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Abstract 
Background:  Adoption of high-throughput, gene panel-based, next-generation sequencing (NGS) into routine cancer care is widely supported, 
but hampered by concerns about cost. To inform policies regarding genomic testing strategies, we propose a simple metric, cost per correctly 
identified patient (CCIP), that compares sequential single-gene testing (SGT) vs. multiplex NGS in different tumor types.
Materials and Methods:  A genomic testing cost calculator was developed based on clinically actionable genomic alterations identified in the 
European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets. Using sensitivity/specificity data for SGTs (immu-
nohistochemistry, polymerase chain reaction, and fluorescence in situ hybridization) and NGS and marker prevalence, the number needed to 
predict metric was monetarized to estimate CCIP.
Results:  At base case, CCIP was lower with NGS than sequential SGT for advanced/metastatic non-squamous non-small cell lung cancer 
(NSCLC), breast, colorectal, gastric cancers, and cholangiocarcinoma. CCIP with NGS was also favorable for squamous NSCLC, pancreatic, 
and hepatic cancers, but with overlapping confidence intervals. CCIP favored SGT for prostate cancer. Alternate scenarios using different price 
estimates for each test showed similar trends, but with incremental changes in the magnitude of difference between NGS and SGT, depending 
on price estimates for each test.
Conclusions:  The cost to correctly identify clinically actionable genomic alterations was lower for NGS than sequential SGT in most cancer 
types evaluated. Decreasing price estimates for NGS and the rapid expansion of targeted therapies and accompanying biomarkers are antici-
pated to further support NGS as a preferred diagnostic standard for precision oncology.
Key words: precision oncology; next-generation sequencing; calculator; biomarker.

Implications for Practice
With the rapid development and approval of targeted therapies and accompanying clinically actionable genomic alterations, the genomic 
testing cost calculator described herein demonstrates the case for using next-generation sequencing (NGS) and other multiplex 
diagnostic advances over that of sequential single-gene testing (SGT). By providing an analytical framework that informs local and national 
policymakers on the value of investing in a transition from sequential SGT to diagnostic, multiplex NGS, patients will benefit from early 
identification of matched therapies that have proven clinical benefit, leading to improved clinical outcomes and quality of life, while 
offsetting the incremental costs of sequential SGTs.

Introduction
Rapid progress in identifying oncogenic driver mutations, 
along with advances in molecular diagnostics, has paved the 
way for precision oncology, contributing to growing oppor-
tunities to develop new therapies targeted against “clini-
cally actionable” genomic alterations (eg, trastuzumab for 

HER2-positive breast cancer, EGFR inhibitors for EGFR 
mutation-positive non-small cell lung cancer [NSCLC], and 
Philadelphia chromosome [BCR-ABL fusion] in chronic 
myelogenous leukemia).1 The introduction of tumor- 
agnostic therapies that target genomic driver alterations inde-
pendent of histology (eg, NTRK gene fusions, microsatellite 

Received: 16 September 2022; Accepted: 13 December 2022.
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/oncolo/advance-article/doi/10.1093/oncolo/oyad005/7085632 by guest on 03 April 2023

mailto:Albrecht.Stenzinger@med.uni-heidelberg.de
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


2 The Oncologist, 2023, Vol. XX, No. XX

instability-high [MSI-H]/deficient mismatch repair [dMMR], 
tumor mutational burden-high [TMB-H]) has expanded 
the number of vulnerable tumors with genomic targets.2–4 
Improving patient outcomes has compelled widespread adop-
tion of precision oncology, including some real-world stud-
ies that suggest improvement in survival with genomically 
matched vs. unmatched therapies.5–8

The growing compendium of genomic biomarkers has led 
to guideline recommendations regarding biomarker-guided 
diagnostics and treatment by the European Society for 
Medical Oncology (ESMO) and the American Society of 
Clinical Oncology, including recommendations on sequencing 
for approved biomarkers in advanced/metastatic cancers.9,10

Next-generation sequencing (NGS) is a high-throughput 
DNA sequencing technology that offers the advantage of 
simultaneous analysis of multiple targets from a single-tissue 
sample, providing comprehensive genomic profiles.11–13 It is 
the only method for identifying multigene molecular signa-
tures (eg, TMB,14 homologous recombination deficiency15). 
With the expected advances in genomic science, targeted panel 
NGS is poised to become the preferred approach for opti-
mizing time to correct diagnosis and treatment.16–18 In 2020, 
ESMO’s Precision Medicine Working Group recommended 
the use of NGS for lung adenocarcinomas and prostate can-
cers and its consideration for colorectal carcinoma (CRC), 
cholangiocarcinoma, and ovarian cancers, but not squamous 
cell lung, breast, gastric, pancreatic, or liver cancers.19

