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A B S T R A C T   

We developed a prototype genomic archiving and communications system to securely store genome data and 
provide clinical decision support (CDS). This system operates on a client-server model. The client encrypts the 
data, and the server stores data and performs the computations necessary for CDS. Computations are directly 
performed on encrypted data, and the client decrypts results. The server cannot decrypt inputs or outputs, which 
provides strong guarantees of security. We have validated our system with three genomics-based CDS applica-
tions. The results demonstrate that it is possible to resolve a long-standing dilemma in genomic data privacy and 
accessibility, by using a principled cryptographical framework and a mathematical representation of genome 
data and CDS questions.   

1. Introduction 

New discoveries are being made at a fast pace, linking genetic vari-
ants with disease risk and drug interactions. As next-generation genome 
sequencing becomes more reliable, economical, and widely available, 
the findings from research are being incorporated into clinical practice. 
Making responsible and meaningful use of human genomic data to 
support healthcare, including clinical decision support (CDS) applica-
tions, is an emerging challenge of great importance. CDS can provide 
answers to questions such as: ‘what is the patient’s CYP2C19 genotype 
and drug-metabolism phenotype’, and ‘does the patient have any 
pathogenic BRCA1 variants’. 

Genome data are large, comprising billions of base-pairs on thou-
sands of genes and intergenic regions. Next-generation sequencing can 
identify thousands to millions of variants, whose clinical significance 
can change over time as our knowledge evolves. Sequencing can pro-
duce gigabytes of data for a single individual. It is impractical to securely 
store and analyze such large data in contemporary electronic health 
record (EHR) systems, which clinicians use when delivering care to 
patients. The challenges for storage can be more acute for smaller 
healthcare facilities that may not have large, secure data repositories. 
This means that genomic data must be stored outside the EHR system 
and retrieved for CDS. 

A Genome Archiving and Communications System (GACS) can make 
genomic data accessible for clinical applications [1,2]. This is analogous 
to how radiological images are stored in a Picture Archiving and 

Communications System [3]. Further, a cloud-based GACS can provide a 
cost-effective solution due to economies of scale [4]. However, cloud 
storage of genome data increases privacy concerns. Theft and misuse of 
genome data can cause long-term harm to individuals and their families 
because the data are unique, heritable, and immutable. Given this 
highly-sensitive nature of genome data, appropriately strict levels of 
protection must be applied to their storage. 

The competing demands of accessibility and privacy create a chal-
lenging problem that has been studied for years. Solutions have been 
proposed for securely outsourcing computation and data sharing [5–24]. 
Many of these solutions have vulnerabilities during computation, in-
efficiencies, or require special hardware. One promising solution that 
meets the requirements, is to use fully homomorphic encryption tech-
nology, which enables computation over encryption. Since data are 
never decrypted during storage, transfer, or computation, there is a 
strong guarantee of privacy [25,26]. We have developed a prototype 
client-server system for encrypting and storing genomic data and 
providing secure CDS. In this model, a client encrypts the data using a 
public key and sends it to the server for storage. The same client or 
another client asks CDS questions. The server stores the encrypted data 
and performs the computations without decrypting the data or the CDS 
questions. The results are returned to the client, who has the private key 
(also called secret key or decryption key) to decrypt them. Only the 
custodian of the data, (the client that has the secret key), can decrypt 
results. We have evaluated our system with three use-cases representing 
a breadth of CDS scenarios: (1) screening for eligibility in a clinical trial 
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based on the presence of certain haplotypes in the APOE gene, (2) 
inferring the drug metabolism phenotype for clopidogrel based on the 
CYP2C19 genotype, and (3) assessing risk for familial hypercholester-
olemia (FH) based on the LDLR gene. Our system currently retrieves ’key 
variants’, calculates genotypes, and computes phenotypes based on 
genotype-matching or scoring. Key variants are known variants that are 
of interest for a given scenario, e.g., because they are known to be 
associated with a disease or with altered drug metabolism. 

2. Background 

2.1. Ancillary genomics systems and genomics-based CDS 

A typical person’s DNA can have several million variants from a 
given reference DNA, and the significance of any of these variants to the 
person can change over time. Management of such a large and dynamic 
data set has prompted exploration of ancillary genomic systems, also 
referred to as genomic data repositories, that reside outside the EHR [2]. 
Experience and use of such ancillary systems is growing [27–29], 
prompting the Office of the National Coordinator’s “Sync for Genes” 
project to emphasize the need for pilots that test GACS integration with 
EHRs [30]. Furthermore, institutions are turning to cloud-based solu-
tions for hosting genomic data repositories, raising additional concerns 
over genomic data privacy and security. 

