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ABSTRACT 

Machine learning (ML) models are poised to transform surgical pathology practice. The most 
successful use attention mechanisms to examine whole slides, identify which areas of tissue are 
diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent 
unexpected tissue. While human pathologists are extensively trained to consider and detect 
tissue contaminants, we examined their impact on ML models. 
 
We trained 4 whole slide models. Three operate in placenta for 1) detection of decidual 
arteriopathy (DA), 2) estimation of gestational age (GA), and 3) classification of macroscopic 
placental lesions. We also developed a model to detect prostate cancer in needle biopsies. We 
designed experiments wherein patches of contaminant tissue are randomly sampled from 
known slides and digitally added to patient slides and measured model performance. We 
measured the proportion of attention given to contaminants and examined the impact of 
contaminants in T-distributed Stochastic Neighbor Embedding (tSNE) feature space. 
 
Every model showed performance degradation in response to one or more tissue contaminants. 
DA detection balanced accuracy decreased from 0.74 to 0.69 +/- 0.01 with addition of 1 patch of 
prostate tissue for every 100 patches of placenta (1% contaminant). Bladder, added at 10% 
contaminant raised the mean absolute error in estimating gestation age from 1.626 weeks to 
2.371 +/ 0.003 weeks. Blood, incorporated into placental sections, induced false negative 
diagnoses of intervillous thrombi. Addition of bladder to prostate cancer needle biopsies induced 
false positives, a selection of high-attention patches, representing 0.033mm2, resulted in a 97% 
false positive rate when added to needle biopsies. Contaminant patches received attention at or 
above the rate of the average patch of patient tissue. 
 
Tissue contaminants induce errors in modern ML models. The high level of attention given to 
contaminants indicates a failure to encode biological phenomena. Practitioners should move to 
quantify and ameliorate this problem. 
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INTRODUCTION 

Machine learning (ML) models are poised to transform pathology practice. Models have been 
developed to detect and grade cancers, quantify immunohistochemistry, and identify transplant 
rejection (1–5). The most successful and potentially transformative are those that take entire 
slides as input and produce slide or patient-level diagnoses (6–10). To process the large 
amount of data represented by each slide, these models can rely on attention or other pooling 
mechanisms to identify key areas on the slide. The attention is then used to explain the model’s 
decision and guide pathologists to areas of concerns. Any ML model can give unpredictable 
results when presented with out-of-distribution data not seen during training, but the impact on 
attention is less studied. Pathology also presents a unique challenge to attention-based models 
because of the sporadic presence of tissue contaminants – material from different patients or 
specimens that is unintentionally included in the slide (11). The goal of this study is to test the 
impact of tissue contaminants on model performance and examine how tissue contaminants 
interact with the attention mechanism. 

Tissue contamination 

The process of tissue handling, wherein patient tissue becomes a slide, contains multiple steps 
in which tissues from one patient can appear on the slide of a different patient. This could be a 
“push” from an insufficiently cleaned tool at the grossing bench, “block contamination” that 
occurs during transport processing in a retort shared by tissues from multiple patients, or a 
“floater” that occurs when histology water baths are insufficiently cleaned between blocks (11–
14). These errors, collectively referred to as “tissue contamination” are well described in the 
pathology literature, but often come as a surprise to non-pathologist researchers or physicians 
(15).  

Tissue contaminants have been identified in up to 3% of slides examined with an average size 
of 1 mm2 (11,13). 12.7% of contaminants appeared to be neoplasia and 0.4% were judged to 
have a high risk of causing misdiagnosis. This low proportion belies a surprising count. An 
institution that produces 1 million slides per year (ours does), can expect 30,000 slides with 
tissue contaminants, of which 120 have a high risk of causing error. Nonetheless, the actual 
error rate may be much lower. In a review of 276 legal cases against pathologists for 
misdiagnosis 2004-2010, only one involved a floater (16). 

Human learning, machine learning 

The low error rate due to tissue contaminants in real world clinical practice may relate to 
pathologist education. Demonstrated knowledge of normal histology is a basic level 1 (of 5) 
milestone competency in pathology resident education in the U.S. (17,18). Identification of 
specimen integrity issues, specifically including floaters, is a level 2 skill (17,18). Thus, any 
pathologist examining a placental slide with tissue contamination by prostate should 1) identify 
which portions of the specimen are placenta and which are prostate and 2) recognize that the 
prostate tissue is present in error and ignore it. 
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The contrast with machine learning approaches is stark. Machine learning approaches in digital 
pathology generally address a single question (cancer detection, antibody quantification) or set 
of related questions (multiple mutation identification) in a narrowly defined specimen. For 
example, Paige Prostate was trained to detect prostate adenocarcinoma in needle prostate 
biopsies and is FDA approved for that diagnosis in that specimen type (19,20). 

What do we know about contaminants? 

There is a robust literature around slide quality and artifacts in digital pathology (21–24). Recent 
work has shown that digitally mimicking artifacts including out-of-focus areas, threads, folds, 
marker, and crush artifact results in increasing rates of patch misclassification with more severe 
artifacts (21,24). Some countermeasures have been considered - inclusion of fields with 
imaging artifacts during training improves robustness to those artifacts at inference without 
compromising performance on pristine images (25). Pantanowitz et al. reported on a version of 
their Yottixel system to suggest the probable source tissue of floaters, although their system 
relies on pathologists to identify the tissue regions of concern (26). 

Systematic contaminants 

Differences in procedure between institutions or over time may create non-random patterns of 
contamination. In placental pathology, guidelines support submission of membrane rolls and 
umbilical cord in the same block (27). However, our institution submits membrane and umbilical 
cord separately. Thus, a model trained using membrane roll slides from our institution would not 
be exposed to umbilical cord during training. If it were deployed at a site that co-submitted 
membranes and umbilical cord, the response to the cord is uncertain. Another example may be 
seen in prostate biopsy. Historically, most biopsies were performed trans-rectally, with a shift in 
the past decade to trans-perineal biopsies (28,29). Biopsy needles are designed to capture only 
prostatic tissue, but there is some risk of “pick-up” from the tissues transited. Thus, older 
prostate biopsies are more likely to contain fragments of large bowel, while newer biopsies are 
more likely to contain skin and subcutaneous tissue. 

