, and the
results showed the architectural feature set successfully
distinguished samples of high and low lymphocytic infiltrate
levels with a classification accuracy greater than 90%.%! In
another study, an automated method based on grid
subsampling of microscopy image analysis data was
developed to extract the tumor-stroma interface and
compute immunogradient indicators for TIL density profiles,
which provided a strong and independent prognostic
stratification in ER" breast cancer patients.*

AI-BASED PREDICTION OF PROGNOSIS, SURVIVAL,
AND THERAPY RESPONSE IN BREAST CANCER

The combined antiestrogen therapy and chemotherapy
have significantly reduced recurrence frequency and im-
proved survival rate in certain populations of ER" breast
cancer patients.”®*® However, these therapies, especially
chemotherapy, have toxic side effects; therefore, identifying
patients who are more likely to benefit from chemotherapy
is important. ASCO Clinical Practice Guideline recom-
mends the clinician may use Oncotype DX RS to guide
decisions on adjuvant systemic chemotherapy if a patient
has ERY, HER2™ breast cancer and the Oncotype DX assay
has been widely accepted in clinical practice across the
United States and Canada.** However, Oncotype DX is a
prohibitively expensive test. Multiple studies have suggested
that standard histopathologic variables (including tumor
grade, tubule formation, nuclear pleomorphism, and mitotic
activity) together with breast cancer biomarkers (ER, PR,
HER?2), can provide information similar to that provided by
the Oncotype DX RS.®70 An Al-based algorithm using
histopathologic WSIs, Image-based Risk Score (IbRiS), was
developed to serve as a proxy for Oncotype DX, and
demonstrated a mean accuracy of 84% in distinguishing
low-risk from high-risk specimens.'*!

Breast cancer patients’ prognosis and survival are closely
related to histopathologic grade (Nottingham grade), as
mentioned above. Studies have shown a considerable
amount of interobserver variability in breast cancer histo-
pathologic grade determined by pathologists.’*? Al-based
approaches have been developed to measure the morpho-
logic components in the Nottingham grading system and
correlated to the patient’s prognosis and recurrent risk. A
DL algorithm was developed to automatically measure
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tubule formation in breast carcinoma WSIs to generate a
tubule formation indicator, which correlated with histologic
grade and recurrence risk determined by molecular test
(Oncotype DX).® One study evaluated the ability of
computer-extracted nuclear morphology features from
histologic images to train 4 ML classifiers (Random Forest,
Neural Network, Support Vector Machine, and Linear
Discriminant Analysis) for breast cancer risk categorization
and demonstrated per-patient accuracies ranging from 75%
to 86% by correlating with Oncotype DX risk categories.'*
Additional study quantitated computer-extracted image
features of nuclear shape and orientation on digitized breast
carcinoma images and demonstrated that quantitative
histomorphometric features of nuclear shape and orienta-
tion were strongly and independently predictive of patient
survival.*** In another study, a deep neural network classifier
was also developed to quantify mitosis in breast cancer WSIs
and demonstrated high accuracy (83%) and good correla-
tion with Oncotype DX risk categories.'*

ML algorithms were also developed to predict neo-
adjuvant chemotherapy response in breast cancer using
clinical and pathologic features. In 1 study, a standard
multivariable logistic regression (MLR) was developed using
patient demographics, histologic characteristics (ER status,
HER2 status, Nottingham grade, tumor size, and nodal
status), molecular status, and staging information. MLR was
compared with 5 ML models (k-nearest neighbor classifier,
random forest classifier, naive Bayes algorithm, support
vector machine, and multilayer perceptron model) for their
performance in predicting neoadjuvant chemotherapy re-
sponse in breast cancer. The AUC for the MLR was 0.64.
Among the 5 ML models mentioned above, the random
forest classifier performed best, with an AUC of 0.88.'*

AI-BASED PREDICTION OF GENETIC ABNORMALITY IN
BREAST CANCER

Multiple studies have sought to predict HER2 status
(amplified or nonamplified) using histologic images in
breast cancer. Farahmand et al®® developed a novel CNN
classifier trained on 188 WSIs manually annotated for tumor
ROIs to be able to predict HER? status with an AUC of 0.90
in cross-validation of slide-level HER2 status and 0.81 on an
independent TCGA test set. Additionally, the classifier was
tested on pretreatment samples from 187 HER2" patients
that subsequently received trastuzumab therapy to predict
trastuzumab response with an AUC of 0.80. Another study
trained a classification pipeline to determine HER2 overex-
pression status of H&E-stained WSIs which achieved an
AUC of 0.82 (CI, 0.65-0.98) on held-out cases and an AUC
of 0.76 (CI, 0.61-0.89) on the independent data set from
TCGA.**7 Recently, a group of researchers presented the
HER2 on hematoxylin and eosin (HEROHE) challenge,
which aimed to predict the HER2 status in breast cancer
using a large, publicly available, annotated H&E whole slide
imaging data set (n =509)."*" This was a parallel event of the
16th European Congress on Digital Pathology, and 21 teams
worldwide submitted their models, and the best-performing
models were presented with detailing their models’
architectures and key parameters.

