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In brief

Santhanam et al. present a systematic

analysis of the prognostic potential of

diverse coherent gene modules across

cancer cohorts. Dysregulation of such

prognostic cancer modules provide

significant additional predictive power

relative to common histopathological

indicators and prominent genetic

aberrations in common clinical use.
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SUMMARY
Precision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tu-
mors.We present a systematic analysis of the prognostic potential of diversemolecular features across large
cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is sub-
stantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations. Ex-
tending our analysis beyond existing curated gene modules, we find a large novel class of highly prognostic
DNA/RNA cis-regulatory modules associated with dynamic gene expression within cancers. Remarkably, in
more than 82% of cancers, modules substantially improve survival stratification compared with conventional
clinical factors and prominent genomic aberrations. The prognostic potential of cancer modules generalizes
to external cohorts better than conventionally used single-gene features. Finally, a machine-learning frame-
work demonstrates the combined predictive power of multiple modules, yielding prognostic models that
perform substantially better than existing histopathological and clinical factors in common use.
INTRODUCTION

Choice of therapies should be guided by accurate assessment of

patient risk. Treatment decisions are often driven by histopathol-

ogy-based observations, which have limited predictive value

and suffer from inter-observer variability.1–3 Precision oncology

approaches seek to improve long-term patient outcomes by

defining molecular dependencies of cancer progression that

augment existing diagnostic and prognostic evaluations at the

clinic.4–7 Here, we systematically determined the prognostic po-

tential of a variety of molecular observations to identify the most

predictive features and compared their prognostic utility with

clinical and histopathological features in common use. It is

known that molecular changes that underlie oncogenic transfor-

mation can be informative of key clinical phenotypes such

as therapeutic responsiveness, tumor aggressiveness, and

patient risk.8–11 Previous efforts have utilized aberrations at indi-

vidual genomic loci to stratify patient risk (e.g., mutations or

copy-number changes).4,12 Generally, these single-locus

genomic approaches may not capture higher-order depen-

dencies that reflect activities of co-regulated processes, path-

ways, and regulatory networks. On the other hand, methods

that utilize the activity of functionally relevant gene groups can

capture coordinated dysregulation across genes and their asso-

ciation with clinical phenotypes.13–24 These efforts have largely

explored associations between perturbations in a limited set of

prominent and curated cancer-relevant pathways with patient
This is an open access article und
survival. However, the comparative and combined predictive

potential of gene groups, single-locus aberrations, and conven-

tionally used clinical features has not been systematically deter-

mined across cancers. Thus, a systematic effort to evaluate the

prognostic capacities of genetic lesions and dysregulation of in-

dividual genes and functionally coherent groups of genes would

not only expand the set of clinically usable tumor biomarkers but

may help prioritize molecular assessments that provide optimal

clinical utility in each cancer.

Here, we have developed a robust computational framework

to determine the prognostic strengths of a variety of molecular

features relative to conventionally utilized clinical factors such

as tumor stage, age, and histopathology across a vast

compendia of cancer cohorts from TCGA. We have used this

framework to systematically quantify the prognostic potential

of individual genes as conveyed by their mutation statuses,

copy-number aberrations, and expression changes and found

that transcriptomic assessments provided the strongest survival

stratification in a majority of cohorts examined. Next, we curated

a large set of biologically coherent gene groups (modules) based

on a variety of features, including gene functions, biological pro-

cesses, and co-expression based on DNA/RNA motif sequence

features. Remarkably, we found that mRNA expression pertur-

bations of gene modules provided significantly better survival

stratification across the majority of TCGA cohorts compared

with genomic perturbations of individual loci as well as other

conventionally utilized clinical assessments. Furthermore, these
Cell Genomics 3, 100262, March 8, 2023 ª 2023 The Author(s). 1
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modules provided novel prognostic information compared with

standard histopathologic assessments, prominent genomic ab-

errations, and compositions of immune cell types in the tumor

microenvironment. Our analyses and conclusions provide the

community with a powerful resource to generate clinically infor-

mative and interpretable models of patient risk, a critical founda-

tion for precision oncology and therapeutic development.1,7,10

RESULTS

Gene expression is more prognostic than genomic
aberrations at individual loci
We sought to determine the prognostic potential of individual

gene measurements, including mutational statuses, copy-num-

ber aberrations, and gene expression changes across TCGA co-

horts (STAR Methods). Our analyses on 8,620 patients from 25

cohorts in TCGA revealed many genes that were significantly

associated with overall or progression-free interval survival

(p < 0.005; Data S1) with a median number of 59 genes that

were prognostic for both survival endpoints across cohorts.

Overall, we found that the mutational status of a gene was a

significantly weaker predictor of survival than copy-number ab-

errations (CNAs), as reported recently.4 In fact, the expression

of individual loci provided more prognostic utility than both mu-

tations andCNAs (Figures 1A and S1). Indeed, in amajority of the

cohorts tested, we also found that gene expression provided the

strongest patient stratification for both overall survival (20 of 25

cohorts) and progression-free interval survival (21 of 24 cohorts)

compared with CNAs or mutational aberrations (Figures 1B, S2,

and S3), consistent with previous reports.4,25

Next, we focused on tumor-suppressors (n = 230) and onco-

genes (n = 201) curated by OncoKB27 based on their well-char-

acterized roles as cancer drivers. Even among these cancer

drivers,27 we only found 8 genes (1.8%) based on mutational

status, 148 genes (34.3%) based on copy-number changes,

and 212 genes (49.2%) based on their expression levels to be

prognostic for overall and progression-free interval survival in

at least one cohort. Furthermore, 11 genes (5.2%) based on their

expression and no genomic aberrations were prognostic in more

than two cohorts. Only PTEN in low-grade glioma and BAP1 in
Figure 1. Expression changes are more prognostic than copy-number

(A) Proportion of genes prognostic based on their copy-number aberrations (purpl

axis) for both overall survival and progression-free interval survival.

(B) Comparisons between strengths of prognosis conveyed by gene expression

heatmap scatterplot (density indicated). Within cohorts, absolute values of stand

distributions for prognosis utilizing gene expression (y axis) and genomic aberratio

for at least one of the three features (mutation, copy number, or expression) are

(C) Schematic for the quantification of MPS. Mutual information is used to quant

levels in patient samples, which is then signed by the Pearson’s correlation coef

(D) Kaplan-Meier (KM) plot shows patients with pancreatic cancer with positive pe

lines that harbor mutations at the TP53 locus relative to cell lines that are wild type

than patients with negative perturbation scores (blue). Statistics (p value and num

patients stratified based on TP53 mutation status in pancreatic cancer cohort is

(E) The log2 ratio of the absolute standardized significance of modules associated

(in rows) are visualized in 19 cancers from TCGA.

Standardized significance (Wald statistic) for individual genes were chosen to be

stratifications in each cohort. For the corresponding modules, the stand

(STAR Methods).

See also Figures S1–S8.
pan-kidney cohorts were prognostic across all three molecular

features for either survival endpoint (Data S1). These results sug-

gest that the clinical associations of these cancer drivers27 are

perhaps not adequately captured by their mutation statuses,

CNAs, or expression changes alone.

Gene modules associated with cancer drivers are more
prognostic than mutational status
We hypothesized that gene modules coherently perturbed in the

context of cancer driver aberrations may provide superior prog-

nostic utility than the underlying single-gene perturbations. In or-

der to test this, we first assembled 199 genemodules associated

with cancer drivers27 (22 tumor suppressors and 45 oncogenes)

from the Molecular Signatures Database (MSigDB).26 These

modules were discovered on cells harboring perturbations in

cancer genes and represent their transcriptional signatures

(MSigDB).26 To quantify the amplitude and direction of dysregu-

lation in a module, we next defined a statistical measure based

on signed mutual information28 to quantify perturbations in

each of these modules across patient primary tumor transcrip-

tomes from TCGA (https://www.cancer.gov/tcga). We call this

measure module perturbation score, which can be interpreted

as the coordinated shift in themRNA expression of a set of genes

in a patient’s tumor transcriptome (Figure 1C; STAR Methods).

As expected, we found that module perturbation scores (MPS)

were strongly correlated with mutations, CNAs, or expression

changes for the majority of cancer drivers27 (40 of 67) across

the cohorts tested (Figure S4).

Next, we systematically explored whether perturbations in

these modules stratified patients into groups with significantly

divergent survival trajectories. These analyses identified mod-

ules associated with several cancer drivers27 including TP53,

KRAS, and PTEN, among others, to be informative of patient

survival. Despite significant concordance between mutation

status and perturbations in the TP53-associated module (hy-

pergeometric p = 8.8 3 10�4), we observed that patients with

pancreatic cancer stratified based on MPS had significantly

more divergent survival trajectories (Kaplan-Meier [KM] p =

2.5 3 10�5; hazard ratio = 0.33) than patients stratified based

on the mutation status of TP53 (KM p value = 0.28; hazard
aberrations or gene mutations

e), mutation statuses (black), and expression changes (yellow) in each cohort (y

(y axis) and genomic aberrations (x axis) across all cohorts is visualized as a

ardized significance (Wald statistic) of each stratification are scaled, and their

ns (mutation or copy number; x axis) are plotted. Only genes that are prognostic

included.

ify the degree to which module membership is informative of gene expression

ficient between them to yield MPS (STAR Methods).

rturbation scores (red) of a module corresponding to genes up-regulated in cell

for TP53 (MSigDB,26 M2698; 198 genes) and have worse overall survival (OVS)

ber of samples in the two groups) are indicated (STAR Methods). KM plot of

also shown (black and gray lines).

with cancer drivers andmeasurements on genes encoding these cancer drivers

the maximum from expression-, copy-number-, and mutation-based patient

ardized significance scores were summarized using Stouffer’s method
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Figure 2. Systematic discovery of prognostic cancer modules

(A) Schematic for discovering prognostic cancer modules (PCMs). For everymodule, z scored transcriptome-wide data (heatmap) are systematically transformed

into MPS across samples (heatmap; bottom). Patients with significant module activation (repression) have positive (negative) MPS values and correspond to

transcriptomes in which genes in the module are activated (repressed) and labeled MPS+ (MPS–). Patient samples are stratified into MPS+ and MPS– groups to

quantify survival differences. Modules whose perturbations resulted in patient stratification with significantly different survival trajectories are considered to be

(legend continued on next page)
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ratio = 0.76; Figure 1D). Remarkably, for �90% of the cancer

drivers,27 patient survival stratifications based on module per-

turbations were superior to stratifications based on measure-

ments at the corresponding individual loci across the cancers

tested (Figures 1E and S5–S8). Taken together, these results

suggest that the dysregulation of modules may be indicative

of functional downstream consequences beyond direct observ-

able genomic and transcriptional perturbations to upstream

cancer drivers.27

Systematic discovery of prognostic cancer modules
The superior prognostic utility of gene modules associated with

cancer driversmotivated us to systematically discover other pre-

dictive gene modules across cancers. We thus expanded our

scope broadly to includemodules beyond oncogenic signatures.

Our module catalog comprised �5,000 pathways, gene ontol-

ogies, and �2,000 putative targets of regulators including genes

that harbor their binding sites and/or constitute their transcrip-

tional targets (Figure S9A; Data S2; STAR Methods).26,29–31

Wesystematically quantified thedysregulation of eachof these

modules in every sample from TCGA (https://www.cancer.gov/

tcga) as MPS (STAR Methods). We found that 25% of previously

defined modules (Figure S9A) displayed distinct cohort-specific

(Figures S9B and S9C) and tissue-specific (Figures S9D and

S9E) perturbation patterns across the cohorts examined (Data

S3; STAR Methods). We also sought to test if MPS can capture

disease progression. To this end, we utilized cancer stage as a

proxy for disease progression, identifying 3,221 modules in 12

cancers from TCGA (STAR Methods; Data S3; Figure S10A).

We found that the perturbation scores of modules relating to

mitosis, extracellularmatrix, andRNAmetabolismaswell as tran-

scriptional targets of polycomb group ring finger proteins BMI1

and PCGF2 were recurrently associated with disease progres-

sion in 3 or more cancers (Data S3). To test if our findings can

generalize to different indicators of disease progression in inde-

pendent patient groups,weutilized a cohort consisting of normal,

polyps, primary tumor, and metastatic samples obtained from

342 patients with colonic neoplasms (GEO: GSE41258).15,32,33

Amajority of themodules discovered to be associatedwith colon

cancer stage in TCGAwere significantly associated with disease

progression on this independent cohort. We identified modules
prognostic (STAR Methods). Confounding effects of conventional clinical and hi

variates along with MPS on patient survival. The predictive performance of these

(B) Patients with stomach cancer with significant module activation (MPS+; re

(MSigDB,26 M15591; 233 genes) have worse OVS than patients with significant m

(C) Patients with melanomawith significant module activation (MPS+; red) for gene

RNA30; 1,595 genes) have worse progression-free interval survival (PFS) compar

comparisons, statistics (median survival times, log2 hazard ratio, and p value) ar

(D) Standardized significance of MPS-based patient survival (Wald statistic) of r

Regulator-basedmodules recurrently prognostic in 3 ormore cancers are grouped

(STAR Methods). For each module, patients in a cohort were stratified into MPS

Positive (or negative) values indicate better (or worse) survival of patients in the M

(E) The log2 ratio of the absolute standardized significance of module perturbation

genomic loci (in rows) are visualized for OVS (left panel) and PFS (right panel).

For single-locus measurements, standardized significance (Wald statistic) was ch

patient stratifications in each cohort, and for their associated modules, standar

Methods).

See also Figures S13–S15.
with substantial similarities to apoptosis and oxidative phosphor-

ylation pathways (hypergeometric p = 10�11 and 10�237, respec-

tively), consistent with observations originally made by Drier and

colleagues15 (Figures S10B–S10E). We also discovered poten-

tially novel modules relating to mitochondrial organization, pro-

tein localization, and targets of zinc finger transcription factor

PATZ1 to be significantly associated with colon cancer progres-

sion (FiguresS10 andS11;DataS3). Clearly, further experimental

validation is necessary to establish the in vivo functional roles of

these modules in disease progression. Nonetheless, our results

suggest that MPS can effectively capture biologically relevant

phenotypes including disease progression.

Next, we quantified the ability of module perturbations to pre-

dict patient survival in individual cancers (schematic in Figure 2A).

Modules whose perturbation scores stratified patients into acti-

vated (MPS+) and repressed (MPS–) groupswith significant differ-

ential survival trajectories were defined as prognostic cancer

modules (PCMs) (STARMethods).We used TCGA as our primary

discovery cohort due to (1) the diversity of cancer types analyzed,

(2) the wealth of linked clinical, genomic, and molecular data on

patients, and (3) the concordance between the distributions of

pathologic stages in TCGA and the general population statistics

in the United States in multiple cancers (Figure S12A).

Overall, among previously defined genemodules (Figure S9A),

our analyses identified 443 PCMs (Figures S12B and S12C).

These included modules associated with apoptosis, cell cycle,

and DNA repair pathways, consistent with their well-established

contribution to cancer progression (Data S4). We also identified

�180 known regulator-associated PCMs. Some examples

includedmodules associated with microRNA (miRNA)-149, tran-

scription factors ZHX2 and FOXF2, and the SRSF2 RNA-binding

protein (Figures S13A–S13D). These findings are consistent with

the known cancer-relevant roles of these regulators.35–38 How-

ever, to the best of our knowledge, the prognostic values of their

associated modules have not been previously determined.

