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Artificial-intelligence-based molecular  
classification of diffuse gliomas using rapid, 
label-free optical imaging
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Molecular classification has transformed the management of brain tumors 
by enabling more accurate prognostication and personalized treatment. 
However, timely molecular diagnostic testing for patients with brain tumors 
is limited, complicating surgical and adjuvant treatment and obstructing 
clinical trial enrollment. In this study, we developed DeepGlioma, a rapid 
(<90 seconds), artificial-intelligence-based diagnostic screening system 
to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma 
is trained using a multimodal dataset that includes stimulated Raman 
histology (SRH); a rapid, label-free, non-consumptive, optical imaging 
method; and large-scale, public genomic data. In a prospective, multicenter, 
international testing cohort of patients with diffuse glioma (n = 153) who 
underwent real-time SRH imaging, we demonstrate that DeepGlioma can 
predict the molecular alterations used by the World Health Organization 
to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q 
co-deletion and ATRX mutation), achieving a mean molecular classification 
accuracy of 93.3 ± 1.6%. Our results represent how artificial intelligence and 
optical histology can be used to provide a rapid and scalable adjunct to wet 
lab methods for the molecular screening of patients with diffuse glioma.

Molecular classification is increasingly central to the diagnosis and 
treatment of human cancers. Diffuse gliomas, the most common 
and deadly primary brain tumors, are now defined using a handful of 
molecular markers1. However, molecular subgrouping of diffuse glio-
mas requires laboratory techniques such as immunohistochemistry 
(IHC), cytogenetic testing and, often, next-generation sequencing that 
are not uniformly available at the centers where patients with brain 

tumors are treated. Moreover, the expert interpretation of molecular 
data is increasingly challenging in the setting of a declining pathol-
ogy workforce2. Consequently, molecular diagnostic and sequencing 
techniques for brain tumors, when available, are commonly associated 
with long turnaround times even in well-resourced settings (days to 
weeks)3. Barriers to molecular diagnosis can result in suboptimal care 
for patients with brain tumors, complicating prognostic prediction, 
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The SRH workflow begins when a fresh, unprocessed surgical 
specimen is biopsied, and a small (3-mm) sample is placed into a cus-
tom microscope slide (Fig. 1a and Extended Data Fig. 1a). The slide is 
inserted into the SRH imager, and images are acquired at two Raman 
shifts to generate two image channels: 2,845 cm−1 and 2,930 cm−1 
(ref. 5). SRH patches are then sampled in a raster fashion from the 
whole-slide SRH image to generate non-overlapping, single-scale, 
high-resolution images for model training and inference. We used SRH 
images from 373 adult patients with diffuse glioma at the University 
of Michigan (UM) to train a deep convolutional neural network (CNN) 
as a visual encoder (Supplementary Data Table 1 and Extended Data 
Fig. 2). Molecular classification is a multi-label classification task, 
such that the model must predict the mutational status of multiple 
genetic mutations. Although previous studies have used linear clas-
sification layers trained end to end using cross-entropy6, we found 
that weakly supervised (that is, patient labels only) patch-based 
contrastive learning, or PatchCon, was ideally suited for whole-slide 
SRH classification (Fig. 1b and Extended Data Fig. 3)7. We developed 
a simple and general framework for multi-label contrastive learn-
ing of visual representations and trained an SRH encoder using this 
framework (Extended Data Fig. 4).

Next, we pre-trained a genetic embedding model using large-scale, 
public glioma genomic data (Fig. 1b and Supplementary Data Table 2).  
We aimed to learn a genetic embedding space that meaningfully 

surgical decision-making, extent of resection goals, selection of adju-
vant chemoradiation regimens and clinical trial enrollment. Here we 
propose and prospectively validate an artificial-intelligence-based 
approach to simplify the molecular classification of diffuse gliomas 
through automated image analysis of rapid optical imaging of fresh, 
unprocessed surgical specimens.

Results
DeepGlioma is an artificial-intelligence-based diagnostic screening 
system that combines deep neural networks and stimulated Raman 
histology (SRH) to achieve rapid molecular screening of fresh glioma 
specimens (Fig. 1). Our approach predicts the most critical diagnos-
tic genetic alterations in diffuse glioma using learned spectroscopic 
and histopathologic image features to inform patient care and guide 
downstream definitive molecular testing. Using SRH images only, 
DeepGlioma can achieve molecular classification in less than 2 min-
utes of tissue biopsy without the need for tissue processing or human 
interpretation (Extended Data Fig. 1). Although DeepGlioma can scale 
to an arbitrary number of diagnostic mutations, we focus on the major 
molecular diagnostic alterations used by the fifth edition of the World 
Health Organization Classification of Tumors of the Central Nervous 
System (WHO CNS5) to define the diffuse glioma subgroups: isocitrate 
dehydrogenase-1/2 (IDH) mutations, 1p19q chromosome co-deletion 
and ATRX loss1,4.

a b cSRH imaging Multi-modal, multi-label represention learning DeepGlioma molecular prediction

x1

x2
z1

z2

Positives

Negatives

SRH encoder

Weight sharing

SRH embedding

Patient MRI

Patient SRH image

2,845 cm–1
SRH imager

IDH-1

IDH-1
IDH-2

P53
ATRX

NF1
TERTp

TERTp

PTEN
EGFR

FUBP1

FUBP1

1p19q

1p19q

CIC

CIC

CDKN2A

Genetic embedding

Genetic encoder

Transformer encoder

ID
H
-1
/2

AT
RX

1p
19

q

Masked label
training

D
ee

pG
lio

m
a

Pr
ed

ic
tio

n

0
0.5
1.0

Molecular genetic heat maps

Automated tumor
segmentation

0 1.0Probability
Molecular subgroup

heat map

SRH
patches

0 1.0Probability +

Molecular classification
‘Oligodendroglioma,

IDH-mutant, 1p19q co-deletion’

Embeddings

SRH patches

TCGA, CGGA,
etc.

2,930 cm–1

Unit hypersphere 

Fig. 1 | Bedside SRH and DeepGlioma workflow. a, A patient with a suspected 
diffuse glioma undergoes biopsy or surgical resection. The portable SRH imaging 
system is used to acquire histologic images in the operating room, performed 
by a single technician using simple touchscreen instructions. A freshly excised, 
unprocessed tissue specimen is loaded directly into a custom microscope 
slide (Extended Data Fig. 1). Raw SRH images are acquired at two Raman shifts, 
2,845 cm−1 and 2,930 cm−1, as strips. The time to acquire a 3 × 3-mm2 SRH image 
is approximately 90 seconds. Raw optical images are rendered using a virtual 
H&E-like lookup table for clinician review5. b, SRH images are used to train a 
CNN encoder using weakly supervised, multi-label contrastive learning for 
image feature embedding (Extended Data Fig. 3). Second, public diffuse glioma 
genomic data from TCGA, CGGA and others (Supplementary Data Table 2) are 
used to train a genetic encoder to learn a genetic embedding (Extended Data 

Fig. 5). c, DeepGlioma molecular prediction is achieved by using a pre-trained 
segmentation model6 to identify tumor regions, generate patches within those 
regions and perform a feedforward pass of tumor patches through the SRH 
encoder. The SRH and genetic encoders are integrated into a transformer model 
for multi-label prediction of diffuse glioma molecular diagnostic mutations. To 
improve DeepGlioma performance, we used masked label training to train the 
transformer encoder (Extended Data Fig. 5). DeepGlioma input is SRH images 
only during inference. Because our system uses patch-level predictions, spatial 
heat maps can be generated for both molecular genetic and molecular subgroup 
predictions to improve model interpretability, identify regions of variable 
confidence and associate SRH image features with DeepGlioma predictions 
(Extended Data Figs. 9 and 10).
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encodes the relationships between mutations to improve SRH clas-
sification. The co-occurrence of specific mutations in the same tumor 
defines the molecular subgroups of diffuse gliomas8,9. The genetic 
embedding model learns to represent the co-occurrence dataset sta-
tistics using global vector embeddings10. The model learned a linear 
substructure that matches known molecular subgroups of diffuse 
gliomas (Extended Data Fig. 5). By pre-training an embedding model 
using a large genomic dataset, DeepGlioma can be trained using the 
known genomic landscape of diffuse gliomas, allowing for efficient 
multi-label molecular classification using SRH image features.