Implementation of routine NGS testing has been hindered 
by the lack of harmonization of clinical infrastructure and 
insufficient guidance and clinical standardization, while 
entangled with challenges to equitable reimbursement and 
the lack of value assessment processes.20 For many coun-
tries, the lack of investment in infrastructure and inadequate 
reimbursement have hampered its access. Although NGS has 
demonstrated better cost-effectiveness than single-gene test-
ing (SGT) in NSCLC and CRC,21,22 data from other tumors 
are lacking.

For analyses to be meaningful, they must account for fac-
tors that affect both costs and probability of a correct diag-
nosis in a given laboratory, healthcare system, or region. 
Analyses should be specific to: (1) the tumor, (2) prices and 
test performance characteristics of selected tests, and (3) a 
specific set of genomic alterations whose prevalence may vary 
across regions or treatment settings. To ensure that economic 
data are appropriately tailored, we developed a novel met-
ric—cost per correctly identified patient (CCIP)—and tested 
it in a newly developed genomic testing cost calculator that 
enables stakeholders (eg, clinicians, pathologists, and pathol-
ogy advisory groups) to compare the cost of targeted panel 
NGS with the standard practice of sequential SGT in achiev-
ing an accurate diagnosis of a patient’s genomic alterations. 
To evaluate the clinical utility of this approach—defined as 
the net benefit to patients and health systems with regard 
to clinical outcomes, patient access, and shared decision- 
making23,24—we evaluated the applicability of the calculator 
based on ESMO–issued NGS recommendations in 2020 for 
approved targeted therapies.19

Materials and Methods
Targeted Literature Review
The scope of the calculator was determined based on ESMO 
guidelines for selecting tumor types (advanced/metastatic 

non-squamous NSCLC, squamous NSCLC, breast cancer 
[mBC], metastatic colorectal carcinoma [mCRC], prostate, 
gastric [mGC], pancreatic ductal [PDAC], hepatocellular can-
cers, and cholangiocarcinoma) and genomic alterations of the 
ESMO Scale for Clinical Actionability of molecular Targets 
(ESCAT) Tier 1 (ie, genomic alterations for which there is 
an approved targeted therapy).19 Sensitivity and specificity 
values were identified using a targeted PubMed search and 
supplemented by Google searches of gray scientific literature 
(through December 2021). Relevant citations were reviewed 
for outcomes relating to sensitivity/specificity of relevant 
diagnostic tests (fluorescence or chromogenic in situ hybrid-
ization [FISH/CISH], PCR, Sanger, small/large-targeted panel 
NGS, and quantitative PCR [qPCR]) for 34 genetic targets 
(ESCAT I & II genomic alterations). Raw numbers for each 
true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN) were extracted from the literature search 
and summed to calculate a single sensitivity and specificity 
measure for each SGT: IHC, PCR/qPCR, FISH, and NGS.

Sensitivity was defined as probability of true positive, and 
specificity was defined as probability of a true negative, with 
probability conditioned on being truly positive or truly nega-
tive, respectively. Prevalence data were collected from Mosele 
et al.19 except for that of NTRK fusions and MSI-H. For 
NTRK, prevalence data were collected from Forsythe et al.25 a 
meta–analysis that synthesized all prevalence data on NTRK 
derived from a systematic literature review. It also included 
uncertainty estimates against each prevalence estimate, thus, 
is believed to provide a more robust estimate. Bonneville et al. 
was used for prevalence rates of MSI-H.26 Normanno et al. 
was used for price estimates for SGTs.27 Prevalence data are 
shown in Table 1.

Cost calculations were made for a “base case” scenario 
using the published prices for each test, with “cost” defined as 
direct cost of NGS or sequential SGT, and “price” referring to 
published price estimates for each test. Given that prices can 
vary between different countries and health systems, calcula-
tions were also made using a range of prices that spanned the 
base case price for each test.