An example of a novel regulator-based PCM is amodule asso-

ciated with the developmental transcription factor POU1F1,

whose significant activation conferred worse prognosis in stom-

ach cancer (KM p = 9.8 3 10�4; hazard ratio = 0.3; Figures 2B

and S13E). To the best of our knowledge, neither POU1F1 nor

its associated module have been previously implicated in
stopathological factors are controlled by jointly modeling effects of these co-

PCMs is evaluated on independent external cohorts.

d) for genes harboring at least one instance of the binding site for POU1F1

odule repression (MPS–; blue).

s carrying at least one instance of RBM28 binding sites in their 30 UTRs (CISBP-
ed with samples with significant module repression (MPS–; blue). For KM plot

e indicated, and survival of the rest of the samples is shown in gray.

egulator-based modules are shown for OVS (left panel) and PFS (right panel).

together, and each row corresponds to the exemplar34module within a cluster
+ and MPS– groups to quantify survival differences between the two groups.

PS+ group.

s associated with regulators and measurements on their corresponding single

osen to be the maximum from expression-, copy-number-, or mutation-based

dized significance scores were summarized using Stouffer’s methods (STAR
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stomach cancer. Another example of a novel regulator-associ-

ated PCM is a module that corresponds to sequence-specific

binding of RBM28, a component of the spliceosomal machinery.

Significant activation of this module specified worse prognosis in

patients with melanoma (KM p = 5.6 3 10�3; hazard ratio = 0.3;

Figures 2C and S13F).

Inaddition tocohort-specificprognosticmodules,wealso iden-

tified regulators whose MPS stratified patients into MPS+ and

MPS– groups with differential survival trajectories across multiple

cancer cohorts (example in Figure S14). In fact, 57 and 70 regu-

lator-associated modules were recurrently prognostic for overall

survival and progression-free interval survival, respectively, in at

least 3 cohorts (Figures S15A–S15C), which were in turn grouped

into clusters whose exemplars are shown in Figure 2D (STAR

Methods). These results suggest that while a sub-set of perturba-

tions to regulators are prognostic in specific cancers, others are

recurrently prognostic acrossmultiple cancers, alluding to shared

regulatory states underlying patient survival. Finally, as with the

cancer drivers,27 perturbations in regulator-associated modules

improved patient stratification compared with expression

changes,CNAs,ormutationstatusesof thegenesencoding these

regulators (Figure 2E). These findings suggest that subtle and/or

indirect modulation of regulators (e.g., through post-translational

effects), which would not be captured by standard sequencing or

immunohistochemical methods, may be sufficient for large-scale

reprogramming of their targets, thus mediating significant effects

on patient clinical trajectories.

Dysregulation of de-novo-discovered cis-regulatory
modules predicts patient survival
Our findings clearly establish that dysregulation of previously

defined coherent gene modules convey substantial prognostic

utility across cancers. However, we reasoned that gene expres-

sion dynamics across a large cancer cohort may point to

coherently modulated genes with substantially higher relevance

for disease progression across the cohort. Our known regulator-

based gene modules above likely capture some of these

changes. However, a majority of known regulators do not have

associated target gene modules, and in cases where such mod-

ules exist, they are typically defined in cellular contexts that differ

from those of patient tumors. We and others have shown that

context-specific binding of regulators to cis-regulatory se-

quences in promoters or mRNA untranslated regions (UTRs) of

target genes cause coordinated changes to their gene expres-

sion and that the underlying DNA/RNA cis-regulatory elements

can be discovered by de novo sequence motif discovery.39–41

We thus sought to systematically discover cancer context-spe-

cific cis-regulatory sequences that underlie gene expression

perturbations across the TCGA cohort transcriptomes. Modules

associated with these putative DNA/RNA sequence motifs

would thus be coordinately regulated gene sets with potential

importance in cancers. Using a de novo linear sequence motif

discovery algorithm called FIRE,42 we generated a systematic

catalog of �1,300 DNA and �5,500 RNA putative regulatory

sequence motifs that are significantly informative of tumor

gene expression patterns across the TCGA cohorts (Data S2;

STAR Methods). Since structural RNA regulatory elements can

also play a major role in post-transcriptional regulation,40,41 we
6 Cell Genomics 3, 100262, March 8, 2023
systematically discovered potential structural RNA motifs that

are significantly associated with transcriptome dynamics

(STAR Methods). To this end, we applied our structural RNA

motif finder, TEISER,40 to breast and liver cancer cohorts in

TCGA to identify �700 putative structural RNA regulatory motifs

(Data S2; STAR Methods).

As expected, a sub-set of the short, de-novo-discovered pa-

tient-derived motifs were similar to binding sites of cancer-rele-

vant regulators including ETS1, ELK1, FOS, JUN, andMAX (DNA

elements) and HNRNPLL, RBM6, ELAVL1, miRNA-106, miRNA-

525, andmiRNA-329 (linear RNA elements) (TOMTOM43 q <0.01;

STAR Methods). However, for the majority of the de-novo-

discovered motifs (>90%), we identified no significant matches

to known binding sites of regulators (Data S5). For each motif,

its associated module comprised genes that carry at least one

instance of the motif in their regulatory regions (STAR Methods).

Among these de-novo-discovered cis-regulatory motif modules,

there were high degrees of overlap pointing to high inter-motif

sequence similarities and/or co-occurrence of motifs. To mini-

mize the redundancy between these modules, we grouped

them into 1,050 module clusters with associated exemplars34

for each (Data S5; STAR Methods). Taken together, the de

novo discovery of DNA and RNA regulatory motifs revealed a

large set of novel gene regulatory modules underlying patient

transcriptome dynamics.

We assessed the prognostic potential of de novo discovered

cis-regulatory modules in individual cancers independent of

the cohorts in which they were discovered. We, thus, identified

157 DNA, 739 linear RNA, and 12 structural RNA-based non-

redundant cis-regulatory modules to be highly prognostic for

overall survival or progression-free interval survival (Figure S9;

Data S2). A majority of these modules (�85%) remained signifi-

cant even after accounting for confounding clinical factors using

multivariate survival comparisons (Data S2; STAR Methods). We

describe a few representative cases below.

We identified a DNA motif-based PCM whose activation con-

fers worse prognosis in breast cancer (KMp= 9.63 10�4; hazard

ratio = 0.37; Figure 3A, S16A, and S16B). The motif resembled

the E-box-like binding site for TFE3 (JASPAR ID MA0831.231;

TOMTOM43 p = 1.68 3 10�4; q = 0.1), which functions down-

stream of transforming growth factor b (TGF-b) signaling.44While

TFE3 has been implicated in papillary renal cell carcinomas,45 to

the best of our knowledge, its role in breast cancer has not been

reported.We also identified a DNA-based PCMwhose activation

specified better prognosis in prostate cancer (KMp= 2.33 10�4;

hazard ratio = 3.97; Figures 3B, S17A, and S17B). This motif did

not share significant similarities with known binding sites of tran-

scription factors (STAR Methods).

The vast majority of RNA motif-based PCMs did not match

binding sites of known regulatory factors. Perturbations in one

such module associated with a linear RNA cis-regulatory

sequence conferred significant survival stratification of patients

with stomach cancer, with activation of the module conferring

worse survival (KM p = 8.6 3 10�4; hazard ratio = 0.49;

Figures3CandS18A). Thismodulewasalsoeffectiveat stratifying

patientswith stomach cancerwith advanced stage tumors aswell

as older patients (Figure S18B). We also identified a structural

RNA motif-based PCM whose significant activation specified



Figure 3. Patient survival stratification based on de-novo-discovered PCMs and conserved prognosis in independent cancer cohorts

(A) Patients with breast cancer with significant module activation (MPS+; red) for transcripts harboring at least one instance of the DNAmotif HWRTNACGH (logo

shown; 2,370 genes) within the first 1 kb of their promoters showed worse OVS than patients with significant module repression (MPS–; blue).

(legend continued on next page)
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betterprognosis incoloncancer (KMp=1.2310�3; hazard ratio=

2.56; Figure3D) independentofhistological type,age, stage, race,

microsatellite-instability status, and tumor location (Figure S19).

Out of all motif-based modules, 25 were prognostic in 3 or

more cancer cohorts. Genes in these modules were enriched

for processes known to be widely dysregulated in cancer

including cell cycle, DNA repair, and chromatin organization,

as well as known oncogenes and tumor suppressors27 (Fig-

ure 3E). These examples are illustrative ofmany de-novo-discov-

ered motif-based PCMs that are significantly informative of pa-

tient outcomes in individual cancer cohorts. For an expanded

set of examples, see Figures S20 and S21 (full list in Data S4).

Module perturbations are predictive of patient survival
in independent cohorts
Our statistical criteria, including internal cross-validation on the

TCGA cohorts, reduces the likelihood that the discovered PCMs

maybeoverfit toonedataset. Inorder toprovideanother indepen-

dent point of validation, we tested the ability of PCMs discovered

across TCGA to stratify patient survival in independent external

cohorts. We thus systematically quantified perturbation scores

of modules and assessed their prognostic value on an indepen-

dent setof over 800patients46,47 (STARMethods).Differencesbe-

tween the TCGA and external cohorts in their demographic and

histopathological compositions along with the limited number of

external patient samples can impact consistent prognosis be-

tween the two datasets. Despite differences observed between

the cohorts (Figures S22A and S22B), patterns of prognostic sig-

nificance of modules in external cohorts were largely consistent

with their results on TCGA (Figures S22C and S22D). In fact,

PCMs discovered on TCGA were significantly over-represented

in the set of modules discovered to be prognostic on the external

cohorts, with 56%–96% of PCMs exhibiting consistent survival

stratification in tissue-matched comparisons (Figure 3F). On the

other hand, only a smaller fraction of genes basedon their expres-

sion were consistently prognostic in the external cohorts (Fig-

ure 3F). Furthermore, the predictive performance of module

perturbations to stratify patient survival in the independent co-

horts was significantly better than gene expression (Figure 3G).
(B) Patients with prostate cancer with significant module activation (MPS+; red) fo

shown; 3,779 genes) within the first 1 kb of their promoters showed better PFS c

(C) Patients with stomach cancer with significant module activation (MPS+; r

WSUUCAMR (logo shown; 1,872 genes) within the first 1 kb of their 30 UTRs sh

(MPS–; blue).

(D) Patients with colon cancer with significant module activation (MPS+; red) for tr

putative secondary structure indicated; 399 genes) within the first 1 kb of their

(MPS–; blue). Select list of significant Gene Ontology terms enriched in each PC

survival times, log2 hazard ratio, and p value) are indicated, and survival of the rest

trimmed when the percentage of samples in MPS+ or MPS– groups falls below 5

(E)Denovocis-regulatory PCMs that are recurrently prognostic in 3 ormore TCGAc

Jaccard score; STAR Methods). Heatmaps show module co-clustering probabilitie

Selected set of significant Gene Ontology terms associated with genes that are com

suppressors (italicized) and oncogenes in this list are tabulated. p values indicating

(F) Percentage of modules based on their perturbation scores (orange bars) or

prognostic in tissue-matched independent cohorts (STAR Methods). p values ind

(G) Distributions of area under the receiver operating characteristic curves (AUC) a

on tissue-matched independent cohorts (STAR Methods).

The p values for comparisons between them (one-sided Mann-Whitney test ***p

See also Figures S16–S19.
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Taken together, these findings suggest that modules are superior

at stratifying patients with significant survival differences in inde-

pendent external cohorts compared with utilization of individual

genes.

Discovering PCMs in clinically relevant patient sub-
groups
First-line as well as subsequent therapeutic decisions in the

clinic are made with considerations to patient’s age, sex, stage,

and histopathological characteristics of the tumors, as well as a

few commonly assessed molecular features. Thus, the prog-

nostic potential of module perturbations conditioned by promi-

nent clinical and molecular factors may have important clinical

utility. To this end, we sought to identify modules whose pertur-

bations were prognostic in specific patient sub-groups by

explicitly partitioning individual cohorts based on these features.

Using a 3-fold cross-validation, we identified an additional set of

�1,400 non-redundant modules to be prognostic only within

these a priori-specified sub-cohorts (Data S6). We describe a

handful of these modules from a few categories below.

Sex

A module associated with chromatin organization (Reactome

R-HSA-489726; MSigDB26) was prognostic for overall survival

only in female patients with glioblastoma multiforme and not in

male patients (median survival difference of �295 and

�70 days, respectively), likely identifying a group of high-risk fe-

male patients with glioblastoma multiforme (GBM) (Figure 4A).

These results are suggestive of a novel, sex-specific role for

chromatin biology in GBM disease progression.

Histopathology

A module associated with homophilic cell adhesion (GO:

0007156; MSigDB26) was prognostic specifically in patients

with triple-negative breast cancer and not in the full cohort (me-

dian survival difference of �56 and �17 months, respectively;

Figures S23A and S23B). Another example was in patients with

stage II/IIA/IIB breast cancer, where significant activation of

a linear RNA motif-associated module conveyed worse prog-

nosis even after accounting for confounding clinical factors

(Figures 4B, S23C, and S23D).
r transcripts harboring at least one instance of the DNAmotif DTTTMCAM (logo

ompared with patients with significant module repression (MPS–; blue).

ed) for transcripts harboring at least one instance of the linear RNA motif

owed worse OVS compared with patients with significant module repression

anscripts harboring at least one instance of the structural RNA motif (logo and

30 UTRs showed better OVS than patients with significant module repression

M are shown (bottom panel). For all KM plot comparisons, statistics (median

of the samples is shown in gray. For visualization, the time axis of KM curves is

%.

ohorts co-cluster based on the similarities in theirmodulememberships (modified

s with six broad clusters (color key indicated) revealed by consensus clustering.

mon to at least 75% of the modules in each cluster as well as prominent tumor

over-representation of GO terms (hypergeometric test) are indicated.

individual genes based on their expression (blue bars) that are consistently

icate the significance of overlap for the modules (STAR Methods).

re shown for MPS (orange) and single genes (blue) to predict patient prognosis

< 10�5) are indicated.



Figure 4. PCMs in clinically relevant patient

sub-groups

(A) Female patients with glioblastoma multiforme

(GBM) with significant module activation (MPS+;

red) for genes involved in chromatin organization

(272 genes) showed better OVS than patients with

significant module repression (MPS–; blue). Also

shown are survival curves for MPS+ and MPS–

male patients with GBM (dashed lines). Number of

patients is indicated in parentheses.

(B) Patients with stage II/IIA/IIB breast cancer with

significant module activation (MPS+; red) for

transcripts harboring at least one instance of the

RNA motif URUAMGGD (logo shown; 1,082

genes) within the first 1 kb of their 30 UTRs showed

worse OVS than samples with significant module

repression (MPS–; blue).

(C) Volcano plot shows modules associated with

Gene Ontology annotations and pathways (gray

dots), regulator binding sites (green dots), and de-

novo-discovered DNA-motif based modules (or-

ange dots) that are clinically prognostic for PFS

(hazard ratio: x axis; p value: y axis) in patients with

KRAS-mutated lung adenocarcinoma.

(D) Patients with head and neck cancer and sar-

coma with mutated TP53 and significant module

activation (MPS+; red) for genes annotated to be

involved in mRNA processing (243 genes) have

worse OVS than patients with significant module

repression (MPS–; blue). For the KM plots, statis-

tics of the comparison (median survival times, log2
hazard ratio, and p value) are indicated.

See also Figures S23 and S24.

