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Deep learning-based image analysis predicts
PD-L1 status from H&E-stained histopathol-
ogy images in breast cancer

Gil Shamai 1,7 , Amir Livne1,7, António Polónia 2, Edmond Sabo3,
Alexandra Cretu3, Gil Bar-Sela4,5 & Ron Kimmel1,6

Programmed death ligand-1 (PD-L1) has been recently adopted for breast
cancer as a predictive biomarker for immunotherapies. The cost, time, and
variability of PD-L1 quantification by immunohistochemistry (IHC) are a chal-
lenge. In contrast, hematoxylin and eosin (H&E) is a robust staining used
routinely for cancer diagnosis. Here, we show that PD-L1 expression can be
predicted from H&E-stained images by employing state-of-the-art deep
learning techniques. With the help of two expert pathologists and a designed
annotation software, we construct a dataset to assess the feasibility of PD-L1
prediction fromH&E in breast cancer. In a cohort of 3,376 patients, our system
predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 – 0.93.
Our system is validated on two external datasets, including an independent
clinical trial cohort, showing consistent prediction performance. Furthermore,
the proposed system predicts which cases are prone to pathologists miss-
interpretation, showing it can serve as a decision support and quality assur-
ance system in clinical practice.

Breast cancer became the leading cause of death inwomen ages 20 to
59 and the most diagnosed cancer as of 2021, accounting for 12% of
all new annual cancer cases worldwide1. Immunotherapy for pro-
grammed death 1 (PD-1) and programmed death ligand-1 (PD-L1) is
one of the promising recently developed treatments for several types
of cancer. Such treatments trigger the immune system to fight the
cancer by blocking the association between PD-L1 and PD-1 check-
points that suppresses the immune system. In lung cancer, PD-L1/PD-
1 inhibitors immunotherapywas recently found to have better overall
response and overall survival for patients with tumor expression of
over 50% PD-L1 in tumor cells compared to standard chemotherapy2.
Following its success in lung cancer, as well as in other types of
cancer, PD-L1 has recently gained attention as a predictive biomarker
for immunotherapy response in triple negative breast cancer
and other subtypes of breast cancer3–5. For example, the
IMpassion130 study showed that adding immunotherapy to

chemotherapy had no benefit for overall survival time in triple
negative breast cancer patients. When considering only the group of
PD-L1 positive patients, however, addition of immunotherapy has
significantly improved the survival time6. Based upon this study, the
Food andDrug Administration (FDA) has approved the assessment of
PD-L1 by Ventana SP142-stained immunohistochemistry (IHC) in tri-
ple negative breast cancer for selecting patients to receive
immunotherapy7.

PD-L1 staining by IHC, which is the current conventional approach
for PD-L1 assessment, is costly, time consuming, may exhaust the tis-
sue, and is even inaccessible in some countries. Its interpretation is
nontrivial, requires special expertize, and is more than often incon-
sistent. More than one staining method for PD-L1 exists, and several
studies have shown that quantification of PD-L1 expression may sig-
nificantly change, depending on the staining method and antibody
used8,9. Other studies have shown low rates of repeatability for PD-L1
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assessment by certified pathologists, even within each single staining
method10–12.

Hematoxylin and eosin (H&E) is the basic staining that is routinely
done for every biopsy today, and allows visual examination of the
tissue and cells. In contrast to IHC,H&E is robust, reliable, efficient, and
cheap, and does not depend on the choice of antibodies. Based on
H&E, pathologists detect cancer and diagnose its subtype and grade.
Nevertheless, visual examination of H&E by pathologists is limited and
is not used for predicting the expression of PD-L1 or other biomarkers.

Convolutional neural networks (CNNs) are a class of machine
learning methods that are optimized for image analysis, and currently
provide state-of-the-art performance for various image classification
tasks. In computational pathology, image analysis by CNNs has shown
comparable performance to pathologists in various tasks, such as IHC-
based PD-L1 assessment and H&E-based tumor and grade classifica-
tion, and has been recently approved by the FDA for quality assurance
and decision support for tumor detection in clinical practice13–18.

