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The QCanadian NTRK (CANTRK) is a ring study to optimize testing for neurotrophic receptor tyrosine
kinase (NTRK ) fusions in Canadian laboratories. Sixteen diagnostic laboratories used next-generation
sequencing (NGS) for NTRK1, NTRK2, or NTRK3 fusions. Each laboratory received 12 formalin-fixed,
paraffin-embedded tumor samples with unique NTRK fusions and two control non-NTRK fusion sam-
ples (one ALK and one ROS1). Laboratories used validated protocols for NGS fusion detection. Panels
included Oncomine Comprehensive Assay v3, Oncomine Focus Assay, Oncomine Precision Assay,
AmpliSeq for Illumina Focus, TruSight RNA Pan-Cancer Panel, FusionPlex Lung, and QIAseq Multimodal
Lung. One sample was withdrawn from analysis because of sample quality issues. Of the remaining 13
samples, 6 of 11 NTRK fusions and both control fusions were detected by all laboratories. Two fusions,
WNK2::NTRK2 and STRN3::NTRK2, were not detected by 10 laboratories using the Oncomine Compre-
hensive or Focus panels, due to absence of WNK2 and STRN3 in panel designs. Two fusions, TPM3::NTRK1
and LMNA::NTRK1, were challenging to detect on the AmpliSeq for Illumina Focus panel because of
bioinformatics issues. One ETV6::NTRK3 fusion at low levels was not detected by two laboratories using
the TruSight Pan-Cancer Panel. Panels detecting all fusions included FusionPlex Lung, Oncomine Pre-
cision, and QIAseq Multimodal Lung. The CANTRK study showed competency in detection of NTRK
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fusions by NGS across different panels in 16 Canadian laboratories and identified key test issues as
targets for improvements. (J Mol Diagn 2023,-: 1e7; https://doi.org/10.1016/j.jmoldx.2022.12.004)
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Rearrangement involving the neurotrophic tyrosine receptor
kinase (NTRK ) family genes (NTRK1, NTRK2, and NTRK3)
generate fusion proteins that are oncogenic drivers in many
cancer types across adult and pediatric populations.1e3

Recently, larotrectinib and entrectinib have received clin-
ical approval in the United States, Canada, Europe, and
other countries for the treatment of adult patients with
metastatic or locally advanced unresectable disease, and in
some countries, entrectinib also in pediatric patients (�12
years old), with solid tumors bearing the NTRK fusion.4e7

Health Canada approved larotrectinib in 2019 and entrecti-
nib in 2020 for adult and pediatric patients. Many methods
may be used to screen for the presence of NTRK fusions in
the tumor, including immunohistochemistry (IHC), fluo-
rescent in situ hybridization, RT-PCR, and massively par-
allel next-generation sequencing (NGS). However, with
three NTRK genes and >80 possible fusion partners to
consider for testing, IHC and NGS have emerged as the
preferred methods for screening and/or diagnosis of NTRK
fusion tumors and patients in the clinic.2,8,9 Screening using
IHC prior to NGS is especially applicable for cancers with a
low incidence of NTRK gene fusions.2,8e11

NGS panel testing is now a standard platform in clinical
molecular diagnostic laboratories within Canada.12 How-
ever, multiple NGS sequencing platforms and commercially
developed test panels are available. Except for large referral
centers or commercial laboratories, most institutional labo-
ratories adopt one NGS platform and one or a small number
of commercial targeted panels to validate and use in their
routine clinical work. In this context, the Canadian NTRK
(CANTRK) ring study was initiated with the goal to opti-
mize and enable testing protocols to screen for NTRK fusion
cancers in pathology and molecular diagnostic laboratories
across Canada, using pan-TRK IHC for screening and
RNA-based NGS targeted panels for confirming the pres-
ence of NTRK gene fusions as currently used in Canada. The
current article describes the design, execution, and results of
the NGS part of the CANTRK project and discusses issues
and possible solutions that may be useful for institutions
and/or laboratories that also plan to establish NTRK testing
programs.
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Materials and Methods