Please cite this article in press as: Santhanam et al., Systematic assessment of prognostic molecular features across cancers, Cell Genomics (2023),
https://doi.org/10.1016/j.xgen.2023.100262

Cell Genomics 3, 100262, March 8, 2023 9

Article
ll

OPEN ACCESS



(legend on next page)

Please cite this article in press as: Santhanam et al., Systematic assessment of prognostic molecular features across cancers, Cell Genomics (2023),
https://doi.org/10.1016/j.xgen.2023.100262

10 Cell Genomics 3, 100262, March 8, 2023

Article
ll

OPEN ACCESS



Please cite this article in press as: Santhanam et al., Systematic assessment of prognostic molecular features across cancers, Cell Genomics (2023),
https://doi.org/10.1016/j.xgen.2023.100262

Article
ll

OPEN ACCESS
Genomic aberration status

We identified a linear RNA motif-associated module to be prog-

nostic in patients with breast cancer that harbor deep amplifica-

tion of the MYC locus even after accounting for confounding

clinical factors (FiguresS24A–S24C). Inanother example,patients

with colon cancer that harbor deletions of the ATP6V1B2 locus

(component of vacuolar ATPase)with activation of genes involved

in mitochondrion organization (GO: 0007005; MSigDB26) had

favorable prognosis (Figure S24D). In KRAS-mutant lung adeno-

carcinomas,significant activationofNRF1 targetswasassociated

with worse prognosis (Figure S24E), consistent with NRF1’s role

as a regulator of the proteasome pathway,48 a key dependency

in KRAS-mutant cancers.49,50We also established the prognostic

value of modules associated with targets of ETV5 transcription

factor, translational elongation, G protein-coupled receptor

(GPCR) signaling, and ribonucleoprotein (RNP) sub-unit organiza-

tion in KRAS-mutant lung cancers (Figure 4C). On the other hand,

these modules had limited prognostic power in lung adenocarci-

nomas that were wild type for KRAS (Figure S24F). While further

experimentation is essential to establish their functional roles,

some of thesemodules, such as GPCR signaling, open up poten-

tially novel avenues for therapeutic targeting in KRAS-driven lung

cancers.51 Finally, we also identified modules that were recur-

rently prognostic in sub-cohorts harboring aberrations at the

same genomic loci in cancers of diverse tissues of origin (Data

S6). For instance, mRNA splicing, which has previously been

implicated in multiple cancers,52,53 was prognostic in TP53-

mutant sarcomas and head and neck cancers (example module

from Reactome R-HSA-72203; MSigDB26 shown in Figure 4D).

PCM-based machine-learning models for integrated
patient risk stratification
We sought to evaluate the combined prognostic power of all

PCMs for a given cohort in a single predictive model. To this

end, we utilized random survival forests54 under 10-fold

cross-validation to predict patient risk in individual cancers
Figure 5. Models based on PCMs are predictive of survival beyond co

(A) Schematic for quantifying the combined predictive power of multiple PCMs a

(B and C) KM plots show patient stratification based on risk predictions (high risk:

(see STAR Methods) in (B) head and neck cancer (OVS) and (C) low-grade glio

indicated.

(D) Comparisons of randomsurvival forest performance for predicting PFS inmode

(blue) across TCGAcancer cohorts. Each cross corresponds to themedian hazard

for comparisons between hazard ratios from the two models are indicated for eac

(E) Comparisons of random survival forest performance for predicting OVS in mo

aberrations (SNVs and CNAs) (green) across TCGA cancer cohorts. Each cross

cross-validated models, and p values for comparisons between hazard ratios f

test ***p < 10�5; **p < 10�4; *p < 5 3 10�3).

(F–H) KM plots show patient survival stratification based on risk predictions (low

survival forest models. Predictions from this model trained using conventional clin

of the comparable model without PCMs are in gray. Survival curves and associa

largest difference in hazard ratios between the two random survival forest models.

group, and total number of patients in each model (n) are indicated.

(F) In patientswith breast cancer (n = 500), KMplots showpatient stratification for O

(G) In patients with sarcoma (n = 100), KMplots showpatient stratification for OVS

PCMs.

(H) In patients with pancreatic cancer (n = 100), KM plots show patient stratificatio

scores of PCMs.

See also Figures S25, S28, and S30.
(schematic in Figure 5A). In a majority of the cohorts examined,

we found that ensemble learning models trained on PCMs

discovered in a cohort provided superior survival stratification

of those patients compared with individual modules (Fig-

ure S25). For example, compared with the strongest individual

PCM, models trained on multiple PCMs conferred an improve-

ment in the median survival difference of �13.5 months in head

and neck cancers (71 and 58 months, respectively; overall sur-

vival) and �43 months in low-grade gliomas (83 and 40 months,

respectively; progression-free interval survival; Figures 5B and

5C). The predictive capacity of the random survival forest

models was also validated on the external cohorts (Figure S26).

To assess the context specificity associated with module per-

turbations, we used models trained on PCMs from one cohort

to predict patient outcomes in every other cohort in TCGA

(STAR Methods). Interestingly, we observed multiple instances

of models trained on a cancer cohort conveying concordant

prognosis in cancers of diverse tissues of origin (Figure S27),

suggesting that patterns of module perturbations and their

impact on patient survival may be conserved despite differ-

ences in their tissue contexts.

PCMs add significant prognostic value to clinical factors
in common use
Next, we sought to evaluate the power of modules, prominent in-

dividual genes, and clinically relevant histopathological factors

to build comprehensive predictive models of patient survival in

each cohort. We quantified contributions of PCMs to predict

patient survival relative to typically used clinical and genomic

features. First, we compared random survival forest models

trained on PCMs discovered within a cohort with equivalent

models trained on standard clinical factors alone. We found

that models trained on PCM perturbations provided significantly

superior patient stratification compared with equivalent models

trained on standard clinical factors for �78% and �93% of co-

horts based on overall and progression-free interval survival
nventionally used clinical factors

nd its relative strength compared with clinical factors in common use.

purple; low risk: green) from a random survival forest model54 trained on PCMs

ma (PFS). Statistics of the survival comparisons and number of patients are

ls trained onperturbation scores of PCMs (orange) and standard clinical factors

ratio from10different instancesof 10-fold cross-validatedmodels, andp values

h cohort (one-sided Mann-Whitney test ***p < 10�5; **p < 10�4; *p < 53 10�3).

dels trained on perturbation scores of PCMs (orange) and prominent genomic

corresponds to the median hazard ratio from 10 different instances of 10-fold

rom the two models are indicated for each cohort (one-sided Mann-Whitney

risk: solid lines; high risk: dotted lines) from one of the 10 instances of random

ical features and perturbation scores of PCMs are in dark red, while predictions

ted statistics (p value and hazard ratio indicated) are for the instance with the

Survival comparisons are made using the same number of patients in each risk

VS using standard clinical factors augmented by perturbation scores of PCMs.

using standard clinical features and SNVs augmented by perturbation scores of

n for PFS using standard clinical features and CNAs augmented by perturbation
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(Figures 5D, S28A, and S28B; STAR Methods). Likewise, we

found that models trained on PCMs conferred superior patient

survival stratification in �81% of cohorts tested compared with

prominent single-nucleotide variants and CNAs (Figures 5E

and S28; STAR Methods).

We thensought to test if utilizingPCMs inconjunctionwith these

conventionally used clinical factors provided additional predictive

value. In the vastmajority of cohorts tested, randomsurvival forest

models trained on both standard clinical factors and PCMs were

significantly more prognostic than equivalent models trained on

standard clinical factors alone (Figure S29). Similarly, models

trained using SNVs or CNAs in combination with PCMs were

significantly more prognostic than models trained only on SNVs

(�78% of cohorts) or CNAs (�90% of cohorts) (Figures S30A,

S30B, S31A, and S31B). Next, we tested if PCMs conveyed addi-

tional predictive power compared with standard clinical factors

and prominent genetic aberrations combined. In fact, models

trainedonstandardclinical factors andgenomicaberrationscom-

bined with PCMswere significantly more prognostic than equiva-

lent models trained without PCMs (Figures S30C, S30D, S31C

and S31D). For instance, we found improved median survival dif-

ference of �17 months (123 vs. 106 months) in breast cancers,

�25 months (32.5 vs. 7 months) in sarcomas, and �22 months

(23 vs. 0.6 months) in pancreatic cancer in models that included

PCMs (Figures 5F–5H). Taken together, these findings suggest

that perturbations in modules not only improve predictions of pa-

tient clinical outcomes but also provide additional prognostic in-

formation relative to standard histopathological factors and

commonly utilized single-locus observations.

DISCUSSION

We present a systematic computational framework to charac-

terize how diverse molecular features and conventional clinical

factors are able to predict patient survival across large cancer

cohorts. We find that biologically coherent sets of genes (gene

modules) provide a rich source of biomarkers with substantial

prognostic utility, superior to single-locus observations (Figures 1

and 2). By utilizing DNA/RNA motif discovery in co-expressed

genes, we have identified a large set of genemodules with signif-

icant prognostic value that promise to reveal novel biology with

potentially significant contribution to cancer progression (Fig-

ure 3). While modules were chosen for their ability to provide bio-

logical context, computationally constructing modules, such

that their perturbation scores maximize survival differences,

could generate robust modules highly predictive of survival.

Our results suggest that MPS capture at least some of the mo-

lecular complexity underlying cancer, reinforcing the advantages

of utilizing gene groups over single-locus observations.55 The

prognostic power of individual cancer modules motivated us to

develop high-order machine-learning approaches that generate

models by combining multiple PCMs with substantially improved

survival prediction. In the vast majority of cases, these combined

PCMmodels provide novel prognostic information that surpasses

a variety of currently used histopathological and single-locus ge-

netic aberrations (Figure 5). Interestingly, we found the contribu-

tions of MPS to survival predictions to be quite variable between

cancers (e.g., low-grade glioma [LGG] and head and neck squa-
12 Cell Genomics 3, 100262, March 8, 2023
mous cell carcinoma [HNSC]; Figures S28–S30). One potential

explanation is that only capturing genomic and/or transcriptomic

states of tumors is unlikely to fully capture disease trajectories in

all cancer contexts. Developing technologies and building

compendia for multi-omic analyses of patient tumors with

matched clinical data is likely to provide a more wholistic view of

disease states and clinical outcomes.

The prominent roles inflammatory and immune cells play in

oncogenesis and their importance in patient prognosis56

inspired us to systematically compare survival predictions using

frequencies of immune cell types57,58 with predictions from PCM

models. In more than 70% of cancers tested, models trained on

PCMs provided significantly stronger patient stratification than

models trained on immune cell-type frequencies (Figure S32).

Treatment decisions in the clinic are tailored to the histopath-

ological andmolecular features of tumors as well as patient-spe-

cific characteristics such as age and sex.1,9,10 Within disease

sub-groups, our approach reveals patients whose tumors may

progress at a slower rate than the full cohort, as well as patients

harboring malignancies that may progress more rapidly (Fig-

ure 4). Since information on treatments and the efficacy of these

treatments is generally not available, the degree to which the

prognostic potential of MPS captures inherently aggressive dis-

ease as opposed to reflecting therapy-resistant states that facil-

itate spread cannot be inferred from our results.

Our analyses reinforce the urgent need for expression profiling

of tumor biopsies to become common.1,6,8–10 Technical chal-

lenges with sample handling and storage as well as cost remain

a major impediment for routine sequence-based analyses, sug-

gesting that cost-effective transcriptomic sequencing at

reduced depths may be advantageous.6 In light of this, we

expect the predictive power of module-based approaches,

which are less reliant on noisy single-gene measurements,

capturing patterns of coordinated gene expression changes

instead, to be minimally impacted by information loss even

when samples are sequenced at shallow depths.

Limitations of the study
Firstly, while we believe our module-based approach would be

highly beneficial for clinical decision-making, the specific predic-

tions generated in this studymay be affected by biases that inev-

itably exist in the underlying data distributions. Robust statistical

standards and internal and external cross-validation certainly

mitigate some of these concerns, providing confidence that

our results may be generalizable. However, the clinical applica-

bility of our predictions requires further validation on cohorts

that closely resemble demographic (e.g., sex, age, etc.) and tu-

mor characteristics (e.g., histopathology, tumor stage, grade,

etc.) of the general population.

Secondly, molecular profiles of tumors utilized reflect steady-

state genomic and transcriptomic states at the time of initial

biopsy. Clearly, as patients receive treatments, tumors’ microen-

vironment and molecular compositions may change in response

to the interventions. As data on the effects of treatments and

their outcomes become available, integrating them will help pri-

oritize biomarkers for clinical utility.

While MPS can reflect gene expression perturbations within a

module including non-uniform changes, coarse and non-specific
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module definitions may affect the sensitivity of our approach.

Thus, building fine-grained modules comprising genes with

coherent changes in their expression could not only boost

MPS but also improve downstream analyses. Finally, multivar-

iate phenotypic attributes such as survival may exhibit

non-monotonic dependencies with the patient’s molecular char-

acteristics. Supplementing our current framework with state-of-

the-art statistical andmachine-learning models may be essential

to discovering these relationships.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Data sources and pre-processing

B De novo discovery of cis-regulatory motifs

B Relating regulators and cis-regulatory motifs

B Previously defined gene modules

B Minimizing redundancies between modules

B Module perturbation scores

B Prognosis of single-locus measurements

B Prognosis of cancer-drivers and their modules

B Cohort- and tissue-specific modules

B Patient stratification and survival analyses

B Identifying prognostic cancer modules

B Modules associated with cancer stage

B Validating prognosis of molecular features

B Prognostic modules in patient sub-groups

B Biological processes enriched in modules

B Random survival forest models trained on PCMs

B Prognosis of modules and clinical features

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100262.
ACKNOWLEDGMENTS

We thank all the members of the Tavazoie lab at Columbia University and So-

hail Tavazoie, Dennis Hsu, and Benjamin Ostendorf at Rockefeller University

for useful discussions and critical feedback. B.S., P.O., and S.T. are supported

by the NIH/NCI award: 5R01CA257153.
AUTHOR CONTRIBUTIONS

B.S, P.O., and S.T conceived the study, designed the experiments, analyses,

interpreted the results, and wrote the manuscript. All authors read and

approved the final manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

One or more of the authors of this paper self-identifies as a member of the

LGBTQIA+ community.

Received: March 28, 2022

Revised: September 29, 2022

Accepted: January 12, 2023

Published: February 2, 2023

REFERENCES

1. Shaw, K.R.M., and Maitra, A. (2019). The status and impact of clinical tu-

mor Genome sequencing. Annu. Rev. Genomics Hum. Genet. 20,

413–432. https://doi.org/10.1146/annurev-genom-083118-015034.

2. Gilks, C.B.,Oliva, E., andSoslow,R.A. (2013). Poor interobserver reproduc-

ibility in the diagnosis of high-grade endometrial carcinoma. Am. J. Surg.

Pathol. 37, 874–881. https://doi.org/10.1097/PAS.0b013e31827f576a.

3. Shih, A.R., Uruga, H., Bozkurtlar, E., Chung, J.-H., Hariri, L.P., Minami, Y.,

Wang, H., Yoshizawa, A., Muzikansky, A., Moreira, A.L., et al. (2019). Prob-

lems in the reproducibility of classification of small lung adenocarcinoma:

an international interobserver study. Histopathology 75, 649–659. https://

doi.org/10.1111/his.13922.

4. Smith, J.C., and Sheltzer, J.M. (2018). Systematic identification of muta-

tions and copy number alterations associated with cancer patient prog-

nosis. Elife 7, e39217. https://doi.org/10.7554/eLife.39217.

5. Poirion, O.B., Jing, Z., Chaudhary, K., Huang, S., and Garmire, L.X. (2021).

DeepProg: an ensemble of deep-learning and machine-learning models

for prognosis prediction using multi-omics data. Genome Med. https://

doi.org/10.1186/s13073-021-00930-x.