Our previous work on integrating genomic data into the EHR has 
followed a model in which a CDS engine monitors events occurring 
within the EHR [31]. When triggered by an event, the CDS engine ob-
tains genomic data from the GACS. For example, the CDS is triggered by 
a new medication order in the EHR. Upon being triggered, the CDS 
engine queries the GACS for variants in the patient’s genome that 
interact with the ordered drug. The CDS engine returns appropriate 
recommendations to the ordering provider. It is with this context in 
mind, GACS communicating with CDS which communicates with EHR, 
that we have designed the secure GACS. 

Pharmacogenomics CDS applications are of particular interest. Over 
half of all primary care patients are exposed to drugs with potential 
pharmacogenomic interactions [32]. Studies have found that 7% of 
FDA-approved medications and 18% of the 4 billion prescriptions 
written in the US per year are affected by actionable variants [33], and 
that nearly all individuals (98%) have at least one known, actionable 
variant by current Clinical Pharmacogenetics Implementation Con-
sortium (CPIC) guidelines [34]. An example is Clopidogrel, which was 
prescribed over 20 million times in 2015 [35]. For patients on clopi-
dogrel who are found to have CYP2C19 genotypes that produce non- 
functional or reduced functional proteins, there is an increased risk for 
adverse cardiovascular events. In such cases, CPIC guidelines recom-
mend alternative antiplatelet therapy [36]. 

Genome sequence data also can be used for early detection and 
diagnosis of a variety of disorders. The American College of Genetics and 
Genomics (ACMG) recommends reporting secondary findings in 56 
genes [37]. The ACMG considers genetic variants that cause monogenic 
disorders where early diagnosis is clinically actionable. Studies have 
found as many as 7% of patients harbor pathogenic or likely pathogenic 
variants in these 56 ACMG genes [38–40]. Analysis of the ClinVar [41] 
archive data indicates the number of known pathogenic or likely path-
ogenic variants in these genes was 18,718 in 2018 [42]. A case in point is 
familial hypercholesterolemia (FH), which has an estimated prevalence 
of 1 in 250 to 1 in 500 persons [43,44], and is most commonly due to 
mutations in the LDLR gene. Over 1,500 pathogenic or likely pathogenic 
LDLR variants are registered in ClinVar, and have an associated Clinical 
Actionability summary in ClinGen [45]. 

Specific genetic markers are used as criteria to determine eligibility 
in clinical trials. Easier access to genome sequence data while providing 
the appropriate protections for the privacy of subjects, compliant with 
regulations and ethical principles, can also facilitate and promote 
recruitment in clinical trials. For example, in a trial of CNP520 versus 

placebo in the treatment of early Alzheimer’s Disease [46], trial entry 
criteria include being a carrier of certain APOE haplotypes. This and the 
other CDS applications described in this section are well-served with 
privacy-protecting storage and computation. 

2.2. Privacy-protecting solutions 

Inappropriate disclosure of genomic data can put people’s privacy at 
risk, which might have a long-term impact on an individual’s education, 
employment, insurance [47,48], and on their relatives (e.g., the Golden 
State killer case [49]). Genomic data yield unique biometrics. Early 
studies showed merely 75 single-nucleotide polymorphisms (SNP) are 
sufficient to uniquely re-identify an individual [50] and a few dozen 
database queries can determine the database membership of a victim 
[51–53]. There are some recent findings showing that genomic data can 
infer physical appearance and diseases that are linkable to anonymized 
phenotype records [5,54]. It is therefore critical to protect genomic data 
hosted in clinical systems. Traditionally, clinical data are encrypted 
during storage (labeled “encryption at rest” [6]) as a mechanism to 
protect data loss, which is required by HIPAA security rules [7]. How-
ever, the value of genomics resides in data analysis (rather than 
depositing data in storage) and existing solutions have no way but to 
decrypt the data for analysis (e.g., on a 3rd party commercial cloud), 
which has raised many public concerns [55]. 