It has been shown thatmachine learning can reveal information in
H&E images unseen by the human eye, and, therefore, unexploited in
the pathology setting19,20. Shamai et al.21 have recently demonstrated,
for the first time, that molecular biomarker expression can be pre-
dicted by machine learning from H&E tissue microarray (TMA) images
in breast cancer, without immunohistochemistry - a prediction that is
yet beyond human interpretation and ability to reproduce. Moreover,
they showed that Estrogen receptor (ER) status could be predicted
with accuracy comparable to inter-pathologist quantification by IHC.
More recent studies supported this evidence by using CNNs for pre-
dicting ER, Progesterone receptor (PR), and human epidermal growth
factor receptor 2 (ERBB2) from H&E-stained from TMAs and whole
slide images (WSI) in breast cancer22–25, as well as other biomarkers in
other types of cancer26,27. Nevertheless, no evidence has yet been
found for the benefit of H&E-analysis for prediction of PD-L1 expres-
sion in breast cancer.

Here we show that PD-L1 expression can be predicted by CNN-
based analysis of H&E images. Since PD-L1 has been recognized as an
important biomarker in breast cancer only recently, it is not yet a part
of the routine clinical practice, and it is thus challenging to construct
large datasets of H&E images coupled with PD-L1 expression. In our
study, we exploited a large tissue microarray repository containing
H&E-stained images and multiple corresponding stains for various
biomarkers, including IHC for PD-L1. An expert pathologist annotated
the samples in the dataset for PD-L1 expression. The dataset we con-
structed allowed us to train and test a CNN for the prediction of PD-L1
expression from H&E images for the first time.

Results
PD-L1 in the BCCA and MA31 cohorts
The study was based on breast cancer tissue samples and clin-
icopathological data of 5596 patients with 26,763 TMA images from
two independent cohorts: The British Columbia Cancer Agency
(BCCA) and theMA31 (Table 1). TheBCCAcohort is composedof 4,944
women with newly diagnosed invasive breast cancer in British
Columbia, whose tumor specimens were processed by a central
laboratory at Vancouver General Hospital between 1986 and 1992.
Each woman had three H&E-stained TMA cores, one IHC-stained TMA
for PD-L1, and one for PD-1.

The MA31 cohort is a clinical trial of the Canadian Cancer Trials
Group, conducted from January 17, 2008, through December 1, 2011,
andwas designed to evaluate the prognostic and predictive biomarker
utility of pretreatment serum PD-L1 levels. This cohort consists of 652
recruited patients with ERBB2-positive metastatic breast cancer from
21 countries. Eachwoman had between 1 to 4 H&E-stained images, and
one PD-L1-stained image corresponding to each H&E image (Table 1).

An expert pathologist annotated the entire data, consisting of
both BCCA andMA31 cohorts, for PD-L1 positive or negative status, by

going through all available H&E and PD-L1 TMA images (Fig. 1a). To
make the annotation process easier, we designed a computer-aided
application which enabled the pathologist to go through the patient
images, alternate between TMA images of each patient, and determine
their expression status using keyboard shortcuts and a place for typing
comments (see “Methods”). Following the annotation process, part of
the patients fromboth cohorts were excluded from the analysis due to
one of the following reasons (Table 1):Missing TMA images, TMAswith
no tissue or no tumor, deficient or non-specific staining, or images out
of focus. The rest of the patients were classified as either negative or
positive for PD-L1 status.

Training and testing the system
To set up the data for training and inference, we pre-processed the
H&E-stained TMA images. All images were cropped and resized from a
resolution of 1440 × 2560 to 512 × 512 pixels, and data augmentation
was performed to help the model deal with variability in staining
methods and other differences between the cohorts (See “Methods”).
The BCCA patients were randomly divided at the patient level to
training (2516, 74.5%) and test (860, 25.5%) sets (Table 1).