Placenta, models 

A diverse spectrum of placental abnormalities have been linked with a variety of fetal and 
neonatal outcomes (27,30). The breadth of these anomalies, high interobserver variability, and 
sparsity of perinatal pathology expertise motivate ongoing work in this field (31–34). Placenta is 
considered high risk as a destination for tissue contaminants due to its sponge-like architecture 
(14). Prior studies in the placenta have demonstrated classification and detection of normal and 
abnormal villous morphology (35–37), cell type and relationships (38), gestational age (39), and 
decidual arteriopathy (40). For this study, we chose to examine three models in placental 
pathology and physiology: 

Decidual arteriopathy (DA) is a spectrum of abnormalities in decidual vessels associated with 
gestational hypertension and preeclampsia (27). DA is part of the maternal vascular 
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malperfusion group of diagnoses. DA, specifically mural hypertrophy of membrane arterioles 
has been associated with SARS-CoV-2 infection in pregnancy, though concerns have been 
raised about interobserver variability in this diagnosis (41–43). Previous work by Clymer et al. 
has demonstrated the identifiability of DA in whole slide images of the placental membranes 
(40).  

The placenta undergoes a reproducible series of changes over gestation, correlating with the 
clinically estimated gestational age (GA). Accelerated maturation is associated with growth 
restriction and gestational hypertension, while delayed maturation may be associated with 
diabetes in pregnancy (44–46). We previously published a model to predict GA(39). 

Several macroscopic lesions can be identified within the placental disc, including villous 
infarction, perivillous fibrin deposition (PVFD), and intervillous thrombi (IVT). Villous infarction 
are areas of interrupted maternal circulation associated with hypertension in pregnancy, 
preeclampsia, growth restriction, stillbirth, and risk of cerebral palsy.(47–51) Perivillous fibrin 
deposition (PVFD) may be focal, where it is thought to represent a reparative response to 
turbulent flow, or massive (MPVFD) where it can be associated with fetal growth restriction and 
stillbirth.(52–56) Intervillous thrombi (IVT), are foci of clotted blood in the intervillous space. 
They have no clear clinical significance, but merit recognition due to their frequency and risk of 
confusion with infarcts and PVFD.(41,57,58) We recently developed a model to distinguish 
these three lesions from one another and from placental disc sections without macroscopic 
lesions (59). 

These problems correspond to three of the most common tasks in pathology – finding a small 
area of abnormality, estimating a quantity based on gestalt, and classifying a known 
abnormality. 

Prostate, model 
Cancer detection is a common paradigm in ML and models to identify prostate cancer are 
among those FDA approved. We developed a model to detect prostatic adenocarcinoma in 
needle biopsy specimens. 
 
MATERIALS AND METHODS 
 
Dataset: 
 
Placentas 
Inclusion criteria were patients that underwent placental examination and reporting at our 
institution between 2011 and 2023 and had slides scanned as part of an ongoing digitization 
study (IRB: STU00214052). Each model used additional criteria as noted below. Placentas were 
examined and diagnoses rendered according to the Amsterdam criteria or precursor guidelines 
(27). Slides were digitized using a Leica GT450 scanner with a 40x objective magnification 
(0.263 microns per pixel). The 10x magnification layer was used for all studies. Pathology 
reports were obtained from the institutional electronic data warehouse (EDW) and processed 
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using natural language processing (42). Patient and diagnosis information was stored in 
REDcap.  
 
DA model 
Additional inclusion criteria were patients delivering after 26 weeks, 0 days (27). DA cases were 
those with a clinical diagnosis of mural hypertrophy of membrane arterioles. Controls were 
those without this diagnosis. One slide containing membrane roll from each placenta was 
selected. A total of 2336 cases were used, split 70:15:15 between training, validation, and test 
sets with stratification by case or control. The model was trained using the Adam optimizer and 
Focal loss.  Early stopping was used when the validation loss plateaued. 
 
GA model 
Additional inclusion criteria were patients delivering a singleton at 24 weeks, 0 days gestation or 
later with a clinical diagnosis of appropriate villous maturation for stated gestational age (39,60). 
All placentas meeting these criteria were used. Up to three slides containing non-lesional villous 
tissue were used per patient. 846 placentas were used, randomly split 70:10:20 between the 
training, validation, and test sets. Splits were performed stratified by gestational age. The model 
was trained using the Adam optimizer and Huber loss. Early stopping was used when the 
validation loss plateaued. 
 
Macroscopic lesion model 
Additional inclusion criteria were diagnosis of infarction, PVFD, or IVT (for cases) or none of 
those for controls. Exclusion criteria included other macroscopic lesions, such as infarction 
hematoma, chorangioma, or SARS-CoV-2 placentitis. One slide was used per placenta, either 
containing lesion (for cases) or non-lesional villous tissue (for controls). 833 cases were split 
70:15:15 into training, validation, and test sets. The model was trained using the Adam 
optimizer and categorical crossentropy loss. Early stopping was used when the validation loss 
plateaued. 
 
Prostate adenocarcinoma model 
Inclusion criteria were patients with prostatic needle biopsies examined at our institution, with 
slides scanned as part of an ongoing research effort. The dataset included 1-3 H&E slides each 
from 2602 blocks representing 647 patients. The Gleason grade assigned to each block was 
retrieved, with blocks classified as cancer if any cancer was present and otherwise negative. 
Cases were split 80% training: 20% test, stratified by the presence of cancer, with all slides from 
a single patient assigned to the same group. Training and validation were similar to the placenta 
models except that features were extracted at 20X magnification with patch size of 224x224 
pixels and no overlap. The feature extractor used was ConvNeXtXLarge, which produces a 
feature vector with 2048 values. Hinge loss was used. 
 
Model – conceptual 
All the models were implemented using Python version 3.7.7 and TensorFlow version 2.9 (61)  
An overview of the model is shown in Figure 1. First, the slide or slides comprising each case is 
split into a set of smaller patches. Patches undergo feature extraction – the first step of any 
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image ML pipeline. Features are fed into an attention subnetwork, which assigns an attention to 
each patch, and produces a pooled feature vector weighted to the most highly attended 
patches. The pooled vector is run through a fully connected subnetwork to produce the result. 
The attention subnetwork and fully connected subnetwork are trained to minimize error. All 
models use a batch size of 1. 