Calculation of Sensitivity and Specificity
Data for sensitivity and specificity, such as TP, FP, TN, and 
FN, were extracted from eligible papers. Summed TP, FP, TN, 
and FN values were used to calculate an aggregate sensitivity 
and specificity parameter for each SGT and NGS. In cases 
where the first genetic test was a screening test, followed by a 
confirmatory test, we used a serial testing approach proposed 
by Parikh et al29 using the following formulas:

Sensitivity [SGT1] ∗ Sensitivity [SGT2] = Sensitivity

Specif icity [SGT1] + Specif icity [1− SGT1] ∗
Specif icity [SGT2] = Specif icity

Table 1 shows the sequential SGTs used in this study by 
tumor type.

Definitions and Equations
Assuming that the objective is to maximize the overall predic-
tive accuracy of a test, it was important to identify a metric 
that accounts for both positive predictive value (PPV) and neg-
ative predictive value (NPV) in a target population.30 When 
comparing tests, those associated with higher false-positive 
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and false-negative rates would be “penalized,” while those 
associated with lower false-positive and false-negative rates 
would be considered as having better value. These consid-
erations led to use of a metric based on number needed to 
predict (NNP: number of patients that need to be examined 
within the patient population in order to correctly predict the 
diagnosis of 1 person31), which was monetarized to create the 
metric of CCIP.

The input data required to calculate NNP include the fol-
lowing: test sensitivity, specificity, and prevalence/yield in a 
patient population.31 Prices can be customized or adapted to 
a particular lab, healthcare system, or country.

Predictive summary index (PSI) is a metric for measuring 
test performance for persons who test positive or negative, 
defined as a total net gain in certainty from a diagnostic test 
which may be of interest to clinicians, patients, and policy 
makers/economists.30 Comparisons of SGT and NGS were 
conducted using CCIP such that lower values reflect lower 
total costs to achieve one correctly identified patient.

The following equations were used:

CCIP = NNP cost per patient

Cost per patient = NNP ∗ cumulative test cost

across genomic alteration by tumor type

Diagnostic yield = Sum of FP

+TP across genomic alteration/total test (N)

NNP =
1
PSI

PSI = PPV+NPV1

PPV = true-positive/ (true-positive+ false-positive)

NPV = true-negative/ (true-negative+ false-negative)

Calculations of NNP, CCIP, and PSI
We ran a simulation of 1000 lab tests (N). Starting with the 
most prevalent gene alteration, we generated an algorithm, 
using the prevalence, recommended test, and its associated 
sensitivity and specificity. To align with standard laboratory 
workflow, if the first test was a screening test (eg, IHC), a 
second (confirmatory) test (eg, PCR/qPCR) was performed 
on individuals with a positive test result. The matrices were 
readjusted using the sensitivity and specificity of the serial 
testing approach. While evaluating each gene alteration 
sequentially in order of highest to lowest prevalence, all pos-
itives (TP + FP) were subtracted from N (total lab tests), and 
the above procedure was repeated for individuals with a neg-
ative test result until the list of ESCAT 1 category genomic 
alterations was exhausted. A tumor–specific algorithm was 
then generated to calculate PPV, NPV, PSI, NNP, and conse-
quently, CCIP. CCIP estimates are deterministic; smaller or 
larger lab cohort sizes will only impact estimates of uncer-
tainty (95% CIs) and can be easily tailored within the model. 
The diagnostic yield for each tumor was calculated as the 
sum of positives (TP + FP) over the total number of lab tests 
(N).

The same process was repeated for NGS, but without 
repeating procedures used for sequential SGT. The prevalence 

