
Journal of Biomedical Informatics 112 (2020) 103602

Available online 17 October 2020
1532-0464/© 2020 Elsevier Inc. This article is made available under the Elsevier license (http://www.elsevier.com/open-access/userlicense/1.0/).

Original Research

A secure system for genomics clinical decision support

Seemeen Karimi a,*, Xiaoqian Jiang b, Robert H. Dolin a, Miran Kim b, Aziz Boxwala a

a Elimu Informatics Inc., Richmond, CA, United States
b UT Health School of Biomedical Informatics, Houston, TX, United States

A R T I C L E I N F O

Keywords:
Secure clinical decision support
Secure outsourcing
Genomic computation
Genome archiving and communications system
Homomorphic encryption

A B S T R A C T

We developed a prototype genomic archiving and communications system to securely store genome data and
provide clinical decision support (CDS). This system operates on a client-server model. The client encrypts the
data, and the server stores data and performs the computations necessary for CDS. Computations are directly
performed on encrypted data, and the client decrypts results. The server cannot decrypt inputs or outputs, which
provides strong guarantees of security. We have validated our system with three genomics-based CDS applica-
tions. The results demonstrate that it is possible to resolve a long-standing dilemma in genomic data privacy and
accessibility, by using a principled cryptographical framework and a mathematical representation of genome
data and CDS questions.

1. Introduction

New discoveries are being made at a fast pace, linking genetic vari-
ants with disease risk and drug interactions. As next-generation genome
sequencing becomes more reliable, economical, and widely available,
the findings from research are being incorporated into clinical practice.
Making responsible and meaningful use of human genomic data to
support healthcare, including clinical decision support (CDS) applica-
tions, is an emerging challenge of great importance. CDS can provide
answers to questions such as: ‘what is the patient’s CYP2C19 genotype
and drug-metabolism phenotype’, and ‘does the patient have any
pathogenic BRCA1 variants’.

Genome data are large, comprising billions of base-pairs on thou-
sands of genes and intergenic regions. Next-generation sequencing can
identify thousands to millions of variants, whose clinical significance
can change over time as our knowledge evolves. Sequencing can pro-
duce gigabytes of data for a single individual. It is impractical to securely
store and analyze such large data in contemporary electronic health
record (EHR) systems, which clinicians use when delivering care to
patients. The challenges for storage can be more acute for smaller
healthcare facilities that may not have large, secure data repositories.
This means that genomic data must be stored outside the EHR system
and retrieved for CDS.

A Genome Archiving and Communications System (GACS) can make
genomic data accessible for clinical applications [1,2]. This is analogous
to how radiological images are stored in a Picture Archiving and

Communications System [3]. Further, a cloud-based GACS can provide a
cost-effective solution due to economies of scale [4]. However, cloud
storage of genome data increases privacy concerns. Theft and misuse of
genome data can cause long-term harm to individuals and their families
because the data are unique, heritable, and immutable. Given this
highly-sensitive nature of genome data, appropriately strict levels of
protection must be applied to their storage.

The competing demands of accessibility and privacy create a chal-
lenging problem that has been studied for years. Solutions have been
proposed for securely outsourcing computation and data sharing [5–24].
Many of these solutions have vulnerabilities during computation, in-
efficiencies, or require special hardware. One promising solution that
meets the requirements, is to use fully homomorphic encryption tech-
nology, which enables computation over encryption. Since data are
never decrypted during storage, transfer, or computation, there is a
strong guarantee of privacy [25,26]. We have developed a prototype
client-server system for encrypting and storing genomic data and
providing secure CDS. In this model, a client encrypts the data using a
public key and sends it to the server for storage. The same client or
another client asks CDS questions. The server stores the encrypted data
and performs the computations without decrypting the data or the CDS
questions. The results are returned to the client, who has the private key
(also called secret key or decryption key) to decrypt them. Only the
custodian of the data, (the client that has the secret key), can decrypt
results. We have evaluated our system with three use-cases representing
a breadth of CDS scenarios: (1) screening for eligibility in a clinical trial

* Corresponding author.
E-mail address: seemeen.karimi@elimu.io (S. Karimi).

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

https://doi.org/10.1016/j.jbi.2020.103602
Received 16 May 2020; Received in revised form 7 September 2020; Accepted 12 October 2020

mailto:seemeen.karimi@elimu.io
www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2020.103602
https://doi.org/10.1016/j.jbi.2020.103602
https://doi.org/10.1016/j.jbi.2020.103602
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2020.103602&domain=pdf
http://www.elsevier.com/open-access/userlicense/1.0/

Journal of Biomedical Informatics 112 (2020) 103602

2

based on the presence of certain haplotypes in the APOE gene, (2)
inferring the drug metabolism phenotype for clopidogrel based on the
CYP2C19 genotype, and (3) assessing risk for familial hypercholester-
olemia (FH) based on the LDLR gene. Our system currently retrieves ’key
variants’, calculates genotypes, and computes phenotypes based on
genotype-matching or scoring. Key variants are known variants that are
of interest for a given scenario, e.g., because they are known to be
associated with a disease or with altered drug metabolism.

2. Background

2.1. Ancillary genomics systems and genomics-based CDS

A typical person’s DNA can have several million variants from a
given reference DNA, and the significance of any of these variants to the
person can change over time. Management of such a large and dynamic
data set has prompted exploration of ancillary genomic systems, also
referred to as genomic data repositories, that reside outside the EHR [2].
Experience and use of such ancillary systems is growing [27–29],
prompting the Office of the National Coordinator’s “Sync for Genes”
project to emphasize the need for pilots that test GACS integration with
EHRs [30]. Furthermore, institutions are turning to cloud-based solu-
tions for hosting genomic data repositories, raising additional concerns
over genomic data privacy and security.

Our previous work on integrating genomic data into the EHR has
followed a model in which a CDS engine monitors events occurring
within the EHR [31]. When triggered by an event, the CDS engine ob-
tains genomic data from the GACS. For example, the CDS is triggered by
a new medication order in the EHR. Upon being triggered, the CDS
engine queries the GACS for variants in the patient’s genome that
interact with the ordered drug. The CDS engine returns appropriate
recommendations to the ordering provider. It is with this context in
mind, GACS communicating with CDS which communicates with EHR,
that we have designed the secure GACS.

Pharmacogenomics CDS applications are of particular interest. Over
half of all primary care patients are exposed to drugs with potential
pharmacogenomic interactions [32]. Studies have found that 7% of
FDA-approved medications and 18% of the 4 billion prescriptions
written in the US per year are affected by actionable variants [33], and
that nearly all individuals (98%) have at least one known, actionable
variant by current Clinical Pharmacogenetics Implementation Con-
sortium (CPIC) guidelines [34]. An example is Clopidogrel, which was
prescribed over 20 million times in 2015 [35]. For patients on clopi-
dogrel who are found to have CYP2C19 genotypes that produce non-
functional or reduced functional proteins, there is an increased risk for
adverse cardiovascular events. In such cases, CPIC guidelines recom-
mend alternative antiplatelet therapy [36].