Finally, the pre-trained SRH and genetic encoders are integrated 
into a transformer architecture for multi-label molecular classifica-
tion (Fig. 1c)11. During transformer training, the input tokens are the 
visual embedding of the SRH patch and the genetic embedding for the 
patient’s tumor. Similarly to masked language modeling12, we randomly 
mask a subset of the genes from the input, and the objective is to predict 
the masked genes. During inference, the transformer uses only the SRH 
patch embedding to predict the mutational status of each gene. We 
performed iterative hold-out cross-validation to show the advantage 
of PatchCon, genetic pre-training and masked label training through 
several ablation studies. We demonstrated that DeepGlioma was able 
to achieve a mean area under the receiver operator characteristic curve 
(mAUROC) of 92.6 ± 5.4% for molecular classification on held-out SRH 
data. Our multimodal training strategy that included the pre-trained 
genetic embedding model results in ~+5% increase in overall classifica-
tion performance (Extended Data Fig. 6b).

We tested DeepGlioma in a multicenter, prospective cohort of 
diffuse gliomas to evaluate how our model generalizes across dif-
ferent patient populations, patient care settings and SRH imaging 
systems. Model testing was designed as a non-inferiority diagnostic 
clinical trial. Four tertiary medical centers across the United States 
and Europe were included as testing recruitment centers. Patients 
were recruited as a consecutive cohort of adult (>18 years of age) 
patients with brain tumors who underwent biopsy or tumor resection 
for diffuse glioma. A total of 153 patients were included (Supplemen-
tary Data Table 3). DeepGlioma achieved a molecular classification 
accuracy for IDH mutation of 94.7% (95% confidence interval (CI): 
90.0–97.7%), 1p19q co-deletion of 94.1% (95% CI: 89.1–97.3%) and 
ATRX mutation of 91.0% (95% CI: 85.1–94.9%), resulting in a mean 
accuracy of 93.3 ± 1.6%. (Fig. 2a). Despite training and testing dataset 
imbalance due to different incidences among each mutation, Deep-
Glioma achieved F1 scores of 96.3%, 96.6% and 94.7% for IDH, 1p19q 
co-deletion and ATRX, respectively.

Next, we performed a set of leave-institution-out cross-validation 
(LIOCV) experiments to (1) assess the stability of DeepGlioma perfor-
mance across medical centers and (2) determine the effect of increasing 
training data on model performance (Fig. 2b). DeepGlioma demon-
strated stability across each LIOCV iteration with molecular classifica-
tion accuracy standard deviation range of ±2.75–6.06% and an F1 score 
range of ±1.71–4.70%. The prediction of ATRX mutations was consist-
ently more challenging across our experiments. However, our LIOCV 
results indicate that this challenge can be addressed with additional 
training data. DeepGlioma LIOCV classification performance of ATRX 
mutation improved by a minimum of +2% across all evaluation metrics 
compared to our prospective clinical testing results.

We compared the performance of DeepGlioma versus the gold 
standard molecular screening modality for glioma classification: 
IDH1-R132H IHC. Given that non-canonical (non-R132H) IDH mutations 
occur in 20–30% of IDH-mutant lower-grade gliomas13, IDH1-R132H 
IHC has known limitations in clinical practice. Due to the higher rates 
of lower-grade gliomas in young patients, genetic sequencing of IDH is 
recommended for glioma patients 55 years of age or younger14. Agnos-
tic to IDH isoform, DeepGlioma generalizes to both canonical and 
non-canonical IDH mutations. IDH1-R132H IHC has a balanced accuracy 
of 91.4% (sensitivity 82.8%, specificity 100%). In our testing cohort, 

DeepGlioma achieved a balanced accuracy of 94.2% (sensitivity 95.5%, 
specificity 93.0%). In patients 55 years of age or younger, IDH1-R132H 
has a balanced accuracy of 90.0%, and DeepGlioma achieved a balanced 
accuracy of 97.0% (Fig. 2c). Full patient demographic subgroup analyses 
can be found in Extended Data Figs. 7 and 8. All non-canonical muta-
tions in our prospective cohort were correctly classified by DeepGlioma 
(Extended Data Fig. 7g).

Finally, DeepGlioma’s prediction of the molecular genetics of 
diffuse gliomas enables direct classification of SRH images into three 
mutually exclusive diffuse glioma subgroups as defined by the WHO 
CNS5 classification scheme (IDH-wild-type, IDH-mutant and 1p19q 
co-deletion, IDH-mutant and 1p19q intact)1. An algorithmic inference 
method was developed to classify each patient into a molecular sub-
group (Algorithm 1). We established an artificial-intelligence-based 
performance benchmark motivated by our previous methods of 
SRH classification trained for multiclass classification6. DeepGlioma 
achieved a molecular subgroup classification accuracy of 91.5% (95% CI: 
86.0–95.4%) (Fig. 2d) and demonstrated a +4.6% performance increase 
over our benchmark model (Extended Data Fig. 8 and Supplementary 
Data Table 4). The major performance gains of DeepGlioma are due 
to increased sensitivity for identifying IDH-mutant gliomas and mod-
eling the co-occurrences of mutations within molecular subgroups. 
In patients 55 years of age or younger, our classification performance 
showed an overall increase (+2.9%), obtaining a classification accuracy 
of 94.4% (95% CI: 87.3–98.2%) (Fig. 2d and Extended Data Fig. 8). Deep-
Glioma performance generalized well across multiple medical centers 
with distinct patient populations, clinical presentations, personnel 
and infrastructure. Molecular subgroup prediction heat maps for 
both canonical (Extended Data Fig. 9) and non-canonical (Extended 
Data Fig. 10) IDH mutations were generated to improve model inter-
pretability and map DeepGlioma predictions to SRH image features. 
High-resolution molecular genetic and molecular subgroup predic-
tions can be accessed through our interactive DeepGlioma website at 
https://deepglioma.mlins.org/.

Discussion
We present DeepGlioma, a deep-learning-based screening system 
designed to streamline the detection of key molecular alterations in 
human gliomas. DeepGlioma accurately predicted IDH mutations, 
1p19q co-deletion and ATRX mutations without the need for fluores-
cence in situ hybridization or genetic sequencing, enabling automated 
molecular subtyping of diffuse gliomas according to the WHO clas-
sification scheme1.

Access to molecular diagnostic testing is uneven for patients who 
receive brain tumor care. DeepGlioma can streamline molecular testing 
by providing rapid molecular screening, enabling clinicians to focus on 
confirming the most likely diagnostic mutations only rather than using 
a diagnostic shotgun approach15. In addition, SRH is not consumptive 
and does not diminish diagnostic yield of tumor specimens, preserving 
scant clinical samples for definitive molecular testing.

Streamlining molecular classification could also have an immedi-
ate impact on the surgical care of patients with brain tumors. Surgical 
goals should be tailored based on molecular subgroups16,17. Patients 
with molecular astrocytoma who undergo gross total resection achieve 
a 5-year increase in median survival compared to patients who receive 
subtotal resections (~12-year versus >17-year median survival). Deep-
Glioma creates an avenue for accurate and timely differentiation of dif-
fuse glioma subgroups to define surgical goals with a better-calibrated 
risk–benefit analysis.