Table 1. Prevalence and sequential SGT for select tumor types.19,25,26,28

Marker Prevalence (%) SGT1 SGT2 

Advanced non–squamous 
NSCLC

 � EGFR 15.0 PCR

 � ALK fusions 5.0 IHC FISH

 � MET exon 14 skipping 3.0 PCR

 � BRAF mutations 2.0 PCR

 � NTRK fusions 0.17 FISH

25.17

Advanced squamous 
NSCLC

 � NTRK fusions 0.05 FISH

0.05

Metastatic breast cancer

 � PIK3CA hotspot muta-
tions

30.0 PCR

 � ERBB2 amplifications 17.5 IHC FISH

 � MSI-H 1.5 IHC PCR

 � NTRK fusions 0.14 FISH

49.14

Metastatic colorectal car-
cinoma

 � BRAF mutations 8.5 PCR

 � MSI-H 19.7 IHC PCR

 � NTRK fusions 0.26 FISH

28.46

Advanced prostate cancer

 � MSI-H 0.6 IHC PCR

0.6

Metastatic gastric cancer

 � ERBB2 amplifications 16.0 IHC FISH

 � MSI-H 19.1 IHC PCR

 � NTRK fusions 0.1 FISH

35.20

Advanced pancreatic ductal 
adenocarcinoma

 � MSI-H 0.1 IHC PCR

 � NTRK fusions 0.31 FISH

0.41

Advanced hepatocellular 
carcinoma

 � NTRK fusions 0.05 FISH

 � MSI-H 0.8 IHC PCR

0.85

Advanced cholangiocarci-
noma

 � IDH1 mutations 20.0 PCR

 � FGFR2 fusions 15.0 FISH

 � MSI-H 1.35 IHC PCR

 � NTRK fusions 0.2 FISH

36.55

Note: Values in bold represent the total, combined prevalence of 
biomarkers for each tumor type.
Abbreviations: FISH, fluorescence in situ hybridization; IHC, 
immunohistochemistry; MSI-H, microsatellite instability-high; NSCLC, 
non–small cell lung cancer; PCR, polymerase chain reaction; SGT, single-
gene testing.
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across the ESCAT 1 category was summed, and using the rel-
evant sensitivity and specificity, an algorithm was similarly 
created to calculate the same parameters as SGT.

Parameter uncertainty was assessed by conducting a prob-
abilistic sensitivity analysis (PSA), where probability distribu-
tions were used to reflect individual parameter uncertainty 
and analyzed using 1000 Monte Carlo simulations. For 
model inputs that varied in PSA, data for sensitivity and spec-
ificity were varied using a random draw from a binomial dis-
tribution. With each iteration, sensitivity and specificity were 
calculated. Test price was not varied in the PSA because it is 
expected to be a lab–specific, fixed parameter with a user- 
modifiable input. For NTRK prevalence, we calculated a stan-
dard error using the reported CI in Forsythe et al.25 and a 
random draw from a beta distribution was used in the PSA. 
For other prevalence proportions, we assumed 20% of the 
mean as a measure of standard error and repeated the above 
procedure. PSA results were used to generate 95% uncer-
tainty intervals by calculating the 2.5th and 97.5th percentiles 
across the PSA iterations.

Results
Test Costs, Sensitivity, and Specificity
The objective for the genomic testing cost calculator was to 
estimate the CCIP using NGS vs. sequential SGT. A targeted 
literature search was conducted to identify publications on 
sensitivity and specificity of IHC, PCR/qPCR, FISH, and NGS 
(Table 2). Normanno et al was used for estimating the price 
of each test.27

For IHC, sensitivity was estimated at 92.54%, and speci-
ficity at 86.45%. The price of IHC screening was estimated 
at €242 per test. Alternate scenarios were calculated at €200, 
€300, and €350. When IHC was followed by PCR, test sen-
sitivity was 86.26% and specificity was 99.49%. When IHC 
was followed by FISH, test sensitivity was 82.90% and spec-
ificity was 99.98%.

For FISH, sensitivity was estimated at 89.58% and spec-
ificity at 97.67%. The price of FISH was estimated at €664 
per test.27 Alternate scenarios were calculated at €600, €700, 
and €750.

For PCR/qPCR, sensitivity was estimated at 93.41% and 
specificity at 94.79%. The price of PCR/qPCR was estimated 
at €218 per test.27 Alternate scenarios were calculated at 
€200, €250, and €300.

For NGS, sensitivity was estimated at 84.98% and speci-
ficity at 98.50%. Estimates from studies suggest much higher 
sensitivity rates for NGS.75–78 The effect of assuming higher 
sensitivity for NGS tests would improve CCIP relative to SGT. 
The price of NGS testing was estimated at €593 for an up to 
50-gene panel.27 Alternate scenarios were calculated at €500, 
€800, and €1000.