Genome sequence data also can be used for early detection and
diagnosis of a variety of disorders. The American College of Genetics and
Genomics (ACMG) recommends reporting secondary findings in 56
genes [37]. The ACMG considers genetic variants that cause monogenic
disorders where early diagnosis is clinically actionable. Studies have
found as many as 7% of patients harbor pathogenic or likely pathogenic
variants in these 56 ACMG genes [38–40]. Analysis of the ClinVar [41]
archive data indicates the number of known pathogenic or likely path-
ogenic variants in these genes was 18,718 in 2018 [42]. A case in point is
familial hypercholesterolemia (FH), which has an estimated prevalence
of 1 in 250 to 1 in 500 persons [43,44], and is most commonly due to
mutations in the LDLR gene. Over 1,500 pathogenic or likely pathogenic
LDLR variants are registered in ClinVar, and have an associated Clinical
Actionability summary in ClinGen [45].

Specific genetic markers are used as criteria to determine eligibility
in clinical trials. Easier access to genome sequence data while providing
the appropriate protections for the privacy of subjects, compliant with
regulations and ethical principles, can also facilitate and promote
recruitment in clinical trials. For example, in a trial of CNP520 versus

placebo in the treatment of early Alzheimer’s Disease [46], trial entry
criteria include being a carrier of certain APOE haplotypes. This and the
other CDS applications described in this section are well-served with
privacy-protecting storage and computation.

2.2. Privacy-protecting solutions

Inappropriate disclosure of genomic data can put people’s privacy at
risk, which might have a long-term impact on an individual’s education,
employment, insurance [47,48], and on their relatives (e.g., the Golden
State killer case [49]). Genomic data yield unique biometrics. Early
studies showed merely 75 single-nucleotide polymorphisms (SNP) are
sufficient to uniquely re-identify an individual [50] and a few dozen
database queries can determine the database membership of a victim
[51–53]. There are some recent findings showing that genomic data can
infer physical appearance and diseases that are linkable to anonymized
phenotype records [5,54]. It is therefore critical to protect genomic data
hosted in clinical systems. Traditionally, clinical data are encrypted
during storage (labeled “encryption at rest” [6]) as a mechanism to
protect data loss, which is required by HIPAA security rules [7]. How-
ever, the value of genomics resides in data analysis (rather than
depositing data in storage) and existing solutions have no way but to
decrypt the data for analysis (e.g., on a 3rd party commercial cloud),
which has raised many public concerns [55].

In the past few years, privacy and cryptographic techniques for
secure computation have been extensively studied. Multi-party compu-
tation (MPC) is considered a promising solution for secure computation
[8–10]. In this approach, multiple parties maintain local data and
communicate intermediate results. MPC can be vulnerable when the
computing parties collude, and is thus inappropriate for long-term
storage and outsourcing computation [11–14]. Aziz et al. surveyed
various secure computation techniques for genomic data [15]. Among
the most relevant mechanisms, there are two camps of solutions: (1)
hardware-based methods [16–18], and (2) homomorphic encryption
(HE) based approaches [19,20]. The former solutions rely on special
hardware and engineering skills while the latter depend on advanced
mathematics. The hardware-based methods provide a secure enclave
within the CPU. The data is decrypted within this secure enclave for
computation with the assumption that enclave contents are invisible to
the rest of the CPU. An implementation of this approach is found in the
Software Guard Extensions (SGX) technology built into Intel’s recent
CPUs. Hardware-based methods are fast and easy to implement but
vulnerable under new attacks [21–23]. On the other hand, HE is backed
by principled algebraic number theory, which allows one to perform
arithmetic operations over encrypted data without decryption. Security
is guaranteed by cryptographic hardness assumptions, which even
quantum computers cannot break [24].

Traditionally, HE has been considered too slow and too memory-
intensive for practical applications. While this might have been true
5–8 years ago, the field has progressed rapidly (indeed, faster than
Moore’s law) as benchmarked by the iDASH genome privacy competi-
tion series [56,26]. HE is starting to demonstrate its feasibility in of-
fering rigorous yet practical solutions to real-world clinical applications.
Shimizu et al. proposed a HE-based string search to locate sequences of
SNPs in large genome databases [57]. Kim et al. developed a secure
matching algorithm for biomarkers and a secure training protocol for
building a logistic regression model for genome-wide association studies
[58,59].

3. Method

3.1. System overview

Our system models a client-server architecture. In this model, a
sequence client, e.g., a laboratory, encodes, and encrypts patient data
with a public key of the HE system. The encrypted data, also called

S. Karimi et al.

Journal of Biomedical Informatics 112 (2020) 103602

3

ciphertext, are sent to the GACS server for storage. Subsequently, the
CDS client, e.g., a hospital, poses encrypted CDS questions and sends
them to the GACS. The GACS performs computations over encryption
and returns the result to the CDS client for decryption with a private key.

The data flow is illustrated in Fig. 1. The input data consists of
variant call format (VCF) files [60], which are text files. Since compu-
tation requires numerical representation, we encode the variants from a
VCF file as a vector shown as v. The variant vector is homomorphically
encrypted (shown as ̂v) and sent to the server for storage. Descriptions of
encoding and encryption are given in Sections 3.2 and 3.3, respectively.
Patient and sequence identifiers are meta-data, and are deterministically
encrypted before being sent to the server for storage to conceal them
from the server. Questions (called queries) are posed by a CDS client. In
Fig. 1, the CDS client encodes the question as a matrix or vector A, en-
crypts it to Â, and sends it to the server along with the deterministically
encrypted patient identifiers. The server computes a result ̂h and sends it
to the client for decryption to h. The result h is the same (within a noise
margin defined by the precision parameter) as the unencrypted
computation on the plain data, O(A, v). The data, questions or results are
not decrypted by the server.

We defined operations in the GACS that can be used by CDS systems
to obtain variants or calculate genotypes (pairs of haplotypes). These
operations include weighted summation of variants and evaluation of
zygosity (heterozygous or homozygous). Haplotyping includes a special
case of finding a particular haplotype, e.g., in the clinical trial applica-
tion. For our pharmacogenomics application, we must compute a
phenotype from the genotype. We compute this phenotype on the client.
Although it is possible to chain queries (genotyping, followed by phe-
notyping), chaining requires increasing the multiplicative depth of the
evaluation circuit, which in turn requires greater memory and time.

In this paper, we focus on CDS with key variants, but not with novel
variants (i.e. those that have not been registered in databases such as
ClinVar) or structural variants (variants that may have hundreds of bases
differing from the reference genome, often with imprecise endpoints).
Computation on novel and structural variants requires additional con-
siderations for encoding the data and will be addressed in future work.

3.2. Vector-encoding of key variants

For computation over encryption, analysis questions must be
expressed mathematically. We developed a novel framework to repre-
sent variant data and CDS questions numerically. In this framework, key

variants are encoded as vectors, and the analysis questions are encoded
as linear operations on these vectors. Each known key variant is repre-
sented by a fixed element in a vector. The variant and its element po-
sition in a vector are stored in a lookup table on the client. The presence
of a variant is encoded by a “1′′ (one), and its absence is encoded by a “0”
(zero). We create pairs of vectors because chromosomes exist in pairs.
Each vector-pair represents a region of the genome. There are groups of
variants that can be considered together because they are in a particular
region, define particular haplotypes, or determine phenotypes. In our
model, it is optimal to encode such a group of variants into the same
vector-pair. The encoding is done by the client before encryption.