Participating Laboratories

The CANTRK study included two components, one eval-
uating pan-TRK IHC and the other evaluating NGS-based
testing for NTRK gene fusions (NTRK1, NTRK2, and
NTRK3). Details on the IHC study will be reported sepa-
rately. In the NGS study, 16 clinical molecular diagnostic
FLA 5.6.0 DTD� JMDI1281_proof �
laboratories from seven provinces (Alberta, British
Columbia, Manitoba, Nova Scotia, Ontario, Quebec, and
Saskatchewan) participated. Two additional laboratories
were invited but were unable to complete testing. Labora-
tories were selected based on accreditation and licensing as
a clinical molecular diagnostic laboratory in their province,
as well as on existing ability to perform NGS using methods
that detected fusions in NTRK1, NTRK2, or NTRK3 genes.
All laboratories used various methods based on RNA
sequencing for gene fusion detection. Results were returned
to the project leader, and meetings were held to review and
discuss results and discrepancies. The project and study
protocol received approval by the Research Ethics Board at
the University Health Network (19-5438).
Samples

Before the start of the ring study, a commercial formalin-
fixed, paraffin-embedded (FFPE) control sample containing
multiple gene fusions including four NTRK gene fusions
(Seraseq FFPE Tumor Fusion RNA Reference Material v4,
DMark Biosciences, Toronto, ON, Canada) was distributed
to all participating molecular laboratories as an aid to NGS
validation. Twelve FFPE patient tumor samples with known
NTRK1, NTRK2, or NTKR3 gene fusions, as well as two
non-NTRK fusion cases (ALK and ROS1), were used as
study materials (Table 1 ½, Supplemental Table S1). The
NTRK fusion cases were collected from CANTRK partici-
pant laboratories following approval by local institutions as
required. Tumor sites included lung adenocarcinoma, atyp-
ical nevus, papillary thyroid carcinoma (follicular variant,
classical variant, metastatic), infantile fibrosarcoma, salivary
gland secretory carcinoma, glioneuronal tumor, and breast
secretory carcinoma. Pathology review and assessment of
the tumor cellularity were performed by board-certified
study pathologists (M.S.T. and S.N.M.F.). All samples
had tumor cellularity >90% in the tumor-rich regions. The
presence of the NTRK gene fusions and two control non-
NTRK gene fusions (ALK and ROS1) were confirmed at two
reference laboratories by study participants (B.L., The
Ottawa Hospital, Ottawa, ON, Canada; T.L.S., University
Health Network, Toronto, ON, Canada). Reference labora-
tories were chosen based on their use of two different NGS
library methods, one using multiplex PCR with primers
designed to detect known fusions [Oncomine Comprehen-
sive Assay v3 (OCAv3), Thermo Fisher Scientific, Wal-
tham, MA; used at University Health Network] and one
using anchored multiplex PCR that can detect NTRK gene
fusions in a partner-agnostic manner [FusionPlex Lung
Panel (FPL) ArcherDX, Boulder, CO; used at The Ottawa
Hospital].
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 1 Validation Samples Used in the CANTRK Study

Sample Gene fusion (exon) Disease site or diagnosis

CTRK-02 TPR(21)::NTRK1 (10) Lung adenocarcinoma
CTRK-06 ALK(20)::EML4 (20) Lung adenocarcinoma
CTRK-07 TPM3(7)::NTRK1 (12) Lung adenocarcinoma
CTRK-09 LMNA(3)::NTRK1 (11) Atypical nevus
CTRK-12 TPM3(7)::NTRK1 (10) PTC, follicular variant
CTRK-13 ETV6(5)::NTRK3 (15) Salivary gland, MASC
CTRK-14 WNK2(23)::NTRK2 (16) Glioneuronal tumor
CTRK-15 STRN3(7)::NTRK2 (16) Glioneuronal tumor
CTRK-18 ROS1(34)::CD74 (6) Lung adenocarcinoma
CTRK-20 ETV6(4)::NTRK3 (14) PTC, classical variant
CTRK-22 Not tested Infantile fibrosarcoma
CTRK-23 ETV6(4)::NTRK3 (14) Salivary gland
CTRK-24 ETV6(5)::NTRK3 (15) Breast secretory carcinoma
CTRK-28 TPM3(7)::NTRK1 (10) PTC, metastatic