Impact of Test Specificity and Prevalence on 
Number Needed to Predict a Correctly Identified 
Patient
Figure 1 shows the impact of test specificity, sensitivity, and 
prevalence of a given genomic alteration on the NNP. At the 
highest sensitivity and specificity levels for a given test, the 
NNP remains low, independent of mutational prevalence. 
However, as specificity of a test decreases, the NNP becomes 
inversely proportional to the mutational prevalence, such that 
NNP is higher for low prevalence alterations and vice versa. 
For tests with low specificity, NNP is also inversely propor-
tional to the test sensitivity, such that at a given mutational 
prevalence, NNP increases as test sensitivity decreases. At low 
mutational prevalence (eg, 1%), NNP is high, while at high 
prevalence (eg, 20%), NNP remains low, regardless of sensi-
tivity or specificity of the test.

CCIP Using Sequential SGT vs. NGS
Using the base case estimates, a more favorable CCIP was 
observed using NGS vs. SGT, for advanced non-squamous 
NSCLC (€1983 for sequential SGT vs. €658 for NGS), mBC 
(€1202 vs. €695), mCRC (€1226 vs. €659), mGC (€1202 vs. 
€695), and cholangiocarcinoma (€1661 vs. €667) (Fig. 2; 
Table 3). Cost differences between sequential SGT and NGS 
were greatest in non–squamous NSCLC, which had the high-
est number of clinically actionable mutations.

Lower costs were also observed at base case for advanced 
squamous NSCLC (€35 259 vs. €21 637), hepatocellular carci-
noma (€4596 vs. €1825), and PDAC (€8190 vs. €3153), but with 
overlap in CIs (Table 3). The high relative costs for squamous 
NSCLC for either sequential SGT or NGS can be attributed 
to the low prevalence (0.17%, Table 1) of NTRK gene fusions 
found in this cancer type, which drives the NNP higher (Fig. 1).

CCIP at base case was lower for sequential SGT than NGS 
in advanced prostate cancer (€540 vs. €2340), for which 
MSI-H was the only actionable marker. The cost difference 

Table 2. Summary of baseline inputs into the genomic testing cost calculator by Tier 1 (A, B, or C) by tumor.

Test strategy Gene test Price per test (€) Sensitivity (%) Specificity (%) Sources 

Sequential SGT Initial IHC 242 92.54 86.45 32–44

 � IHC followed by PCR 86.26 99.49 29

 � IHC followed by FISH 82.90 99.98 29

Sequential SGT FISH 664 89.58 97.67 45–49

Sequential SGT PCR/qPCR 218 93.41 94.79 33,45,50–62

NGS NGS Panel (up to 50 genes) 593 84.98 98.50 54,60,61,63–74

Note: Sensitivity and specificity were taken from published, multi-tumor studies. Given the small sample sizes in specific tumors, the overall study test 
characteristics were used in this analysis.
Abbreviations: FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; PCR, polymerase chain reaction; 
qPCR, quantitative polymerase chain reaction; SGT, single-gene testing.
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for this cancer type would become negligible if the diagnostic 
yield was increased, for example, if both ESCAT 1 and 2 were 
to be included. When genomic alterations from the ESCAT 2 

category are included, the CCIP with NGS further decreases, 
such that it becomes lower than sequential SGT for advanced 
prostate cancer (data not shown).

Figure 1. Impact of test specificity and prevalence on number needed to predict a correctly identified patient.

Figure 2. Tumor types favoring next-generation sequencing (NGS) over sequential single gene testing (SGT) in cost per correctly identified patient. 
Error bars, 95% CI. Adv, advanced; CC, cholangiocarcinoma; mBC, metastatic breast cancer; mCRC, metastatic colorectal carcinoma; mGC, metastatic 
gastric cancer; sqNSCLC, squamous non–small cell lung cancer.
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Alternate scenarios considering a range of prices showed 
the same general trends across all scenarios, with incremental 
changes in the magnitude of difference between NGS and 
SGT related to the incremental change in the price estimate 
of each test (Table 4). For example, when NGS price was 
increased to €1000, CCIP for squamous NSCLC became 
higher with NGS than sequential SGT (€36 487 vs. €35 259, 
respectively) and differences between sequential SGT and 
NGS became negligible (~€31) for metastatic breast cancer. 
Table 4 illustrates hypothetical examples of cost differentials 
at various price estimates for each test, compared with the 
base case scenario.