We use two types of encoding schemes that we call “phased” and
“unphased”. Unphased encoding allows us to compute on variants. We
use it when CDS does not need to calculate haplotypes (e.g., for LDLR
variants). Phased encoding allows us to calculate haplotypes and ge-
notypes in addition to computing on variants. Consider two key variants
in the APOE gene as shown in the rightmost two columns of Table 1. Two
variants can generate four haplotypes. If a patient has the heterozygous
variant rs7412, the genotype is ε2/ε3. For this patient, a representative
pair of vectors is [1, 0] and [0, 0]. Phased encoding is illustrated in
Fig. 2.

When phase information is present in the VCF file, the pair of vectors
is uniquely determined, although we do not know which is maternally or
paternally derived. When phase information is absent or partial, and
heterozygous variants are present, there are ambiguities regarding
which homologous chromosome (e.g., maternally- vs. paternally-
derived) has particular key variants. In other words, the haplotypes
are uncertain. To accommodate ambiguity, we generate multiple com-
binations of variants that capture all the possible haplotypes. If the pa-
tient had two unphased heterozygous variants, the vector pairs could be
[1,0]/[0,1], representing ε2/ε4, or [1,1]/[0,0] representing ε1/ε3. In
general, with P distinct or unknown phases, the number of combination
pairs is 2P− 1. Ambiguous genotype calls are often resolved clinically
according to population probability distributions, which we anticipate
occurring in the CDS client.

For efficient computation and storage, the combinations of variants
(in a group of variants) are concatenated vertically within the pair of
vectors. This allows us to efficiently pack the vectors into the cipher-
texts, whose lengths are fixed by the multiplicative depth of the
encryption circuit, as described in Section 3.3.

In unphased encoding, we ignore partial phase information from the
VCF file. When a heterozygous variant is present, we can encode the “1”
into the relevant element in either vector of the pair. Here, we do not
generate various combinations of unphased variants. Unphased encod-
ing allows us to do variant-level operations, but it does not allow us to
calculate genotypes, except for those genotypes defined by a single
variant. For many CDS applications, unphased encoding is sufficient to
answer the clinical question. An example is the application to determine
the risk of FH, in which we need to detect the presence of certain vari-
ants in the LDLR gene. In this application, there are over 2000 variants
and as many possible haplotypes. A possible combinatorial explosion of
unphased variants is avoided by unphased encoding.

Fig. 1. Illustration of system components and data flow.

Table 1
Haplotypes of the APOE gene. The phenotype column indicates haplotype-
associated risk for development of Alzheimer’s Disease. Haplotypes are deter-
mined by the alleles at rs7412 and rs429358 as shown.

Haplotype Phenotype rs7412 rs429358

ε1 (0.2%) Normal risk T C
ε2 (7%) Decreased risk T T
ε3 (wild type, 79%) Normal risk C T
ε4 (14%) Increased risk C C

S. Karimi et al.

Journal of Biomedical Informatics 112 (2020) 103602

4

3.3. Homomorphic encryption

We use the CKKS homomorphic encryption scheme developed by
Cheon et al., to encrypt our data [61]. Compared to other HE schemes
such as BGV [62] and BFV [63], CKKS is capable of controlling the
magnitude of encrypted messages during homomorphic computation. It
creates a trade-off between precision and efficiency, and offers a prac-
tical and effective solution for applications such as ours, which do not
require high precision. Additionally, this HE scheme supports ciphertext
packing techniques to encrypt multiple messages into a single cipher-
text, so that we can compute a function on multiple data simultaneously.
For instance, it provides element-wise addition, multiplication, and
rotation (shift) of vector elements. As a result, it enables us to achieve
good performance in terms of amortized ciphertext size and timing per
plaintext slot.

We use the Microsoft SEAL library for homomorphic encryption
functions. The library is written in C++. Our software implementation is
in Python. We wrote binding functions using the Pybind11 software
[64], to allow Python scripts to call the SEAL library C++ functions. The
selection of encryption parameters is explained in Appendix A.

3.4. Computations on the server

As mentioned in Section 3.1, the analysis questions are framed as
linear operations on vector data. This is because HE data are closed
under addition and multiplication only. Surrogate solutions are some-
times necessary to frame analysis questions as linear operations. These
solutions must balance complexity, memory, and the need to coordinate
the computation with the client. Our computations are of the forms ĥ =

Â v̂, < â, v̂1 +v̂2 > and < â, v̂1 ⊗ v̂2 >, where ⊗ represents element-wise
multiplication. Logical operations (e.g., < â, v̂1ORv̂2 >) and logical
template matching are also allowed.

We describe the linear operation ĥ = Â v̂ here, and describe logical
template matching in Appendix B. The plaintext operator A is a matrix
whose rows are the haplotype template vectors, i.e., each row defines a
particular haplotype. Each row of A is encrypted as a ciphertext. ĥ = Â v̂
is calculated using dot-products. To calculate a dot-product we must do
an element-wise multiplication followed by summation across the vec-
tor. Summation across the vector is performed by performing n left shifts
and additions, as described in Appendix C, where n is the power of two
greater than or equal to the length of the plaintext vector, n = ⌈log2|v|⌉.
The plaintext equivalent vector h is a real number vector, and the patient
haplotype corresponds to the element with the largest result, i.e., it re-
quires us to compare values, which is not computationally friendly over

our encryption scheme. To overcome this, a surrogate operation can be
used or the result ĥ can be returned to the client, which decrypts it to h
and then computes argmax(h). We have used the latter approach because
of its efficiency.

In Section 3.2 we explained encoding using the example of a two-
element plaintext vector, v. In practice, in our phased encoding
method, we add elements to v to include wildtypes, i.e., the absence of
variants at key-variant positions. This is because different haplotypes
have different numbers of variants, which means normalization by the
number of variants is required. By including the wildtype elements, v has
a constant amplitude, providing implicit normalization. Fig. 3 represents
haplotyping of a pair of unambiguous vectors. The figure shows the
plaintext equivalent: h = Av.

As stated in Section 3.2, if the variant vector is ambiguous due to
incomplete phasing, then we stack the variant combinations vertically
before encryption. Since the dot-product uses shift and add operations,
each combination is padded with zeros to the nearest power of two, to
avoid contamination from the next combination. The CDS client repli-
cates the matrix A horizontally to match the stacked v and encrypts it.

4. Testing and results

4.1. CDS applications

We tested our method against three CDS applications: 1) clinical trial
eligibility based on APOE haplotypes; 2) screening for familial hyper-
cholesterolemia based on LDLR pathogenic variants; and 3) interaction
with clopidogrel based on CYP2C19 genotyping.