Even with optimal standard-of-care treatment, patients with dif-
fuse glioma face limited treatment options. The development of novel 
therapies through clinical trials is essential. Unfortunately, fewer than 
10% of patients with glioma are enrolled in clinical trials18. Clinical tri-
als limit inclusion criteria to a specific subpopulation, often defined 
by molecular subgroups. DeepGlioma can initiate the process for trial 
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enrollment at the earliest stages of patient care. Moreover, DeepGlioma 
can facilitate clinical trials that rely on intraoperative local delivery of 
agents into the surgical cavity and circumvent the blood–brain barrier, 
a major challenge in therapeutic delivery.

Limitations of our study include that the external testing cohort 
was restricted to the United States and Europe, potentially overfitting 
to this patient demographic. Although our subgroup analysis did not 
show a difference in performance across minority populations, Deep-
Glioma validation using a diverse, global demographic would improve 
model testing. Similarly to other deep neural networks, DeepGlioma 
is not directly interpretable. Uncovering the learned optical image 
features that predict molecular subgroups is an open question for 
future investigations.

In conclusion, our study demonstrates how artificial-intelligence- 
based screening methods have the potential to augment existing  
conventional diagnostic techniques to improve the access and  
speed of molecular diagnosis and improve the care of patients with 
brain tumors.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41591-023-02252-4.
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Fig. 2 | DeepGlioma molecular classification performance. a, Results from our 
prospective multicenter testing cohort of patients with diffuse glioma are shown. 
DeepGlioma was trained using UM data only (n = 373) and tested on our external 
medical centers (n = 153). All results are presented as patient-level predictions. 
Individual ROC curves for IDH (AUROC 95.9%), 1p9q (AUROC 97.7%) and ATRX 
(AUROC 85.7%) classification are shown. Bar plot inset shows the accuracy, 
F1 score and AUROC classification metrics for each mutation. Patient-level 
molecular genetic prediction probabilities are ordered and displayed. b, Results 
from the LIOCV experiments. Mean (solid line) and standard deviation (fill 
color) ROC curves are shown. Metrics are averaged over external testing centers 
(mean ± s.d.) to determine the stability of DeepGlioma classification results given 
different patient populations, clinical workflows and SRH imagers. Including 
additional training data resulted in an increase in DeepGlioma performance. c, 
Primary testing endpoint: comparison of IDH1-R132H IHC versus DeepGlioma 

for IDH mutational status detection. DeepGlioma achieved a 94.2% balanced 
accuracy for the prospective cohort and a 97.0% balanced accuracy for patients 
55 years of age or younger. The major performance boost was due to the +10% 
increase in prediction sensitivity over IDH1-R132H IHC due to DeepGlioma’s 
detection of both canonical and non-canonical IDH mutations. d, Secondary 
testing endpoint: DeepGlioma results for molecular subgrouping according to 
WHO CNS5 diffuse glioma taxonomy1. Multiclass classification accuracy for all 
patients and patients 55 years of age or younger are shown. e, UMAP visualization 
of SRH representations from DeepGlioma. Small, semi-transparent points are 
patch representations, and large, solid points are patient representations (that 
is, average patch location). Representations are labeled according to their IDH 
subgroup and diffuse glioma molecular subgroup. ACC, accuracy; mut, mutant; 
UMAP, uniform manifold approximation and projection; wt, wild-type.
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Methods
Study design
The main objectives of the study were (1) to develop a rapid molecular 
diagnostic screening tool for classifying adult-type diffuse gliomas 
into the taxonomy defined by the WHO CNS5 (ref. 1) using clinical SRH 
and deep-learning-based computer vision methods and (2) to test our 
molecular diagnostic screening tool in a large, multicenter, prospec-
tive, clinical testing set. We aimed to demonstrate that key molecular 
diagnostic mutations produce learnable spectroscopic, cytologic 
and histoarchitectural changes in SRH images that allow for accurate 
molecular classification. We aimed to make a clinical contribution 
by demonstrating that our trained diagnostic system, DeepGlioma, 
could robustly and reproducibly screen fresh diffuse glioma speci-
mens for specific mutations to inform intraoperative decision-making 
and potentially improve early clinical trial enrollment. DeepGlioma 
consists of two pre-trained separable modules—a visual encoder 
and a genetic encoder—that are integrated using a multi-headed 
attention mechanism for image classification11. Inspired by previ-
ous work on deep visual–semantic embedding19 and text-to-image 
generation20–22, our aim was to use multimodal data that included 
both imaging and genomic data to achieve optimal performance on 
a multi-label genetic classification task. The primary SRH dataset 
for model training and validation was from UM, and the prospective 
testing dataset was collected from four international institutions: (1) 
New York University (NYU), (2) University of California, San Francisco 
(UCSF), (3) Medical University of Vienna (MUV) and (4) University 
Hospital Cologne (UKK). We focused on predicting the most clini-
cally important molecular aberrations in diffuse gliomas but aimed 
to develop a model architecture that could scale to any number of 
recurrent mutations in human cancers. For the purposes of this study, 
we focused our classification task on three key molecular aberrations 
found in adult-type diffuse gliomas: IDH mutation, 1p19q co-deletion 
and ATRX mutation.

SRH
The operating surgeon was instructed to provide a grossly 
lesional-appearing but viable tumor for SRH imaging. This strategy 
applies to all brain tumor biopsies to maximize the chance of sampling 
diagnostic tissue. Fiber-laser-based stimulated Raman scattering 
microscopy was used to acquire all images in our study23,24. Detailed 
description of laser configuration was previously described5. In brief, 
surgical specimens were stimulated with a pump beam at 790 nm and 
a Stokes beam that has a tunable range from 1,015 nm to 1,050 nm. 
These laser settings allow for access to the Raman shift spectral 
range between 2,800 cm−1 and 3,130 cm−1. Images were acquired as 
1,000-pixel strips with an imaging speed of 0.4 Mpixels per strip. We 
acquire two image channels sequentially at 2,845 cm−1 (CH2 channel) 
and 2,930 cm−1 (CH3 channel) Raman wavenumber shifts. A strong 
stimulated Raman signal at 2,845 cm−1 corresponds to the CH2 sym-
metric stretching mode of lipid-rich structures, such as myelin. A 
Raman peak at 2,930 cm−1 highlights protein-rich and nucleic-acid-rich 
regions, such as the cell nucleus. The first and last 50 pixels on the 
long axis of each strip are removed to improve edge alignment, and 
the strips are concatenated along the long dimension to generate a 
stimulated Raman histology image5. A virtual hematoxylin and eosin 
(H&E) color scheme can be applied to the two Raman channels to gen-
erate a three-channel, virtually stained RGB SRH image. These images 
provide a major advantage over conventional H&E histology because 
they allow for real-time pathologic review without degradation of 
diagnostic accuracy. Multiple studies have demonstrated near-perfect 
diagnostic concordance with 10× time savings5,25. These images are 
used for clinician interpretation and are designed to replicate the 
image contrast seen in conventional H&E histology but are not used 
for model training. An overview of the SRH imaging workflow can be 
found in Extended Data Fig. 1.

Image data processing
All model training and inference was done using the raw, non-virtually 
colored SRH images. All images were acquired, processed and archived 
as 16-bit images to retain spectroscopic image features. Each strip has 
a 900-pixel width (that is, after edge clipping) and up to 6,000-pixel 
height. Field flattening correction is used to correct for variation in 
pixel intensities within image strips. To account for tissue shifts that 
occur during and between image channel acquisition, the sequen-
tially acquired CH2 and CH3 strips are co-registered using a discrete 
Fourier-transform-based technique for translation, rotation and 
scale-invariant image registration. After registration, a pixel-wise 
subtraction between the CH3 and CH2 channels generates a third ‘red’ 
channel that highlights the cell nuclei and other protein-rich struc-
tures. The whole-slide SRH images are finally split into 300 × 300-pixel 
patches without overlap using a sliding raster window over the full 
image. SRH patches are then classified into one of three classes—tumor, 
normal brain or non-diagnostic tissue—using our previous trained 
whole-slide SRH segmentation model6,26. Only tumor regions are used 
for DeepGlioma training and inference (Extended Data Fig. 1c).