 
Figure 1: Overview of model and contaminants: Detection of DA is shown. Other diagnoses are conceptually 
similar. A whole slide image is split into patches (small squares), which may (red outline) or may not (black outline) 
have DA. The patches are submitted to a fixed feature extraction subnetwork, resulting in feature vectors. Feature 
vectors are submitted to the attention subnetwork which assigns an attention score to each feature vector. A 
weighted feature vector, representing a weighted average of the feature vectors is generated. The weighted features 
are submitted to a classifier subnetwork to produce a result. During training, the parameters of the attention and 
classifier subnetworks are varied to minimize error. To test the impact of tissue contaminants, random patches are 
sampled from the contaminant slide, feature extracted, assigned attention, and added to the weighted average. 

 
Feature extraction:  
An image layer (10x for placenta, 20x for prostate) was split into patches (256x256 pixel for 
placenta, 224 x 224 pixel for prostate, Figure 1). Non-tissue patches were masked using Otsu’s 
method (62). Each patch is passed through a fixed feature extractor network, 
EfficientNetV2L(63), or ConvNeXtXLarge(64), each trained on ImageNet. After that, the feature 
vectors generated as NxD where N was the number of patches that were analyzed for each 
case and D was the number of features in each vector - 1280 for EfficientNetV2L, 2048 for 
ConvNeXtXLarge. Feature vectors were written as TensorFlow record files offline.  
 
Attention subnetwork:  
The feature vectors obtained from the feature extraction were given to a trainable dense 
reducing dimensionality to a 512-dimensional feature. Then, to generate attention for each 
patch, we used the dot product of two parallel layers with 256 neurons, one with hyperbolic 
tangent activation and the other with sigmoid activation. Attentions for all examined patches are 
normalized to sum to 1 using a softmax function. 
 
Classification subnetwork: 

to 

’s 
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The pooled feature vector is submitted to fully connected layers with appropriate activation. For 
determining class boundaries, individual patches are submitted to the classification network. 
 
Contaminant slides 
Contaminant slides were one each of low grade urothelial bladder tumor retrieved by 
transurethral resection (“bladder”), post-delivery non-adherent blood received with a placenta 
(“blood”), colonic mucosal biopsy showing a tubular adenoma (“colon”), fallopian tube fimbriae 
removed by salpingectomy for fertility control (“fallopian”), full thickness section of placental disc 
(“placenta”), hypertrophic prostate excised by holmium laser (“prostate”), excised skin with 
intradermal nevus (“skin”), small bowel resected after traumatic injury (“small bowel”), and 
umbilical cord cross sections (“umbilical”). Contaminant slides were reviewed to ensure they 
themselves were not contaminated, but not otherwise selected or resampled. Contaminant 
slides were scanned using the same Leica GT450 scanner as placentas and prostate biopsies 
and underwent the same feature extraction with the same magnification, tile size, and overlap. 
To add contaminant to a patient slide, a random subset of contaminant patches was selected 
and appended to the set of feature vectors from the placenta. The quantity of contaminant was 
varied, with 10% of contaminant indicating 10 patches of contaminant added for every 100 
patches of relevant tissue. Unlike typical image corruption paradigms, the patient tissue patches 
are not altered or removed. 
 
Interpretation model by using tSNE plots 
T-distributed Stochastic Neighbor Embedding (tSNE) is used to view high-dimensional data in a 
lower-dimensional space (embedded space). In this study, we used tSNE from sklearn 1.2.0(65)  
for quantitative model performance analysis to reveal how attention and classification of 
individual patches clusters. tSNE parameters perplexity and random were 30 and 0 respectively 
for two dimensions of the embedded space. 
 
RESULTS 
Multiple contaminants interfere with detection of decidual arteriopathy (DA) 
We trained a model to detect DA. At baseline, the model showed sensitivity of 0.6, specificity of 
0.88, AUC of 0.81, and balanced accuracy of 0.74 (Figure 2, Supplementary Table 1). Slides 
of normal membranes far outnumber normal DA cases in this dataset, so balanced accuracy is 
a more representative measure. Each contaminant decreased balanced accuracy somewhat 
with prostate showing the largest impact. Adding 1% prostate tissue reduced the balanced 
accuracy from 0.74 to 0.69 +/- 0.01. 10% prostate tissue reduced accuracy to almost chance 
levels. Surprisingly, different contaminants resulted in different types of error. Small bowel, 
fallopian tube, and bladder resulted in false positive calls, while blood, umbilical cord, and 
prostate resulted in false negatives. 
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Figure 2 – Multiple contaminants impair balanced accuracy in detecting DA: A normally remodeled spiral artery 
(top) and spiral artery with DA, specifically mural hypertrophy of membrane arterioles (bottom) are shown for 
illustration (A). Addition of even 1% of prostate tissue causes noticeable decrements in balanced accuracy, while 
bladder, fallopian tube, and blood at higher proportions also bring the accuracy near to or at chance level (0.5, B). 

 
Contaminants decrease accuracy of gestational age (GA) estimation 
We developed a model to estimate gestational age by examination of placental villi. At baseline, 
the model shows strong performance, with an R^2 of 0.75 and a mean absolute error (MAE) – 
the average difference between the estimated gestational age and the chronologic gestational 
age - of 1.66 weeks (Figure 3, Supplementary Table 2). Adding contaminants resulted in 
increased MAE, with bladder causing errors of 2.37 weeks at 5% contaminant and 3.36 weeks 
at 10% contaminant. Interestingly, the impact on estimated GA was monotonous, such that 
even though the MAE with 30% bladder was 6.87 weeks, the R², which depends primarily on 
the order of data points, only fell to 0.72. 
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Figure 3 – Impact of contaminants on estimation of GA: Placental villi undergo a reproducible series of 
morphologic changes between 24 (A) and 42 (B) weeks gestation. Villi are narrower with denser stroma, more 
exteriorized capillaries, and increased syncytial knots. Our baseline model is highly accurate with a mean absolute 
error (MAE) or 1.66 weeks (C). Addition of contaminant, such as 30% bladder (example shown in D) results in 
sharply higher MAE. The decrease appears monotonous, with each case showing a similar decrease in estimated GA
(E), which results in a misleadingly preserved correlation coefficient (R2).  While bladder clearly shows the highest 
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impact, other tissues including blood, prostate, small bowel, and fallopian tube also increase error, albeit at higher 
proportions (F). Umbilical cord did not result in significantly increased errors. Scale bar 50µm. 