To test clinical trial eligibility, the query matrix encodes the question

Fig. 2. Illustration of phased encoding. The table on the left shows partially phased genome sequence data from a VCF file. In the Sample column, the pipe delimiters
indicate phased variants and slashes indicate unphased variants. The unphased heterozygous data generates two combinations. A lookup table (not shown) is used to
assign a variant to a vector and an element position in the vector.

Fig. 3. Haplotypes for APOE found by argmax(Av). The rows of A are the
haplotypes and the columns are variants. The zero-valued elements are shown
blank for clarity. For the pair of variant vectors shown, v1 = [0101] and v2 =

[1010], the genotype is ε4/ε2.

S. Karimi et al.

Journal of Biomedical Informatics 112 (2020) 103602

5

’does the patient have at least one ε4 haplotype?’. The variants and
haplotypes associated with this question are explained in Section 3.2.
This query is of the form < Â4 , v̂ > for each vector in the pair, where A4
is the row-vector corresponding to the ε4 haplotype.

To assess for FH and to differentiate between moderate and severe
phenotypes, we can ask two queries: 1. How many pathogenic or likely
pathogenic alleles are present in the LDLR gene? 2. How many homo-
zygous pathogenic or likely pathogenic variants are present in the LDLR
gene? The first query is a weighted summation of the form < â, v̂1 +

v̂2 >. The second query is a weighted summation < â, v̂1 ⊗ v̂2 >. The
vector a encodes pathogenic or likely pathogenic alleles, with a “1′′. If
the answer to question 1 is zero, there is no evidence of FH. If the answer
to question 1 is exactly one (i.e. only one gene affected), we predict a
moderate phenotype. If the answer to question 2 is >=1 (i.e. both genes
affected), we predict a severe phenotype. (For example, given. a = [0...
110...10] , if the patient had one homozygous pathogenic variant and a
non-pathogenic variant, the vectors are v1 = [0...10⋯.0] and v2 =

[0...10⋯.1], the answers would be 2 and 1 respectively, and the infer-
ence would be a severe risk of FH.) The phenotype is indeterminate
(either moderate or severe) with other answers. For LDLR, we obtained
key variants from ClinVar. These were filtered to indels and single
nucleotide variants (SNVs) with pathogenic or likely pathogenic clinical
status, review status of at least one star, and known start and end
coordinates.

The phenotype for clopidogrel metabolism depends on the haplo-
types of CYP2C19. We compute ĥ = Â v̂ and return ĥ to the client for
decryption and argmax(h) to obtain haplotypes. The client applies a
score to the haplotypes. The score maps to the phenotype: poor, inter-
mediate, normal, rapid, ultra-rapid, or indeterminate metabolizer. We
obtained variants, haplotype definitions, and genotype-phenotype
mapping from PharmGKB [65]. An alternative solution that chains the
genotype and phenotype queries is possible. In the chained method, the
genotype is calculated by logical template matching and does not have
to be decrypted by the client for the phenotype calculation. However,
this solution is slower, requires greater circuit depth and consequently,
requires more memory.

4.2. Study population

Genomic data in VCF files from 287 individuals from the publicly
available 1000 Genomes database were obtained for testing [66]. This
data is publicly accessible and its use in research does not require
approval by an Institutional Review Board. Regions of the genomes
containing key-variants in APOE (NC_000019.9:45408005-45413652),
LDLR (NC_000019.9:11199037-11245506), and CYP2C19
(NC_000010.10:96521437-96613962) were extracted from the files

using the tabix software tool [67]. To ensure consistent encoding, the
key variants were normalized to canonical SPDI form using NCBI Vari-
ation Services [68].

4.3. Results

The operations for each application are given in Table 2. Measure-
ments of time and memory consumption are given in Table 3. Timings
were measured for key-generation, encryption, computation and
decryption. The mean and standard deviation of these timings were
computed over all the patients in our test set. The software was run on a
virtual Linux machine on a PC with an Intel i7-6500 CPU and was
allocated 6 GB memory. We verified that the genotypes and phenotype
results calculated over encryption matched ground-truth results gener-
ated with plaintext calculations and manual labeling of haplotypes.

The genome data and CDS query can be encrypted ahead of time in
an offline, asynchronous manner. Table 3 does not show the timing for
parsing the VCF file, which can be slow, or for encoding, which is sub-
second. The query computation (shown by the “Query time” column)
and the result decryption are real-time calculations, and the timings for
these operations are more important for usability. Since the ciphertext
vector length is fixed by the multiplication circuit-depth, the memory
consumption or time do not increase with plaintext vector length, as
long as the plaintext vector is smaller than the limit allowed by the
ciphertext. The presence of multiple ambiguous haplotypes does not
change the timing or memory consumption because they are packed into
the same ciphertext.

The table shows that the query time is different for the different
applications. The CYP2C19 application requires as many dot-products as
there are haplotypes. The APOE application requires only one dot-
product because there is only one haplotype. The LDLR application re-
quires an element-wise multiplication, followed by a dot-product, and
an addition operation followed by a dot-product. The key generation
depends on the multiplicative depth. The encryption of the operator
depends on the operator. Each row of the matrix A is separately
encrypted for CYP2C19, and therefore the encryption takes approxi-
mately 31 times as long as the encryption of the other operators. Since
the vector length is fixed in all these applications, the encryption and
decryption time is fixed.

5. Discussion

A new framework for secure computation on genomic data has been
developed. The framework includes a vector representation for genomic
data and a matrix or vector representation of CDS questions that can be
applied as linear operations to the vectors. The representation allows HE
and thus enables computation on a remote server with guarantees of
security and privacy. Our framework was validated with three CDS
applications and 287 patients from the 1000-genomes dataset. Timing
and memory measurements from our test-cases demonstrate the feasi-
bility of using this approach. While homomorphic operations are slower
than plaintext operations, we anticipate that query results (such as
identified drug-gene interactions or positive genetic screening results),
once computed, can be stored in EHRs where they can be accessed
quickly for CDS.

A key component of the framework is the vector representation of the
genome sequence, that allows queries on genome data to be expressed as
mathematical operations. This representation is generalizable to a range

Table 3
Time and memory consumption for the use-cases. Time (mean/std dev) was measured in seconds.

Application Size of operator Key generation Encryption of operator Encryption of vectors Compu-tation Decryption Memory (MB)

CYP2C19/ Clopidogrel A = (31, 68) 0.65/0.07 0.58/0.03 0.04/0.01 3.94/0.53 0.02/0.01 67
LDLR/ FH a = (1,2039) 1.26/0.11 0.03/0.01 0.06/0.01 0.30/0.03 0.02/0.01 127
APOE/ clinical trial A_4 = (1,4) 0.65/0.03 0.02/0.01 0.04/0.01 0.10/0.02 0.02/0.01 56

Table 2
The operations used for each application. The match in the first row of this table
is the element of h that equals one.

Application Operations Meaning

CYP2C19/
Clopidogrel

ĥ1 = Â v̂1,ĥ2 = Â v̂2 Haplotype match

LDLR/FH < â, v̂1 + v̂2 >,< â,
v̂1 ⊗ v̂2 >

Sum pathogenic mutations, Sum
pathogenic homozygous variants

APOE/clinical
trial

< Â4 , v̂1 >,< Â4 ,

v̂2 >

Is the haplotype ε4?