The expected fusion result for each sample was determined by using the
Oncomine Comprehensive Assay v3 (Thermo Fisher Scientific) next-
generation sequencing panel. Numbers in parentheses represent exons
determined by reference laboratory testing [FusionPlex Lung (ArcherDX) or
Oncomine Comprehensive Assay v3] and confirmed by consensus among
other laboratory exon results. The disease site/diagnosis was determined by
one of the study board-certified pathologists. One sample (CTRK-22) of
infantile fibrosarcoma was withdrawn from analysis due to poor sample
quality.
CANTRK, Canadian NTRK; MASC, mammary analogue secretory carcinoma;

PTC, papillary thyroid carcinoma.
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Ring Study Protocol

For the ring study, each participating laboratory received
three 7 mm thick sections for each study case. Laboratories
also received an image of a hematoxylin and eosinestained
slide with the tumor-rich area marked with ink, for use in
macro-dissection if required by standard practice for the
participating laboratories. Laboratories were blinded to the
known gene fusion in each sample. Each laboratory used
their own validated protocols for RNA extraction and NTRK
fusion detection (Supplemental Table S2).13e18 The NGS
panels used were capable of detecting gene fusions in
NTRK1, NTRK2, and NTRK3. NGS panels included OCAv3
(four laboratories), Oncomine Focus Assay (OCF; Thermo
Fisher Scientific; two laboratories), Oncomine Precision
Assay (OPA; Thermo Fisher Scientific; one laboratory),
AmpliSeq for Illumina Focus Panel (ASIFP: Illumina, San
Diego, CA; four laboratories), TruSight RNA Pan-Cancer
Panel (TS; Illumina; two laboratories), FPL (two labora-
tories), and QIAseq Multimodal Lung (QMML; Qiagen,
Germantown, MD; one laboratory). RNA input amounts
were validated by each laboratory, with 10 to 40 ng RNA
input used for libraries for the OCAv3, OCF, OPA, and
ASIFP panels, and 30 to 250 ng RNA for the TS, FPL, and
QMML panels. Laboratories used their own bioinformatics
tools for analysis, ranging from analysis tools supplied by
panel manufacturers to custom laboratory-developed ana-
lyses (Supplemental Table S2). Participating laboratories
reported back the results to the study lead and reference
The Journal of Molecular Diagnostics - jmdjournal.org
FLA 5.6.0 DTD� JMDI1281_proof � 5
laboratory lead (M.S.T. and T.L.S.) who assessed the re-
ported fusions against expected results. Discussions were
held with participating laboratories to present results and
discuss any discordant findings.

Sample Exchange for TruSight RNA Pan-Cancer Panel

For Qthe two-way sample exchange between the two labo-
ratories using the TS panel and the reference laboratory
(University Health Network), extracted RNA from CTRK-
20 in which the ETV6::NTRK3 fusion was sent from the
reference laboratory to each laboratory using TS. In return,
each laboratory using the TS panel sent extracted RNA to
the reference laboratory. All three laboratories tested the
received samples, and results of all exchanged samples were
reported to the reference laboratory lead for comparison.

Results

Overall Results

The average RNA yield of each sample is shown in
Supplemental Table S3. In the confirmation of NTRK fusion
cases by the reference laboratories, two cases, CTRK-14
(WNK2::NTRK2) and CTRK-15 (STRN3::NTRK2), were
detected by one reference laboratory using the anchored
multiplex PCR-based FPL assay but not by the second
reference laboratory using the amplicon-based OCAv3 due
to the absence of primers for the partner genes WNK2 and
STRN3 in the panel designs. One sample (CTRK-22; in-
fantile fibrosarcoma with ETV6::NTRK3 fusion) was with-
drawn from analysis due to a quality issue with the FFPE
tumor tissue block (no laboratories generated data for the
CTRK-22 sample). Histology review of the sample revealed
evidence of autolysis and poor tissue preservation, which
could contribute to the inadequacy for NGS. Of the 13
remaining samples, 8 of the fusions were detected by all 16
laboratories, including 6 samples with NTRK gene fusions
(6 of 11 NTRK fusion samples, 55%) and 2 control samples
with ALK or ROS1 fusions (Figure 1 ½).