6. Milanez-Almeida, P., Martins, A.J., Germain, R.N., and Tsang, J.S. (2020).

Cancer prognosis with shallow tumor RNA sequencing. Nat. Med. 26,

188–192. https://doi.org/10.1038/s41591-019-0729-3.

7. Bhinder, B., Gilvary, C., Madhukar, N.S., and Elemento, O. (2021). Artificial

intelligence in cancer Research and precision medicine. Cancer Discov.

11, 900–915. https://doi.org/10.1158/2159-8290.CD-21-0090.

8. Bradner, J.E., Hnisz, D., and Young, R.A. (2017). Transcriptional addiction

in cancer. Cell 168, 629–643. https://doi.org/10.1016/j.cell.2016.12.013.

9. Senft, D., Leiserson, M.D.M., Ruppin, E., and Ronai, Z.A. (2017). Precision

oncology: the road ahead. Trends Mol. Med. 23, 874–898. https://doi.org/

10.1016/j.molmed.2017.08.003.

10. Kumar-Sinha, C., and Chinnaiyan, A.M. (2018). Precision oncology in the

age of integrative genomics. Nat. Biotechnol. 36, 46–60. https://doi.org/

10.1038/nbt.4017.

11. Bianchi, J.J., Zhao, X., Mays, J.C., and Davoli, T. (2020). Not all cancers

are created equal: tissue specificity in cancer genes and pathways.

Curr. Opin. Cell Biol. 63, 135–143. https://doi.org/10.1016/j.ceb.2020.

01.005.
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FIRE Elemento et al., 200742 Link
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Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing publicly available data. Accession numbers, digital object identifier(s) (DOI) and database versions are

listed in the key resources table. Code used to generate key analyses and figures can be found at https://github.com/balaji-

srinivasan-santhanam/pcm/. Any additional information required to reanalyze data reported in this paper is available from the

lead contact upon request.
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METHOD DETAILS

Data sources and pre-processing
Analyses were carried out using the R statistical computing environment63 (versions 3.2.3, 3.6.3). We used cancer cohorts analyzed

through The Cancer Genome Atlas (TCGA) including Acute Myeloid Leukemia (AML), Bladder Urothelial Carcinoma (BLCA), Breast

Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and Endocervical adenocarcinoma (CESC), Colon Adenocarci-

noma (COAD), Esophageal Carcinoma (ESCA), Glioblastoma Multiforme (GBM), Low-grade Glioma (LGG), Head and Neck Squa-

mous Cell Carcinoma (HNSC), Pan-Kidney (KIPAN), Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), Lung

Squamous Cell Carcinoma (LUSQ), Skin Cutaneous Melanoma (SKCM), Ovarian Serous Cystadenocarcinoma (OVSC), Pancreatic

Adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate Adenocarcinoma (PRAD), Rectum Adenocar-

cinoma (READ), Sarcoma (SARC), Stomach Adenocarcinoma (STAD), Testicular Germ Cell Tumors (TGCT), Thymoma (THYM), Thy-

roid Carcinoma (THCA) and Uterine Corpus Endometrial Carcinoma (UCEC). Molecular and clinical data were obtained from Broad

Institute’s Genome Data Analysis Center and from Liu et al.59,60 We grouped tumors of stage I/IA/IB/II/IIA/IIB/IIC to be ‘early’ stage

and tumors of stage III/IIIA/IIIB/IIIC/IV/IVA/IVB/IVC to be ‘advanced’ stage (AJCC pathologic stage). In cancers for which population-

statistics (https://seer.cancer.gov/statfacts/, SEER 1975–2019) were available in tissue-matched cancers, we manually obtained

proportion of early (in situ or localized) and advanced stage (regions) cancers in patients presenting with non-metastatic disease

at time of diagnosis. We compared the proportions of early and advanced disease in TCGA and SEER cohorts for bladder (BLCA

in TCGA), breast (BRCA in TCGA), colorectal (COAD, READ in TCGA), esophageal (ESCA in TCGA), kidney (KIPAN in TCGA), liver

(LIHC in TCGA), lung (LUAD, LUSQ in TCGA), melanoma (SKCM in TCGA), oral (HNSC in TCGA), pancreas (PAAD in TCGA), stomach

(STAD in TCGA) and thyroid (THCA in TCGA) cancers.

DNA-based molecular datasets included oncotator64 annotated mutation data (SNVs) and germline-subtracted segmented so-

matic copy-number data (CNAs). RNA-based molecular data included microRNA data (reads per million) as well as sample-scaled

quantile-normalized RNA sequencing data. Both gene-level and isoform-level data were used for transcriptome analyses. Additional

RNA-seq datasets for liver, pancreatic, ovarian and clear cell kidney cancer cohorts were downloaded from the International Cancer

Genome Consortium (ICGC) Data Portal (release 28). We only included cohorts with at least 50 patients for which both transcriptome

and clinical data were available. Raw data were normalized by applying variance stabilizing transformation (R package DESeq265). In

ICGC’s pancreatic cancer cohort (Canada), we only included tumor samples enriched by Laser Capture Microdissection with histo-

logical code 8500/3 (ductal carcinoma). For the ovarian cancer cohort, we restricted our comparisons to tumors with histological

code 8441/3 (serous cystadenocarcinoma). Additionally, microarray data for stomach cancer patients were obtained from the Asian

Cancer Research Group (ACRG; GSE62254). Robust Multichip Average (RMA) normalization was performed and probe identifiers

were converted to gene symbols. Only unique identifiers were retained (n = 9419) for further analyses.Within individual cancers, stan-

dardized expression (Z score) per gene (or isoform) was calculated by subtracting themean expression of the gene (or isoform) within

the cohort divided by its SD in the cohort.

De novo discovery of cis-regulatory motifs
First, we sought to infer linear DNA and RNAmotifs underlying expression patterns in primary tumor and tumor-adjacent normal sam-

ples (when available). To this end, we used the linear motif discovery algorithm FIRE42 for the de novo discovery of regulatory

sequence elements in DNA and RNA. The space of sequences explored for identifying these motifs was restricted to one kilobase

(1KB) immediately upstream of transcriptional start sites (TSSs) for DNA and 1KB immediately downstream of the coding region, en-

compassing the 30 untranslated regions (UTRs) for RNA sequence elements. The presence (or absence) of these putative regulatory

motifs was significantly informative of transcript abundance patterns.We analyzed z-scored isoform-level patient transcriptome data

from each TCGA cohort using FIRE. In order to limit the influence and exploration of transcripts with low expression levels, we only

included transcripts that on average were expressed above the 10th percentile of 100,000 randomly sampled data points across all

samples within each cohort. NA values (obtained during Z score calculation) were made 0.

To unveil groups of coordinately expressed genes, we clustered primary tumor transcriptomes using CLARA (Clustering Large Ap-

plications)66 implemented in the R package ‘‘cluster’’67 with two different cluster numbers. Number of clusters were specified as (i)

53round
�
Ceiling

�
G

3000

�
=5

�
or (ii) 53 round

�
Ceiling

�
G
500

�
=5

�
; G is the number of transcripts; CeilingðxÞ is defined as the smallest

integer that is not smaller than x (R function ‘ceiling’); roundðxÞ is defined to be the integer closest to x (R function ‘round’). We chose

these cluster numbers to provide coarse and fine clustering (specified in (i) and (ii), respectively) of the data. Inputs to the FIRE algo-

rithm included transcript identifiers (RefSeq IDs) along with their cluster identifiers (FIRE in discrete mode).

In cohorts that included normal samples from at least ten different patients (breast, colon, head & neck, kidney, liver, lung adeno-

carcinoma and lung squamous cell carcinoma, prostate, stomach and thyroid cancer cohorts), we additionally included comparisons

between primary tumors and normal samples to run FIRE in continuous mode.42 Inputs to FIRE included the log2-ratio of transcript

abundances in primary tumor compared to normal samples (difference between the means of their log2-transformed abundances),

grouped into 5, 10 or 25 equally populated bins.

In addition to identifying linear motifs, we applied TEISER40 for the de novo discovery of putative structural RNA regulatory ele-

ments underlying patient transcriptomes. TEISER, like FIRE seeks to identify statistically significant relationships between the
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presence or absence of pre-computed and optimized structural RNA motifs and transcript measurements.39,40,42 To this end, we

applied TEISER to breast and liver cancer cohorts in both discrete and continuous modes (described above).

In total, our analyses identified 7637 unique putative regulatory elements across the three categories with 1372 DNA motifs, 5555

RNA linear motifs and 710 RNA structural motifs. For everymotif identified through the FIRE and TEISER analyses, we defined amod-

ule associated with the motif. We first defined transcripts that harbored instances of the motif in their promoters (DNA motifs) or

30UTRs (RNA motifs). This collection of transcripts defined the motif’s regulon and genes corresponding to these transcripts were

defined to be the module.

Relating regulators and cis-regulatory motifs
We quantified similarities between every de novo derived motif and the binding preferences of known regulatory factors. We applied

TOMTOM to cross-reference these motifs against curated databases of binding preferences of regulatory factors (MEME version

5.0.5).43,62 As input to TOMTOM, we used the IUPAC sequence of the motif (i.e., query) by converting it to a meme-formatted motif

(iupac2meme function in MEME). We specified ‘‘JASPAR_CORE_2016_vertebrates.meme’’ (TFs) as the reference database to

quantify similarities between these curated DNA regulatory elements and each query DNA motif. Similarly, for RBPs, we selected

the database ‘‘Ray2013_rbp_Homo_sapiens.meme’’ and ‘‘Homo_sapiens_hsa.meme’’ for miRNA seeds as the reference to quantify

similarities between these curated RNA regulatory elements and each query RNA motif. Using Pearson’s correlation between the

query and reference motifs (flag ‘dist’), we required a minimum overlap of 5 (flag ‘min-overlap’) at an E-value threshold of 10 (flag

‘thresh’) and a q-value threshold of 0.01 to identify significant matches. Consistent with the paucity of validated structural binding

elements, we found no significant matches to de novo identified RNA structural regulatory elements.

Previously defined gene modules
In addition to de novo derived cis-regulatory motif modules, we also utilized a large collection of signatures curated through the Mo-

lecular Signatures DataBase (MSigDB version 7.0), assembling a more complete catalog of modules. These module definitions were

obtained as unique NCBI Entrez gene identifiers that were then converted to gene symbols. These included 184 oncogenic and 796

motif signatures as well as 5052 Gene Ontology terms, pathway definitions. An additional set of 1149 regulator-based motif modules

were sourced fromCISBP, CISBP-RNA and JASPAR29–31 databases. The vastmajority of these previously defined genemodules are

defined in cellular contexts with limited similarities to patient-derived primary tumors.

Minimizing redundancies between modules
We sought to identify the extent of redundancy between individual modules within module categories including FIRE DNA motifs,

FIRE RNA motifs (linear), TEISER RNA motifs (structural) as well as Gene Ontology and pathway terms. We defined a similarity mea-

sure to quantify the extent of overlap between two modules (i.e., sets of genes comprising the two modules) based on the Jaccard

index, and defined as SðA;BÞ = ðGA XGBÞ =min ðGA;GBÞ, where GK are genes in module K. Within each module category (listed

above), we applied Affinity Propagation (R package ‘apcluster’)34,68 on the matrix of similarity measures of all module pairs in that

group to identify 209 module clusters (exemplars) for FIRE’s DNAmodules, 824 for FIRE’s RNAmodules, 17 for TEISER’s RNAmod-

ules and 216 for Gene Ontology terms and pathways. The exemplar modules identified through Affinity Propagation were used to

label all modules in a cluster.

Module perturbation scores
We quantized standardized expression in individual samples into Ne = 10 equally populated bins. Each module is represented as a

binary vector with 1 assigned to genes belonging to the module and 0 to rest of the genes, signifying the module membership vector.

We calculated the mutual information between individual primary tumor transcriptomes and module membership vector to quantify

the dependence between them:

Iðmodule; expressionÞ =
X1

i = 0

XNe

j = 1

Pði; jÞlog Pði; jÞ
PðiÞPðjÞ

where Pði; jÞ = Cði; jÞ=N, PðiÞ =
PNe

j = 1Pði; jÞ, PðjÞ =
P1

i = 0Pði; jÞ, Cði; jÞ is the joint-counts table and N is the total number of genes in

each sample. The joint-counts table has 2 rows and Ne columns. Cð1; jÞ indicates the number of genes in the module and in the jth

expression bin, while Cð0; jÞ indicates the number of genes that are not part of the module and are in the jth expression bin.

These mutual information values were subjected to extensive randomization tests and only statistically significant scores were

considered for further analyses, unless specified otherwise. To assess the significance of each mutual information score, we defined

a null distribution by calculating mutual information between randomized primary tumor transcriptome andmodule membership vec-

tors (1000 randomizations). The mean (m) and SD(s) of this empirical null distribution were used to calculate a Z score for the mutual

information value. This Z score was considered significant if the mutual information value was within the top 1% of the values in null

distribution. Negative Z score values were made 0. Finally, the sign of the Pearson correlation coefficient (r), between module mem-

bership vector and standardized expression of individual patient sample was used to sign the mutual information values to obtain the

module perturbation score (MPS) for a given module and an individual patient’s sample:
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MPSðmodule; sampleÞ = sgnðrÞ$H
�
Iðmodule; sampleÞ � m

s

�

where H is the Heaviside step function.

Thus, MPS indicates the module’s perturbed activity in an individual patient transcriptome within a cancer cohort. Patients with

significant module activation (repression) correspond to transcriptomes in which genes in the module are relatively up-regulated

(down-regulated) and labeled MPS+ (MPS–). A module with a positive MPS score (MPS+) in a patient (labeled significant module acti-

vation), corresponds to relative up-regulation of genes in themodule in that patient transcriptome. Likewise, amodule with a negative

MPS scores (MPS–) in a patient (labeled significant module repression), corresponds to relative down-regulation of genes in themod-

ule in that patient transcriptome. Different choices for number of binsNe (6, 10, 15) did not significantly impact downstream analyses.

Prognosis of single-locus measurements
In each cohort for every gene, we compared survival trajectories (overall survival and progression-free interval survival) of patients

stratified into groups with no detected mutations in that gene and those that harbor mutations in it. For copy-number aberrations

(germline-subtracted segmented somatic copy-number data) and expression changes (z-scored gene expression data), patients

were stratified into groups with relative amplification/deletion of gene copy-number and relative activation/repression of gene

expression to quantify survival differences in each cohort. Only genes that had more than 15 patients in each group were included

in these analyses. For comparisons between these three features, survival differences at a significance level of 0.05 (Cox proportional

hazards model) were deemed prognostic.

Prognosis of cancer-drivers and their modules
To compare patient stratification based on module perturbations and measurements on individual genes, we focused on the 199

modules from MSigDB26 associated with 45 tumor-suppressors and 22 oncogenes from OncoKB.27 For each module, their pertur-

bation scores were calculated as described above. Thresholds based on the significance of z-scoredmutual information values were

not enforced. Patients were stratified into groups with positive and negative module perturbations to quantify survival differences

between them in each cohort and for each significant module in every cohort, the absolute standardized significance scores

(Wald statistic from Cox model; p < 0.05) were computed. Standardized significance scores for modules associated with each

cancer-driver27 in every cohort was aggregated using Stouffer’s method. For measurements on the individual genes encoding the

cancer-drivers,27 patients were stratified as described above and we chose the strongest of the three stratifications, based on their

absolute standardized significance scores (Wald statistic from Cox model).