 
 
Blood contaminant causes misclassification of macroscopic placental tissue as intervillous 
thrombi 
We tested the impact of tissue contaminants on a model that classifies placental slides as either 
villous infarction (infarct), intervillous thrombus (IVT), perivillous fibrin deposition (PVFD) or 
none of the above (normal). At baseline, the model has an accuracy of 0.89. Bladder, fallopian 
tube, prostate, small bowel, and umbilical cord had minor impacts (Supplemental Table 3). 
However, addition of blood caused misclassification of normal and, to a lesser extent, PVFD, 
slides as IVT. 4 cases were misclassified as IVT at baseline, reaching 26.5+/-2.0 cases at 20% 
contaminant and 64.2 +/- 0.4 at 70% (n=10 replicates). Infarcts, actual IVT and, to a lesser 
extent, PVFD remained accurately classified, so balanced accuracy poorly reflects the error, 
falling only from 0.894 at baseline to 0.891 at 20% contaminant, with a larger drop to 0.60 at 
70% contaminant. 
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Figure 4: Blood causes misclassification of macroscopic placental lesions. Paradigmatic examples of normal 
placenta (A), infarct (B), IVT (C), and PVFD (D). A section of fresh blood was used as contaminant (E). Note Lines of 
Zahn as a critical distinguishing morphology (B vs. E). In clinical practice, areas of unclotted blood may be submitted 
incidentally with normal placenta sections, causing misclassification as IVT (F). The lesion classification model is 
highly accurate at baseline, with balanced multiclass accuracy of 0.89. With increasing amounts of blood 
contaminant, normal and PVFD cases are progressively misclassified as IVT. At baseline, 4 cases are misclassified 
as IVT. At 20% blood, 26.5+/-2.0 cases are misclassified as IVT. Scale bar: 10 mm. 

 
Contaminants cause false positives in a prostate cancer detection model 
We developed a prostate cancer detection model with a baseline accuracy of 0.923 and AUC of 
0.954 (Figure 5, Supplementary Table 4). The model was extremely sensitive to bladder 

f 

of 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


contaminants, which resulted in high rates of false positives. Other contaminants, including 
colon and fallopian tube resulted in lower magnitude errors. 

  
Figure 5 – Prostate cancer detection model: We developed a model to detect prostate carcinoma in needle 
biopsies, which attends to areas of cancer and results in high block-level accuracy (A, scale bar 1 mm). Adding 
bladder, resulted in marked increases in the false positive rate, from 20/314 at baseline to 51+/-2.7 at 10% bladder 
contaminant and 197+/-7.9 when the amount of added bladder equaled the amount of prostate tissue (100% 
contaminant, B, n=10 replicates). Patch level attention of one selected case with 10% bladder contaminant (C) 
showed the expected power law distribution. Surprisingly, 3 of the 4 most highly attended patches were contaminant, 
rather than patient tissue. We identified the 10 most highly attended patches of the contaminant bladder slide (D, 
scale bar 20µm) all of which show unremarkable low grade bladder tumor. Adding these 10 patches to each prostate 
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case results in 306/316 false positives. These patches represent a minute quantity of tissue (E, patches from D 
resized to same scale as A). 

 
All contaminants distract attention in all models We measured the proportion of attention given 
to each contaminant by each model (Figure 6). Unsurprisingly, increasing amounts of 
contaminant received increasing amounts of attention. More surprisingly, the level of attention 
given to contaminant tissues often exceeded, patch for patch, that given to patient tissue. This 
represents a significant failure of the attention mechanism, even if errors did not result. High 
attention did not always correlate with high rates of error. For example, umbilical cord was 
among the most highly attended tissues by the GA model, particularly at lower proportions, but it
did not result in errors. 
 
 

 
Figure 6: All contaminants distract attention. We measured the proportion of attention given to contaminant 
patches as a function of the proportion of contaminant added for models of DA (A), GA (B), macroscopic lesions (C), 
and prostate adenocarcinoma (D). The dashed line represents attention at par, where the average patch of 
contaminant receives as much attention as the average patch of patient tissue. For example, 20% contaminant 
represents 20 patches of contaminant for each 100 patches of patient tissue. Therefore, the contaminant represents 

 of the patches present. Every contaminant received some attention. Multiple contaminants in DA, GA,

lesions, and prostate adenocarcinoma being attended above par. 
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Contaminants occupy a distinct location in embedded feature space feature space and divert 
pooled features from the decision boundary 
To track the impact of contaminants on model decisions, we, visualized the feature space using 
tSNE (Figure 7). The patches classified as positive or negative occupy distinct regions. By 
applying the same transformation to the pooled feature vector, we can see where the model 
places the specimen overall. In a case that shifts from true negative to false positive at a low 
contaminant proportion, the feature vector is close to the apparent boundary between the 
positive and negative instances. Adding a relatively small amount of contaminant shifts the 
pooled feature vector in feature space, consistent with the changed slide-level interpretation.  

 
 
Figure 7, impact of contaminants in features space: Feature maps for one slide, a true negative at baseline (A) 
that becomes a false positive when 10% bladder contaminant is added (B). Each point represents one patch, 
transformed into a feature vector and then plotted in 2-dimensional space using tSNE. Patches are classified as DA 
(rose) or not DA (light blue), which form largely distinguishable. The pooled feature vector, representing a weighted 
average, is marked in green. Added contaminants are largely classified as classified as DA (bright red), with a few not 
DA (dark blue). Adding contaminant causes the pooled feature vector to more clearly cluster with the positive 
instances, resulting in the false positive call. 