Discussion
The need for NGS or other multiplex diagnostics in routine 
cancer care is widely recognized, but impeded by concerns 
about cost. We propose the use of a simple metric and analytic 
framework to inform national policies regarding genomic 
testing strategies, illustrating the methodology in a compar-
ison of a sequential SGT algorithm vs. NGS. To demonstrate 

use of the calculator, we applied NGS recommendations 
from ESCAT 1 to compare sequential SGT vs. NGS and 
showed that CCIP favored NGS in advanced/metastatic non- 
squamous NSCLC, mBC, mCRC, mGC, and cholangiocar-
cinoma. CCIP also favored NGS for advanced squamous 
NSCLC, PDAC, and hepatocellular carcinoma, but with over-
lapping CIs. For prostate cancer, CCIP favored sequential 
SGT over NGS.

Development of the genomic testing cost calculator was 
based on previously reported prevalence and cost.19,25–27 
Mosele et al. was selected to provide a EU perspective on 
NGS, based on ESMO recommendations.19 Forsythe et al. 
was a systemic literature review and meta–analysis that pro-
vided the most robust estimate of NTRK prevalence to date.25 
For price estimates, Normanno et al. was chosen for provid-
ing representative European estimates that would facilitate 
comparisons for this study,27 but estimates for comparisons 
may be adapted by the user to reflect individual cases or sup-
port lab practices. We developed the calculator to allow full 
cost comparisons involving initial setup and maintenance 
costs for a given diagnostic test (eg, purchasing of equipment, 

Table 3. Cost per correctly identified patient using a sequential SGT or NGS to achieve a comprehensive genomic profile in Europe.

Tumor Diagnostic 
yield (%) 

PSI (%) Number needed 
to predict 

Cost per 
patient (€) 

Cost per correctly 
identified patient (€) 

95% CI (lower, upper) 

Advanced non–squamous 
NSCLC

 � Sequential SGT 31.59 66.34 1.51 1315.43 1982.79 [1332.26-3462.41]

 � NGS 22.52 90.12 1.11 593.00 658.00 [643.62-729.6]

Advanced squamous 
NSCLC

 � Sequential SGT 2.37 1.88 53.10 664.00 35 259.42 [4205.33-21248]

 � NGS 1.55 2.74 36.49 593.00 21 636.63 [1284.83-8895]

Metastatic breast

 � Sequential SGT 43.16 88.32 1.13 1061.64 1202.10 [1010.36-1452.98]

 � NGS 42.52 85.36 1.17 593.00 694.71 [683.01-779.17]

Metastatic colorectal

 � Sequential SGT 28.65 79.52 1.26 974.92 1225.95 [1001-1548.42]

 � NGS 25.26 90.02 1.11 593.00 658.74 [650.16-720.71]

Advanced prostate

 � Sequential SGT 1.02 50.48 1.98 272.58 539.98 [214.05-2495.9]

 � NGS 2.01 25.34 3.95 593.00 2340.47 [NE-12725.98]

Metastatic gastric

 � Sequential SGT 29.67 90.90 1.10 1158.50 1274.47 [1060.29-1601.48]

 � NGS 30.89 89.19 1.12 593.00 664.84 [663.15-702.48]

Advanced pancreatic ductal

 � Sequential SGT 3.18 11.38 8.79 931.77 8189.74 [NE-32623.53]

 � NGS 1.85 18.81 5.32 593.00 3153.24 [NE-11860]

Advanced hepatocellular

 � Sequential SGT 3.54 20.25 4.94 930.45 4595.59 [1906.64-28453.55]

 � NGS 2.21 32.50 3.08 593.00 1824.75 [741.25-13967.82]

Advanced cholangiocarci-
noma

 � Sequential SGT 36.46 81.45 1.23 1352.50 1660.61 [1336.78-2165.45]

 � NGS 32.02 88.94 1.12 593.00 666.71 [664.91-702.24]

Note: Diagnostic yield is the expected percentage of all ESCAT Tier 1 genetic alterations within the tumor category as found in the ESMO NGS guideline 
recommendations.
Abbreviations: NE, not estimable; NGS, next-generation sequencing; NSCLC,non-small cell lung cancer; SGT, single-gene testing.
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laboratory and IT infrastructure, personnel, validation, etc), 
as well as the ongoing costs (eg, sequencing kits and flow 
cells) of validated, genomic tests. Of note, labor costs, ini-
tial infrastructure, and ongoing genomic testing costs vary 
significantly across countries, and the calculator allows indi-
vidual labs and hospitals to use comprehensive local costs 
as input source. As such, these results compare the costs of 
validated diagnostic tests with an approach consistent with 
prior cost-effectiveness analyses of genomic tests. To illustrate 
this point, CCIPs were calculated using a range of published 
prices for each test. While some variability was observed at 
the different SGT cost estimates, the same general trends were 
seen as base case. At the higher cost estimates for NGS, the 
cost differential from SGTs became smaller, and vice versa.