In the past few years, privacy and cryptographic techniques for 
secure computation have been extensively studied. Multi-party compu-
tation (MPC) is considered a promising solution for secure computation 
[8–10]. In this approach, multiple parties maintain local data and 
communicate intermediate results. MPC can be vulnerable when the 
computing parties collude, and is thus inappropriate for long-term 
storage and outsourcing computation [11–14]. Aziz et al. surveyed 
various secure computation techniques for genomic data [15]. Among 
the most relevant mechanisms, there are two camps of solutions: (1) 
hardware-based methods [16–18], and (2) homomorphic encryption 
(HE) based approaches [19,20]. The former solutions rely on special 
hardware and engineering skills while the latter depend on advanced 
mathematics. The hardware-based methods provide a secure enclave 
within the CPU. The data is decrypted within this secure enclave for 
computation with the assumption that enclave contents are invisible to 
the rest of the CPU. An implementation of this approach is found in the 
Software Guard Extensions (SGX) technology built into Intel’s recent 
CPUs. Hardware-based methods are fast and easy to implement but 
vulnerable under new attacks [21–23]. On the other hand, HE is backed 
by principled algebraic number theory, which allows one to perform 
arithmetic operations over encrypted data without decryption. Security 
is guaranteed by cryptographic hardness assumptions, which even 
quantum computers cannot break [24]. 

Traditionally, HE has been considered too slow and too memory- 
intensive for practical applications. While this might have been true 
5–8 years ago, the field has progressed rapidly (indeed, faster than 
Moore’s law) as benchmarked by the iDASH genome privacy competi-
tion series [56,26]. HE is starting to demonstrate its feasibility in of-
fering rigorous yet practical solutions to real-world clinical applications. 
Shimizu et al. proposed a HE-based string search to locate sequences of 
SNPs in large genome databases [57]. Kim et al. developed a secure 
matching algorithm for biomarkers and a secure training protocol for 
building a logistic regression model for genome-wide association studies 
[58,59]. 

3. Method 

3.1. System overview 

Our system models a client-server architecture. In this model, a 
sequence client, e.g., a laboratory, encodes, and encrypts patient data 
with a public key of the HE system. The encrypted data, also called 
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ciphertext, are sent to the GACS server for storage. Subsequently, the 
CDS client, e.g., a hospital, poses encrypted CDS questions and sends 
them to the GACS. The GACS performs computations over encryption 
and returns the result to the CDS client for decryption with a private key. 

The data flow is illustrated in Fig. 1. The input data consists of 
variant call format (VCF) files [60], which are text files. Since compu-
tation requires numerical representation, we encode the variants from a 
VCF file as a vector shown as v. The variant vector is homomorphically 
encrypted (shown as ̂v) and sent to the server for storage. Descriptions of 
encoding and encryption are given in Sections 3.2 and 3.3, respectively. 
Patient and sequence identifiers are meta-data, and are deterministically 
encrypted before being sent to the server for storage to conceal them 
from the server. Questions (called queries) are posed by a CDS client. In 
Fig. 1, the CDS client encodes the question as a matrix or vector A, en-
crypts it to Â,  and sends it to the server along with the deterministically 
encrypted patient identifiers. The server computes a result ̂h and sends it 
to the client for decryption to h. The result h is the same (within a noise 
margin defined by the precision parameter) as the unencrypted 
computation on the plain data, O(A, v). The data, questions or results are 
not decrypted by the server. 

We defined operations in the GACS that can be used by CDS systems 
to obtain variants or calculate genotypes (pairs of haplotypes). These 
operations include weighted summation of variants and evaluation of 
zygosity (heterozygous or homozygous). Haplotyping includes a special 
case of finding a particular haplotype, e.g., in the clinical trial applica-
tion. For our pharmacogenomics application, we must compute a 
phenotype from the genotype. We compute this phenotype on the client. 
Although it is possible to chain queries (genotyping, followed by phe-
notyping), chaining requires increasing the multiplicative depth of the 
evaluation circuit, which in turn requires greater memory and time. 

In this paper, we focus on CDS with key variants, but not with novel 
variants (i.e. those that have not been registered in databases such as 
ClinVar) or structural variants (variants that may have hundreds of bases 
differing from the reference genome, often with imprecise endpoints). 
Computation on novel and structural variants requires additional con-
siderations for encoding the data and will be addressed in future work. 