 
DISCUSSION 
Recitation 
We report four whole-slide ML models developed with contemporary techniques. The models 
encompass tissues including placental membrane, disc, and prostate core and tasks including 
detection, classification, and regression. Each model shows degraded performance when tissue 
contaminants are added to previously well-classified data. Each model attends to contaminating 
tissue, often at-or-above the level shown to patient tissue. Contaminating tissue induces errors 
by altering the attention distribution within feature space and redirecting the pooled feature 
vector across the decision boundary. 
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Comparison 
In the broadest sense, all machine learning models perform reliably when given data like that 
seen in training and perform unpredictably when given data from outside that distribution. More 
narrowly, this work falls within the digital pathology ML and computer vision topics on image 
corruptions or visual artifact pathology (21–24). Our findings contribute to this literature with a 
few key differentiations. Our focus on the attention mechanism identifies a key weakness for 
whole-slide models. Using added contaminant, rather than distorting or obscuring the underlying 
image, guarantees that the original diagnostic information is preserved intact. Tissue 
contaminants themselves are a recognized problem in the pathology quality literature but have 
not attracted broader attention (11,14).  
False positives due to tissue contaminants have been previously reported in ML cancer 
detection tasks. Liu et al. reported one floater (of 80 slides) causing false positive metastatic 
breast cancer diagnoses in the CAMELYON dataset, although they did not further consider the 
implications (66). Similarly, Campanella show a false-positive lymph node due to a benign 
papillary inclusion in a lymph node – an example of a biological systemic contaminant (67). 
Naito et al. reported only 1 false positive case of pancreatic cancer in their test set (of 34 slides), 
however that sole false positive was due to a “pick-up” of gastric tissue transited during the 
endoscopic biopsy (68). This form of systemic contamination is described as “ever present” in 
pathology textbooks, so the true risk may be higher (69). These previous publications suggest 
that false positive cancer detection due to tissue contaminants may be endemic. 
 
Our methods – altering patient data to test robustness – are similar to those seen in adversarial 
attacks (70). In the digital pathology literature, these studies have taken the form of alterations 
to individual patches that are imperceptible to human observers, yet induce incorrect responses 
from models (10,71,72).  Our work is similar, in that the alterations – subtle pixel-level 
alterations or tissue contaminants – are ignored by trained human observers. However, there 
are key differences. We focus on attention-level mechanisms, leaving the original data 
completely unchanged. Our ‘attack’ does not rely on access to the model or model architecture. 
Most significantly, while adversarial attack invokes the (so far unobserved) possibility of bad 
actors gaining access to digital pathology images and making targeted alterations, tissue 
contaminants are already inside the building. 
 
Attention is a core model mechanism and key model output 
Saliency mapping, such as GradCAM, has been used to demonstrate shortcuts taken by 
models, such as using hospital-specific markings to classify chest X-rays as COVID-19 
pneumonia, rather than examination of the lungs (73). The case in digital pathology is similar, 
but the problem is more acute. First, while GradCAM and other saliency mechanisms are post-
hoc explanations, attention in whole-slide models is central to how the model produces output. 
Second, in a computer assisted diagnosis paradigm, pathologists will primarily be working with 
visualizations of the attention maps, rather than the final prediction. In that sense, the attention 
is a much more important output than the prediction. If the model is generating accurate slide-
level predictions but attending to irrelevant tissue, pathologists will question the credibility of the 
model. 
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Those doubts are well-founded. By attending to contaminant tissue, the models demonstrate 
that they do not encode the underlying biological phenomena, in this case that pathologies are 
tissue specific. Prostate cancer does not arise in the bladder. Decidual arteriopathy arises only 
in the decidua – not the prostate. While it is shocking that the GA model attends to the average 
patch of prostate twice as much as it attends to the average patch of placenta, any significant 
attention given to contaminants demonstrates a critical failure. 
 
Considering contaminants – source and quantity 
Our contaminants are a convenience sample of tissues commonly encountered in surgical 
pathology practice and include some of those – colon, bladder, prostate, and placenta – seen as 
highest risk for producing or capturing contaminants (12,14). We tested only one slide per tissue 
source, so different diagnoses (e.g. high-grade vs. low grade bladder cancer) or different slides 
with the same diagnosis are likely to give different results. While we acknowledge this limitation, 
we would argue that the arising uncertainty proves our point – model performance is worryingly 
unpredictable in this circumstance. 
 
Insofar as our results are representative, bladder and prostate seem to be high risk tissues in 
general, but this is likely dependent on the ML task. Unclotted blood is commonly received with 
placental specimens and submitted for histology (see Figure 4F). The distinction between this 
blood and true thrombi, indicated by the Lines of Zahn, is a core pathologist skill (74). The 
volume of blood thus submitted is often large, easily representing 1/3 of tissue present (i.e. 50% 
contaminant), sufficient to induce errors in multiple placental classifiers. Umbilical cord sections 
are often submitted with membrane rolls, usually at a ratio of 1 cord section: 1 membrane roll – 
100% contaminant. At that level, the cord sections cause a small but meaningful decrease in DA 
accuracy (Figure 2). Fewer institutions submit cord sections with placental disc, but if they do, it 
seems unlikely to alter their GA estimation (Figure 3). The switch from transrectal to 
transperineal prostate biopsy, in addition to its other benefits, would also seem likely to reduce 
the risk of false negative and false positive results (Figure 5). The size of sporadic 
contaminants is likely to be smaller, reported 1 mm2 on average (13). This represents a very 
small proportion of a placental disc section, but a larger proportion of a prostate needle biopsy. 
While the effect size increases with the proportion of contaminants, errors were detectable at 
1% contaminant for DA, GA, and prostate. 
 
Next Steps - what can be done 
The data presented in this paper are sufficient to establish tissue contaminants as a risk to 
whole-slide learning models in modern digital pathology. We do not aim for a complete 
accounting or explanation of tissue contaminants, nor are there simple answers to address this 
problem. Use of humans or different ML models to ‘pre-screen’ slides for contaminants suggests 
itself as a solution but is fraught. If ML models are needed to increase efficiency in the face of 
increasing specimens and a declining pathologist workforce, adding human intervention is self-
defeating (75).  
My concern with adding humans is that we need (really truly need) AI to allow a diminishing 
number of pathologists to keep up with an expanding number of specimens. My concern with 
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building a model for contaminants is that it needs to be able to recognize all tissues with all 
different pathologies. It also needs to be able to recognize uncommon variants of pathology at 
your site of interest and not exclude them. If your screening model is that good, you don't need 
the single-purpose model. Regarding the use of a pre-screening ML model to identify 
contaminants - the diversity of tissues and their pathologies in the human body necessitates a 
very advanced model to distinguish contaminants from atypical presentations of the disease of 
interest. Such an advanced prescreener would obviate the need for specialized single-organ 
models. 
 