S. Karimi et al.

Journal of Biomedical Informatics 112 (2020) 103602

6

of CDS applications as demonstrated by the three applications in our
study that all used the same representation. As explained previously,
each known variant is assigned a vector element. The scheme is exten-
sible such that new variants of interest can be assigned to unoccupied
elements of existing vectors or to new vectors. CDS queries are per-
formed as mathematical operations, unlike other CDS systems that
commonly use Boolean logical operations. To make it easier for CDS
systems to query the secure GACS, we can encapsulate common patterns
of queries into functions that automatically generate the query matrices.

HE provides guarantees of privacy for the genomic data stored in the
cloud. Variant queries, and genotype and phenotype computation can be
performed in the cloud without decrypting the stored genomic data. The
results of the computation are only revealed on the client which has the
private key to decrypt the results. A cloud-based GACS removes barriers
for healthcare organizations in delivering precision medicine. It allows
precision medicine-based clinical care to stay current with the very rapid
evolution in sequencing technologies, data formats, and research and
best practice recommendations in clinical genomics. Furthermore,
smaller healthcare organizations, including those in rural areas, can
subscribe to a secure GACS service in the cloud, empowering them to
deliver precision-medicine without requiring large investments in this
technology.

An alternative to using HE for cloud-based GACS is to use encryption-
at-rest to store variant data in segments. The server would return the
appropriate encrypted segments when requested by the client and all
computation would be done on the client. However, this approach has
several disadvantages: (1) there is potentially more data transfer since
the GACS is sending sequence data rather than the results of the
computation (e.g., genotype or phenotype), (2) an HE GACS can allow
sharing of permissible phenotype data across a patient’s healthcare
providers whereas an encryption-at-rest GACS requires exposure of
sequence data which creates a greater risk to privacy, and (3) complex
software must be maintained on all clients.

Nevertheless, there are many areas of our approach that require
improvement. We have proposed grouping variants within genome re-
gions for optimal ciphertext packing. However, optimal grouping re-
quirements may change with new medical knowledge, and a mechanism
is required to modify the clusters efficiently. A related area is to deter-
mine the optimal encryption parameters and optimal size of the
ciphertext to improve computational performance and storage.

Currently, we only work with key variants because CDS computa-
tions are defined for key variants. This framework does not support
novel variants because the vector positions cannot be defined for un-
known variants. Therefore, the encoding framework must be extended
to retain and provide information on the existence of novel variants,
even if no CDS questions are defined for them. A similar problem exists
for structural variants, which are variants that may have hundreds of
bases differing from the reference genome. These variants are complex,
often with imprecise start and end positions. As a result, they are poorly
defined. As with novel variants, we have not yet included them in our
encoding framework. Despite this current limitation, we have shown the

ability to work with homomorphically encrypted simple variants (SNVs
and Indels) that have been previously identified and that have precise
start and end positions. Such capabilities enable a wide range of po-
tential clinical applications, such as screening for genetic risk, phar-
macogenomics CDS, clinical trials eligibility determination, and other
applications that have historically relied on SNVs and Indel data
generated by DNA chips.

Our testing must be expanded to cover many more CDS applications,
to validate the variant clustering and the selection of parameters. This
could lead to more efficient ciphertext packing methods. Similarly,
testing must be expanded to more patients. Additionally, we need to
develop efficient methods for population-level queries. Finally, to use
HE in a real-world system requires further development, such as inte-
gration with an EHR, storing metadata, regions studied, and managing
multiple sequences per patient.

6. Conclusion

We have successfully prototyped a secure GACS and tested it against
pharmacogenomic and genetic screening CDS applications. We have
demonstrated an encrypted solution for inferring genotypes from vari-
ants and detecting known pathogenic variants from encrypted patient
genomic data. The ability to address these common scenarios suggests
that HE shows promise for clinical application, at least for a subset of
genetic use cases. We need to address practical issues in integrating with
real-world systems. Further research is required to address the limita-
tions of how HE solves genomic computation, such as improvements to
our encoding scheme. Many additional scenarios, such as querying over
novel variants or CDS based on structural variants, remain to be tested.

CRediT authorship contribution statement

Seemeen Karimi: Conceptualization, Methodology, Validation,
Software, Investigation, Writing - original draft. Xiaoqian Jiang:
Conceptualization, Methodology, Writing - review & editing. Robert H.
Dolin: Methodology, Validation, Data curation, Writing - review &
editing. Miran Kim: Methodology, Software, Writing - review & editing.
Aziz Boxwala: Conceptualization, Software, Validation, Writing - re-
view & editing.

Declaration of Competing Interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Dr. Aziz Boxwala and Dr. Seemeen Karimi are shareholders in Elimu
Informatics, Inc.

Acknowledgments

This work was supported by grant 1R41HG010978-01 from the
National Human Genome Research Institute.

Appendix A. Encryption parameters

In CKKS, a freshly encrypted ciphertext is represented as a pair of polynomials of degree N with coefficients modulo Q. When a circuit to be
evaluated has multiplication depth = L, the ciphertext modulus Q is a product of L+1 pairwise small co-primes (i.e. Q =

∏L
i=0qi) such that each prime

qiis chosen to have roughly the same size as the scaling factor of a message. In particular, the output ciphertext represents the desired result but is
multiplied by the scaling factor, so the output ciphertext modulus q0 should be larger than the scaling factor. The size of the largest modulus is PQ =

P⋅
∏L

i=0qi where P is specially chosen to reduce the noise growth during homomorphic multiplications. This special modulus P has a similar size to the
base modulus q0. For more detail, we refer to Kim et al. [59]. In our protocol, we require L = 2 for genotyping and L = 4 for phenotyping. We set the
scaling factor (to convert real numbers to integers) as 231(≈ qi for i > 0) and we select q0 ≈ P ≈ 240. As a result, the value of PQ is 2204 for L = 4 and
2142 for L = 2. We take the ciphertext dimension N = 213 to ensure at least 128 bits of security according to the Homomorphic Encryption Stan-
dardization [69], which implies that the number of plaintext slots is 212.

S. Karimi et al.

Journal of Biomedical Informatics 112 (2020) 103602

7

Appendix B. Logical template matching

Consider logical template matching to calculate haplotypes. Every known haplotype is represented by a template vector. Logical template
matching can be done with an element-wise XOR operation between a template vector and patient vector, followed by an OR operation across the
result vector, and finally taking the ones’ complement. The result is “1′′ when the allele template vector and the patient vector are identical, and “0”
otherwise. Given a set of distinct allele vectors, at most one will match the patient vector. As before, we illustrate with the APOE genotype shown in
Table 1. Consider a patient vector with a plaintext representation v = [1, 0]. Table B1 illustrates intermediate and match results. Since HE does not
support logical operations, we use their arithmetic equivalents:

XOR(a, b) = a+ b − 2ab

OR(a, b) = a+ b − ab

The advantage of using logical template matching over multiplication is that queries can be chained. There is no need for the client to interpret the
results of the template match. The disadvantage of template matching is that the circuit depth is greater, and it depends upon the length of the variant
vector.