The training set was further randomly divided at the patient level
to five train, and validation folds and the system was then trained and

Table 1 | Patients and TMAs included and excluded in each
data group

Cohort BCCA MA31

Biomarker PD-L1 PD-1 PD-L1

Total patients n % n % n %

Total 4944 100.0% 4944 100.0% 652 100.0%

Excluded from analysis 1568 31.7% 1449 29.3% 377 57.8%

Included in analysis 3376 68.3% 3495 70.7% 275 42.2%

Patients excluded from
analysis

n % n % n %

Total 1568 100.0% 1449 100.0% 377 100.0%

No TMAs 168 10.7% 0 0.0% 229 60.7%

No tissue 969 61.8% 1189 82.1% 118 31.3%

No tumor 176 11.2% 188 13.0% 25 6.6%

Deficient staining 224 14.3% 61 4.2% 5 1.3%

Out of focus 31 2.0% 11 0.8% 0 0.0%

Patients included in
analysis

n % n % n %

Total 3376 100.0% 3495 100.0% 275 100.0%

Negative 2819 83.5% 3388 96.9% 252 91.6%

Positive 557 16.5% 107 3.1% 23 8.4%

Training set 2516 74.5% 2618 74.9% 0 0.0%

Test set 860 25.5% 877 25.1% 275 100.0%

H&E TMAs included in
analysis

n % n % n %

Total 10,128 100.0% 10,485 100.0% 515 100.0%

Negative 8457 83.5% 10164 96.9% 482 93.6%

Positive 1671 16.5% 321 3.1% 33 6.4%

Training set 7548 74.5% 7854 74.9% 0 0.0%

Test set 2580 25.5% 2631 25.1% 515 100.0%

IHC TMAs included in
analysis

n % n % n %

Total 3376 100.0% 3495 100.0% 515 100.0%

Negative 2819 83.5% 3388 96.9% 482 93.6%

Positive 557 16.5% 107 3.1% 33 6.4%

Training set 2516 74.5% 2618 74.9% 0 0.0%

Test set 860 25.5% 877 25.1% 515 100.0%
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validated using 5-fold cross-validation (CV). In each training phase, the
model obtained pre-processed H&E-stained TMA images belonging to
patients from the training folds andwasoptimized to predict the PD-L1
status that was determined by the pathologist. Each H&E image has
been assigned the status of its corresponding patient. During the
inference phase, the model obtained H&E images belonging to new
patients from the validation fold, yet unseen by the system, and pro-
duced a prediction score between 0 and 1 for each patient. The pre-
diction scores were then compared to the ground truth annotation of
thepathologist for statistical analysis (Fig. 1b). The resulting areaunder
the curve (AUC) performance for the cross-validation with respect to

thepathologist’s binaryPD-L1 statuswas0.911 (95% confidence interval
(CI): 0.891–0.925), showing high prediction ability for PD-L1 fromH&E
images (Fig. 2a, BCCA-CV).

Next, to validate the system on another test set that was not part
of the cross-validation, we trained one model with the same archi-
tecture, configurations, hyperparameters, and number of epochs, on
the entire training set, and applied it to the held-out BCCA test set,
resulting in a PD-L1 prediction score for each of the 860 test patients.
The resulting AUC performance was 0.915 (95% CI: 0.883–0.937) for
the BCCA test set (Fig. 2a, BCCA-test). The test AUC serves as a second
validation of the system and shows that the system could be