Cohort- and tissue-specific modules
We identified modules that exhibit substantial levels of dysregulation across patient samples within individual cohorts. We selected

cohort-specific modules such that they have high mean absolute module perturbation scores (top 50%) as well as low variance (bot-

tom 40%)within individual cohorts while treatingMPS+ andMPS– scores separately.We restricted our analyses to previously defined

modules across 25 TCGA cancer cohorts, identifying 1978 modules with cohort-specific perturbation patterns. The patterns of per-

turbations remain largely unchanged when the complete catalog of modules was utilized.

Additionally, we identified modules that exhibited significantly differential perturbation patterns in primary tumor samples

compared to patient-matched tumor-adjacent normal samples. We used z-scored transcriptome data from primary tumors and their

matched normal samples and calculated module perturbation scores for all the modules in these samples. Modules whose pertur-

bation scores were significantly perturbed in at least 75% of samples and have opposite signs in primary tumor compared to normal

samples were labeled tissue-specific modules (i.e., MPStumor$MPSnormal < 0). Our analyses discovered modules differentially per-

turbed in tumor-normal contexts in 10 cohorts: bladder cancer (313 modules, 19 patients); breast cancer (17 modules, 112 patients);

colon cancer (610 modules; 26 patients); esophageal cancer (225 modules; 11 patients); head & neck cancer (20 modules, 43 pa-

tients); liver cancer (107 modules, 50 patients); lung adenocarcinoma (55 modules, 58 patients); lung squamous cell carcinoma

(376 modules, 50 patients); rectal cancer (1450 modules, 6 patients); stomach cancer (22 module, 32 patients) and uterine endome-

trial cancer (493 modules, 7 patients).

Patient stratification and survival analyses
For patient stratification, module perturbation scores were sorted and survival differences were quantified between patients with signif-

icantly activated (MPS+) and significantly repressed (MPS–) module perturbation scores using the ‘survival’ package in R.69 The number

of patients used in theMPS+ andMPS– groupsweredeterminedbasedon the sizeof the cohort (n): AML (n= 149)- 25patientsper group,

50; BLCA (n = 401)- 25, 50, 75, 100, 150, 200; BRCA (n = 1061)- 25, 50, 75, 100, 150, 200, 250, 400, 500; CESC (n = 290)- 25, 50, 75, 100;

COAD (n=275)- 25, 50, 75, 100;ESCA (n=183)- 25, 50,75;GBM(n=151)- 25, 50,75; LGG (n=510)- 25, 50, 75, 100,150, 200,250;HNSC

(n = 519)- 25, 50, 75, 100, 150, 200, 250; KIPAN (n = 874)- 25, 50, 75, 100, 150, 200, 250, 400; LIHC (n = 360)- 25, 50, 75, 100, 150; LUAD

(n = 480)- 25, 50, 75, 100, 150, 200; LUSQ (n = 488)- 25, 50, 75, 100, 150, 200; SKCM (n = 99)- 25; OVSC (n = 283)- 25, 50, 75, 100; PAAD

(n= 177)- 25, 50, 75; PCPG (n= 178)- 25, 50, 75; PRAD (n= 486)- 25, 50, 75, 100, 150, 200; READ (n= 92)- 25; SARC (n= 257)- 25, 50, 75,

100;STAD (n=383)- 25, 50, 75, 100, 150; TGCT (n=134)- 25, 50; THYM(n=119)- 25, 50; THCA (n=500)- 25, 50, 75, 100, 150, 200;UCEC
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(n = 171)- 25, 50, 75. Additionally, for everymodulewe also compared survival differences between all patients labeledMPS+ andMPS–.

All survival comparisons were performed for both overall survival and progression-free interval survival times. For the AML cohort, only

overall survival endpoint is defined.60We obtained the log rank test p values, Cox proportional hazardsmodel p values, their associated

z-scores fromWald testandhazard ratios (HR). For eachcomparison,wegeneratedanull distributionandobtained false-discovery rates

(FDRs) of the log rank test p value by randomly sampling similar sized patient groups (procedure repeated 100,000 times). Additionally,

we also obtained false-discovery rates by randomly switching group labels from the stratification for individual patients. Survival curves

were visualized using the ‘survminer’ R package version 0.4.8.70 For visualization, survival curveswere truncatedwhen less 5%of at risk

patients remained when specified.

Identifying prognostic cancer modules
To minimize false discovery in patient stratification and survival, our analyses were performed with 3-fold cross validation. The tran-

scriptome data collection in each cancer cohort was split 3-ways (2/3: training and 1/3: test) and thus, every sample appeared in a

test set exactly once. Training and test datasets were each standardized as described above. For genes in the test set, their z-scores

were calculated using their means and standard deviations in the training set. The module perturbation scores for all modules in our

catalog were computed as described above for patient samples in the training and test sets. Samples were ranked by absolute non-

zero MPS in both MPS activated (MPS >0) and repressed groups (MPS <0) to define MPS+ and MPS– sample groups in the training

set. We chose a fixed number samples from each group (numbers specified for each cohort above) and quantified the survival dif-

ferences between them. From each training set, we propagated the boundary conditions for the activated (least positive value of

MPS) and repressed (most negative value of MPS) sample groups to their respective test sample sets and categorized test set sam-

ples into MPS+ and MPS– groups accordingly. We concatenated the three test sets to reconstitute the full cohort carrying the prop-

agatedMPS+ andMPS– labels. On this full set, we quantified survival differences between the labeledMPS+ andMPS– groups for the

same fixed number of samples used on the training sets. We defined amodule to be prognostic in a cohort when survival differences

were significant (i) in each of the 3 training splits (log-ratio rank test FDR <0.05), (ii) in the label-propagated test set (log-ratio rank test

FDR <0.01), and, (iii) in the full cohort (without training/test split) with the same fixed number of samples (log-ratio rank test FDR <0.01,

Cox proportional hazard p value <0.05). These modules were defined to be prognostic cancer modules (PCMs).

A potential confound of the clinical significance of module perturbation scores could be due to correlations with clinical and his-

topathological factors, such as tumor stage, histological type, receptor status etc. To address this, we performedmultivariate survival

comparisons by jointlymodeling the effects of these confounding factors in addition tomodule perturbation scores on patient survival

using the Cox model and results were visualized as forest plots (R function ggforest; survminer package version 0.4.870).

Modules associated with cancer stage
Cancer stage information was available for 15 cancers from TCGA. Primary tumors of stage I/IA/IB were grouped to be ‘stage I’, tu-

mors of stage II/IIA/IIB/IIC to be ‘stage II’, tumors of stage III/IIIA/IIIB/IIIC to be ‘stage III’ and tumors of stage IV/IVA/IVB/IVC were

grouped to be ‘stage IV’. We modified our computational pipeline for discovering PCMs in order to identify modules whose pertur-

bation scores are associated with disease progression, using cancer stage as a proxy for disease progression. After calculating

perturbation scores on the full catalog of modules as described earlier, we chose a fixed number samples from MPS+ and MPS–

groups (numbers specified for each cohort above). We then tested for preferential enrichment/depletion of either MPS group across

the 4 discretized stages using Fisher exact test on the training and test datasets. We used the R function ‘fisher.test’ on the 4 3 2

contingency tables using default parameters with the flag ‘simulate.p.value’ set to TRUE to speed up calculations.We defined amod-

ule to be a progression-associatedmodule in a cohort when enrichment/depletion patterns were significant (i) in each of the 3 training

splits (Fisher exact test p value <0.05), (ii) in the label-propagated test set (Fisher exact test p value <0.01), and, (iii) in the full cohort

(without training/test split) with the same fixed number of samples (Fisher exact test p value <0.01).

To validate modules associated cancer stage on an independent external cohort, we utilized a dataset consisting of 342 patients

with colonic neoplasms from whom normal tissue, polyps, primary tumor and metastastic lesions were biopsied and analyzed using

transcriptomics (GEOGSE41258).32,33We calculatedmodule perturbation scores of the 25 progression-associatedmodules discov-

ered on TCGA’s colon cancer cohort and compared the distributions of MPS in the different tissue types on this external cohort

(Mann-Whitney test). We also sought to examine pathways relating to apoptosis and oxidative phosphorylation, previously discov-

ered by Drier and colleagues to be correlated with disease progression in this colon cancer cohort using the pathway deregulation

scores (PDS).15,71 PDS utilizes normal samples as a reference to quantify the extent of deregulation of a pathway in individual sam-

ples. For both modules, with identical module definitions, we calculated their PDS (R package ‘pathifier’)71 as well as their MPS and

quantified the correlation coefficients between the two measures. While these specific modules did not meet our statistical thresh-

olds for identifyingmodules associatedwith cancer stage in TCGA,we did find other significant progression-associatedmodules that

shared substantial similarities with each of these modules (hypergeometric test p value <10�5).

Validating prognosis of molecular features
To validate the prognostic value of modules in independent cohorts, we performed tissue-matched comparisons between TCGA and

independent collections from ICGC and ACRG (labeled external cohorts). For each PCM discovered in a TCGA cohort, we quantified

theZ score for themutual information value between themodule’s genemembership and every individual patient transcriptome in the
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matched independent cohort and MPS values as described earlier. We assessed survival differences between patients with

activated and repressed perturbations scores with similar number of patients in the two groups, as described for TCGA cohorts.

The number of patients used in each group (n) was decided based on the size of the cohort: clear cell kidney cancer (ICGC-

Europe; n = 25), liver cancer (ICGC-Riken; n = 25, 50, 100), ovarian cancer (ICGC-Australia; n = 25), pancreatic cancer (ICGC-

Canada; n = 25, 50) and stomach cancer (ACRG; n = 25, 50, 100, 150), only including comparisons with at least twenty patients

in each group. PCMs that resulted in survival differences with log rank test p value <0.05 or absolute log2(hazard ratio) > 0.4 were

defined to be prognostic in the external cohort. Only PCMs that were prognostic in the external cohort in the same direction as

the tissue-matched TCGA cohort (e.g., activatedMPS specified worse prognosis in both cohorts) were considered to be consistently

prognostic in the two cohorts. For every cohort, to assess the significance of this overlap, we assessed the prognostic ability of

randomly sampled modules in the external cohorts (as described above). The same number of modules as there were PCMs in

TCGA were randomly chosen from the set that was not prognostic in TCGA. From 100,000 repetitions, we quantified the statistical

significance of finding a greater number of prognostic modules in the random set than in the set of PCMs for each cohort. For gene-

level comparisons between TCGA and the external cohorts, genes were defined to be consistently prognostic in both cohorts based

on the same p value and hazard ratio thresholds used for modules. We used area under the receiver operating characteristic curves

(ROC) to evaluate the predictive performance of modules and genes on independent external cohorts. The positive sets used on AUC

estimation for single-loci are defined based on genes whose expression was prognostic in tissue-matched cohorts in TCGA. Nega-

tive sets for genes were defined by randomizing each transcriptomic profile from the independent cohorts followed by standardizing

the randomized gene expression profiles. On these gene expression values (n = 100 for each cohort), survival analyses were carried

out as described earlier. For modules, PCMs discovered on tissue-matched TCGA cohorts were defined as positive sets. Negative

set for modules (n = 100) were obtained by randomizing module perturbation scores for each sample in the independent cohorts fol-

lowed by patient stratification and survival analysis as described above. These positive and negative sets were used to compute

AUC. The procedure was repeated 10 times for each cohort and the distributions of AUC values for gene expression and PCMs

were compared for each cohort. To compare themolecular and clinical features between cohorts in the two collections, we visualized

the relative dissimilarities amongst the transcriptomic data using tSNE (R package ‘Rtsne’ 0.15).72,73

Prognostic modules in patient sub-groups
We explicitly partitioned patients in each cohort based on significant clinical and patient features including histological type, tumor

stage, age, sex, race as well as important cohort-specific clinical factors and prominent molecular features.

Additionally, we controlled for annotatedmolecular states (BCR/ABL status, FLT3mutation status, PML-RARA status, IDH1 status)

in AML; hormone receptor status (estrogen receptor (ER) and progesterone receptor (PR) statuses both negative or not), HER2 re-

ceptor status (negative or not), triple-negative status (ER, PR and HER2 receptor status all negative) in breast cancer; HPV status for

cervical, esophageal and head and neck cancers; microsatellite instability status and side of tumor procurement (i.e., location) in co-

lon cancer and Gleason score (high: 8 and above; medium/low: 7 and below) for prostate cancer.

Furthermore, we utilized prominent mutations and copy-number aberration patterns to partition patients in each cohort. For

mutations, in each cohort, we selected only genes that harbored mutations in at least 5% of patients for which primary tumor tran-

scriptomic datawas also available. From this set, we chose atmost 3 genes (excluding TTN) with the highest number ofmutations per

base pair of its coding sequence. These included (in order) NPM1, DNMT3A, NRAS in AML; TP53, PIK3CA, KDM6A in bladder cancer;

TP53, PIK3CA, GATA3 in breast cancer; PIK3CA, HLA-A, PTEN in cervical cancer; KRAS, TP53, NRAS in colon cancer; TP53,

CDKN2A, NTM in esophageal cancer; TP53, PTEN, EGFR in GBM; TP53, IDH1, PTEN in glioma; TP53, CDKN2A, PIK3CA in head

and neck cancer; VHL, PBRM1, MUC4 in kidney cancer; TP53, CTNNB1, ALB in liver cancer; KRAS, TP53, STK11 in lung adenocar-

cinoma; TP53,CDKN2A, TPTE in lung squamous cell carcinoma; NRAS, RPS27, CDKN2A in melanoma; TP53, USH2A, CSMD3 in

ovarian cancer; KRAS, TP53, CDKN2A in pancreatic cancer; HRAS, MLLT3, POTEC in paraganglioma; SPOP in prostate cancer;

KRAS, TP53, OPCML in rectal cancer; TP53, RB1, NRXN1 in sarcoma; TP53, KRAS, GNAS in stomach cancer; TVP23C, KRAS,

SEC22B in testicular cancer; GTF2I, HRAS in thymoma; BRAF, NRAS in thyroid cancer; PTEN, KRAS, TP53 in uterine endometrial

cancer cohorts.

To select relevant copy-number aberrations within each cohort, we computed the rank-product for each gene, RPðgÞ, based on its

rank (ascending order) by the absolute median copy-number aberration value across all samples in the cohort (rgM) and its rank by the

SD of the aberration value in the same cohort (rgs ):

RPðgÞ =
ffiffiffiffiffiffiffiffiffiffiffi
rgM$r

g
s

q

Starting from 1000 genes with the highest rank-product scores, we filtered out genes that were not relevant to cancer based

on annotations on theOncoKB27 database. Next, we iteratively selected the genewith the highest rank-product score while removing

genes whose copy-number aberration values were highly correlated with the selected gene (|correlation| > 0.5). We selected up to 3

genes with the highest rank-product that were least likely to have correlated copy-number aberration patterns within the cohort.