As testing strategies have shifted in favor of NGS, its per-
ceived high cost has raised concerns about its value and 
sustainability, particularly its budget impact compared to 
SGT.22 Our results are largely consistent with previous cost- 
effectiveness studies on NGS and SGT. In a study investigating 
costs of different diagnostic approaches in 3 Italian hospitals, 
Pruneri et al. applied several different scenarios (eg, current 
testing pathway, minimum set per local guidelines, and antic-
ipated future mutational load) for patients with advanced 
NSCLC or mCRC and found that the NGS-based strategy was 
cost-saving in all scenarios except one, where the additional 
cost for NGS was modest.22 Savings per patient were higher 
in scenarios where NGS encompassed a more comprehensive 
set of mutations, attributed both to the volume of detectable 
alterations via NGS and to the reduction in personnel time 
needed. In another analysis from the perspective of the US 
Centers for Medicare & Medicaid Services (CMS) or US com-
mercial payers, an economic impact model showed that, com-
pared with SGT, NGS for metastatic NSCLC was associated 
with cost savings for both CMS and commercial payers, while 
also providing shorter time-to-test results by 2-3 weeks.21

In contrast, despite the importance in advancing national 
policies regarding optimal use of NGS in routine cancer 
care, some cost-effectiveness analyses for genomic testing 
approaches have been limited and/or lacked gravitas to deci-
sion makers because of the nature of rapidly changing key 
parameters, such as test prices, test performance characteris-
tics (eg, sensitivity and specificity), and the number and type 
of clinically actionable biomarkers.79–81 For example, a 2020 
analysis in Brazil of cost-effectiveness of SGT vs. NGS for 
EGFR, ALK, and ROS1 in NSCLC concluded that NGS-
facilitated identification was not cost-effective due to an incre-
mental $3479 per correct case detected;82 however, the limited 
number of biomarkers included in that study was insufficient 
to accurately estimate the cost differential between diagnos-
tic methods. On the other hand, a study in Singapore found 
that use of a targeted NGS panel for DNA alterations (29 
selected genes including BRAF, EGFR, ERBB2, and TP53) 
and an RNA fusion panel (ALK, ROS1, and RET) resulted in 
identification of an additional 1% of patients with actionable 
alterations, without significant added costs.83

The development of our genomic testing cost calcula-
tor and findings from its initial application have important 
implications for the oncology community, not only in terms 
of economic value but also for informing policy and how 
physicians approach diagnostics, both in clinical practice and 
in clinical trial design. Within the current clinical landscape, 
where there is a drive to develop companion diagnostics in 
parallel with clinical trials, offering a model that can estimate 

cost differentials in trials will facilitate adoption and access 
to both drug and diagnostic approaches following market-
ing authorization. As illustrated in the cancer types selected 
for our analysis, NGS provided favorable CCIP for some but 
not all cancers, with the differences related to the number 
of biomarkers tested, their prevalence within a given cancer 
type, and the sensitivity and selectivity of each test. In the 
US, NGS testing has increased to 48% for advanced NSCLC, 
but remains <20% for mCRC, mBC, and advanced mela-
noma. For those who remain skeptical about value of NGS, 
the genomic testing cost calculator makes comparative cost 
calculations accessible to clinicians, guideline developers, and 
other decision makers who otherwise may not have special-
ized health economics training. Pruneri et al. has suggested 
that the increased adoption of NGS over SGT can lead to cost 
reduction, particularly at a given threshold of patient num-
bers or molecular alterations.22 Furthermore, the anticipated 
growing number of molecular alterations will also increase 
the potential savings generated by NGS.22 Indeed, prevalence 
data collected from Mosele et al. in this study are conserva-
tive and perhaps outdated, given the growing availability of 
targeted therapies and potential for increased yield via NGS.19