3.2. Vector-encoding of key variants 

For computation over encryption, analysis questions must be 
expressed mathematically. We developed a novel framework to repre-
sent variant data and CDS questions numerically. In this framework, key 

variants are encoded as vectors, and the analysis questions are encoded 
as linear operations on these vectors. Each known key variant is repre-
sented by a fixed element in a vector. The variant and its element po-
sition in a vector are stored in a lookup table on the client. The presence 
of a variant is encoded by a “1′′ (one), and its absence is encoded by a “0” 
(zero). We create pairs of vectors because chromosomes exist in pairs. 
Each vector-pair represents a region of the genome. There are groups of 
variants that can be considered together because they are in a particular 
region, define particular haplotypes, or determine phenotypes. In our 
model, it is optimal to encode such a group of variants into the same 
vector-pair. The encoding is done by the client before encryption. 

We use two types of encoding schemes that we call “phased” and 
“unphased”. Unphased encoding allows us to compute on variants. We 
use it when CDS does not need to calculate haplotypes (e.g., for LDLR 
variants). Phased encoding allows us to calculate haplotypes and ge-
notypes in addition to computing on variants. Consider two key variants 
in the APOE gene as shown in the rightmost two columns of Table 1. Two 
variants can generate four haplotypes. If a patient has the heterozygous 
variant rs7412, the genotype is ε2/ε3. For this patient, a representative 
pair of vectors is [1, 0] and [0, 0]. Phased encoding is illustrated in 
Fig. 2. 

When phase information is present in the VCF file, the pair of vectors 
is uniquely determined, although we do not know which is maternally or 
paternally derived. When phase information is absent or partial, and 
heterozygous variants are present, there are ambiguities regarding 
which homologous chromosome (e.g., maternally- vs. paternally- 
derived) has particular key variants. In other words, the haplotypes 
are uncertain. To accommodate ambiguity, we generate multiple com-
binations of variants that capture all the possible haplotypes. If the pa-
tient had two unphased heterozygous variants, the vector pairs could be 
[1,0]/[0,1], representing ε2/ε4, or [1,1]/[0,0] representing ε1/ε3. In 
general, with P distinct or unknown phases, the number of combination 
pairs is 2P− 1. Ambiguous genotype calls are often resolved clinically 
according to population probability distributions, which we anticipate 
occurring in the CDS client. 

For efficient computation and storage, the combinations of variants 
(in a group of variants) are concatenated vertically within the pair of 
vectors. This allows us to efficiently pack the vectors into the cipher-
texts, whose lengths are fixed by the multiplicative depth of the 
encryption circuit, as described in Section 3.3. 

In unphased encoding, we ignore partial phase information from the 
VCF file. When a heterozygous variant is present, we can encode the “1” 
into the relevant element in either vector of the pair. Here, we do not 
generate various combinations of unphased variants. Unphased encod-
ing allows us to do variant-level operations, but it does not allow us to 
calculate genotypes, except for those genotypes defined by a single 
variant. For many CDS applications, unphased encoding is sufficient to 
answer the clinical question. An example is the application to determine 
the risk of FH, in which we need to detect the presence of certain vari-
ants in the LDLR gene. In this application, there are over 2000 variants 
and as many possible haplotypes. A possible combinatorial explosion of 
unphased variants is avoided by unphased encoding. 

Fig. 1. Illustration of system components and data flow.  

Table 1 
Haplotypes of the APOE gene. The phenotype column indicates haplotype- 
associated risk for development of Alzheimer’s Disease. Haplotypes are deter-
mined by the alleles at rs7412 and rs429358 as shown.  

Haplotype Phenotype rs7412 rs429358 

ε1 (0.2%) Normal risk T C 
ε2 (7%) Decreased risk T T 
ε3 (wild type, 79%) Normal risk C T 
ε4 (14%) Increased risk C C  
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3.3. Homomorphic encryption 

We use the CKKS homomorphic encryption scheme developed by 
Cheon et al., to encrypt our data [61]. Compared to other HE schemes 
such as BGV [62] and BFV [63], CKKS is capable of controlling the 
magnitude of encrypted messages during homomorphic computation. It 
creates a trade-off between precision and efficiency, and offers a prac-
tical and effective solution for applications such as ours, which do not 
require high precision. Additionally, this HE scheme supports ciphertext 
packing techniques to encrypt multiple messages into a single cipher-
text, so that we can compute a function on multiple data simultaneously. 
For instance, it provides element-wise addition, multiplication, and 
rotation (shift) of vector elements. As a result, it enables us to achieve 
good performance in terms of amortized ciphertext size and timing per 
plaintext slot. 