Appendix C. Summation along a vector

Summation of the elements of a vector is performed using shift and addition functions in the SEAL library. For a vector with n elements, we require
⌈n⌉ shifts and additions. Each shift is by 2(s− 1) elements, where s is the stage. Table C1 shows the operations on a plaintext vector of four elements. The
final answer is given in the first element of the result vector. We multiply by a plaintext vector whose first element is one “1′′, and other elements are
zero. This operation increases multiplicative depth by one.

References

[1] D.R. Masys, et al., Technical desiderata for the integration of genomic data into
Electronic Health Records, J. Biomed. Inform. 45 (3) (2012) 419–422, https://doi.
org/10.1016/j.jbi.2011.12.005.

[2] J. Starren, M.S. Williams, E.P. Bottinger, Crossing the omic chasm: a time for omic
ancillary systems, JAMA 309 (12) (2013) 1237–1238, https://doi.org/10.1001/
jama.2013.1579.

[3] J.C. Honeyman, M.M. Frost, W. Huda, W. Loeffler, M. Ott, E.V. Staab, Picture
archiving and communications systems (PACS), Curr. Probl. Diagn. Radiol. 23 (4)
(1994) 101–158, https://doi.org/10.1016/0363-0188(94)90004-3.

[4] National Institute of Standards and Technology, NIST Cloud Computing Program -
NCCP, Nov. 15, 2010. https://www.nist.gov/programs-projects/nist-cloud-comput
ing-program-nccp (accessed Apr. 30, 2020).

[5] C. Lippert, et al., Identification of individuals by trait prediction using whole-
genome sequencing data, Proc. Natl. Acad. Sci. 114 (38) (Sep. 2017) 10166–10171.

[6] National Institute of Standards and Technology, NVD - Control - SC-28 - Protection
of Information at Rest. https://nvd.nist.gov/800-53/Rev4/control/SC-28 (accessed
Apr. 29, 2020).

[7] Office for Civil Rights (OCR), The Security Rule. US Department of Health and
Human Services, 2017.

[8] A.C.C. Yao, How to generate and exchange secrets, in: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, USA, Oct. 1986, 1986,
pp. 162–167, https://doi.org/10.1109/SFCS.1986.25.

[9] B. Pinkas, T. Schneider, N.P. Smart, S.C. Williams, Secure Two-Party Computation
Is Practical, Advances in Cryptology – ASIACRYPT 2009 (2009) 250–267, https://
doi.org/10.1007/978-3-642-10366-7_15.

[10] M. Bellare, V.T. Hoang, P. Rogaway, Foundations of garbled circuits, Proceedings
of the 2012 ACM Conference on Computer and Communications Security (2012)
784–796, https://doi.org/10.1145/2382196.2382279.

[11] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation, in: Proceedings of the twentieth
annual ACM symposium on Theory of computing, Association for Computing
Machinery, New York, NY, USA, Jan. 1988, pp. 1–10.

[12] H. Cho, D.J. Wu, B. Berger, Secure genome-wide association analysis using
multiparty computation, Nat. Biotechnol. 36 (6) (2018) 547–551, https://doi.org/
10.1038/nbt.4108.

[13] I. Damgaard, V. Pastro, N. Smart, S. Zakarias, Multiparty Computation from
Somewhat Homomorphic Encryption, Advances in Cryptology – CRYPTO 2012
(2012) 643–662, https://doi.org/10.1007/978-3-642-32009-5_38.

[14] K.A. Jagadeesh, D.J. Wu, J.A. Birgmeier, D. Boneh, G. Bejerano, Deriving genomic
diagnoses without revealing patient genomes, Science 357 (6352) (2017) 692–695.

[15] M.M.A. Aziz, et al., Privacy-preserving techniques of genomic data—a survey,
Brief. Bioinform. 20 (3) (2017) 887–895, https://doi.org/10.1093/bib/bbx139.

[16] F. Chen, et al., Princess: Privacy-protecting rare disease international network
collaboration via encryption through software guard extensions, Bioinformatics 33
(6) (2017) 871–878.

[17] F. Chen, et al., PRESAGE: privacy-preserving genetic testing via software guard
extension, BMC Med. Genomics 10 (Suppl 2) (Jul. 2017) 48.

Table B1
Template matching for APOE genotype. The template is shown in the left column, the intermediate result of the XOR operation is shown in the middle column. The
match result is in the right column.

Template (t) x = XOR(v, t) h = 1 − OR(x)

[0, 1] [1, 1] 0
[1, 1] [0, 1] 0
[0, 0] [1, 0] 0
[1, 0] [0, 0] 1

Table C1
Summation of values in a vector. Successive shift and add operations can be used to sum the elements of a vector. A four-element vector needs two stages. The first
element of the result vector contains the sum (in bold font).

Stage Initial x0 x1 x2 x3 0

1 shift-1 x1 x2 x3 0
add x0 + x1 x1 + x2 x2 + x3 x3

2 shift-2 x2 + x3 x3 0 0
add x0 þ x1 þ x2 þ x3 x1 + x2 + x3 x2 + x3 x3

S. Karimi et al.

https://doi.org/10.1016/j.jbi.2011.12.005
https://doi.org/10.1016/j.jbi.2011.12.005
https://doi.org/10.1001/jama.2013.1579
https://doi.org/10.1001/jama.2013.1579
https://doi.org/10.1016/0363-0188(94)90004-3
https://www.nist.gov/programs-projects/nist-cloud-computing-program-nccp
https://www.nist.gov/programs-projects/nist-cloud-computing-program-nccp
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0025
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0025
https://nvd.nist.gov/800-53/Rev4/control/SC-28
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1145/2382196.2382279
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0055
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0055
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0055
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0055
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1007/978-3-642-32009-5_38
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0070
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0070
https://doi.org/10.1093/bib/bbx139
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0080
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0080
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0080
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0085
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0085

Journal of Biomedical Informatics 112 (2020) 103602

8

[18] M.N. Sadat, M.M.A. Aziz, N. Mohammed, F. Chen, X. Jiang, S. Wang, SAFETY:
Secure gwAs in Federated Environment Through a hYbrid solution. IEEEACM
Trans. Comput. Biol. Bioinforma, IEEE ACM, 2018.

[19] S. Wang, et al., HEALER: homomorphic computation of ExAct Logistic rEgRession
for secure rare disease variants analysis in GWAS, Bioinformatics 32 (2) (2016)
211–218.

[20] Y. Zhang, W. Dai, X. Jiang, H. Xiong, S. Wang, Foresee: Fully outsourced secure
genome study based on homomorphic encryption, BMC Med. Informat. Decision
Making 15 (2015) S5.

[21] F. Schuster, et al., VC3: trustworthy data analytics in the cloud using SGX, in: IEEE
Symposium on Security and Privacy, 2015, pp. 38–54.