Recent years have seen a growing number of clinically 
actionable biomarkers: 58% of 62 cancer drugs approved by 
FDA and 59% of 46 cancer drugs authorized by EMA in the 
last 5 years have been granted pharmacogenomic labels.84–86 
This rapid expansion of biomarker-guided therapies is appar-
ent even in the short timeframe from when the ESCAT rank-
ings were published in August 2020.19 For example, at time 
of the ESMO NGS publication, there were 5 genomic alter-
ations (EGFR, ALK, MET, BRAFV600E, and NTRK) for which 
targeted therapies had been approved for NSCLC by FDA 
and/or EMA. Over the last 2 years, at least 11 new therapies 
have been approved that depend on testing of genomic/molec-
ular alterations, 7 of which target ESCAT 1 markers, 3 which 
target non-ESCAT 1 markers, and 1 indicated for NSCLC 
without certain genomic alterations.87,88 Given the pace and 
volume of emerging new therapies that target genomic alter-
ations, we believe the CCIP differences between NGS and sin-
gle SGTs presented in our analysis are conservative and will 
increase in favor of NGS over time.

Along with the expansion in biomarker-specific labels, 
the treatment landscape has shifted towards use of precision 
oncology agents that target specific actionable genomic alter-
ations operating in many cancer types (“tumor agnostic”; eg, 
tumor–agnostic therapies for NTRK gene fusions, MSI-H/
dMMR, TMB-H, BRAFV600E) rather than the classic one can-
cer type—one alteration—one drug approach. Furthermore, 
the number of late stage, multi–indication trials has increased, 
along with the potential for increased use of pan–tumor ther-
apies.89 The interest in genomic–based diagnostics is also 
evident in new initiatives, such as Europe’s Beating Cancer 
Plan—which recently invested €4 billion in the Knowledge 
Centre on Cancer, Genomics for Public Health, and 
Partnership on Personalized Medicine, among other groups.

Indeed, as the number of clinically actionable biomarkers 
continues to grow, evolving guidelines and new initiatives have 
kept pace to accelerate genomics for research, prevention, 
diagnostics, and treatment. In a consensus report published 
in 2020 by a panel of international experts from Europe, US, 
and Asia, NTRK fusion testing was suggested for all patients 
with advanced solid tumors without other known actionable 
and driver gene mutations, with testing to occur both before 
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and during standard treatment.2 MSI/MMR testing was rec-
ommended for patients with advanced solid tumors with 
high incidence of MSI-H/dMMR, and weighing the economic 
considerations of testing with potential clinical benefit, it was 
suggested that advanced tumors with low incidence of MSI/
dMMR should also be considered to inform treatment deci-
sions. Additional guidance is anticipated following the recent 
FDA approval of dabrafenib plus trametinib for unresectable 
or metastatic solid tumors with BRAFV600E mutation.90 NGS 
testing has been described as having potential to become the 
standard-of-care for determining eligibility for treatment with 
PD-(L)1 inhibitors and for assessing tumor responses.91,92

A limitation of the calculator is the assumption that it treats 
false-positives and false-negatives equally, consequences of 
each may be different and may include suboptimal or incor-
rectly assigned treatments to patients, resulting in different 
outcomes and costs over time. By combining values for TP/FP 
and TN/FN to calculate a single value for sensitivity and spec-
ificity parameters for each SGT, neither differences by tumor 
type/gene alteration nor uncertainty in PSA are taken into 
account. While the NNP metric takes these rates into con-
sideration, subsequent treatment decisions and their impact 
on patients were considered out of scope for the calculation 
and not taken into account. Further research on such impact 
is warranted.

Evolving treatment guidelines reflect an unprecedented 
expansion in precision oncology. Recent approvals of molec-
ularly targeted therapies and expanded use of basket trials 
are uncovering genomic signatures that can inform treat-
ment decisions and improve prediction of outcomes. This 
rapid pace of change points toward a new era where NGS 
will enable more efficient oncology testing with demonstrated 
value than the multiplicity of tests required for multiple  
single-gene alterations. Indeed, while the genomic testing cost 
calculator described herein provides comparative benchmarks 
from different diagnostic methodologies, it can be expanded 
or tailored to further substantiate the need for adopting NGS 
or other multiplex diagnostic advances to optimize individual 
benefits of biomarker-driven, tumor-agnostic precision oncol-
ogy. Investing in a transition to NGS offers the opportunity 
to optimize personalized patient care via early identification 
of efficacious matched therapies and achieve improvements in 
patient outcomes and quality of life, and cost offsets through 
minimizing sequential SGTs and ineffective therapeutic regi-
mens and other treatments.
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