These included XRCC2, PTPRS, TP53 in AML; CDKN2B, NKX3-1, UBR5 in bladder cancer; MYC, NKX3-1, MCL1 in breast

cancer; PRKCI, CHEK1, YAP1 in cervical cancer; GNAS, ATP6V1B2 in colon cancer; CDKN2B, MYC, PRKCI in esophageal

cancer; CDKN2B, FAS, EGFR in GBM and glioma; CDKN2B, SOX2, PDCD1LG2 in head and neck cancer; MLH1, MET, FLT4 in
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kidney cancer; ATP6C1B2, MYC, MCL1 in liver cancer; TERT, MYC, SETDB1 in lung adenocarcinoma; DCUN1D1, CDKN2B,

WWTR1 in lung squamous cell carcinoma; CDKN2B, CD272, MOB3B in melanoma; MYC, NKX3-1, TP63 in ovarian cancer;

CDKN2B, SMAD4, MAP2K4 in pancreatic cancer; NRAS, GPS2 in paraganglioma; ESCO2, WHSC1L1, SETDB2 in prostate cancer;

FLT1, PTPRT, SMAD4 in rectal cancer; CYSLTR2, CDKN2B, BRCA2 in sarcoma; MYC, GNAS, DUSP4 in stomach cancer; ETNK1,

CHEK1, SOX17 in testicular cancer; NF2, IRF8, JARID2 in thymoma; XBP1, CDC73, TRAF2 in thyroid cancer; RIT1, NKX3-1, MYC in

uterine endometrial cancer cohorts. To partition patient samples based on the copy-number aberration values of each selected gene,

samples were categorized as ‘deep amplified’ if the copy-number aberration values are in the top 25% of positive copy-number

values, ‘amplified’ for rest of samples with positive copy-number aberration values, ‘deep deleted’ if the values are in the bottom

25% of non-zero negative copy-number values, ‘deleted’ for rest of the samples with negative copy-number values.

For every clinical and molecular attribute detailed above (e.g., histological types in breast cancer; HPV status in cervical cancer;

pathologic stage in stomach cancer etc.), we partitioned patients in that cohort within these sub-groups based on values of the

attribute (e.g., Infiltrating Ductal Carcinoma or Infiltrating Lobular Carcinoma in breast cancer; stage I/IA/IB or stage II/IIA/IIB or stage

III/IIIA/IIIB/IIIC or stage IV in stomach cancer; TP53 wild-type or TP53 mutant pancreatic cancer; MYC deep amplified or MYC ampli-

fied orMYCdeleted orMYCdeep deleted breast cancer).Within each of these sub-cohorts, we identifiedmodules that were clinically

prognostic in 3-fold cross-validation mode with the same training/test data partitions as with the full cohort. We performed these

analyses only if the size of the sub-cohort included more than 20 samples and, at least 10 training samples in the MPS+ and

MPS– groups for each of the 3-folds of cross-validation and, 10 test samples labeled MPS+ and MPS– after boundary conditions

were propagated from the training set. We defined a module to be prognostic in a given sub-cohort when survival differences

were significant in each of the 3 training splits (log-ratio rank test FDR <0.2) and in the label-propagated test set (log-ratio rank

test FDR <0.1) and in the full cohort (without training/test split) with the same fixed number of samples (log-ratio rank test FDR

<0.05). More relaxed thresholds reflect the smaller sizes of the sub-cohorts.

Biological processes enriched in modules
We carried out Gene Ontology enrichment analyses to identify processes underlying genes comprising eachmodule to provide addi-

tional functional context (R package ‘topGO’ 2.22.074).

Random survival forest models trained on PCMs
We evaluated the combined prognostic ability of modules that were individually identified to be prognostic within a cancer cohort. We

used random survival forests (implemented in R package ‘randomForestSRC’ 2.7.075), a non-parametric ensemble learning random

forest approach applied to right-censored survival data.54,76 Approaches based on random forests are powerful since they incorporate

patterns of correlations anddependencies betweenmodule perturbations, potentially capturing interactions between themodules.We

used10-fold cross-validationwith 1000 treeswith the averagenumber of uniquedata points in a terminal node set to 15 and the number

of variables randomly selected for splitting a node set to be the ceiling of the natural logarithm of number of features (ceiling function

defined earlier) with log rank split as the splitting rule. For each training-test split in the 10-fold cross-validation, we collated the predic-

tions from the forest (i.e., estimated risk) of patients in the test sets to compile the full set of predictions of all samples. Finally, patients

were sorted based on risk predicted by the random survival forest model and categorized into high and low risk groups to quantify sur-

vival differences between them.Comparisons between survival stratifications frommodule perturbation scores of individual PCMs and

random survival forest models (number of predicted high- and low-risk patients) were made on similarly sized group of patients.

In order to test the cross-cohort predictive value of modules, we first trained a random survival forest model for a cancer cohort in

the TCGA collection only using PCMs identified in that cohort. We then used this model to make survival predictions in every other

cohort in the TCGA. The top and bottom 40% of patients (by estimated risk) in the predicted cohort were used for survival compar-

isons. Finally, we also used these models to make predictions in tissue-matched comparisons on the external cohorts by clustering

the ensemble survival probabilities at event times as predicted by the random survival forest models.

Prognosis of modules and clinical features
Weused random survival forest models to assess and compare the abilities of different types of features to predict patient overall and

progression-free interval survival in each cohort. We separately considered survival predictions of models trained on module pertur-

bation scores of PCMs in each cohort, standard clinical factors, SNVs, CNAs and inferred immune cell-type frequencies. We

excluded the pan-kidney cancer cohort from these analyses, given that this cohort is not considered to be a single disease.77 For

each individual feature category, we trained random survival forest models with 10-fold cross-validation, repeating the process

10 times. To assess the predictive ability of eachmodel, we compared the survival differences of high-risk and low-risk patients, cate-

gorized based on themodel’s predictions. To assess the relative prognostic strength of the different feature categories, we compared

the distributions of the absolute log2-transformed hazard ratios (n = 10; one-sided Mann-Whitney test). We also assessed if module

perturbation scores improved the prognostic abilities of standard clinical factors, SNVs, CNAs or inferred immune cell-type fre-

quencies by comparing survival predictions of random survival forest models trained on each of these individual feature categories

alone and in combination with module perturbation scores. In each cohort, the same number of predicted high- and low-risk patients

were chosen for survival comparisons for all themodels. For survival comparisons, number of patients in the high and low risk groups

were chosen to be:
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where N is number of patients in the cohort and f is a fraction between 0 and 1. Thus, fxN is the number of samples used for survival

comparisons of patients stratified based on risk predictions from the different random survival forest models. Different choices for f

(0.4, 0.5, 0.666, 1) had little qualitative impact on the comparisons between the random survival forest models and for all comparisons

we chose f to be 0.666. In the prostate cancer cohort, for survival comparisons on predictions frommodels trained onmodule pertur-

bation scores of PCMs, standard clinical factors and SNVs (or CNAs), the Cox proportional hazards model provided invalid Wald

statistic because of singularities that arise during coefficient estimation (manual PAGE for ‘survival’ package in R69). For these com-

parisons, f was chosen to be 1.

Standard clinical factors

We included histological type, tumor stage (both AJCC and discretized) and age groups (patient’s age <30, 30 < age <60, age >60) for

all cohorts. We also included additional features in AML-molecular test status; breast cancer-estrogen receptor status, progesterone

receptor status, HER2 receptor status, triple-negative status; cervical cancer- HPV status; colon cancer-microsatellite instability sta-

tus, side of tumor procurement; head & neck cancer- HPV status and prostate cancer- Gleason score, Prostate-specific antigen

value.

SNVs

We selected prominently mutated genes as described earlier. We included up to 50 genes that were mutated in more than 30 sam-

ples. These analyses were only performed in cohorts that had both transcriptomic data as well mutation data in more than 100 pri-

mary tumor samples.

CNAs

In each cohort, we computed the rank-product for each gene, RPðgÞ (defined earlier). As random model forest features, we chose

10% of genes with the highest rank-product scores and iteratively selected the genes with the highest rank-product score while

removing genes whose copy-number aberration values were highly correlated with the selected gene (|correlation| > 0.5). Thus,

we included genes with the highest rank-product that were least likely to have correlated copy-number aberration patterns within

the cohort. We categorized samples based on the copy-number aberration values of each gene as ‘deep amplified’ if the values

are in the top 33% of positive copy-number values, ‘amplified’ for rest of samples with positive copy-number aberration values,

‘deep deleted’ of the values are in the bottom 33% of non-zero, negative copy-number values, ‘deleted’ for rest of the samples

with negative copy-number values.

Immune cell-type abundances

We utilized the inferred relative frequencies of 22 immune cell-types in TCGA’s primary tumor transcriptome data.58 These fre-

quencies were estimated using CIBERSORT (cell-type identification by estimating relative subsets of RNA transcripts) which uses

pure-population reference profiles of immune cell-types to deconvolve bulk transcriptome data to estimate the relative proportions

of the different cell-types. The data were downloaded from GDC (Genomics Data Commons; https://gdc.cancer.gov/about-data/

publications/panimmune).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were carried out using the R statistical computing environment63 (versions 3.2.3, 3.6.3). The code used for the analyses can

be found at https://github.com/balaji-srinivasan-santhanam/pcm. Details of specific functions and libraries are provided in the

methods sections. For statistical tests, details of the specific tests used and parameters are specified at appropriate sections of

the text including in the methods, results and figure legends sections. Survival comparisons were quantified using log rank test

and Cox proportional hazards model. Between-group comparisons were made using Mann-Whitney U test (Wilcoxon rank-sum

test). Contingency table tests were performed using hypergeometric test or Fisher exact test.

ADDITIONAL RESOURCES

Data are available as Data Sheets. Results have also been made available at https://tavazoielab.c2b2.columbia.edu/PCMs/

landing_page.html
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Figure S1. Prognosis specified by genomic and transcriptomic observations on individual 

genes, Related to Figure 1. 

(a) Proportion of genes prognostic based on their copy-number aberrations (purple), mutation 

statuses (black) and expression changes (yellow) in each cohort (Y-axis) for overall survival (left 

panel) and progression-free interval survival (right panel). 
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Figure S2. Gene expression changes are more strongly prognostic for overall survival 

than either copy-number aberrations or mutations in individual genes, Related to Figure 

1. 

Distributions of absolute standardized significance scores (X-axis; Wald statistic) in patient 

stratifications based on gene expression changes or copy-number aberrations and mutation 

statuses are shown for each cohort in TCGA (color key indicated). For each gene’s expression 

and copy-number, patients were stratified into groups with relatively high and low expression 

(positive and negative z-scored gene expression) and, high and low copy-number (positive and 

negative germline-subtracted segmented somatic copy-number) respectively, to quantify 

differences in overall survival. For mutations, patients were grouped into those with observed 

mutations and those with no observed mutations to quantify differences in overall survival. One-

sided Mann-Whitney test p-values are indicated for each cohort. 
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Figure S3. Gene expression changes are more strongly prognostic for progression-free 

interval survival than either copy-number aberrations or mutations in individual genes, 

Related to Figure 1. 

Distributions of absolute standardized significance scores (X-axis; Wald statistic) in patient 

stratifications based on gene expression changes or copy-number aberrations and mutation 

statuses are shown for each cohort in TCGA (color key indicated). For each gene’s expression 

and copy-number, patients were stratified into groups with relatively high and low expression 

(positive and negative z-scored gene expression) and, high and low copy-number (positive and 

negative germline-subtracted segmented somatic copy-number) respectively, to quantify 

differences in progression-free interval survival. For mutations, patients were grouped into those 

with observed mutations and those with no observed mutations to quantify differences in 

progression-free interval survival. One-sided Mann-Whitney test p-values are indicated for each 

cohort. 
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Figure S4. Molecular measurements on genes encoding tumor-suppressors and 

oncogenes are largely correlated with perturbations in their associated modules, Related 

to Figure 1. 

Distributions of correlations coefficients between module perturbations of 67 cancer-drivers1 with 

mutations, copy-number aberrations or expression changes in genes encoding them across 25 

cancers from TCGA (Y-axis). For every cohort, there are 22 points corresponding to tumor-

suppressors (left panel) and 45 points corresponding to oncogenes1. Each dot represents the 

strongest correlation between module perturbations and each of the three single-gene 

measurements. Spearman’s correlation coefficients were computed between copy-number 

aberrations and expression changes with module perturbations whereas Pearson’s correlation 

coefficients were used for mutation statuses. Numbers of significant (p-value < 0.05; blue or red 

triangles) and not significant (p-value > 0.05; gray dots) correlation coefficients are indicated for 

each cohort. 
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Figure S5. Perturbations in modules associated with KRAS and PTEN provide better 

patient survival stratification than measurements on individual genes, Related to Figure 

1. 

(a-b) Patients stratified based on mutation status, copy-number aberrations and expression 

changes in (a) KRAS in lung adenocarcinoma (LUAD) and, (b) PTEN in stomach cancer (STAD). 

Also shown are patient stratifications based on perturbations in module comprising (a) genes 

up-regulated in lung cancer cells over-expression KRAS (MSigDB2 M12860) and, (b) genes up-

regulated upon knockdown of PTEN (MSigDB2 M2787). (c) Violin plots show distributions of the 

mean expression of genes that make up the modules corresponding to repressed targets of 

TP53 (MSigDB M2698; 198 genes) in pancreatic cancer (left panel), activated targets of KRAS 

(MSigDB M12860; 139 genes) in lung adenocarcinoma (middle panel) and repressed targets of 

PTEN (MSigDB M2787; 186 genes) in stomach cancer cohort (right panel). Patients have been 

stratified into groups with positive (red) and negative (blue) perturbation scores for these 

modules. Genes that constitute the modules are shown (black dots) and their mean expression 

values in the MPS positive and negative groups are linked (black lines). Slopes of the lines 

indicate whether genes are up- (negative slope) or down-regulated (positive slope) in the MPS 

positive compared to the MPS negative patient groups. Each module shown comprises of genes 

with both high and low average expression, while its perturbation scores is statistically significant 

and it significantly discriminates patients based on survival. Stratification of patients based on 

the perturbation scores of the three modules shown in this sub-panel are plotted in Fig 1d, Fig 

S5a (right panel) and Fig S5b (right panel), respectively.  
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Figure S6. Perturbation scores of modules associated with oncogenes and tumor-

suppressors provide better patient survival stratification than measurements on 

individual genes, Related to Figure 1. 

(a-b) Scatterplots show comparisons between absolute standardized significance scores (Wald 

statistic) individual genes and their corresponding modules (Wald statistic summarized by 

Stouffer’s method) in individual cohorts (labels indicated on top). For individual gene 

measurements of each oncogene or tumor-suppressor, we report the absolute values of the 

standardized significance scores for best gene-based stratification (mutation, copy-number or 

expression; shown in legend). The shape of each dot indicates the nature of measurements 

used. The modules whose prognostic value is better than the individual gene measurements are 

above the reference line y=x. The number of oncogenes and tumor-suppressors whose modules 

have better (worse) prognostic value than individual gene measurements are shown above 

(below) the reference line. A handful of prominent oncogenes and tumor-suppressors are 

highlighted (color legend shown). Comparisons are shown for (a) overall survival and, (b) 

progression-free interval survival. 

  



 13 

 



 14 

Figure S7. Perturbation scores of modules associated with oncogenes and tumor-

suppressors convey stronger overall survival prognosis than measurements on 

individual genes, Related to Figure 1. 

The log2-ratio of the absolute standardized significance of modules associated with cancer-

drivers1 and measurements on these individual genes (in rows) are visualized across cancers 

from TCGA (columns). Standardized significance (Wald statistic) for individual genes were 

chosen to be the maximum from expression, copy-number and mutation based patient 

stratifications in each cohort. For the corresponding modules, standardized scores were 

summarized using Stouffer’s method (Methods). Rows and columns are clustered using 

hierarchical clustering using Euclidean distance with optimal ordering of leaves. 
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Figure S8. Perturbation scores of modules associated with oncogenes and tumor-

suppressors convey stronger progression-free interval survival prognosis than 

measurements on individual genes, Related to Figure 1. 