We use the Microsoft SEAL library for homomorphic encryption 
functions. The library is written in C++. Our software implementation is 
in Python. We wrote binding functions using the Pybind11 software 
[64], to allow Python scripts to call the SEAL library C++ functions. The 
selection of encryption parameters is explained in Appendix A. 

3.4. Computations on the server 

As mentioned in Section 3.1, the analysis questions are framed as 
linear operations on vector data. This is because HE data are closed 
under addition and multiplication only. Surrogate solutions are some-
times necessary to frame analysis questions as linear operations. These 
solutions must balance complexity, memory, and the need to coordinate 
the computation with the client. Our computations are of the forms ĥ =

Â v̂, < â, v̂1 +v̂2 > and < â, v̂1 ⊗ v̂2 >, where ⊗ represents element-wise 
multiplication. Logical operations (e.g., < â, v̂1ORv̂2 >) and logical 
template matching are also allowed. 

We describe the linear operation ĥ = Â v̂ here, and describe logical 
template matching in Appendix B. The plaintext operator A is a matrix 
whose rows are the haplotype template vectors, i.e., each row defines a 
particular haplotype. Each row of A is encrypted as a ciphertext. ĥ = Â v̂ 
is calculated using dot-products. To calculate a dot-product we must do 
an element-wise multiplication followed by summation across the vec-
tor. Summation across the vector is performed by performing n left shifts 
and additions, as described in Appendix C, where n is the power of two 
greater than or equal to the length of the plaintext vector, n = ⌈log2|v|⌉. 
The plaintext equivalent vector h is a real number vector, and the patient 
haplotype corresponds to the element with the largest result, i.e., it re-
quires us to compare values, which is not computationally friendly over 

our encryption scheme. To overcome this, a surrogate operation can be 
used or the result ĥ can be returned to the client, which decrypts it to h 
and then computes argmax(h). We have used the latter approach because 
of its efficiency. 

In Section 3.2 we explained encoding using the example of a two- 
element plaintext vector, v. In practice, in our phased encoding 
method, we add elements to v to include wildtypes, i.e., the absence of 
variants at key-variant positions. This is because different haplotypes 
have different numbers of variants, which means normalization by the 
number of variants is required. By including the wildtype elements, v has 
a constant amplitude, providing implicit normalization. Fig. 3 represents 
haplotyping of a pair of unambiguous vectors. The figure shows the 
plaintext equivalent: h = Av. 

As stated in Section 3.2, if the variant vector is ambiguous due to 
incomplete phasing, then we stack the variant combinations vertically 
before encryption. Since the dot-product uses shift and add operations, 
each combination is padded with zeros to the nearest power of two, to 
avoid contamination from the next combination. The CDS client repli-
cates the matrix A horizontally to match the stacked v and encrypts it. 

4. Testing and results 

4.1. CDS applications 

We tested our method against three CDS applications: 1) clinical trial 
eligibility based on APOE haplotypes; 2) screening for familial hyper-
cholesterolemia based on LDLR pathogenic variants; and 3) interaction 
with clopidogrel based on CYP2C19 genotyping. 

To test clinical trial eligibility, the query matrix encodes the question 

Fig. 2. Illustration of phased encoding. The table on the left shows partially phased genome sequence data from a VCF file. In the Sample column, the pipe delimiters 
indicate phased variants and slashes indicate unphased variants. The unphased heterozygous data generates two combinations. A lookup table (not shown) is used to 
assign a variant to a vector and an element position in the vector. 

Fig. 3. Haplotypes for APOE found by argmax(Av). The rows of A are the 
haplotypes and the columns are variants. The zero-valued elements are shown 
blank for clarity. For the pair of variant vectors shown, v1 = [0101] and v2 =

[1010], the genotype is ε4/ε2. 

S. Karimi et al.                                                                                                                                                                                                                                  



Journal of Biomedical Informatics 112 (2020) 103602

5

’does the patient have at least one ε4 haplotype?’. The variants and 
haplotypes associated with this question are explained in Section 3.2. 
This query is of the form < Â4 , v̂ > for each vector in the pair, where A4 
is the row-vector corresponding to the ε4 haplotype. 