[22] A. Moghimi, T. Eisenbarth, B. Sunar, MemJam: A false dependency attack against
constant-time crypto implementations in SGX, in: Topics in Cryptology – CT-RSA
2018, 2018, pp. 21–44.

[23] D. Evtyushkin, R. Riley, N.C. Abu-Ghazaleh, D. EcePonomarevBranchScope, A New
Side-Channel Attack on Directional Branch Predictor, SIGPLAN Not 53 (2) (Mar.
2018) 693–707.

[24] CryptoExperts, Post-Quantum Cryptography. https://www.cryptoexperts.
com/services/post_quantum_cryptography/ (accessed Apr. 29, 2020).

[25] C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proceedings of
the forty-first annual ACM symposium on Theory of computing, Association for
Computing MachineryNew York, NY, USA, May 2009, pp. 169–178, https://doi.
org/10.1145/1536414.1536440.

[26] X. Wang, et al., iDASH secure genome analysis competition 2017, BMC Med.
Genomics 11 (Suppl 4) (2018) 85.

[27] L.V. Rasmussen, T.M. Herr, C.O. Taylor, A.M. Jahhaf, T.A. Nelson, J.B. Starren, The
genomic medical record and omic ancillary systems, in: T. Adam, C. Aliferis (Eds.),
Personalized and Precision Medicine Informatics: A Workflow-Based View,
Springer International Publishing, Cham, 2020, pp. 253–275.

[28] N.A. Walton, D.K. Johnson, T.N. Person, S. Chamala, Genomic data in the
electronic health record, Adv. Mol. Pathol. 2 (1) (2019) 21–33, https://doi.org/
10.1016/j.yamp.2019.07.001.

[29] M.S. Williams, et al., Genomic information for clinicians in the electronic health
record: lessons learned from the clinical genome resource project and the
electronic medical records and genomics network, Front. Genet. 10 (2019),
https://doi.org/10.3389/fgene.2019.01059.

[30] “Sync for Genes | HealthIT.gov.” https://www.healthit.gov/topic/sync-genes
(accessed Jul. 24, 2020).

[31] R.H. Dolin, A. Boxwala, J. Shalaby, A pharmacogenomics clinical decision support
service based on FHIR and CDS Hooks, Methods, Inf. Med. 57 (S02) (2018),
https://doi.org/10.1055/s-0038-1676466. Art. no. S 02.

[32] G.C. Bell, et al., Development and use of active clinical decision support for
preemptive pharmacogenomics, J. Am. Med. Inform. Assoc. JAMIA 21 (e1) (2014)
e93–e99, https://doi.org/10.1136/amiajnl-2013-001993.

[33] M.V. Relling, W.E. Evans, Pharmacogenomics in the clinic, Nature 526 (7573)
(2015) 343–350, https://doi.org/10.1038/nature15817.

[34] S.L. Van Driest, et al., Clinically actionable genotypes among 10,000 patients with
preemptive pharmacogenomic testing, Clin. Pharmacol. Ther. 95 (4) (2014)
423–431, https://doi.org/10.1038/clpt.2013.229.

[35] “Clopidogrel Bisulfate - Drug Usage Statistics, ClinCalc DrugStats Database.”
https://clincalc.com/DrugStats/Drugs/ClopidogrelBisulfate (accessed Apr. 28,
2020).

[36] “CPIC® Guideline for Clopidogrel and CYP2C19.” https://cpicpgx.org/guidelines/
guideline-for-clopidogrel-and-cyp2c19/ (accessed Apr. 28, 2020).

[37] S.S. Kalia, et al., Recommendations for reporting of secondary findings in clinical
exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement
of the American College of Medical Genetics and Genomics, Genet. Med. Off. J.
Am. Coll. Med. Genet. 19 (2) (2017) 249–255.

[38] M.O. Dorschner, et al., Actionable, pathogenic incidental findings in 1,000
participants’ exomes, Am. J. Hum. Genet. 93 (4) (2013), https://doi.org/10.1016/
j.ajhg.2013.08.006. Art. no. 4.

[39] M.-A. Jang, S.-H. Lee, N. Kim, C.-S. Ki, Frequency and spectrum of actionable
pathogenic secondary findings in 196 Korean exomes, Genet. Med. Off. J. Am. Coll.
Med. Genet. 17 (12) (2015), https://doi.org/10.1038/gim.2015.26. Art. no. 12.

[40] M.L. Thompson, et al., Genomic sequencing identifies secondary findings in a
cohort of parent study participants, Genet. Med. Off. J. Am. Coll. Med. Genet. 20
(12) (2018), https://doi.org/10.1038/gim.2018.53. Art. no. 12.

[41] M.J. Landrum, et al., ClinVar: public archive of interpretations of clinically
relevant variants, Nucleic Acids Res. 44 (D1) (2016), https://doi.org/10.1093/
nar/gkv1222. Art. no. D1.

[42] National Center for Biotechnology Information, NCBI ClinVar gene-specific
summary, 2018, National Institutes of Health (NIH), ftp://ftp.ncbi.nlm.nih.gov/p
ub/clinvar/tab_delimited/archive/2018/gene_specific_summary_2018-01.txt.gz
(accessed Apr. 28, 2020).

[43] L.E. Akioyamen, et al., Estimating the prevalence of heterozygous familial
hypercholesterolaemia: a systematic review and meta-analysis, BMJ Open 7 (9)
(2017), https://doi.org/10.1136/bmjopen-2017-016461. Art. no. 9.

[44] S.D. de Ferranti, A.M. Rodday, M.M. Mendelson, J.B. Wong, L.K. Leslie, R.
C. Sheldrick, Prevalence of familial hypercholesterolemia in the 1999 to 2012
United States National Health and Nutrition Examination Surveys (NHANES),
Circulation 133 (11) (2016), https://doi.org/10.1161/
CIRCULATIONAHA.115.018791. Art. no. 11.

[45] H.L. Rehm, et al., ClinGen–the clinical genome resource, N. Engl. J. Med. 372 (23)
(2015), https://doi.org/10.1056/NEJMsr1406261. Art. no. 23.

[46] US National Library of Medicine, A Study of CNP520 Versus Placebo in Participants
at Risk for the Onset of Clinical Symptoms of Alzheimer’s Disease. https://clinicaltr
ials.gov/ct2/show/NCT03131453 (accessed Apr. 28, 2020).

[47] P.R. Reilly, Genetic risk assessment and insurance, Genet. Test. 2 (1) (1998) 1–2.
[48] M. Naveed, et al., Privacy in the genomic era, ACM Comput. Surv. 48 (1) (2015).
[49] M. Molteni, S. Chen, N. Wolchover, M. Simon, A. Thompson, The creepy genetics

behind the golden state killer case, Wired (2018).
[50] Z. Lin, A.B. Owen, R.B. Altman, Genomic research and human subject privacy,

Science 305 (5681) (2004), 183–183.
[51] S.S. Shringarpure, C.D. Bustamante, Privacy risks from genomic data-sharing

beacons, Am. J. Hum. Genet. 97 (5) (2015) 631–646.
[52] J.L. Raisaro, et al., Addressing Beacon re-identification attacks: quantification and

mitigation of privacy risks, J. Am. Med. Inform. Assoc. JAMIA 24 (4) (2017)
799–805.