Patient enrollment and training dataset generation
Clinical SRH imaging began at UM on 1 June 2015 after institutional 
review board approval (HUM00083059). Our imaging dataset was 
generated using two SRH imaging systems: an initial prototype SRH 
imager5 and the NIO Imaging System (Invenio Imaging)6. All patients 
with a suspected brain tumor were approached for intraoperative SRH 
imaging. Inclusion criteria for SRH imaging were as follows: patients 
who were undergoing surgery for (1) suspected central nervous system 
tumor and/or (2) epilepsy; (3) patient or durable power of attorney 
was able to provide consent; and (4) preoperative expectation that 
additional tumor tissue would be available beyond what is required 
for clinical pathologic diagnosis. Exclusion criteria were as follows: (1) 
insufficient diagnostic tissue as determined by surgeon or pathologist; 
(2) grossly inadequate tissue (for example, hemorrhagic, necrotic, 
fibrous, liquid, etc.); and (3) SRH imager malfunction. After intraop-
erative SRH imaging, inclusion criteria for the diffuse glioma training 
dataset were the following: (1) 18 years of age or older and (2) final 
pathologic diagnosis of an adult-type diffuse glioma as defined by 
WHO CNS5 (ref. 1) classification. Exclusion criterion was less than 10% 
area segmented as tumor by our trained SRH segmentation model. UM 
dataset generation was stopped on 11 November 2021, and a total of 
373 patients were included for model training and validation. Patient 
demographics and molecular diagnostic information can be found in 
Supplementary Data Table 1 and Extended Data Fig. 2.

Multi-label contrastive visual representation learning
Visual representation learning entails learning a parameterized map-
ping from an input image to a feature vector that effectively represents 
the most important image features for a given computer vision task. We 
used a ResNet-50 architecture27 for SRH feature extraction and did not 
find that larger models provided better performance. Although much 
of our previous work used conventional cross-entropy loss functions 
to train deep neural networks5,6,26, we found that contrastive loss func-
tions result in better visual representation learning7,28. We trained our 
model using a supervised contrastive loss:

ℒsup = ∑
i∈I
ℒsupi = −∑

i∈I

1
|P (i)| ∑

p∈P(i)
log

exp ( sim(g(zzzi),g(zzzp))
τ

)

∑n∈A(i)exp (
sim(g(zzzi),g(zzzn))

τ
)

(1)

where zzz = f (xxx) ∈ ℝd is the d-dimensional feature vector of image x after 
a feedforward pass through the visual encoder f (⋅). A linear projection 
layer g (⋅) maps the image feature vector zzzi to a 128-dimensional space 
where the contrastive objective is computed. zzzp is a feature vector from 
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the set of paired positive examples, P (i), for feature vector zzzi, and A (i) 
is the set of all images in a minibatch. τ ∈ ℝ+ is a temperature hyperpa-
rameter. Paired positive examples are images sampled from the same 
label. The cosine similarity metric was used in the contrastive objective 
function, sim (uuu,vvv) = uuu⋅vvv

∥uuu∥∥vvv∥, to enforce that all feature vectors are on the 
unit hypersphere. We developed a novel framework for supervised 
contrastive learning to accommodate multi-label classification tasks. 
Each label is assigned a unique projection layer gℓ (⋅) for computing a 
label-wise supervised contrastive objective. The final weighted 
multi-label supervised contrastive loss is:

ℒsupmulti−label = ∑
ℓ∈L

λλλℓ ∑
i∈I
ℒsup
i (i, gℓ (⋅) ,Pℓ (i)) (2)

where λλλℓ is the label weight coefficient. The PyTorch-style pseudocode 
for implementation can be found in Extended Data Fig. 3. All models 
were trained for 50 epochs using the Adam optimizer with an initial 
learning rate of 0.001, a cosine annealing learning rate scheduler and a 
temperature of 0.07. The batch size was 256. Data augmentation included 
random cropping, Gaussian blur, flipping and random erasing. After 
training, all projection layers were discarded, and the visual encoder f (⋅) 
was retained for multi-label classification training. We call the above 
visual representation learning strategy PatchCon for weakly supervised 
(for example, patient labels only), patch-based contrastive representa-
tion learning, and results can be found in Extended Data Fig. 4.

Diffuse glioma genetic embedding
A major component of our multimodal training method includes pub-
lic genomic data from adult patients with diffuse glioma to pre-train 
a genetic embedding model. We aggregated genomic data from The 
Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas 
(CGGA)29, the International Cancer Genome Consortium (ICGC)30, 
the REMBRANDT brain cancer dataset31, the Memorial Sloan Kettering 
(MSK) Data Catalog32 and the Mayo Glioblastoma Xenograft National 
Resource. A total of 2,777 patients with diffuse gliomas were aggregated 
and used for embedding model training. The data used to train our 
genetic embedding model can be found in Supplementary Data Table 2.  
In brief, we selected common recurrent somatic mutations found in 
adult-type diffuse gliomas and encoded those mutations as either 
mutant or wild-type for each patient. Inspired by previous work on 
word embeddings10, we used a global vector (GloVe) embedding loss 
function that minimizes the mean squared difference between the 
pairwise inner product of the learned gene embedding vectors and 
the co-occurrence of the genesʼ mutational status.

ℒembed = ∑
i,j

f (XXXi,j) (eee⊤i eeej − logXXXi,j)
2

XXX ∈ ℝ2n×2n is the pairwise gene co-occurrence matrix for our dataset, 
where XXXi,j is the number of times the mutational status of the i-th and 
j-th genes co-occurred in the same tumor. n is the number of genes. 
The vectors ej and ej are updated to match the gene co-occurrence in 
our dataset. f (⋅) is a weighting function as previously described to avoid 
overweighting the most common co-occurrence pairs10. We found that 
GloVe embeddings perform better than Gene2Vec embedding  
models33. The embedding model is trained for 10,000 epochs with a 
batch size of 60. The Adam optimizer was used with a learning rate of 
5 × 10−5. Pre-trained genetic embedding results can be found Extended 
Data Fig. 5. This method of using multimodal datasets can be extended 
to other clinical or imaging modalities, such as patient demographics 
or preoperative/intraoperative magnetic resonance imaging.

Multi-label molecular classification
Two multi-label molecular classification strategies were tested: a linear 
binary relevance strategy and a transformer-based strategy. Linear 

binary relevance involves splitting a multi-label classification task 
into multiple independent binary classifiers. The advantage of using a 
transformer-based strategy for multi-label classification is the ability to 
explicitly model complex label dependencies and the co-occurrence of 
specific genetic mutations in the context of pre-trained visual features 
using an attention mechanism. Similarly to bi-directional masked 
language modeling in BERT-style pre-training12, we randomly mask a 
subset of the genetic mutations from the input, and the objective is to 
predict the unknown or masked genes. Masked label training allows for 
more semantically informative supervision during model training that 
can improve multi-label classification performance.

Linear binary relevance strategy. After the training of our visual 
encoder f (⋅) using supervised contrastive learning, the weights are 
fixed, and a multi-layer perceptron (MLP) that contains a single linear 
layer is added and trained for multi-label classification.