To assess for FH and to differentiate between moderate and severe 
phenotypes, we can ask two queries: 1. How many pathogenic or likely 
pathogenic alleles are present in the LDLR gene? 2. How many homo-
zygous pathogenic or likely pathogenic variants are present in the LDLR 
gene? The first query is a weighted summation of the form < â, v̂1 +

v̂2 >. The second query is a weighted summation < â, v̂1 ⊗ v̂2 >. The 
vector a encodes pathogenic or likely pathogenic alleles, with a “1′′. If 
the answer to question 1 is zero, there is no evidence of FH. If the answer 
to question 1 is exactly one (i.e. only one gene affected), we predict a 
moderate phenotype. If the answer to question 2 is >=1 (i.e. both genes 
affected), we predict a severe phenotype. (For example, given. a = [0...
110...10] , if the patient had one homozygous pathogenic variant and a 
non-pathogenic variant, the vectors are v1 = [0...10⋯.0] and v2 =

[0...10⋯.1], the answers would be 2 and 1 respectively, and the infer-
ence would be a severe risk of FH.) The phenotype is indeterminate 
(either moderate or severe) with other answers. For LDLR, we obtained 
key variants from ClinVar. These were filtered to indels and single 
nucleotide variants (SNVs) with pathogenic or likely pathogenic clinical 
status, review status of at least one star, and known start and end 
coordinates. 

The phenotype for clopidogrel metabolism depends on the haplo-
types of CYP2C19. We compute ĥ = Â v̂ and return ĥ to the client for 
decryption and argmax(h) to obtain haplotypes. The client applies a 
score to the haplotypes. The score maps to the phenotype: poor, inter-
mediate, normal, rapid, ultra-rapid, or indeterminate metabolizer. We 
obtained variants, haplotype definitions, and genotype-phenotype 
mapping from PharmGKB [65]. An alternative solution that chains the 
genotype and phenotype queries is possible. In the chained method, the 
genotype is calculated by logical template matching and does not have 
to be decrypted by the client for the phenotype calculation. However, 
this solution is slower, requires greater circuit depth and consequently, 
requires more memory. 

4.2. Study population 

Genomic data in VCF files from 287 individuals from the publicly 
available 1000 Genomes database were obtained for testing [66]. This 
data is publicly accessible and its use in research does not require 
approval by an Institutional Review Board. Regions of the genomes 
containing key-variants in APOE (NC_000019.9:45408005-45413652), 
LDLR (NC_000019.9:11199037-11245506), and CYP2C19 
(NC_000010.10:96521437-96613962) were extracted from the files 

using the tabix software tool [67]. To ensure consistent encoding, the 
key variants were normalized to canonical SPDI form using NCBI Vari-
ation Services [68]. 

4.3. Results 

The operations for each application are given in Table 2. Measure-
ments of time and memory consumption are given in Table 3. Timings 
were measured for key-generation, encryption, computation and 
decryption. The mean and standard deviation of these timings were 
computed over all the patients in our test set. The software was run on a 
virtual Linux machine on a PC with an Intel i7-6500 CPU and was 
allocated 6 GB memory. We verified that the genotypes and phenotype 
results calculated over encryption matched ground-truth results gener-
ated with plaintext calculations and manual labeling of haplotypes. 

The genome data and CDS query can be encrypted ahead of time in 
an offline, asynchronous manner. Table 3 does not show the timing for 
parsing the VCF file, which can be slow, or for encoding, which is sub- 
second. The query computation (shown by the “Query time” column) 
and the result decryption are real-time calculations, and the timings for 
these operations are more important for usability. Since the ciphertext 
vector length is fixed by the multiplication circuit-depth, the memory 
consumption or time do not increase with plaintext vector length, as 
long as the plaintext vector is smaller than the limit allowed by the 
ciphertext. The presence of multiple ambiguous haplotypes does not 
change the timing or memory consumption because they are packed into 
the same ciphertext. 

The table shows that the query time is different for the different 
applications. The CYP2C19 application requires as many dot-products as 
there are haplotypes. The APOE application requires only one dot- 
product because there is only one haplotype. The LDLR application re-
quires an element-wise multiplication, followed by a dot-product, and 
an addition operation followed by a dot-product. The key generation 
depends on the multiplicative depth. The encryption of the operator 
depends on the operator. Each row of the matrix A is separately 
encrypted for CYP2C19, and therefore the encryption takes approxi-
mately 31 times as long as the encryption of the other operators. Since 
the vector length is fixed in all these applications, the encryption and 
decryption time is fixed. 