Besides predicting HER2 genetic status, Al algorithm was
also developed based on H&E images to predict BRCA gene
mutation in breast cancer. Wang et al'*’ trained a deep CNN
of ResNet WSIs and validated their model through an
external data set that contained 17 BRCA mutated and 47
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wild-type cases with AUCs (95% CI) as 0.766 (0.763-0.769),
0.763 (0.758-0.769), 0.750 (0.738-0.761), and 0.551 (0.526—
0.575), using x40, X20, X10, and X5 magnification tiles,
respectively.

Recently, an explainable ML approach was developed to
investigate integrated profiling of morphologic, molecular,
and clinical features from breast cancer histology. This ML
approach was able to predict molecular features in breast
cancer, including DNA methylation, gene expression, copy
number variations, and somatic mutations with balanced
accuracy up to 78% and very high accuracy (>95%) in
subgroup of patients for specific genes, such as p53, PTEN,
etc.’® Another study used histologic images through a DL-
based model to predict chromosomal instability status in
breast cancer and achieved an AOC of 0.822 in correctly
classifying chromosomal instability status.'*

LIMITATIONS TO Al APPLICATIONS IN BREAST
PATHOLOGY

Several key factors must be considered when adopting Al
algorithms in breast pathology. The first one is the quantity
and quality of training data from which the AI algorithm
was developed. Significant variations exist in file formats of
WSIs, scanner quality, and glass slide quality, including
staining intensity, coverslip, tissue size, folded tissue, air
bubble etc. Manual selection of WSIs with artifact-free and
proper quality must be used in the training of an algorithm
to develop comprehensive ML/DL models. WSIs with low
resolution and low quality have indistinguishable features,
making it difficult for an ML/DL model to accurately assess
detailed features. Therefore, standardization and normal-
ization of the training data set are necessary for successful
Al algorithm development and the application of Al
algorithms across different laboratories. Recently, an
open-source quality control tool for digital pathology
slides, HistoQC, was described to not only identify and
delineate artefacts but also discover cohort-level outliers.'>
Subsequent study demonstrated HistoQC substantially
improved overall concordance in identifying unsuitable
WSIs for computational analysis among pathologists
(moderate Gwet AC1 range 0.43-0.59 to excellent range
0.79-0.93)."%°

Second, validating Al algorithms is required before
adoption for clinical use. Many above-mentioned Al
algorithms are experimental, except for some breast
biomarker quantification Al algorithms. Recent studies have
demonstrated the successful validation of Al algorithms, and
their institutions have started to implement such Al
algorithms for clinical practice.**°

Thirdly, a digital pathology workflow (digital sign-out) is
always preferred or necessary to implement Al algorithms
for routine pathology practice to achieve an automated
workflow. Whole slide imaging technology has been
implemented in many institutions worldwide; however, a
fully digital pathology workflow has been limited to very few
pathology laboratories.®”'>*

Lastly, pathologists’ trust is also a key limitation in
adopting Al algorithms in routine pathology practice. Many
Al algorithms are frequently referred to as “black boxes”
because they cannot explain clearly what features trigger
ML/DL and how neural networks piece together all
information. If pathologists do not understand what features
Al algorithms use and how the algorithms make decisions,
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they will be reluctant to believe Al results and adopt Al
algorithms.

CONCLUSIONS

With the widespread implementation of WSIs in breast
pathology practice, the application of AI algorithms
becomes increasingly popular. Integration of Al algorithms
into digital workflow is becoming feasible to significantly
improve pathologists” efficiency and diagnostic accuracy by
reducing workload (repetitive tasks, such as lymph node
metastasis detection etc) and diagnostic errors. Some Al
algorithms may provide pathologists with new tools to
tackle emerging pathologic assessment, such as TIL
quantification, prediction of therapy response, and recur-
rence risk stratification. Furthermore, Al algorithms may
complement or replace some expensive molecular tests in
breast pathology, such as Oncotype DX and genetic testing.
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