There are some findings that suggest future actions for pathologists, decision makers, and ML 
practitioners. 1) An ML transformation of pathology may require a renewed emphasis within the 
lab on reducing tissue contaminants. 2) clinical decisions should continue be made with a 
human-in-the-loop. As described in the introduction, human pathologists recognize tissue 
contaminants as a basic skill – that expertise should be used. 3) Model vulnerability to common 
tissue contaminants should be assessed. 4) Work is needed to identify countermeasures to 
tissue contaminant-induced error. Statistical approaches could be used for all out-of-distribution 
data, while training against high-risk contaminants may blunt their impact. 
 
Funding / Acknowledgements / Conflict of interest 
JAG is supported by NIBIB K08EB030120 and the Walder Foundation Fund to Retain Clinician 
Scientists. LADC is supported by R01LM013523, and U01CA220401. REDCap and other key 
infrastructure supported by UL1TR001422. 
 
The authors state that no conflict of interest exists. 
 
Data Availability 
Whole slide image data are available after execution of a data use agreement with 
Northwestern University. 
 

 

REFERENCES:  

1. Steiner DF, Chen PHC, Mermel CH. Closing the translation gap: AI applications in digital 
pathology. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021 
Jan;1875(1):188452.  

2. Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learning in 
cancer pathology: a new generation of clinical biomarkers. Br J Cancer. 2021 Feb 
16;124(4):686–96.  

3. He Y, Zhao H, Wong STC. Deep learning powers cancer diagnosis in digital pathology. 
Computerized Medical Imaging and Graphics. 2021 Mar;88:101820.  

4. Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in 
translational medicine and clinical practice. Modern Pathology. 2022 Jan;35(1):23–32.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


5. Parwani AV. Next generation diagnostic pathology: use of digital pathology and artificial 
intelligence tools to augment a pathological diagnosis. Diagn Pathol. 2019 Dec;14(1):138, 
s13000-019-0921–2.  

6. Gadermayr M, Tschuchnig M. Multiple Instance Learning for Digital Pathology: A Review on 
the State-of-the-Art, Limitations & Future Potential [Internet]. arXiv; 2022 [cited 2022 Sep 
28]. Available from: http://arxiv.org/abs/2206.04425 

7. Lu MY, Chen TY, Williamson DFK, Zhao M, Shady M, Lipkova J, et al. AI-based pathology 
predicts origins for cancers of unknown primary. Nature. 2021 Jun;594(7861):106–10.  

8. Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and 
weakly supervised computational pathology on whole-slide images. Nat Biomed Eng. 2021 
Jun;5(6):555–70.  

9. Lipkova J, Chen TY, Lu MY, Chen RJ, Shady M, Williams M, et al. Deep learning-enabled 
assessment of cardiac allograft rejection from endomyocardial biopsies. Nat Med. 2022 
Mar;28(3):575–82.  

10. Ghaffari Laleh N, Muti HS, Loeffler CML, Echle A, Saldanha OL, Mahmood F, et al. 
Benchmarking weakly-supervised deep learning pipelines for whole slide classification in 
computational pathology. Medical Image Analysis. 2022 Jul;79:102474.  

11. Gephardt GN, Zarbo RJ. Extraneous tissue in surgical pathology: a College of American 
Pathologists Q-Probes study of 275 laboratories. Arch Pathol Lab Med. 1996 
Nov;120(11):1009–14.  

12. Zarbo RJ. The Unsafe Archaic Processes of Tissue Pathology. American Journal of Clinical 
Pathology. 2022 Jul 1;158(1):4–7.  

13. Layfield LJ, Witt BL, Metzger KG, Anderson GM. Extraneous Tissue. American Journal of 
Clinical Pathology. 2011 Nov 1;136(5):767–72.  

14. Carll T, Fuja C, Antic T, Lastra R, Pytel P. Tissue Contamination During Transportation of 
Formalin-Fixed, Paraffin-Embedded Blocks. American Journal of Clinical Pathology. 2022 
Jul 1;158(1):96–104.  

15. Burke NG, McCaffrey D, Mackle E. Contamination of histology biopsy specimen - a potential 
source of error for surgeons: a case report. Cases J. 2009 Sep 9;2:7619.  

16. Troxel DB. Trends in Pathology Malpractice Claims. American Journal of Surgical 
Pathology. 2012 Jan;36(1):e1–5.  

17. Naritoku WY, Alexander CB. Pathology milestones. J Grad Med Educ. 2014 Mar;6(1 Suppl 
1):180–1.  

18. ACGME. Pathology Milestones [Internet]. [cited 2023 Apr 3]. Available from: 
https://www.acgme.org/specialties/pathology/milestones/ 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


19. Raciti P, Sue J, Ceballos R, Godrich R, Kunz JD, Kapur S, et al. Novel artificial intelligence 
system increases the detection of prostate cancer in whole slide images of core needle 
biopsies. Mod Pathol. 2020 Oct;33(10):2058–66.  

20. Zhu S, Gilbert M, Chetty I, Siddiqui F. The 2021 landscape of FDA-approved artificial 
intelligence/machine learning-enabled medical devices: An analysis of the characteristics 
and intended use. International Journal of Medical Informatics. 2022 Sep;165:104828.  

21. Schömig-Markiefka B, Pryalukhin A, Hulla W, Bychkov A, Fukuoka J, Madabhushi A, et al. 
Quality control stress test for deep learning-based diagnostic model in digital pathology. 
Modern Pathology. 2021 Jun 24;1–11.  

22. Zanjani FG, Zinger S, Piepers B, Mahmoudpour S, Schelkens P, With PHN de. Impact of 
JPEG 2000 compression on deep convolutional neural networks for metastatic cancer 
detection in histopathological images. JMI. 2019 Apr;6(2):027501.  

23. Chen Y, Janowczyk A, Madabhushi A. Quantitative Assessment of the Effects of 
Compression on Deep Learning in Digital Pathology Image Analysis. JCO Clinical Cancer 
Informatics. 2020 Nov;(4):221–33.  

24. Wang NC, Kaplan J, Lee J, Hodgin J, Udager A, Rao A. Stress Testing Pathology Models 
with Generated Artifacts. Journal of Pathology Informatics. 2021 Jan;12(1):54.  