5. Discussion 

A new framework for secure computation on genomic data has been 
developed. The framework includes a vector representation for genomic 
data and a matrix or vector representation of CDS questions that can be 
applied as linear operations to the vectors. The representation allows HE 
and thus enables computation on a remote server with guarantees of 
security and privacy. Our framework was validated with three CDS 
applications and 287 patients from the 1000-genomes dataset. Timing 
and memory measurements from our test-cases demonstrate the feasi-
bility of using this approach. While homomorphic operations are slower 
than plaintext operations, we anticipate that query results (such as 
identified drug-gene interactions or positive genetic screening results), 
once computed, can be stored in EHRs where they can be accessed 
quickly for CDS. 

A key component of the framework is the vector representation of the 
genome sequence, that allows queries on genome data to be expressed as 
mathematical operations. This representation is generalizable to a range 

Table 3 
Time and memory consumption for the use-cases. Time (mean/std dev) was measured in seconds.  

Application Size of operator Key generation Encryption of operator Encryption of vectors Compu-tation Decryption Memory (MB) 

CYP2C19/ Clopidogrel A = (31, 68) 0.65/0.07 0.58/0.03 0.04/0.01 3.94/0.53 0.02/0.01 67 
LDLR/ FH a = (1,2039) 1.26/0.11 0.03/0.01 0.06/0.01 0.30/0.03 0.02/0.01 127 
APOE/ clinical trial A_4 = (1,4) 0.65/0.03 0.02/0.01 0.04/0.01 0.10/0.02 0.02/0.01 56  

Table 2 
The operations used for each application. The match in the first row of this table 
is the element of h that equals one.  

Application Operations Meaning 

CYP2C19/ 
Clopidogrel 

ĥ1 = Â v̂1,ĥ2 = Â v̂2  Haplotype match 

LDLR/FH < â, v̂1 + v̂2 >,< â,
v̂1 ⊗ v̂2 >

Sum pathogenic mutations, Sum 
pathogenic homozygous variants 

APOE/clinical 
trial 

< Â4 , v̂1 >,< Â4 ,

v̂2 >

Is the haplotype ε4?   
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of CDS applications as demonstrated by the three applications in our 
study that all used the same representation. As explained previously, 
each known variant is assigned a vector element. The scheme is exten-
sible such that new variants of interest can be assigned to unoccupied 
elements of existing vectors or to new vectors. CDS queries are per-
formed as mathematical operations, unlike other CDS systems that 
commonly use Boolean logical operations. To make it easier for CDS 
systems to query the secure GACS, we can encapsulate common patterns 
of queries into functions that automatically generate the query matrices. 

HE provides guarantees of privacy for the genomic data stored in the 
cloud. Variant queries, and genotype and phenotype computation can be 
performed in the cloud without decrypting the stored genomic data. The 
results of the computation are only revealed on the client which has the 
private key to decrypt the results. A cloud-based GACS removes barriers 
for healthcare organizations in delivering precision medicine. It allows 
precision medicine-based clinical care to stay current with the very rapid 
evolution in sequencing technologies, data formats, and research and 
best practice recommendations in clinical genomics. Furthermore, 
smaller healthcare organizations, including those in rural areas, can 
subscribe to a secure GACS service in the cloud, empowering them to 
deliver precision-medicine without requiring large investments in this 
technology. 

An alternative to using HE for cloud-based GACS is to use encryption- 
at-rest to store variant data in segments. The server would return the 
appropriate encrypted segments when requested by the client and all 
computation would be done on the client. However, this approach has 
several disadvantages: (1) there is potentially more data transfer since 
the GACS is sending sequence data rather than the results of the 
computation (e.g., genotype or phenotype), (2) an HE GACS can allow 
sharing of permissible phenotype data across a patient’s healthcare 
providers whereas an encryption-at-rest GACS requires exposure of 
sequence data which creates a greater risk to privacy, and (3) complex 
software must be maintained on all clients. 

Nevertheless, there are many areas of our approach that require 
improvement. We have proposed grouping variants within genome re-
gions for optimal ciphertext packing. However, optimal grouping re-
quirements may change with new medical knowledge, and a mechanism 
is required to modify the clusters efficiently. A related area is to deter-
mine the optimal encryption parameters and optimal size of the 
ciphertext to improve computational performance and storage. 