̂yyyℓ = MLPℓ (f (xxx)) = σ ((WWWℓ ⋅ f (xxx)) + bbbℓ) (3)

where σ is a sigmoid activation function that outputs the probability 
for the ℓ genetic mutation. This layer is trained using a weighted binary 
cross-entropy loss:

ℒ (yyy, ̂yyy) =
|L|
∑
ℓ=1

λℓ [yyyℓ log ( ̂yyyℓ) + (1 − yyyℓ) log (1 − ŷyyℓ)] (4)

Transformer-based strategy. A transformer encoder is used that 
includes our pre-trained genetic embedding layer WWWℓ. The labels 
[ℓℓℓj,… ,ℓℓℓk] are embedded such that eeek =WWWℓ ⋅ ℓℓℓk, where the k-th column 
of WWWℓ is the label embedding for the k-th label. A label mask is then 
sampled that randomly selects a subset of labels for transformer input 
and the remainder to be predicted as output. We used learnable state 
embeddings to encode whether a label was positive, negative or 
unknown/masked (not included to simplify notation)34. The image 
feature vector zzz and embedded genetic labels are concatenated and 
input into the transformer encoder:

HHH = [hhhj,… ,hhhk] = MultiHeadAttention ([zzz,eeej,… ,eeek]) (5)

where HHH = [hhhj,… ,hhhk] is the output representations of the genetic labels 
and the image token removed. Rather than using a position-wise linear 
feedforward network and/or a (class) token for label classification, as 
is done in conventional transformer architectures11,34,35, we enforce 
that the output latent space of the transformer encoder is the same as 
the pre-trained genetic embedding space, such that:

̂yyy = σ (diag (HWHWHW⊤
ℓ )) (6)

where HWHWHW⊤
ℓ  is in ℝℓ×ℓ matrix, and the diagonal elements are the inner 

product between transformer output latents and the corresponding 
label embedding of the same label index. The transformer encoder 
model is trained using the same weighted binary cross-entropy loss 
function as above. The embedding layer weights are fixed during the 
transformer encoder training. The PyTorch-style pseudocode for 
implementation can be found in Extended Data Fig. 5.

Whole-slide segmentation, patient inference and molecular 
subgrouping
Patch-based image classification requires an inference function to 
aggregate patch-level predictions into a single whole-slide-level or 
patient-level diagnosis. To accomplish this, whole-slide SRH images 
are patched, and each patch undergoes an initial feedforward pass 
through our previously trained segmentation model, fϕ, that classifies 
each patch into tumor, normal brain or non-diagnostic tissue using an 
argmax operation. If less than 10% of the image area is classified as 
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tumor, the whole slide is excluded from inference for molecular clas-
sification. Our DeepGlioma model, gθ, predicts on the tumor patches 
only. The patch-level model outputs are summed using soft probability 
density aggregation, and each label is then re-normalized to give a valid 
Bernoulli distribution for each label. For patients with multiple 
whole-slide images, all patch-level predictions are aggregated, and a 
single patient-level diagnosis is returned. The molecular genetic patient 
inference function is:

ppatient(yyy |𝒳𝒳 ) = 1
Z

|𝒳𝒳|
∑
j=1
1 (arg max p (yyyj |xxx j ,ϕ) = ktumor)p(yyyj |xxx j ,θ) (7)

where 𝒳𝒳 is a set of patches from a patient; xxxj is the j-th patch; p (yyyj |xxx j ,ϕ) 
is the patch output from the tumor segmentation model fϕ; p (yyyj |xxx j ,θ) 

is the DeepGlioma gθ output; and Z =
|𝒳𝒳|
∑
j=1
1 (arg maxp (yyyj |xxx j ,ϕ) = ktumor) 

is the number of patches classified as tumor. Mutually exclusive 
molecular subgroup prediction is achieved algorithmically from  
the above patient-level molecular genetic predictions ppatient (yyy |𝒳𝒳 ),  
as shown in Algorithm 1.

Algorithm 1 DeepGlioma patient-level molecular subgroup 
prediction
Require:  ppppatient (yyy |𝒳𝒳 ) , τ,ψ, ϵ  ▹ τ = 0.5,ψ = 1  f o r  D e e p G l i o m a 

experiments
1 if p (yyy [kIDH] |𝒳𝒳 ) < τ then
2 return "Glioblastoma, IDH-wild-type"

3 else if p (yyy [kIDH]|| 𝒳𝒳) ≥ τ & p( yyy[k1p19q]||𝒳𝒳)
p( yyy[kATRX]||𝒳𝒳)+ϵ

> ψ then

4  return "Oligodendroglioma, IDH-mutant and 1p19q co-deleted"

5 else if p (yyy [kIDH]|| 𝒳𝒳) ≥ τ & p( yyy[k1p19q]||𝒳𝒳)
p( yyy[kATRX]||𝒳𝒳)+ϵ

≤ ψ then

6 return "Astrocytoma, IDH-mutant"
7 end if

Ablation studies
We conducted three main ablation experiments to test the importance 
of major training strategies and model architectural design choices: 
(1) cross-entropy versus contrastive learning for visual representation 
learning; (2) linear versus transformer-based multi-label classification; 
and (3) fully supervised versus masked label training. Using the UM 
dataset only, we performed hold-out validation on three randomly sam-
pled validation sets (n = 20 patients per set) that contained a balanced 
number of IDH mutant (n = 10) and wild-type (n = 10) tumors. Results 
are shown in Extended Data Fig. 6. For (1), we trained a ResNet-50 
model using conventional cross-entropy versus a weakly supervised 
patch-based contrastive learning, or PatchCon. Both models were 
initialized using ImageNet pre-trained weights and trained for ten 
epochs without additional hyperparameter tuning. For (2), the Patch-
Con pre-trained ResNet model from (1) was held fixed, and we trained 
a single linear classification layer versus a transformer model with 
three multi-headed attention layers. Each model was trained for ten 
epochs. For (3), only the transformer model was re-trained using vari-
able percentages of labels masked. We tested 0%, 33% and 66% of labels 
provided as input, which corresponded to 0, 1 and 2 labels provided 
for our dataset. Each model was trained using the same contrastive 
pre-trained ResNet SRH encoder to isolate the effect of label masked 
training on classifier performance. Results of ablation studies can be 
found in Extended Data Fig. 6.

Molecular heat map generation
Leveraging our previous work on semantic segmentation of SRH 
images6,26, we densely sample patches at 100-pixel step size, which 
allows for local probability pooling from overlapping patch predic-
tions. A major contribution of this work is the integration of our tumor 

segmentation model and DeepGlioma into a single interpretable heat 
map for both molecular genetic and molecular subgroup predic-
tions. The tumor segmented regions are retained, and the normal/
non-diagnostic regions are converted to grayscale to indicate that 
these regions were not candidates for molecular prediction. Each 
molecular genetic heat map is generated by averaging the output 
predictions from patches that overlap for any given pixel in the heat 
map. Molecular subgroup heat maps are more challenging and require 
integrating the molecular genetic predictions that are necessary for 
subgroup classification. To address this challenge, we use a molecular 
subgroup-specific conditional mask combined with IDH predictions to 
generate an interpretable and spatially consistent molecular subgroup 
heat map. The most straightforward molecular subgroup heat map is 
for glioblastoma, IDH-wild-type heat map, generated as:

pGBM
i,j = 1 − pIDH (xxxi,j) (8)

such that i,j corresponds to the whole-slide height and width indices, 
and pIDH (xxxi,j) is the IDH prediction at the corresponding spatial location. 
In contrast, molecular oligodendrogliomas and astrocytomas require 
a conditional molecular mask to segment regions that meet specific 
molecular subgroup criteria. Molecular oligodendroglioma heat maps 
are generated as:

pOligo.
i,j = [pIDH (xxxi,j) > τ ∧ p1p19q (xxxi,j) > ϕ]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

Conditional molecular mask

⋅pIDH (xxxi,j) (9)

with the binarized conditional molecular mask identifying heat map 
regions that are above hyperparameter thresholds τ and ϕ for IDH and 
1p19q co-deletion, respectively. Molecular astrocytomas heat maps 
are generated as:

pAstro.
i,j = [pIDH (xxxi,j) > τ ∧ [p1p19q (xxxi,j) < ϕ ∨ pATRX (xxxi,j) > π]]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