25. Wright AI, Dunn CM, Hale M, Hutchins GGA, Treanor DE. The Effect of Quality Control on 
Accuracy of Digital Pathology Image Analysis. IEEE J Biomed Health Inform. 2021 
Feb;25(2):307–14.  

26. Pantanowitz L, Michelow P, Hazelhurst S, Kalra S, Choi C, Shah S, et al. A Digital 
Pathology Solution to Resolve the Tissue Floater Conundrum. Archives of Pathology & 
Laboratory Medicine. 2021 Mar 1;145(3):359–64.  

27. Khong TY, Mooney EE, Ariel I, Balmus NCM, Boyd TK, Brundler MA, et al. Sampling and 
Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus 
Statement. Arch Pathol Lab Med. 2016 Jul;140(7):698–713.  

28. Xiang J, Yan H, Li J, Wang X, Chen H, Zheng X. Transperineal versus transrectal prostate 
biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis. World J 
Surg Onc. 2019 Dec;17(1):31.  

29. Bhanji Y, Allaway MJ, Gorin MA. Recent Advances and Current Role of Transperineal 
Prostate Biopsy. Urologic Clinics of North America. 2021 Feb;48(1):25–33.  

30. Roescher AM, Timmer A, Erwich JJHM, Bos AF. Placental Pathology, Perinatal Death, 
Neonatal Outcome, and Neurological Development: A Systematic Review. Kanellopoulos-
Langevin C, editor. PLoS ONE. 2014 Feb 25;9(2):e89419.  

31. Marchevsky AM, Walts AE, Lissenberg-Witte BI, Thunnissen E. Pathologists should 
probably forget about kappa. Percent agreement, diagnostic specificity and related metrics 
provide more clinically applicable measures of interobserver variability. Annals of Diagnostic 
Pathology. 2020 Aug;47:151561.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


32. Kramer MS, Chen MF, Roy I, Dassa C, Lamoureux J, Kahn SR, et al. Intra- and 
interobserver agreement and statistical clustering of placental histopathologic features 
relevant to preterm birth. American Journal of Obstetrics and Gynecology. 2006 
Dec;195(6):1674–9.  

33. Sun CCJ, Revell VO, Belli AJ, Viscardi RM. Discrepancy in Pathologic Diagnosis of 
Placental Lesions. Archives of Pathology & Laboratory Medicine. 2002 Jun 1;126(6):706–9.  

34. Redline RW, Vik T, Heerema-McKenney A, Jamtoy AH, Ravishankar S, Ton Nu TN, et al. 
Interobserver Reliability for Identifying Specific Patterns of Placental Injury as Defined by the 
Amsterdam Classification. Archives of Pathology & Laboratory Medicine. 2022 Mar 
1;146(3):372–8.  

35. Mukherjee A. Pattern Recognition and Machine Learning as a Morphology Characterization 
Tool for Assessment of Placental Health. 2021 Sep 23 [cited 2023 Feb 7]; Available from: 
http://ruor.uottawa.ca/handle/10393/42731 

36. Khodaee A, Grynspan D, Bainbridge S, Ukwatta E, Chan ADC. Automatic Placental Distal 
Villous Hypoplasia Scoring using a Deep Convolutional Neural Network Regression Model. 
In: 2022 IEEE International Instrumentation and Measurement Technology Conference 
(I2MTC) [Internet]. Ottawa, ON, Canada: IEEE; 2022 [cited 2023 Feb 7]. p. 1–5. Available 
from: https://ieeexplore.ieee.org/document/9806589/ 

37. Kidron D, Vainer I, Fisher Y, Sharony R. Automated image analysis of placental villi and 
syncytial knots in histological sections. Placenta. 2017 May;53:113–8.  

38. Vanea C, Džigurski J, Rukins V, Dodi O, Siigur S, Salumäe L, et al. HAPPY: A deep 
learning pipeline for mapping cell-to-tissue graphs across placenta histology whole slide 
images [Internet]. Bioinformatics; 2022 Nov [cited 2023 Feb 7]. Available from: 
http://biorxiv.org/lookup/doi/10.1101/2022.11.21.517353 

39. Mobadersany P, Cooper LAD, Goldstein JA. GestAltNet: aggregation and attention to 
improve deep learning of gestational age from placental whole-slide images. Lab Invest. 
2021 Jul;101(7):942–51.  

40. Clymer D, Kostadinov S, Catov J, Skvarca L, Pantanowitz L, Cagan J, et al. Decidual 
Vasculopathy Identification in Whole Slide Images Using Multiresolution Hierarchical 
Convolutional Neural Networks. The American Journal of Pathology. 2020 Oct 
1;190(10):2111–22.  

41. Shanes ED, Miller ES, Otero S, Ebbott R, Aggarwal R, Willnow AS, et al. Placental 
Pathology After SARS-CoV-2 Infection in the Pre-Variant of Concern, Alpha / Gamma, 
Delta, or Omicron Eras. Int J Surg Pathol. 2022 May 29;106689692211025.  

42. Shanes ED, Mithal LB, Otero S, Azad HA, Miller ES, Goldstein JA. Placental Pathology in 
COVID-19. American Journal of Clinical Pathology. 2020 Jun 8;154(1):23–32.  

43. Conde-Agudelo A, Romero R. SARS-CoV-2 infection during pregnancy and risk of 
preeclampsia: a systematic review and meta-analysis. American Journal of Obstetrics and 
Gynecology. 2022 Jan;226(1):68-89.e3.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


44. Christians JK, Grynspan D. Placental villous hypermaturation is associated with improved 
neonatal outcomes. Placenta. 2019 Jan;76:1–5.  

45. Leavey K, Benton SJ, Grynspan D, Bainbridge SA, Morgen EK, Cox BJ. Gene markers of 
normal villous maturation and their expression in placentas with maturational pathology. 
Placenta. 2017 Oct;58:52–9.  

46. Jaiman S, Romero R, Pacora P, Jung EJ, Kacerovsky M, Bhatti G, et al. Placental delayed 
villous maturation is associated with evidence of chronic fetal hypoxia. Journal of Perinatal 
Medicine. 2020 Jun 25;48(5):516–8.  