Currently, we only work with key variants because CDS computa-
tions are defined for key variants. This framework does not support 
novel variants because the vector positions cannot be defined for un-
known variants. Therefore, the encoding framework must be extended 
to retain and provide information on the existence of novel variants, 
even if no CDS questions are defined for them. A similar problem exists 
for structural variants, which are variants that may have hundreds of 
bases differing from the reference genome. These variants are complex, 
often with imprecise start and end positions. As a result, they are poorly 
defined. As with novel variants, we have not yet included them in our 
encoding framework. Despite this current limitation, we have shown the 

ability to work with homomorphically encrypted simple variants (SNVs 
and Indels) that have been previously identified and that have precise 
start and end positions. Such capabilities enable a wide range of po-
tential clinical applications, such as screening for genetic risk, phar-
macogenomics CDS, clinical trials eligibility determination, and other 
applications that have historically relied on SNVs and Indel data 
generated by DNA chips. 

Our testing must be expanded to cover many more CDS applications, 
to validate the variant clustering and the selection of parameters. This 
could lead to more efficient ciphertext packing methods. Similarly, 
testing must be expanded to more patients. Additionally, we need to 
develop efficient methods for population-level queries. Finally, to use 
HE in a real-world system requires further development, such as inte-
gration with an EHR, storing metadata, regions studied, and managing 
multiple sequences per patient. 

6. Conclusion 

We have successfully prototyped a secure GACS and tested it against 
pharmacogenomic and genetic screening CDS applications. We have 
demonstrated an encrypted solution for inferring genotypes from vari-
ants and detecting known pathogenic variants from encrypted patient 
genomic data. The ability to address these common scenarios suggests 
that HE shows promise for clinical application, at least for a subset of 
genetic use cases. We need to address practical issues in integrating with 
real-world systems. Further research is required to address the limita-
tions of how HE solves genomic computation, such as improvements to 
our encoding scheme. Many additional scenarios, such as querying over 
novel variants or CDS based on structural variants, remain to be tested. 
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Appendix A. Encryption parameters 

In CKKS, a freshly encrypted ciphertext is represented as a pair of polynomials of degree N with coefficients modulo Q. When a circuit to be 
evaluated has multiplication depth = L, the ciphertext modulus Q is a product of L+1 pairwise small co-primes (i.e. Q =

∏L
i=0qi) such that each prime 

qiis chosen to have roughly the same size as the scaling factor of a message. In particular, the output ciphertext represents the desired result but is 
multiplied by the scaling factor, so the output ciphertext modulus q0 should be larger than the scaling factor. The size of the largest modulus is PQ =

P⋅
∏L

i=0qi where P is specially chosen to reduce the noise growth during homomorphic multiplications. This special modulus P has a similar size to the 
base modulus q0. For more detail, we refer to Kim et al. [59]. In our protocol, we require L = 2 for genotyping and L = 4 for phenotyping. We set the 
scaling factor (to convert real numbers to integers) as 231(≈ qi for i > 0) and we select q0 ≈ P ≈ 240. As a result, the value of PQ is 2204 for L = 4 and 
2142 for L = 2. We take the ciphertext dimension N = 213 to ensure at least 128 bits of security according to the Homomorphic Encryption Stan-
dardization [69], which implies that the number of plaintext slots is 212. 
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Appendix B. Logical template matching 

Consider logical template matching to calculate haplotypes. Every known haplotype is represented by a template vector. Logical template 
matching can be done with an element-wise XOR operation between a template vector and patient vector, followed by an OR operation across the 
result vector, and finally taking the ones’ complement. The result is “1′′ when the allele template vector and the patient vector are identical, and “0” 
otherwise. Given a set of distinct allele vectors, at most one will match the patient vector. As before, we illustrate with the APOE genotype shown in 
Table 1. Consider a patient vector with a plaintext representation v = [1, 0]. Table B1 illustrates intermediate and match results. Since HE does not 
support logical operations, we use their arithmetic equivalents: 

XOR(a, b) = a+ b − 2ab  

OR(a, b) = a+ b − ab 

The advantage of using logical template matching over multiplication is that queries can be chained. There is no need for the client to interpret the 
results of the template match. The disadvantage of template matching is that the circuit depth is greater, and it depends upon the length of the variant 
vector. 

Appendix C. Summation along a vector 

Summation of the elements of a vector is performed using shift and addition functions in the SEAL library. For a vector with n elements, we require 
⌈n⌉ shifts and additions. Each shift is by 2(s− 1) elements, where s is the stage. Table C1 shows the operations on a plaintext vector of four elements. The 
final answer is given in the first element of the result vector. We multiply by a plaintext vector whose first element is one “1′′, and other elements are 
zero. This operation increases multiplicative depth by one. 
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