The log2-ratio of the absolute standardized significance of modules associated with cancer-

drivers1 and measurements on these individual genes (in rows) are visualized across cancers 

from TCGA (columns). Standardized significance (Wald statistic) for individual genes were 

chosen to be the maximum from expression, copy-number and mutation based patient 

stratifications in each cohort. For the corresponding modules, standardized scores were 

summarized using Stouffer’s method (Methods). Rows and columns are clustered using 

hierarchical clustering using Euclidean distance with optimal ordering of leaves. 
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Figure S9. Module perturbation scores are reflective of cohort-specific states and tumor-

normal differences, Related to STAR Methods. 

(a) Number of all modules considered in this study per category. Previously defined gene 

modules include well-defined pathways, ontology attributes (from KEGG, PID, REACTOME, 

Gene Ontology collections), oncogenic signatures (MSigDB) and DNA/RNA sequence motifs 

characterized to be bound by known regulatory factors2–5. Modules associated with de novo 

discovered DNA, linear and structural RNA sequence motifs were discovered using 

transcriptome analyses of patient biopsies by applying the linear motif discovery algorithm FIRE6 

and the structural motif discovery algorithm TEISER7. (b) MPS patterns of modules dysregulated 

in cohort-specific ways (see Methods). Rows (modules) are clustered based on patterns of MPS 

(scale indicated) in these samples. The median module perturbation scores of cohort-specific 

modules across samples within each cohort are visualized (scale indicated). (c) Heatmaps show 

the membership of cohort-specific modules in cancers (left panel; Methods section) and the 

overlap between their constituent genes (right panel). The binary matrix (left panel) indicates 

modules identified in a cancer in red. The extent of overlap is quantified using a modified Jaccard 

score (scale indicated; Methods). In both heatmaps, rows (modules) are ordered based on the 

overlap matrix and columns (cancers) in the binary matrix (left panel) have the same order as in 

panel (b). (d) Tumor-specific MPS patterns of modules dysregulated in primary tumors and 

matched normal samples in 11 different cohorts (labels shown). Rows (modules) are clustered 

based on patterns of MPS (scale indicated) in these samples. (e) Matrix shows number of shared 

modules dysregulated in primary tumors compared to matched normal samples across 11 

different cancer cohorts. The colors indicate the number of shared modules between cancers 

(color key indicated). 

  



 19 

 

  



 20 

Figure S10. Module perturbation scores are correlated with cancer stage, Related to 

STAR Methods, Data Sheet 3. 

(a) Number of modules that are significantly correlated with cancer stage in each module 

category (Y-axis; module categories indicated) across different TCGA cohorts (labels on top). 

(b-c) Scatterplots (left panel) show comparisons between Pathway Deregulation Scores (PDS; 

X-axis) and Module Perturbation Scores (MPS; Y-axis) for 342 samples obtained from patients 

with colonic neoplasms (GEO accession GSE41258)8,9 for modules associated with (b) 

regulation of apoptosis (KEGG database; MSigDB M849210) and (c) oxidative phosphorylation 

(KEGG database; MSigDB M1954010). Each dot corresponds to a patient and colors indicate 

tissue-types (key indicated) and the correlation coefficient between PDS and MPS of these two 

modules are shown. Significant correlation coefficients between the two measures suggest 

that that MPS of these modules also capture disease progression just like their PDS, as 

reported originally by Drier and colleagues8,11. We compared the distributions of MPS between 

the biopsied tissue-types on the independent cohort and the statistics of these comparisons 

are shown as a heatmap (right panel; -log10 of two-sided Mann-Whitney test p-values shown). 

(d) Overlap between apoptosis pathway and module with highest similarity to it (based on 

hypergeometric test) is shown as a Venn diagram. Statistics of the overlap (hypergeometric 

test) and some of the prominent overlapping genes are indicated. The module associated with 

GO term mitochondrion (GO:0005739; 1980 genes) was one of the progression-associated 

modules discovered in TCGA’s colon cancer cohort (panel (a)). (e) Overlap between oxidative 

phosphorylation pathway and module with highest similarity to it (based on hypergeometric 

test) is shown as a Venn diagram. Statistics of the overlap (hypergeometric test) and some of 

the prominent overlapping genes are indicated. The module associated with electron transport 

respiratory chain (Reactome R-HSA-163200; 151 genes) was one of the progression-

associated modules discovered to be associated with colon cancer stage in TCGA (panel (a)).  
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Figure S11. Modules discovered on TCGA’s colon cancer cohort are correlated with 

disease progression on an independent colon cancer cohort, Related to STAR Methods, 

Data Sheet 3. 

For progression-associated modules discovered on TCGA’s colon cancer cohort, the 

distributions of perturbation scores (modules indicated) in metastatic, primary tumor, polyps 

and normal tissues biopsied from patients with colonic neoplasms (GEO accession 

GSE41258)8,9 are shown as violin plots (left panel). For each module, heatmap (right panel) 

shows statistics of the comparisons between MPS distributions in the biopsied tissue-types 

(right panel; two-sided Mann-Whitney test p-values shown).  
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Figure S12. Numbers of prognostic cancer modules across different module categories 

for different cancers, Related to STAR Methods, Data Sheet 4. 

(a) Fraction of patients with early or advanced stage cancer at time of diagnosis from the SEER 

database and in tissue-matched TCGA cohorts (Methods). Cancers are shown in rows. (b) 

Number of modules in each module category that specify significant prognostic value for overall 

survival (black bars) and progression-free interval survival (gray bars). For GO terms and 

pathways, de novo discovered DNA and RNA modules, numbers refer to non-redundant 

modules (as defined through Affinity Propagation12) and the numbers in parentheses, the full set 

of redundant modules (see Methods). (c) Number of prognostic cancer modules (both overall 

survival and progression-free interval survival) in each module category (Y-axis; module 

categories indicated) across different TCGA cohorts (labels on top). 
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Figure S13. Patient survival stratification using previously defined modules associated 

with transcription factors, miRNAs and RNA binding proteins, Related to Figure 2, Data 

Sheet 4. 

(a) Glioma patients with significant module activation  (MPS+; red) for transcripts carrying at least 

one instance of the motif GAGCCAG in their 3’UTRs (miRNA-149 module; MSigDB2 M2014; 149 

genes) showed better overall survival (OVS) prognosis compared to samples with significant 

module repression (MPS–; blue). (b) Stomach cancer patients with significant module activation 

(MPS+; red) for genes carrying at least one instance of ZHX2 binding sites in their promoters 

(MSigDB2 M14351; 271 genes) showed worse overall survival (OVS) prognosis compared to 

samples with significant module repression (MPS–; blue). (c) Liver cancer patients with 

significant module activation (MPS+; red) for genes carrying at least one instance of FOXF2 

binding sites in their promoters (MSigDB2 M3746; 939 genes) showed better overall survival 

(OVS) prognosis compared to samples with significant module repression (MPS–; blue). (d) 

Kidney cancer patients with significant module activation (MPS+; red) for genes carrying at least 

one instance of SRSF2 binding sites (CISBP-RNA4; 671 genes) showed better overall survival 

(OVS) prognosis compared to samples with significant module repression (MPS–; blue). (e) 

Forest plot for stomach cancer patients with a module corresponding to genes carrying at least 

one instance of the binding site for POU1F1. Shown are results from multivariate Cox analysis 

incorporating module perturbation scores (MPS), histological types, age, stage and race. For 

overall survival prognosis, hazard ratios (horizontal axis) with 95% confidence intervals and p-

values are shown for each variable. (f) Forest plot for melanoma patients with a module 

corresponding to genes carrying at least one instance of RBM28 binding sites in their 3’UTRs. 

Shown are results from multivariate cox analysis incorporating module perturbation scores 

(MPS), age and stage. For progression-free interval survival prognosis, hazard ratios (horizontal 

axis) with 95% confidence intervals and p-values are shown for each variable. (g) Boxplots show 

the distributions of inferred frequencies of M2 Macrophages and CD8+ T cells (CIBERSORT13) 

in stomach cancer patients with significant activation (red) or repression (blue) of the module 

associated with POU1F1. One-sided Mann-Whitney test p-values are indicated. (h) Boxplots 

show the distributions of inferred frequencies of M2 Macrophages and CD8+ T cells 

(CIBERSORT13) in melanoma patients with significant activation (red) or repression (blue) of the 

module associated with RBM28. One-sided Mann-Whitney test p-values are indicated. For all 

KM plot comparisons, statistics (median survival times, log2 hazard ratio and p-value) are 

indicated and survival of the rest of the samples is shown in gray. 



 27 

 

  



 28 

Figure S14. RUNX2 associated module conveys clinical significance in lung and 

pancreatic cancers, Related to Figure 2. 

(a) Patients with significant module activation (MPS+; red) for genes that are transcriptional 

targets of RUNX2 (MSigDB2 M27785; 125 genes) have worse overall survival (OVS) than 

patients with significant module repression (MPS–; blue) in pancreatic cancer patients (top 

panel). Forest plot shows results from multivariate cox analysis incorporating module 

perturbation scores (MPS) and age (bottom panel). (b) Patients with significant module 

activation (MPS+; red) for genes that are transcriptional targets of RUNX2 (MSigDB2 M27785; 

125 genes) have worse overall survival (OVS) than patients with significant module repression 

(MPS–; blue) in lung adenocarcinoma patients (top panel). Forest plot shows results from 

multivariate cox analysis incorporating module perturbation scores (MPS) and age (bottom 

panel). For visualization, time axes of KM curves are trimmed when the percentage of samples 

in MPS+ or MPS– groups fall below 5%. In forest plots, hazard ratios (horizontal axis) with 95% 

confidence intervals and p-values are shown for each variable. (c-d) For the module associated 

with RUNX2, MPS-based patient stratification in specified sub-cohorts to only include early-

stage tumors in (c) pancreatic cancer and, (d) lung adenocarcinoma patients. Module activation 

(MPS+; red) was associated with worse overall survival outcomes than module repression (MPS–

; blue). Statistics of the comparisons are indicated. For all KM plot comparisons, statistics 

(median survival times, log2 hazard ratio and p-value) are indicated. 
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Figure S15. Identifying regulator-based modules conveying clinical significance in 

multiple cancers, Related to Figure 2. 

(a-b) Standardized significance of MPS based patient survival (Wald statistic) of recurrently 

prognostic regulator-based modules (rows) shown across cancer cohorts (columns) for (a) 

overall survival (OVS) and (b) progression-free interval survival (PFS). Positive (or negative) 

values indicate worse (or better) survival of patients with significant module activation compared 

to repression. For each module in every cohort, samples were stratified into MPS+ and MPS– 

groups to quantify survival differences between patients in the two groups. Stratifications that 

result in significant survival differences (KM test p-value < 0.05) are retained. Recurrently 

prognostic regulator-based PCMs are clustered using Affinity Propagation12 to identify groups of 

modules that share substantial overlap between them. Similarities between modules were 

quantified using a modified Jaccard score (Methods). Rows are grouped together based on the 

clusters identified (indicated) and regulators associated with the exemplar module within each 

cluster are indicated. (c) Standardized significance of MPS based patient survival (Wald statistic) 

of exemplar regulator-associated modules (rows; motif IUPAC symbols indicated) specifying 

significant overall survival (OVS; top panel) and progression-free interval survival (PFS; bottom 

panel) across TCGA cohorts (columns). 
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Figure S16. A de novo discovered DNA-based cis-regulatory module specifies significant 

prognosis in breast cancer even after controlling for confounds, Related to Figure 3. 

(a) Forest plot for breast cancer patients with a de novo discovered, cis-regulatory prognostic 

cancer module corresponding to transcripts carrying at least one instance of the DNA motif 

HWRTNACGH (logo shown) within the first 1KB of their promoters. Shown are results from 

multivariate cox analysis incorporating module perturbation scores (MPS), histological type, age, 

stage, race, hormone receptor status, HER2 status and triple-negative status. (b) MPS-based 

patient stratification for this PCM (previous panel) in specified sub-cohorts of the breast cancer 

patients including stage I and II patients (top; left panel), stage III patients (top; right panel), 

patients whose age is above 60 years at time of diagnosis (bottom; left panel) and patients 

whose age is less than 60 years at time of diagnosis (bottom; right panel). Module activation 

(MPS+; red) was associated with worse overall survival outcomes than module repression (MPS–

; blue). (c) Boxplots show the inferred frequencies of M2 Macrophages and CD8+ T cells 

(CIBERSORT13) in breast cancer patients with significant activation (MPS+; red) or repression 

(MPS–; blue) of the module associated with the DNA motif HWRTNACGH (module in (a-b)). 

One-sided Mann-Whitney test p-values are indicated. 
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Figure S17. A de novo discovered DNA-based cis-regulatory module specifies significant 

prognosis in prostate cancer even after controlling for confounds, Related to Figure 3. 

(a) Forest plot for prostate cancer patients with a module corresponding to transcripts carrying 

at least one instance of the DNA motif DTTTMCAM (logo shown) within the first 1KB of their 

promoters. Shown are results from multivariate cox analysis incorporating module perturbation 

scores (MPS), age, race, Gleason score and prostate specific antigen (PSA) levels. (b) MPS-

based patient stratification for this PCM (previous panel) in specified sub-cohorts of the prostate 

cancer patients including patients whose tumors have Gleason score less than 8 (left panel) and 

Gleason score that is 8 and above (right panel). Module activation (MPS+; red) was associated 

with better overall survival outcomes than module repression (MPS–; blue). (c) Boxplots show 

the inferred frequencies of M2 Macrophages and CD8+ T cells (CIBERSORT13) in prostate 

cancer patients with significant activation (MPS+; red) or repression (MPS–; blue) of the module 

associated with the DNA motif DTTTMCAM (module in (a-b)). One-sided Mann-Whitney test p-

values are indicated. 
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Figure S18. A de novo discovered linear RNA-based cis-regulatory module specifies 

significant prognosis in stomach cancer even after controlling for confounds, Related to 

Figure 3. 

(a) Forest plot for stomach cancer patients with a module corresponding to transcripts carrying 

at least one instance of the linear RNA motif WSUUCAMR (logo shown) within the first 1KB of 

their 3’UTRs. Shown are results from multivariate cox analysis incorporating module perturbation 

scores (MPS), histological types, age, stage and race. (b) MPS-based patient stratification for 

this PCM (previous panel) in specified sub-cohorts of the stomach cancer patients including 

patients whose tumors are stage I or stage II (top; left panel), stage III or stage IV (top; right 

panel), patients whose age at diagnosis is below 60 years (bottom; left panel) or above 60 years 

(bottom; right panel). Module activation (MPS+; red) was associated with worse overall survival 

outcomes than module repression (MPS–; blue). (c) Boxplots show the inferred frequencies of 

M2 Macrophages and CD8+ T cells (CIBERSORT13) in stomach cancer patients with significant 

activation (MPS+; red) or repression (MPS–; blue) of the module associated with the RNA motif 

WSUUCAMR (module in (a-b)). One-sided Mann-Whitney test p-values are indicated. 
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Figure S19. A de novo discovered structural RNA-based cis-regulatory module specifies 

significant prognosis in colon cancer even after controlling for confounds, Related to 

Figure 3. 