47. Blair E, de Groot J, Nelson KB. Placental infarction identified by macroscopic examination 
and risk of cerebral palsy in infants at 35 weeks of gestational age and over. American 
Journal of Obstetrics and Gynecology. 2011 Aug 1;205(2):124.e1-124.e7.  

48. Vinnars MT, Vollmer B, Nasiell J, Papadogiannakis N, Westgren M. Association between 
cerebral palsy and microscopically verified placental infarction in extremely preterm infants. 
Acta Obstetricia et Gynecologica Scandinavica. 2015;94(9):976–82.  

49. Vinnars MT, Nasiell J, Ghazi S, Westgren M, Papadogiannakis N. The severity of clinical 
manifestations in preeclampsia correlates with the amount of placental infarction. Acta 
Obstetricia et Gynecologica Scandinavica. 2011;90(1):19–25.  

50. Gibbins KJ, Silver RM, Pinar H, Reddy UM, Parker CB, Thorsten V, et al. Stillbirth, 
hypertensive disorders of pregnancy, and placental pathology. Placenta. 2016 Jul 1;43:61–
8.  

51. Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction. 
Journal of Clinical Pathology. 2008 Dec 1;61(12):1254–60.  

52. Faye-Petersen OM, Ernst LM. Maternal Floor Infarction and Massive Perivillous Fibrin 
Deposition. Surgical Pathology Clinics. 2013 Mar 1;6(1):101–14.  

53. Katzman PJ, Genest DR. Maternal Floor Infarction and Massive Perivillous Fibrin 
Deposition: Histological Definitions, Association with Intrauterine Fetal Growth Restriction, 
and Risk of Recurrence. Pediatric and Developmental Pathology. 2002 Mar 1;5(2):159–64.  

54. Romero R, Whitten A, Korzeniewski SJ, Than NG, Chaemsaithong P, Miranda J, et al. 
Maternal Floor Infarction/Massive Perivillous Fibrin Deposition: A Manifestation of Maternal 
Antifetal Rejection? American Journal of Reproductive Immunology. 2013;70(4):285–98.  

55. Becroft DMO, Thompson JMD, Mitchell EA. Placental Infarcts, Intervillous Fibrin Plaques, 
and Intervillous Thrombi: Incidences, Cooccurrences, and Epidemiological Associations. 
Pediatr Dev Pathol. 2004 Jan;7(1):26–34.  

56. Redline RW. Extending the Spectrum of Massive Perivillous Fibrin Deposition (Maternal 
Floor Infarction). Pediatr Dev Pathol. 2021 Jan;24(1):10–1.  

57. Romero R, Kim YM, Pacora P, Kim CJ, Benshalom-Tirosh N, Jaiman S, et al. The 
frequency and type of placental histologic lesions in term pregnancies with normal outcome. 
Journal of Perinatal Medicine. 2018 Aug 1;46(6):613–30.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


58. Basnet KM, Bentley-Lewis R, Wexler DJ, Kilic F, Roberts DJ. Prevalence of Intervillous 
Thrombi Is Increased in Placentas from Pregnancies Complicated by Diabetes. Pediatr Dev 
Pathol. 2016 Dec;19(6):502–5.  

59. Goldstein JA, Nateghi R, Irmakci I, Cooper LAD. Machine learning classification of placental 
villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta. In 
revisions.  

60. Dobbs v. Jackson Women’s Health Organization. U.S.  

61. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale 
machine learning on heterogeneous systems, software available from tensorflow. org 
(2015). URL https://www tensorflow org. 2015;  

62. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst, Man, 
Cybern. 1979 Jan;9(1):62–6.  

63. Tan M, Le Q. Efficientnetv2: Smaller models and faster training. In: International conference 
on machine learning. PMLR; 2021. p. 10096–106.  

64. Woo S, Debnath S, Hu R, Chen X, Liu Z, Kweon IS, et al. ConvNeXt V2: Co-designing and 
Scaling ConvNets with Masked Autoencoders. 2023 [cited 2023 Apr 4]; Available from: 
https://arxiv.org/abs/2301.00808 

65. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: 
Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–30.  

66. Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial 
Intelligence–Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box 
for Pathologists. Archives of Pathology & Laboratory Medicine. 2019 Jul 1;143(7):859–68.  

67. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et 
al. Clinical-grade computational pathology using weakly supervised deep learning on whole 
slide images. Nat Med. 2019 Aug;25(8):1301–9.  

68. Naito Y, Tsuneki M, Fukushima N, Koga Y, Higashi M, Notohara K, et al. A deep learning 
model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-
needle biopsy. Sci Rep. 2021 Apr 19;11(1):8454.  

69. Cibas ES, Ducatman BS. Cytology: diagnostic principles and clinical correlates. Fifth edition. 
Philadelphia, PA: Elsevier; 2021. 675 p.  

70. Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial attacks on 
medical machine learning. Science. 2019 Mar 22;363(6433):1287–9.  

71. Foote A, Asif A, Azam A, Marshall-Cox T, Rajpoot N, Minhas F. Now You See It, Now You 
Dont: Adversarial Vulnerabilities in Computational Pathology. 2021 [cited 2023 Apr 24]; 
Available from: https://arxiv.org/abs/2106.08153 

72. Korpihalkola J, Sipola T, Kokkonen T. Color-Optimized One-Pixel Attack Against Digital 
Pathology Images. In: 2021 29th Conference of Open Innovations Association (FRUCT) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/


[Internet]. Tampere, Finland: IEEE; 2021 [cited 2023 Apr 24]. p. 206–13. Available from: 
https://ieeexplore.ieee.org/document/9435562/ 

73. DeGrave AJ, Janizek JD, Lee SI. AI for radiographic COVID-19 detection selects shortcuts 
over signal. Nat Mach Intell. 2021 May 31;3(7):610–9.  

74. Baergen RN, Benirschke K. Manual of Benirschke and Kaufmann’s Pathology of the human 
placenta. New York: Springer; 2005.  

75. Robboy SJ, Weintraub S, Horvath AE, Jensen BW, Alexander CB, Fody EP, et al. 
Pathologist Workforce in the United States: I. Development of a Predictive Model to 
Examine Factors Influencing Supply. Archives of Pathology & Laboratory Medicine. 2013 
Dec;137(12):1723–32.  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.28.23289287doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289287
http://creativecommons.org/licenses/by-nd/4.0/