[53] N. von Thenen, E. Ayday, A.E. Cicek, Re-identification of individuals in genomic
data-sharing beacons via allele inference, Bioinformatics 35 (3) (2019) 365–371.

[54] A. Harmanci, M. Gerstein, Quantification of private information leakage from
phenotype-genotype data: linking attacks, Nat. Methods 13 (3) (2016) 251–256.

[55] A.B. Carter, Considerations for genomic data privacy and security when working in
the cloud, J. Mol. Diagn. JMD 21 (4) (2019) 542–552, https://doi.org/10.1016/j.
jmoldx.2018.07.009.

[56] X. Jiang, et al., A community assessment of privacy preserving techniques for
human genomes, BMC Med. Inform. Decis. Mak. 14 (Suppl 1) (2014) S1.

[57] K. Shimizu, K. Nuida, G. Rätsch, Efficient privacy-preserving string search and an
application in genomics, Bioinformatics 32 (11) (2016) 1652–1661.

[58] M. Kim, Y. Song, J.H. Cheon, Secure searching of biomarkers through hybrid
homomorphic encryption scheme, BMC Med. Genomics 10 (Suppl 2) (2017) 42.

[59] M. Kim, Y. Song, B. Li, D. Micciancio, Semi-parallel Logistic Regression for GWAS
on Encrypted Data, 294, 2019. [Online]. Available: http://eprint.iacr.org
/2019/294 (accessed: May 11, 2020).

[60] The Variant Call Format Specification. [Online]. Available: https://samtools.gith
ub.io/hts-specs/VCFv4.3.pdf (accessed: May 01, 2020).

[61] J.H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic encryption for arithmetic of
approximate numbers, Lect. Notes Comput. Sci. (2017) 409–437.

[62] Z. Brakerski, Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP, Lect. Notes Comput. Sci. (2012) 868–886.

[63] J. Fan, F. Vercauteren, Somewhat Practical Fully Homomorphic Encryption, 144,
2012. [Online]. Available: https://eprint.iacr.org/2012/144 (accessed: May 08,
2020).

[64] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 — Seamless operability
between C++11 and Python,” 2016. https://rgl.epfl.ch/software/pybind11
(accessed Apr. 28, 2020).

[65] M. Whirl-Carrillo, E.M. McDonagh, J.M. Hebert, L. Gong, K. Sangkuhl, C.F. Thorn,
R.B. Altman, Pharmacogenomics Knowledge for Personalized Medicine, Clinical
Pharmacology & Therapeutics 92 (4) (2012) 414–417, https://doi.org/10.1038/
clpt.2012.96.

[66] 1000 Genomes Project Consortium et al., A global reference for human genetic
variation, Nature 526(7571) (2015). doi: 10.1038/nature15393. Art. no. 7571.

[67] H. Li, Tabix: fast retrieval of sequence features from generic TAB-delimited files,
Bioinformatics 27 (5) (2011) 718–719, https://doi.org/10.1093/bioinformatics/
btq671.

[68] “NCBI Variation Services.” https://api.ncbi.nlm.nih.gov/variation/v0/ (accessed
Apr. 28, 2020).

[69] M. Albrecht et al., Homomorphic Encryption Security Standard,
HomomorphicEncryption.org, Toronto, Canada, Nov. 2018. [Online]. Available:
https://homomorphicencryption.org/standard/ (accessed: Jul. 24, 2019).

S. Karimi et al.

http://refhub.elsevier.com/S1532-0464(20)30230-6/h0090
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0090
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0090
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0095
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0095
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0095
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0100
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0100
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0100
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0105
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0105
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0115
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0115
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0115
https://www.cryptoexperts.com/services/post_quantum_cryptography/
https://www.cryptoexperts.com/services/post_quantum_cryptography/
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0130
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0130
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0135
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0135
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0135
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0135
https://doi.org/10.1016/j.yamp.2019.07.001
https://doi.org/10.1016/j.yamp.2019.07.001
https://doi.org/10.3389/fgene.2019.01059
https://www.healthit.gov/topic/sync-genes
https://doi.org/10.1055/s-0038-1676466
https://doi.org/10.1136/amiajnl-2013-001993
https://doi.org/10.1038/nature15817
https://doi.org/10.1038/clpt.2013.229
https://clincalc.com/DrugStats/Drugs/ClopidogrelBisulfate
https://cpicpgx.org/guidelines/guideline-for-clopidogrel-and-cyp2c19/
https://cpicpgx.org/guidelines/guideline-for-clopidogrel-and-cyp2c19/
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0185
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0185
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0185
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0185
https://doi.org/10.1016/j.ajhg.2013.08.006
https://doi.org/10.1016/j.ajhg.2013.08.006
https://doi.org/10.1038/gim.2015.26
https://doi.org/10.1038/gim.2018.53
https://doi.org/10.1093/nar/gkv1222
https://doi.org/10.1093/nar/gkv1222
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/archive/2018/gene_specific_summary_2018-01.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/archive/2018/gene_specific_summary_2018-01.txt.gz
https://doi.org/10.1136/bmjopen-2017-016461
https://doi.org/10.1161/CIRCULATIONAHA.115.018791
https://doi.org/10.1161/CIRCULATIONAHA.115.018791
https://doi.org/10.1056/NEJMsr1406261
https://clinicaltrials.gov/ct2/show/NCT03131453
https://clinicaltrials.gov/ct2/show/NCT03131453
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0235
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0240
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0245
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0245
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0250
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0250
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0255
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0255
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0260
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0260
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0260
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0265
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0265
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0270
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0270
https://doi.org/10.1016/j.jmoldx.2018.07.009
https://doi.org/10.1016/j.jmoldx.2018.07.009
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0280
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0280
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0285
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0285
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0290
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0290
http://eprint.iacr.org/2019/294
http://eprint.iacr.org/2019/294
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0305
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0305
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0310
http://refhub.elsevier.com/S1532-0464(20)30230-6/h0310
https://eprint.iacr.org/2012/144
https://rgl.epfl.ch/software/pybind11
https://doi.org/10.1038/clpt.2012.96
https://doi.org/10.1038/clpt.2012.96
https://doi.org/10.1093/bioinformatics/btq671
https://doi.org/10.1093/bioinformatics/btq671
https://api.ncbi.nlm.nih.gov/variation/v0/
https://homomorphicencryption.org/standard/

	A secure system for genomics clinical decision support
	1 Introduction
	2 Background
	2.1 Ancillary genomics systems and genomics-based CDS
	2.2 Privacy-protecting solutions

	3 Method
	3.1 System overview
	3.2 Vector-encoding of key variants
	3.3 Homomorphic encryption
	3.4 Computations on the server

	4 Testing and results
	4.1 CDS applications
	4.2 Study population
	4.3 Results

	5 Discussion
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Encryption parameters
	Appendix B Logical template matching
	Appendix C Summation along a vector
	References