Conditional molecular mask

⋅pIDH (xxxi,j)
(10)

where τ,ϕ,π are all hyperparameter thresholds. All thresholds were set 
to 0.5 in our model without hyperparameter tuning to avoid overfitting. 
Conditional molecular masking encodes the spatial locations where the 
molecular subgroup conditions are instantiated, and the IDH prediction 
provides the representative probability distribution for the molecular 
subgroup. Examples of molecular genetic and molecular subgroup heat 
maps can be found in Extended Data Figs. 9 and 10. Molecular heat maps 
allowed for the evaluation of classification performance in different 
molecular settings. For example, DeepGlioma was able to correctly 
predict IDH-wild-type status in patients with recurrent mutations found 
in molecular glioblastomas, such as CDKNA1 and TERT promotor muta-
tions (Supplementary Fig. 1). Molecular heat maps were also used to 
identify sources of DeepGlioma’s classification errors. Potential sources, 
including low tumor infiltration and image quality, are presented in 
Supplementary Fig. 2. Interactive web-based interface for DeepGlioma 
predictions can be found at https://deepglioma.mlins.org/.

Prospective multicenter clinical testing and sample size 
calculation
We elected to perform prospective, international, multicenter clinical 
testing of DeepGlioma to adhere to the rigorous standards of respon-
sible machine learning in healthcare36. Our prospective clinical testing 
was designed using the same principles as a non-inferiority diagnostic 
clinical trial26. NYU, UCSF, MUV and UKK were all included as medical 
centers for prospective patient enrollment.

Primary testing endpoint. Our primary diagnostic endpoint was bal-
anced classification accuracy ( sensitivity+specificity

2
) for diffuse glioma IDH 

mutational status. The control arm was conventional first-line 
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laboratory molecular screening, and the experimental arm was Deep-
Glioma predictions. IDH-1 IHC for somatic mutations at residue R132H 
is the most common first-line molecular diagnostic screening test. 
DeWitt et al.13 performed the largest and most clinically representative 
analysis of IDH mutation detection via IHC and sequencing methods 
and determined that IDH1-R132H IHC has a balanced diagnostic accu-
racy of 91.4% for adult-type diffuse gliomas (see Fig. 2c for contingency 
tables). We used this value to set the expected accuracy for both the 
control and experimental arms; the equivalence limit was set to 10%, 
power to 90% and alpha to 0.05%, resulting in a sample size value of 135 
patients. All sample size calculations were performed using the epiR 
package (version 2.0.46) in R (version 3.6.3). Most patients in our pro-
spective cohort did not undergo both IHC and sequencing; therefore, 
an accuracy value cannot be calculated for this group.

Secondary testing endpoint. Our secondary endpoint was to achieve 
improved classification performance compared to our previous meth-
ods for training deep computer vision models on SRH images for 
multiclass classification6,26. End-to-end representation learning and 
classification can yield patch-based classification results that approach 
pathologist-level performance for histologic brain tumor classifcation. 
However, our early experiments on molecular classification indicated 
that contrastive pre-training and label embedding were advantageous 
for multi-label classification. Therefore, as a secondary endpoint, the 
control arm was established by training a ResNet-50 model to classify 
the three mutually exclusive molecular subgroups using a conventional 
categorical cross-entropy loss function. This is equivalent to our previ-
ous model training method with the exception of different labels. Our 
experimental arm was DeepGlioma molecular subgroup predictions as 
shown in Algorithm 1. Secondary endpoint metric was overall multiclass 
classification accuracy (Fig. 2d).

Computational hardware and software
All SRH images were processed using an Intel Core i76700K Sky-
lake QuadCore 4.0 central processing unit (CPU) using our custom 
Python-based (version 3.8) mlins package. We used the pydicom pack-
age (version 2.0.0) to process the SRH images from the NIO Imaging 
System. All archived post-processed image patches were saved as 16-bit 
TIFF images and handled using the tifffile package (version 2021.1.14). 
All models were trained using the University of Michigan Advanced 
Research Computing (ARC) Armis2 high-performance computing 
cluster. Armis2 is a high-performance distributed computing environ-
ment that aligns with HIPAA privacy standards. CNNs/visual encoders 
were trained on four NVIDIA Titan V100 graphical processing units 
(GPUs). Our genetic embedding model and classifiers were trained on 
eight NVIDIA 2080Ti GPUs. All custom code for training and inference 
can be found in our open-source DeepGlioma repository. Our models 
were implemented in PyTorch (version 1.9.0). We used the ImageNet 
pre-trained ResNet-50 model from torchvision (0.10.10). scikit-learn 
(version 1.0.1) was used to compute performance metrics on model 
predictions at both training and inference. Additional dependencies 
and specifications can be found at our GitHub page (https://github. 
com/MLNeurosurg/deepglioma).

Reporting Summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The genomic data for training the genetic embedding model are pub-
licly available through the above-mentioned data repositories, and 
all genomic data are provided in Supplementary Data Table 2. Institu-
tional review board (IRB) approval was obtained from all participat-
ing institutions for SRH imaging and data collection. Restrictions 
apply to the availability of raw patient imaging or genetic data, which 

were used with institutional permission through IRB approval for the 
current study and are, thus, not publicly available. Contact the corre-
sponding author (T.H.) for any requests for data sharing. All requests 
will be evaluated based on institutional and departmental policies 
to determine whether the data requested are subject to intellectual 
property or patient privacy obligations. Data can be shared only for 
non-commercial academic purposes and will require a formal material 
transfer agreement. Generally, all such requests for access to SRH data 
will be responded to within 1 week.

Code availability
All code was implemented in Python (version 3.8) using PyTorch 
(1.9.0) as the primary machine learning framework. The following 
packages were used for complete data analysis: pydicom (2.0.0), 
tifffile (2021.1.14), torchvision (0.10.10), scikit-learn (1.0.1), pandas 
(l.3.4), numpy (l.20.3), matplotlib (3.5.0), scikit-image (0.18.3) and 
opencvpython (4.6.0.66). For data visualization and scientific plotting, 
the following packages were used: R (3.5.2) packages ggplot2 (3.3.5), 
dplyr (2.1.1) and tidyverse (l.3.1). All code and scripts to reproduce the 
experiments of this paper are available on GitHub at https://github. 
com/MLNeurosurg/deepglioma.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overall workflow of intraoperative SRH and 
DeepGlioma. a, DeepGlioma for molecular prediction is intended for patients 
with clinical and radiographic evidence of a diffuse glioma who are undergoing 
surgery for tissue diagnosis and/or tumor resection. The surgical specimen is 
sampled from the patient’s tumor and directly loaded into a premade, disposable 
microscope slide with an attached coverslip. The specimen is loaded into the NIO 
Imaging System (Invenio Imaging, Inc., Santa Clara, CA) for rapid optical imaging. 
b, SRH images are acquired sequentially as strips at two Raman shifts, 2845 cm−1 
and 2930 cm−1. The size and number of strips to be acquired is set by the operator 
who defines the desired image size. Standard image sizes range from 1-5 mm2 