Fig. 1 | Overview of the proposed framework. The annotation, training, and
inference methodologies. a An expert pathologist used our designed computer-
aided annotation software to annotate patients for PD-L1 status, basedon their H&E
and corresponding IHC-stained TMA images. Patients with no TMAs, unclear ima-
ges, deficient staining, and with insufficient tissue or tumor, were excluded from
the analysis. The rest of the patientswere assignedeach a PD-L1 positive or negative
label, resulting in 2516 annotatedpatients in the BCCA training set, 860 in the BCCA
test set, and 275 in theMA31external test set.bH&E images of the includedpatients

were assigned the annotation of their corresponding patients. The H&E images in
the BCCA training set were used to train and validate the CNN in a 5-fold cross-
validation manner, using the ground truth PD-L1 annotations. The model was then
applied to the validation folds, the BCCA test set, and the external MA31 test set, to
produce a prediction score for each H&E image. The prediction score per patient
was defined as the maximum over its corresponding H&E prediction scores. The
prediction scores at thepatient levelwere thencompared to the ground truth PD-L1
annotations to produce statistical analyses.
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generalized to newpatients in BCCA that did not take part in the cross-
validation. As it is within the confidence interval of the cross-validation
AUC, it shows that the model architecture and hyperparameters were
not overfitted to the training and validation folds. Given the imbal-
ancednature of the dataset, we alsoplot theprecision versus recall and
negative predictive value (NPV) versus specificity curve for each cor-
responding ROC curve (Supplementary Fig. 2).

Prediction on an independent external cohort
We next aimed to validate the system on an external independent
cohort. We applied the same trained model, without any modifica-
tions, to obtain a PD-L1 prediction score for each of the 275 patients in
the clinical trial MA31 test set. The resulting AUC performance for PD-
L1 predictionwas0.854 (95%CI: 0.771–0.908) onMA31 (Fig. 2b,MA31).
It is most likely that the low AUC=0.854 performance on MA31,
compared to AUC=0.915 on the BCCA test set, was due to overfitting
of themodel to the characteristics of the BCCA cohort, onwhich it was
trained. For example, MA31 had only ERBB2 positive metastatic breast
cancer, with 8.4% PD-L1 positive cases, compared to 16.5% positive
cases in BCCA. Tissue preparation and staining, and digitization may
have also taken part in this overfitting. This drop in performance is a
common and expected behavior of deep learning when dealing with a
difficult task, even when using extensive data augmentation.

To compensate for these cohort differences and calibrate the
model to better fit MA31, we applied a transfer learning approach28 to
fine-tune only the last layer of the CNN using the TMAs from some of
the patients (see “Methods”). The patients whose TMAs were used for
fine-tuning the model were excluded from the inference and predic-
tion analysis. The calibration resulted in prediction scores that
obtained an AUC performance of 0.886 (95% CI: 0.805–0.934) for
MA31 (Fig. 2b, MA31-cal), which was higher by 0.036 (95% CI: -0.014 –

0.095) than the AUC of the uncalibrated system. This shows that when
applying the model to a new cohort, a calibration step using some
samples from the new cohort may increase the performance.

A decision support system in clinical practice
Since most patients in the data had low expression for PD-L1, the
system could better learn features indicative of negative PD-L1 status.
A system with high negative predictive value performance, corre-
sponding to high sensitivity, could be useful for screening out patients

negative for PD-L1, and could allow pathologists to focus their atten-
tion on the rest of the cases. Moreover, such a system could be used in
clinical practice for quality assurance of PD-L1 expression. In such a
setting, biopsy samples that were classified as PD-L1 positive by the
pathologists but predicted as very likely to benegative for PD-L1 by the
system, could be recommended for a second read.

We set a threshold, such that patients who obtained prediction
scores below or above that threshold were classified as low-prediction
score (low-PS) or high-prediction score (high-PS), respectively. Low-PS
patients were predicted as PD-L1 negative, and high-PS patients were
predicted as PD-L1 positive. The threshold was tuned once using the
BCCA cross-validation to obtain a large low-PS group while maintain-
ing high sensitivity (Fig. 3a). Using this threshold, The BCCA cross-
validation scores were divided to low-PS (57.5%) and high-PS (42.5%)
patients. Of the low-PS, only 2.4% of the patients were classified as
positive by the pathologist, resulting in a negative predictive value
(NPV) of 0.976 and a sensitivity of 0.916 in the BCCA cross-validation
(Table 2). This shows that the system could detect patients that were
very likely to be PD-L1 negative. In other words, we constructed a
system that classifies patients to either low-PS or high-PS based on
their H&E images. When the system classifies a new (yet unseen)
patient from the BCCA cohort as low-PS, we expect the patient to be
PD-L1 negative with an estimated probability of 97.6%.