Amplicon Library Panels: OCAv3, OCF, OPA, and ASIFP

Amplicon panels have the limitation of detecting only
fusions for which primers are included in the panel design.
Of the four amplicon library panels used in this ring study,
one panel detected all fusions (OPA). Two NTRK fusions in
glioneuronal tumor, WNK2::NTRK2 (CTRK-14) and
STRN3::NTRK2 (CTRK-15), were not detected by the 10
laboratories using the OCF, ASIFP, or OCAv3 panels; this
was due to the absence of primers for the partner genes
WNK2 and STRN3 in the panel designs for the OCF and
ASIFP assays (includes a total of 13 isoforms present for 9
partner genes, does not include WNK2 and STRN3; infor-
mation supplied by manufacturer) and in the OCAv3 assay
(includes a total of 18 isoforms present for 13 partner genes;
3
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does not include WNK2 and STRN3; information supplied
by manufacturer). The more recent OPA panel from the
same manufacturer includes primers for a larger number of
NTRK2 gene partners (total of 89 isoforms present for 37
partner genes, including WNK2 and STRN3), and the
WNK2::NTRK2 and STRN3::NTRK2 fusions were both
detectable on the OPA panel.

Of the six laboratories using the Focus panel from either
of the two manufacturers (four laboratories using ASIFP,
Illumina; two laboratories using OFA, Thermo Fisher Sci-
entific), three laboratories (laboratories 1, 2, and 3)
(Figure 1) were not able to detect the expected fusion in two
lung adenocarcinomas samples, TPM3::NTRK1 (CTRK-07)
and LMNA::NTRK1 (CTRK-09). The three laboratories that
did not detect these fusions used ASIFP. One of the three
laboratories using ASIFP did obtain a partial result detecting
a fusion involving NTRK1, without identifying the fusion
partner, by using an analysis for an imbalance in the dif-
ference in expression between the 50 assay and the 30 assay
of each gene in the fusion (no other laboratories assessed the
expression imbalance assay results in routine use). Because
the ability of three other laboratories to detect these fusions
using the ASIFP or OFA ruled out an issue with primers in
the panel design (as both ASIFP and OFA panels use the
same design), it suggested the issue was due to either a lack
of tumor in the FFPE material sent to these three labora-
tories (could not be investigated further due to lack of re-
sidual material) or due to a difference in the bioinformatics
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Figure 1 The result from each laboratory for the 13 CANTRK (CTRK) samples in
unique laboratories as rows. Two control fusions are shown as white text on black
key, the results are as follows: green, fusion detected; gray, sample not tested; w
design; blue, fusion not detected due to bioinformatics failure; purple, fusion no
fusion not detected due to low variant level. TF, Thermo Fisher Scientific. *Indic

4
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analysis in these laboratories. Further Qanalysis identified that
using a different bioinformatics tool (STAR-Fusion)
(Supplemental Table S2) with the ability to align against a
broader range of possible fusion targets enabled the detec-
tion of the TPM3::NTRK1 and LMNA::NTRK1 gene fusions
in these two samples.

Hybridization Capture, Single Primer Extension, and
Anchored Multiplex PCR Assays: TS, QMML, and FPL

Use of library methods that can select gene fusions for
sequencing without prior knowledge of each partner gene or
the specific fusion isoform can theoretically improve
detection of rare or novel fusions. In the ring study, five
laboratories used partner-agnostic methods (ie, able to detect
NTRK fusions partners without prior knowledge of the
partner gene), including two laboratories using hybridiza-
tion capture libraries (TS, Illumina), two laboratories using
anchored multiplex PCR libraries (FPL), and one laboratory
using a single primer extension and amplification library
(QMML, Qiagen). Both laboratories using the FPL panel
detected all fusions.
For the two laboratories using the TS panel, an

ETV6::NTRK3 fusion in a papillary thyroid carcinoma
(CTRK-20) was not detected, although a similar
ETV6::NTRK3 fusion in a salivary duct carcinoma sample
(CTRK-23) was detected by both laboratories (Figure 1). It
was also noted that the results of CTRK-20 testing by other
 panel, Illumina
 panel, Illumina
 panel, Illumina
 panel, Illumina
s Assay, TF
s Assay, TF

rehensive Assay v3, TF
rehensive Assay v3, TF
rehensive Assay v3, TF
rehensive Assay v3, TF
, ArcherDX
, ArcherDX
n-Cancer, Illumina
n-Cancer, Illumina
sion Assay, TF
dal Lung, Qiagen

 detected
 not detected (inadequate assay design)
 not detected (bioinformatic failure)
 not detected (detected NTRK1 fusion only by imbalance assay)
 not detected (low fusion variant level)
 not tested
lusive result 