and image acquisition time ranges from 30 seconds to 3 minutes. The strips are 
edge-clipped, field-flattened, and registered to generate whole slide SRH images, 
which are then used for both DeepGlioma training and inference. Additionally, 
whole slide images can be colored using a custom virtual H&E color scheme for 
review by the surgeon or pathologist [5]. c, For AI based molecular diagnosis, 
the whole slide image is split into non-overlapping 300×300-pixel patches and 
each patch undergoes a feedforward pass through a previously trained network 
to segment the patches into tumor regions, normal brain, and nondiagnostic 
regions [25]. The tumor patches are then used by DeepGlioma at both training 
and inference to predict the molecular status of the patient’s tumor.
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Extended Data Fig. 2 | Training dataset. The UM adult-type diffuse gliomas 
dataset used for model training. The UM training set consisted of a total of 373 
patients who underwent a biopsy or brain tumor resection. Dataset generation 
occurred over a 6-year period, from November 2015 through November 2021. 
a, The distribution of patients by molecular subgroup. IDH-wildtype gliomas 
consisted of 61.9% (231/373) of the total dataset, IDH-mutant/1p19q-codeleted 
tumors consisted of 17.2% (64/373), and IDH-mutant/1p19q-intact tumors 
consisted of 21% (78/373). Our dataset distribution of molecular subgroups is 
consistent with reported distributions in large-scale population studies. ATRX 
mutations were found in the majority of IDH-mutant/1p19q-intact patients 
(78%), also concordant with previous studies [9]. b, The age distribution for 

each of the molecular subgroups are shown. The average age of IDH-wildtype 
patients was 62.6 ± 15.4 years and IDH-mutant patients was 44.6 ± 13.8 years. 
The average patient age of IDH-mutant/1p19q-codeleted group was 47.0 ± 12.9 
years, and that of IDH-mutant/1p19-intact was 42.5 ± 14.1 years. c, Individualized 
patient characteristics and mutational status are shown by molecular subgroups. 
We report the WHO grade based on pathologic interpretation at the time of 
diagnosis. Because many of the patients were treated prior to the routine use 
of molecular status alone to determine WHO grade, several patients have IDH-
wildtype lower grade gliomas (grade II or III) or IDH-mutant glioblastomas (grade 
IV). The discordance between histologic features and molecular features has 
been well documented [9] and is a major motivation for the present study.
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Extended Data Fig. 3 | Multi-label contrastive learning for visual 
representations. Contrastive learning for visual representation is an active area 
of research in computer vision [7]. While the majority of research has focused 
on self-supervised learning, supervised contrastive loss functions have been 
underexplored and provide several advantages over supervised cross-entropy 
losses. Unfortunately, no straightforward extension of existing contrastive 
loss functions, such as InfoNCE and NT-Xent [7], can accommodate multi-label 
supervision. Here, we propose a simple and general extension of supervised 
contrastive learning for multi-label tasks and present the method in the context 
of patch-based image classification. a, Our multi-label contrastive learning 
framework starts with a randomly sampled anchor image with an associated set 
of labels. Within each minibatch a set of positive examples are defined for each 
label of the anchor image that shares the same label status. All images in the 

minibatch undergo a feedforward pass through the SRH encoder (red dotted 
lines indicate weight sharing). Each image representation vector (2048-D) is 
then passed through multiple label projectors (128-D) in order to compute 
a contrastive loss for each label (yellow dashed line). The scalar label-level 
contrastive loss is then summed and backpropagated through the projectors 
and image encoder. The multi-label contrastive loss is computed for all examples 
in each minibatch. b, PyTorch-style pseudocode for implementation of our 
proposed multi-label contrastive learning framework is shown. Note that this 
framework is general and can be applied to any multi-label classification task. We 
call our implementation patchcon because individual image patches are sampled 
from whole slide SRH images to compute the contrastive loss. Because we use a 
single projection layer for each label and the same image encoder is used for all 
images, the computational complexity is linear in the number of labels.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | SRH visual representation learning comparison. 
a, SRH patch representations of a held-out validation set are plotted. Patch 
representations from a ResNet50 encoder randomly initialized (top row), trained 
with cross-entropy (middle row), and PatchCon (bottom row) are shown. Each 
column shows binary labels for the listed molecular diagnostic mutation or 
subgroup. A randomly initialized encoder shows evidence of clustering because 
patches sampled from the same patient are correlated and can have similar 
image features. Training with a cross-entropy loss does enforce separability 
between some of the labels; however, there is no discernible lowdimensional 
manifold that disentangles the label information. Our proposed multi-label 
contrastive loss produced embeddings that are more uniformly distributed in 

representation space than cross-entropy. Uniformity of the learned embedding 
distribution is known to be a desirable feature of contrastive representation 
learning. b, Qualitative analysis of the SRH patch embeddings indicates that data 
are distributed along two major axes that correspond to IDH mutational status 
and 1p19q-codeletion status. This distribution produces a simplex with the three 
major molecular subgroups at each of the vertices. These qualitative results are 
reproduced in the prospective testing cohort shown in Fig. 2e. c, The contour 
density plots for each of the major molecular subgroups are shown to summarize 
the overall embedding structure. IDH-wildtype images cluster at the apex and 
IDH-mutant tumors cluster at the base. Patients with 1p19q-intact are closer to 
the origin and 1p19q-codeleted tumors are further from the origin.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Diffuse glioma genetic embedding using global 
vectors. Embedding models transform discrete variables, such as words or gene 
mutational status, into continuous representations that populate a vector space 
such that location, direction, and distance are semantically meaningful. Our 
genetic embedding model was trained using data sourced from multiple public 
repositories of sequenced diffuse gliomas (Extended Data Table 2). We used 
a global vector embedding objective for training [10]. a, A subset of the most 
common mutations in diffuse gliomas is shown in the co-occurrence matrix. 
b, The learned genetic embedding vector space with the 11 most commonly 
mutated genes shown. Both the mutant and wildtype mutational statuses (N = 22) 
are included during training to encode the presence or absence of a mutation. 
Genes that co-occur in specific molecular subgroups cluster together within 
the vector space, such as mutations that occur in (c) IDH-mutant, 1p19q-codel 
oligodendrogliomas (green), (d) IDH-mutant, ATRX-mutant diffuse astrocytomas 
(blue), and (e) IDH-wildtype glioblastoma subtypes (red). Radial traversal of the 
embedding space around the wildtype genes defines clinically meaningful linear 
substructures [10] corresponding to molecular subgroups. f, Corresponding 
to the known clinical and prognostic significance of IDH mutations in diffuse 
gliomas, IDH mutational status determines the axis along which increasing 

malignancy is defined in our genetic embedding space. g, PyTorch-style 
pseudocode for transformer-based masked multi-label classification. Inputs to 
our masked multi-label classification algorithm are listed in lines 1-5. The vision 
encoder and genetic encoder are pretrained in our implementation but can be 
randomly initialized and trained end-to-end. The label mask is an L-dimensional 
binary mask with a variable percentage of the labels removed and subsequently 
predicted in each feedforward pass. An image x is augmented and undergoes a 
feedforward pass through the vision encoder f. The image representation is then 
ℓ2 normalized. The labels are embedded using our pretrained genetic embedding 
model and the label mask is applied. The label embeddings are then concatenated 
with the image embedding and passed into the transformer encoder as input 
tokens. Unlike previous transformer-based methods for multi-label classification 
[34], we enforce that the transformer encoder outputs into the same vector 
space as the pretrained genetic embedding model. We perform a batch matrix 
multiplication with the transformer outputs and the embedding layer weights. 
The main diagonal elements are the inner product between the transformer 
encoder output and the corresponding embedding weight values. We then 
compute the masked binary cross-entropy loss.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Ablation studies and cross-validation results. 
We conducted three main ablation studies to evaluate the following model 
architectural design choices and major training strategies: (1) cross-entropy 
versus contrastive loss for visual representation learning, (2) linear versus 
transformer-based multi-label classification, and (3) randomly initialized 
versus pretrained genetic embedding. a, The first two ablation studies are 
shown in the panel and the details of the cross-validation experiments are 
explained in the Methods section (see ‘Ablation Studies’). Firstly, a ResNet 
50 model was trained using either cross-entropy or patchcon. The patchcon 
trained image encoder was then fixed. A linear classifier and transformer 
classifier were then trained using the same patchcon image encoder in order 
to evaluate the performance boost from using a transformer encoder. This 
ablation study design allows us to evaluate (1) and (2). The columns of the 
panel correspond to the three levels of prediction for SRH image classification: 
patch-, slide-, and patient-level. Each model was trained three times on 
randomly sampled validation sets and the average (± standard deviation) 
ROC curves are shown for each model. Each row corresponds to the three 
molecular diagnostic mutations we aimed to predict using our DeepGlioma 
model. The results show that patchcon outperforms cross-entropy for visual 
representation learning and that the transformer classifier outperforms 