(a) Forest plot for colon cancer patients with a module corresponding to transcripts carrying at 

least one instance of the structural RNA motif (logo and putative structure shown) within the first 

1KB of their 3’UTRs. Shown are results from multivariate cox analysis incorporating module 

perturbation scores (MPS), histological types, age, stage, race, micro-satellite instability (MSI) 

status and side of colectomy. (b) MPS-based patient stratification for this PCM (previous panel) 

in specified sub-cohorts of the stomach cancer patients including stage I or stage II tumors (top; 

left panel), stage III or stage IV tumors (top; right panel), patients who had a right hemicolectomy 

(bottom; left panel) and tumors characterized to be MSI low (bottom; right panel). Module 

activation (MPS+; red) was associated with better overall survival outcomes than module 

repression (MPS–; blue). In forest plots, hazard ratios (horizontal axis) with 95% confidence 

intervals and p-values are shown for each variable and in KM plots, statistics of survival 

comparisons are indicated. 
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Figure S20. Subset of highly significant de novo discovered PCMs for overall survival, 

Related to STAR Methods, Data Sheet 4. 

Kaplan-Meier (KM) plots showcase highly significant de novo discovered cis-regulatory PCMs 

for overall survival (OVS) in individual cohorts (labels shown on top). The colors of labels 

correspond to the categories of the modules- DNA (yellow), linear RNA (green) and structural 

RNA (purple). KM plots show fraction of surviving patients (Y-axis) and time in months (X-axis) 

as well as statistics of the comparisons between patients in whom the module is significantly 

activated (MPS+) and repressed (MPS–). The modules were selected such that the associated 

motifs have no similarities (analyses using TOMOTOM14) to previously known transcription 

factor or RNA binding protein binding sequences or micro-RNA seeds (Methods). 
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Figure S21. Subset of highly significant de novo discovered PCMs for progression-free 

interval survival, Related to STAR Methods, Data Sheet 4. 

Kaplan-Meier (KM) plots showcase highly significant de novo discovered cis-regulatory PCMs 

for progression-free interval survival (PFS) in individual cohorts (labels shown on top). The colors 

of labels correspond to the categories of the modules- DNA (yellow), linear RNA (green) and 

structural RNA (purple). KM plots show fraction of surviving patients (Y-axis) and time in months 

(X-axis) as well as statistics of the comparisons between patients in whom the module is 

significantly activated (MPS+) and repressed (MPS–). The modules were selected such that the 

associated motifs have no similarities (analyses using TOMOTOM14) to previously known 

transcription factor or RNA binding protein binding sequences or micro-RNA seeds (Methods). 
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Figure S22. Conserved prognostic potential of module perturbations in external cohorts, 

Related to STAR Methods. 

(a) Visualization of high-dimensional data using tSNE applied to transcriptome data (z-scored) 

of primary tumor samples from clear cell kidney cancer (TCGA; n=528 and ICGC-Europe; n=91), 

liver cancer (TCGA; n=360 and ICGC-Riken; n=223), ovarian cancer (TCGA; n=283 and ICGC-

Australia; n=76), pancreatic cancer (TCGA; n=177 and ICGC-Canada; n=163) and stomach 

cancer (TCGA; n=383 and ACRG; n=300) cohorts. Each dot corresponds to a primary tumor 

sample from TCGA (triangles) or the external cohort (dots) from tissue-matched cohorts (color, 

labels shown). (b) Clinical characteristics of tissue-matched primary tumors analyzed through 

TCGA or independent external cohorts. Density plots show the distribution of follow-up times for 

patients that are censored (light gray; label on top) or event times for the remainder of the cohort 

(dark gray; label on top). Stacked barplots show percent of events (dark gray) and patients that 

are censored (light gray) in the external cohort (black) or in TCGA (orange) for liver, ovarian, 

stomach, clear cell kidney and pancreatic cancer cohorts. (c-d) Standardized significance of 

MPS based patient survival in external cohorts (from ICGC and ACRG) and TCGA cohorts 

(labels indicated on top) of clear cell kidney cancer (KICC), liver cancer (LIHC), ovarian cancer 

(OVSC), pancreatic cancer (PAAD) and stomach cancer (STAD) samples. Modules that specify 

recurrent prognostic value in the external cohorts are shown and the values (color key indicated) 

correspond to the Wald statistic computed using the Cox proportional-hazards model for (c) 

overall survival and (d) progression-free interval survival. 
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Figure S23. A priori incorporation of histological types and tumor stage identifies 

significant prognostic modules within the specified sub-cohorts, Related to Figure 4, Data 

Sheet 6. 

(a) In triple negative breast cancer patients, significant activation of module (MPS+; red) 

corresponding to homophilic cell adhesion specified worse prognosis than patients with 

significant module repression (MPS–; blue). (b) On the full breast cancer cohort, the module 

corresponding to homophilic cell adhesion (MSigDB2 Gene Ontology; 173 genes) did not stratify 

patients based on overall survival. (c) Forest plot for stage II/IIA/IIB breast cancer patients with 

a de novo discovered cis-regulatory gene module corresponding to transcripts carrying at least 

one instance of the linear RNA motif URUAMGGD (logo shown; 1082 genes) within the first 1KB 

of their 3’UTRs. Shown are results from multivariate cox analysis incorporating module 

perturbation scores (MPS), patient age, tumor stage, PIK3CA and TP53 mutation status, 

hormone receptor status and HER2 status. For overall survival prognosis, hazard ratios 

(horizontal axis) with 95% confidence intervals and p-values are shown for each predictor. (d) 

For this module (previous panel), stratification of breast cancer patients with stage 

III/IIIA/IIIB/IIIC/IV cancers into MPS+ and MPS– groups did not provide significantly different 

survival trajectories. 
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Figure S24. A priori incorporation of prominent genomic aberrations identifies significant 

prognostic modules within the specified sub-cohorts, Related to Figure 4, Data Sheet 6. 

(a) Breast cancer patients with deep amplification of MYC (Methods) and with significant module 

activation (MPS+; red) for transcripts harboring at least one instance of the RNA motif AUAUGCC 

(logo shown; 529 genes) within the first 1KB of their 3’UTRs, showed better overall survival 

(OVS) prognosis than samples with significant module-repression (MPS–; blue). (b) For this 

module (previous panel), stratification of breast cancer patient tumors that harbor deletions or 

deep deletions at the MYC locus (Methods) into MPS+ and MPS– groups did not provide 

significantly different survival trajectories. (c) Forest plot for breast cancer patients harboring 

deep amplification of the locus spanning MYC (Methods) with a de novo discovered cis-

regulatory gene module corresponding to transcripts carrying at least one instance of the linear 

RNA motif AUAUGCC (logo shown) within the first 1KB of their 3’UTRs. Shown are results from 

multivariate cox analysis incorporating module perturbation scores (MPS), patient age, tumor 

stage, PIK3CA and TP53 mutation status, hormone receptor status and HER2 status. For overall 

survival prognosis, hazard ratios (horizontal axis) with 95% confidence intervals and p-values 

are shown for each predictor. (d) Colon cancer tumor samples harboring deletions at the 

ATP6V1B2 locus with significant activation of the module corresponding to genes annotated to 

be involved in mitochondrion organization (MSigDB2; 509 genes) showed better progression-

free interval survival (PFS) that samples with significant repression. For this module, stratification 

of colon cancer patients harboring amplification or deep amplification of the ATP6V1B2 locus 

into MPS+ and MPS– groups did not provide significantly different survival trajectories (dashed 

lines). (e) Lung adenocarcinoma patients with mutated KRAS and with significant module 

activation (MPS+; red) for genes harboring at least one instance of binding sites for NRF1 

transcription factor (MSigDB2 M9394; 958 genes) showed worse prognosis than patients with 

significant module repression (MPS–; blue). For this module, stratification of lung 

adenocarcinoma patients that are wildtype for KRAS into MPS+ and MPS– groups did not provide 

significantly different survival trajectories (dashed lines). (f) Survival stratifications in lung 

adenocarcinoma patients harboring mutated or wildtype KRAS based on perturbation scores of 

modules identified to be significantly prognostic in patients whose tumors harbor mutated KRAS. 

Scatterplot shows comparisons between p-values (Cox proportional hazards model) in survival 

stratification (MPS+ vs. MPS–) of lung adenocarcinoma patients harboring wildtype (X-axis) and 

mutated (Y-axis) KRAS.  
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Figure S25. Predictions from ensemble learning models that utilize combinations of PCMs 

provide stronger patient stratification than individual PCMs, Related to Figure 5, STAR 

Methods. 

(a-b) Hazard ratio distributions obtained by stratifying patients using the perturbation scores of 

prognostic cancer modules in individual cohorts. Red dots correspond to patient stratifications 

derived from random survival forest models15 trained on PCMs for (a) overall survival (OVS) or 

(b) progression-free interval survival (PFS) in individual cohorts (see Methods). Cohorts in which 

the random survival forest models provided stronger stratification compared to every individual 

PCM are in bold font and number of samples in each survival comparison is indicated.  
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Figure S26. Predictions from ensemble learning models that utilize combinations of PCMs 

are conserved in tissue-matched external cohorts, Related to STAR Methods. 

(a-e) Random survival forest models trained on TCGA data are used to make survival predictions 

on the full set of patients in tissue-matched external cohorts. The predicted ensemble survival 

probabilities of individual patients at event times (unique death times) are shown (heatmap; right 

panel). Rows (patients) are clustered using k-means clustering with Euclidean distance and the 

optimal cluster size (3; NbClust16) is chosen based on Krzanowski and Lai17, Calinski and 

Harbasz18, silhouette19 and gap statistic20 metrics. Kaplan-Meier plots (left panel) show the 

survival trajectories of patients in these clusters (colors indicated). Across the cohorts, there was 

clear concordance between predicted survival probabilities and survival trajectories of patients 

in the cohorts. Statistics for survival comparison as well as pairwise survival comparisons are 

listed for (a) liver, (b) ovarian, (c) stomach, (d) pancreatic and (e) clear cell kidney cancer 

cohorts.  
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Figure S27. Predictions from ensemble learning models that utilize combinations of PCMs 

are conserved in some cancers despite diverse tissues-of-origin, Related to STAR 

Methods. 

For all possible pairs of cohorts, the prognostic predictive value of random survival forest models 

trained on PCMs in one cohort (columns) was tested on every other cohort (rows). Survival 

comparisons in the test cohort were made based on predicted risk (top and bottom 40%). Colors 

correspond to hazard ratios and indicate if predictions in the test cohorts exhibit concordance 

(red) or discordance (blue) with training cohort. Diagonal entries of the heatmap (same training 

and test cohort and thus, concordant predictions) are in dark red. 
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Figure S28. Random survival forest models trained on module perturbations provide 

more prognostic value than models trained on conventional clinical factors, Related to 

Figure 5, STAR Methods. 

Performance of random survival forest models trained on standard clinical factors (blue), module 

perturbation scores (orange), recurrent single-nucleotide variants (SNV; green) and prominent 

copy-number aberrations (CNA; purple). For each cohort (rows), random forest models were 

trained in 10-fold cross-validation using prognostic cancer modules (PCMs) in each cohort for 

(a) overall survival (OVS) and (b) progression-free interval survival (PFS). Hazard ratios were 

obtained using Cox proportional hazards model on patients stratified into high and low risk 

groups based on predictions from the random survival forest models15. Number of patients used 

in each comparison is specified. Crosses correspond to the median hazard ratio calculated from 

10 repetitions of the random survival forest predictions with randomized initializations. One-sided 

Mann-Whitney test p-values for comparisons of hazard ratios from models trained on MPS and 

each of standard clinical factors, SNVs and CNAs are also indicated for each cohort.  
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Figure S29. Random survival forest models trained on module perturbations provide 

additional prognostic value to models trained on conventional clinical factors, Related to 

STAR Methods. 

(a-b) Performance of random survival forest models trained on only standard clinical factors 

(open blue circles) or standard clinical factors and perturbation scores of PCMs (blue dots with 

orange outline) for (a) overall survival (OVS) and, (b) progression-free interval survival (PFS). 

Each dot corresponds to the hazard ratio of a 10-fold cross-validated random survival forest 

model. For every cohort, distributions of hazard ratios obtained from 10 randomly initialized 

instances of the random survival forests are shown. Comparisons between hazard ratios 

obtained from the random survival forest models are shown (p-values from one-sided Mann-

Whitney test). 
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Figure S30. Random survival forests trained on prognostic modules provide significantly 

improved patient stratification compared to prominent SNVs and standard clinical 

factors, Related to Figure 5, STAR Methods. 

(a-b) Performance of random survival forest models trained on prominent single-nucleotide 

variants (SNVs) (open green circles) or SNVs and module perturbation scores of PCMs in each 

cohort (green dots with orange outline) for (a) overall survival (OVS) and, (b) progression-free 

interval survival (PFS). (c-d Performance of random survival forest models are shown for models 

trained on prominent SNVs and standard clinical factors with (gray dots with orange outline) or 

without (green dots with blue outline) module perturbation scores for (c) overall survival (OVS) 

and, (d) progression-free interval survival (PFS). Hazard ratios were obtained using Cox 

proportional hazards model on patients stratified into high and low risk groups based on 

predictions from the random survival forest models15. Each dot corresponds to the predicted 

hazard ratio of a 10-fold cross-validated random forest model. For every cohort, distributions of 

hazard ratios obtained from 10 randomly initialized instances are shown. Comparisons between 

hazard ratios obtained from the two sets of random survival forest models are shown (p-values 

from one-sided Mann-Whitney test). 
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Figure S31. Random survival forests trained on prognostic modules provide significantly 

improved patient stratification compared to prominent CNAs and standard clinical 

factors, Related to STAR Methods. 

(a-b) Performance of random survival forest models trained on prominent copy-number 

aberrations (CNAs) (open purple circles) or CNAs and module perturbation scores of PCMs in 

each cohort (purple dots with orange outline) for (a) overall survival (OVS) and, (b) progression-

free interval survival (PFS). (c-d) Performance of random survival forest models are shown for 

models trained on prominent CNAs and standard clinical factors) with (gray dots with orange 

outline) or without (purple dots with blue outline) module perturbation scores for (c) overall 

survival (OVS) and, (d) progression-free interval survival (PFS). Hazard ratios were obtained 

using Cox proportional hazards model on patients stratified into high and low risk groups based 

on predictions from the random survival forest models15. Each dot corresponds to the predicted 

hazard ratio of a 10-fold cross-validated random forest model. For every cohort, distributions of 

hazard ratios obtained from 10 randomly initialized instances are shown. Comparisons between 

hazard ratios obtained from the two sets of random survival forest models are shown (p-values 

from one-sided Mann-Whitney test).   
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Figure S32. Random survival forests trained on prognostic modules provide significantly 

improved patient stratification compared to inferred immune cell-type frequencies, 

Related to STAR Methods. 

(a-b) Performance of random survival forest models trained on module perturbation scores of 

PCMs (orange) and inferred immune cell-type frequencies (dark green). For each cohort (rows), 

random survival forest models were trained in a 10-fold cross-validated setup for (a) overall 

survival (OVS) and (b) progression-free interval survival (PFS). Crosses correspond to the 

median hazard ratios calculated from 10 repetitions of the random forest predictions with 

randomized initializations. (c-d) Performance of random survival forest models are shown for 

random survival forest models trained on prominent inferred immune cell-type frequencies (open 

dark green circles) or inferred immune cell-type frequencies and PCMs (dark green dots with 

orange outlines) for (c) overall survival (OVS) and, (d) progression-free interval survival (PFS). 

Hazard ratios were obtained using Cox proportional hazards model on patients stratified into 

high and low risk groups15. Each dot corresponds to the hazard ratio of a 10-fold cross-validated 

random forest model. For every cohort, distributions of hazard ratios obtained from 10 randomly 

initialized instances are shown. Comparisons between hazard ratios obtained from the two sets 

of random survival forest models are shown (p-values from one-sided Mann-Whitney test). 
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