the ring study are shown. Expected results are shown as columns and the 16
(sample CTRK-06, ALK::EML4; CTRK-18, ROS1::CD74). As per the figure color
hite, inconclusive result; red, fusion not detected due to inadequate assay
t detected but detected NTRK1 fusion only by imbalance assay; and yellow,
ates reference laboratories.
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laboratories using amplicon panels gave a low number of
fusion reads, suggesting that the fusion in this sample was
present at a low level that may not be detectable by the TS
panel but that was detectable by other panel methods. To
investigate, a sample swap was arranged in which one
reference laboratory (University Health Network) that
detected the ETV6::NTRK3 fusion in CTRK-20 sent a
sample of extracted RNA to the two laboratories using TS,
who in return sent extracted RNA back to the reference
laboratory for retesting. All three samples tested at the
reference laboratory were confirmed to have reads sup-
porting the presence of the ETV6::NTRK3 fusion (albeit at
very low read levels), and both laboratories using TS
detected the ETV6::NTRK3 fusion on RNA extracted at the
reference laboratory (Supplemental Table S4). The sample
exchange thus indicated that the TS panel was able to
detect the ETV6::NTRK3 fusion but that the low fusion
level in the sample was challenging to detect by using the
TS panel.
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Discussion

There is an emerging group of targeted tumor-agnostic
therapies in which drug selection is based on tumor mo-
lecular features found in a variety of tumor types and at
various ages of cancer onset.19 Since 2015, Health Canada
has approved pembrolizumab in 19 tumor indications for
patients with microsatellite instability-high or mismatch
repairedeficient cancers. In 2019 and 2020, larotrectinib
and entrectinib, respectively, were approved by Health
Canada for the treatment of adult and pediatric patients with
solid tumors carrying NTRK gene fusions. Because these
tumor-agnostic molecular features are rare in certain cancer
types, molecular methods that capture the most variants are
ideal for clinical testing, thus providing drug eligibility to
the largest group of patients. However, the rarity of these
variants poses a problem for validation by clinical molecular
laboratories, which require positive control material. This is
particularly true for NTRK gene fusions, which have
pathognomonic tumor sites where certain NTRK gene fu-
sions are common (eg, ETV6::NTRK3 fusions in salivary
gland secretory carcinoma, secretory breast carcinoma, in-
fantile fibrosarcoma, and congenital mesoblastic nephroma)
yet other tumor sites where NTRK1, NTRK2 or NTRK3 fu-
sions might exist but are very rare.2,20e25

NTRK gene fusions are also best detected by using RNA-
based NGS, a methodology still emergent in Canadian
clinical laboratories. Of note, no Canadian laboratories in
this study used DNA-based NGS for detection of NTRK
gene fusions. Compared with RNA-based NGS for detec-
tion of gene fusions, DNA-based NGS is more challenging
due to the larger intronic regions that need to be effectively
covered by the NGS panel and the lack of evidence of
expressed gene fusions evident when using RNA-based
NGS. For these reasons, DNA-based NGS reportedly has
The Journal of Molecular Diagnostics - jmdjournal.org
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reduced sensitivity for gene fusion detection compared with
RNA-based NGS due to false-negative results.26,27

Comparison of NGS testing for NTRK gene fusions in
clinical laboratories in other countries, including Germany28

and South Korea,29 have shown that comprehensive detec-
tion of NTRK gene fusions is highly dependent on NGS
library designs and on bioinformatics approaches for data
analysis. Different diagnostic sensitivity is noted between
NGS using amplicon libraries, which rely on knowledge of
specific breakpoints with partner genes and thus may have
reduced sensitivity for rare fusions, versus partner-agnostic
library approaches (eg, hybrid capture, anchored multiplex
PCR) in which prior knowledge of the fusion gene partner is
not required.30,31 A clinical laboratory external quality
assessment scheme in Germany, Austria, and Switzerland,
which assessed both fluorescent in situ hybridization and
NGS by RNA sequencing in 27 centers, also showed
detection challenges with certain NGS commercial panels,
particularly amplicon panels in which rare targets were not
included in design although with high sensitivity of 95.3%
overall for RNA-based NGS analysis.32

Because health care delivery in Canada is funded and
regulated provincially, decisions by clinical molecular
diagnostic laboratories regarding specific laboratory tech-
nologies to implement for clinical testing are region specific
and based on local expertise or equipment access, with
minimal harmonization across the country. Although this
diversity of methods is acceptable under a strong laboratory
accreditation program that exists within Canada (eg, by
Accreditation Canada Diagnostics) and includes molecular-
specific requirements and external quality assessment
participation, it remains valuable for Canadian laboratories
to assess their own test approaches compared with others as
a way of identifying test-specific issues or to confirm test
equivalency.