the linear classifier for multi-label classification. Note that the boost in 
performance of the transformer classifier over the linear model is due to the 
deep multi-headed attention mechanism learning conditional dependencies 
between labels in the context of specific SRH image features (i.e., not improved 
image feature learning because the SRH encoder weights are fixed). b, We then 
aimed to evaluate (3). A single ResNet50 model was trained using patchcon 
and the encoder weights were fixed for the following ablation study to isolate 
the contribution of random initialization versus pretraining of the genetic 
embedding layer. Three mask label training regimes were tested and are 
presented in the tables: all input labels masked (100%), two labels randomly 
masked (66%), and one label randomly masked (33%). The first row in the first 
table (100% masked) is non-multimodal training, where no genetic information 
is provided at any point during training or inference. We found that 66% input 
label masking, or randomly masking two of three diagnostic mutations, showed 
the best overall classification performance. We hypothesize that this results 
from allowing a single mutation to weakly define the genetic context while 
allowing supervision from the two masked labels to backpropagate through 
the transformer encoder. mAcc, mean label accuracy; mAP, mean average 
precision; mAUC, mean area under ROC curve; SubAcc, subset accuracy; ebF1, 
example based F1 score; micF1, micro-F1 score.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Patient demographic subgroup analysis of DeepGlioma 
IDH classification performance. a, b, DeepGlioma performance for classifying 
IDH mutations stratified by patient age. Bar charts are showing patients 
classification accuracy (± standard deviation). Classification performance 
remains high in patients less than (n = 89) and greater than 55 years (n = 64). 
IDH mutations are less common in patients greater than 55 years, causing 
class imbalance and resulting in a greater proportional drop in classification 
performance with false negative predictions. (c, d,) Classification performance 
stratified by sex (male = 74, F = 74) and (e, f) racial groups (non-white = 35, 
white = 118) as defined by the National Insitute of Health (NIH). Bar charts are 

showing patients classification accuracy (± standard deviation). Classification 
performance remains high across all subgroup analyses. No information rate in 
the accuracy achieved by classifying all examples into the majority class. g, Subset 
of patients from the prospective cohort with non-canonical IDH mutations and 
a diffuse midline glioma, H3 K27M mutation. DeepGlioma correctly classified all 
non-canonical IDH mutations, including IDH-2 mutation. Moreover, DeepGlioma 
generalized to pediatric-type diffuse high-grade gliomas, including diffuse 
midline glioma, H3 K27-altered, in a zero-shot fashion as these tumors were not 
included in the UM training set. This patient was included in our prospective 
cohort because the patient was a 34-year-old adult at presentation.
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Extended Data Fig. 8 | DeepGlioma molecular subgroup analysis. Multiclass 
classifcation performance for molecular subgroup prediction by DeepGlioma 
stratified by patient demographic information and prospective testing site is 
shown. Results stratified by (a) age, (b) race, and (c) sex are shown. Multiclass 
classification performance remained high in each patient demographic 
compared to the entire cohort. DeepGlioma was trained to generalize to all 
adult patients and to be agnostic to patient demographic information. d, 
Confusion matrix of our benchmark multiclass model trained using categorical 
cross-entropy. DeepGlioma outperformed the multiclass model by +4.6% in 
overall patient-level diagnostic accuracy with a substantial improvement in 
differentiating molecular astrocytomas and oligodendrogliomas. e, Direct 
comparison of subgrouping performance for our benchmark multiclass model, 

IDH1-R132H IHC, and DeepGlioma. Performance metrics values are displayed. 
Molecular subgroupings mean and standard deviations are plotted for both IDH 
subgrouping and molecular subgrouping. These results provide evidence that 
multimodal training and multi-label prediction provide a performance boost 
over multi-class modeling. f, DeepGlioma molecular subgroup classification 
performance for each of the prospective testing medical centers is shown. 
Accuracy values with 95% confidence intervals (in parentheses) are shown above 
the confusion matrices. Overall performance was stable across the three largest 
contributors of prospective patients. Performance on the MUV dataset was 
comparatively; however, some improvement was observed during the LIOCV 
experiments. Red indicates the best performance.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Molecular genetic and molecular subgroup heatmaps. 
DeepGlioma predictions are presented as heatmaps from representative 
patients included in our prospective clinical testing dataset for each diffuse 
glioma molecular subgroup. a, SRH images from a patient with a molecular 
oligodendroglioma, IDH-mutant, 1p19q-codel. Uniform high probability 
prediction for both IDH and 1p19q-codel and corresponding low ATRX mutation 
prediction. SRH images show classic oligodendroglioma features, including 
small, branching’chicken-wire’ capillaries and perineuronal satellitosis. 
Oligodendroglioma molecular subgroup heatmap shows expected high 
prediction probablity throughout the dense tumor regions. b, A molecular 
astrocytoma, IDH-mutant, 1p19q-intact and ATRX-mutant is shown. Astrocytoma 
molecular subgroup heatmap shows some regions of lower probability that 
may be related to the presence of image features found in glioblastoma, such 
as microvascular proliferation. However, regions of dense hypercellularity 

and anaplasia are correctly classified as IDH mutant. These findings indicate 
DeepGlioma’s IDH mutational status predictions are not determined solely 
by conventional cytologic or histomorphologic features that correlate with 
lower grade versus high grade diffuse gliomas. c, A glioblastoma, IDH-wildtype 
tumor is shown. Glioblastoma molecular subgroup heatmap shows high 
confidence throughout the tumor specimen. Additionally, this tumor was also 
ATRX mutated, which is known to occur in IDH-wildtype tumors [9]. Despite 
the high co-occurence of IDH mutations with ATRX mutations, DeepGlioma 
was able to identify image features predictive of ATRX mutations in a molecular 
glioblastoma. Because ATRX mutations are not diagnostic of molecular 
glioblastomas, the ATRX prediction does not affect the molecular subgroup 
heatmap (see ‘Molecular heatmap generation’ section in Methods). Additional 
SRH images and DeepGlioma prediction heatmaps can be found at our 
interactive web-based viewer deepglioma.mlins.org. Scale bar, 1 mm.
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Extended Data Fig. 10 | Evaluation of DeepGlioma on non-canonical 
diffuse gliomas. A major advantage of DeepGlioma over conventional 
immunohistochemical laboratory techniques is that it is not reliant on specific 
antigens for effective molecular screening. a, A molecular oligodendroglioma 
with an IDH2 mutation is shown. DeepGlioma correctly predicted the presence 
of both an IDH mutation and 1p19q-codeletion. IDH1-R132H IHC performed on 
the imaged specimen is negative. The patient was younger than 55 and, therefore, 
required genetic sequencing in order to complete full molecular diagnostic 
testing using our current laboratory methods. b, A molecular astrocytoma 

with IDH1-R132S and ATRX mutations. DeepGlioma correctly identifies 
both mutations. c, A patient with a suspected adult-type diffuse glioma met 
inclusion criteria for the prospective clinical testing set. The patient was later 
diagnosed with a diffuse midline glioma, H3 K27-altered. DeepGlioma correctly 
predicted the patient to be IDH-wildtype without previous training on diffuse 
midline gliomas or other pediatric-type diffuse gliomas. We hypothesize that 
DeepGlioma can perform well on other glial neoplasms in a similar zero-shot 
fashions. Scalebar, 1 mm.
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