Through the CANTRK study multicenter collaboration,
tumor samples from multiple tumor sites with NTRK1,
NTRK2, or NTRK3 fusions, with six different fusion gene
partners, were shared across 16 Canadian clinical labora-
tories from seven provinces, overcoming a major barrier of
individual laboratories sourcing sufficient positive control
samples for validation. Canadian laboratories in this study
used seven different RNA-based NGS commercial panels
for detection of NTRK fusions. The NGS panels that
detected all fusions (11 NTRK fusions) included the FPL,
TS, OPA, and QMML panels (all partner-agnostic, except
for OPA, which is amplicon based), whereas the panel
detecting the least fusions was ASIFP (6 of 11 NTRK fu-
sions detected, amplicon based). Although certain NGS li-
brary methods can allow selection of fusions without a
priori knowledge of the fusion partners, including three li-
brary methods used by participants in this study (TS, FPL,
and QMML), these methods may require longer workflows
and higher amounts of RNA. The TruSight hybridization
capture library used in the CANTRK study encountered a
challenge in detecting low levels of fusions on one sample
5
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by both laboratories using this panel, which may indicate a
reduced sensitivity of this panel at low tumor or variant
content. It has also been reported in a comparison of RNA-
based NGS methods for NTRK gene fusion detection that
the hybridization-capture NGS TruSight Oncology 500
assay (Illumina) also exhibited reduced sensitivity for low-
level fusions variants.30

In this study, two issues came forward as having a larger
impact within Canadian laboratories. The first was the lack
of primers in commercial panel amplicon libraries (panels
OCAv3, OFA, and ASIFP) for two NTRK2 fusion partner
genes (WNK2 and STRN3). Although amplicon library
methods can allow use of small amounts of RNA, by design,
prior knowledge of both partner genes and the specific
exons involved in the fusion are required. Although NTRK2
fusions are the least frequent NTRK geneerelated fusions
(reported mainly in pediatric central nervous system
tumors21e25), in the absence of frequent updates by the
manufacturer to commercial NGS panel target gene content,
laboratories can only increase their detection of rare fusions
by moving to a library preparation with more isoform
detection or switching to a fusion partnereagnostic method,
all of which require extensive clinical validations. As shown
in this study, the diversity of NTRK gene fusions leads to
false-negative findings in testing in which fusions for rare or
novel partner genes or isoforms are not detectable due to
panel design, particularly if existing commercial panels are
not updated by the manufacturer as new partner genes are
identified (as is the case with the OFA and OCAv3 panels,
compared with the more recent OPA panel from the same
manufacturer). The findings are also supported by a recent
in silico analysis of the bed files of current assays and
coverage of various NTRK gene fusions28 in which the
OCAv3 and OFA panels had the lowest detection of NTRK
fusions among nine NGS methods.

The second issue identified was bioinformatics analysis
on data from the ASIFP panel. Because the manufacturer
does not supply a custom bioinformatics analysis for this
panel, laboratories must develop their own bioinformatics
analysis. For three laboratories, their initial choice of
bioinformatics analysis did not detect two NTRK1 fusions in
lung adenocarcinomas. However, one of these laboratories
confirmed that these two fusions were identifiable by using
an alternate fusion detection software (STAR-Fusion
version 1.9.117). This finding suggests that laboratories
require appropriate control materials to optimize bioinfor-
matics detection of rare events in their gene fusion detection
panel data.

During the course of this Canada-wide study, several
questions related to quality assurance for clinical labora-
tories using NGS for RNA sequencing for fusion gene
testing were identified. These included the quality criteria to
report a positive result for a fusion gene from RNA
sequencing, the challenges for bioinformatics analysis, and
the best practices for reporting gene fusions. The informa-
tion gathered from this study will be used to formulate a best
6
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practice guideline for analysis and reporting of gene fusions
detected by NGS methods.
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