The system was then applied to patients from the BCCA test set
using the same threshold (Table 2). As a result, 473 (55.0%) of
patients were classified as low-PS, out of which only 8 (1.7%) were
previously classified as positive by the pathologist (NPV = 0.983,
sensitivity = 0.943), compatible with our expectations (Fig. 3b). On
MA31 (without any calibration), 143 (52.0%) patients were classified
by the model as low-PS. Out of these, only 1 (0.7%) was previously
classified as positive by the pathologist, resulting in a NPV =0.993
and sensitivity of 0.957 on the external MA31 test set. This shows that
even though the uncalibrated model had lower overall AUC perfor-
mance on the entire MA31 set, it could still accurately detect PD-L1
negative cases. Using the MA31 calibrated model, 185 (69.0%) of the
patients were classified as low-PS, out of which 2 (1.1%) of the patients
were previously classified positive by the pathologist, resulting in
NPV = 0.989 and a sensitivity of 0.913 on the MA31 cohort. Effec-
tively, calibrating the model to MA31 improved its detection cap-
ability of PD-L1 negative patients from 52 to 69%. The above results
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Fig. 2 | Convolutional neural networks achieve high performance in the pre-
diction of PD-L1 and PD-1 expression. Receiver operating characteristics (ROC)
curves for the performanceof the proposedmodels, in terms of AUC, for PD-L1 and
PD-1 prediction in the BCCA and MA31 cohorts. a The model obtained high pre-
diction accuracies for both the BCCA cross-validation (0.911) and BCCA test set
(0.915). When analyzing only concordant cases between pathologists, AUC per-
formance was further increased (0.928). b For the external MA31 cohort, the

performance dropped to 0.854, showing that a calibration step may benefit the
applicationof the system to newcohorts. Indeed, the calibration step increased the
AUC on MA31 to 0.886, which was further increased to 0.919 after removing the
discordant cases. c The AUC performance results for PD-1 prediction were lower
than for PD-L1. The PD-1 AUC results were high, however, given the extremely
imbalanced nature of data (only 3%positives),whichposes optimizationdifficulties
due to very few positive samples to train the system with.
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illustrate that some tumor architectures may be highly indicative of
the absence of PD-L1 expression, and that these tumor architectures
were reflected in the H&E images and could be recognized by an
adequately trained computerized system.

Interobserver variability and discordant cases
Previous studies reported low interobserver agreement for PD-L1
quantification by pathologists10–12. To gain a better understanding of
the system’s performance, we next aimed to estimate the inter-
observer variability between pathologists for interpretation of PD-L1
expression on our data. Re-annotating the entire BCCA cohort would
have been time consuming (estimated 20 h, even with the fast anno-
tation tool), and the MA31 cohort had overall better staining quality
than the BCCA cohort. Thus, for this task, we asked a second expert
pathologist to re-annotate the entire MA31 cohort, based on the same
PD-L1 and corresponding H&E TMA images used by the first patholo-
gist. The second pathologist was blind to the annotations of the first
one. Out of the 23 patients that were classified positive in MA31 by the
first pathologist, 19 (82.6%) were classified positive by the second one
as well, and the remaining 4 were classified negative, discordant from
the first pathologist. Out of the 252 patients classified negative by the
first pathologist, 246 (97.6%) were classified negative by the second
one, and 6 (2.4%) as positive (Table 3a). The Cohen’s-kappa con-
cordance between the pathologists was 0.772. Although higher than in
the previously mentioned studies (kappa =0.543–0.628), this shows

that PD-L1 expression can be interpreted differently by independent
expert pathologists, and that a supporting system that could add
useful prediction information may help pathologists improve their
diagnosis and reduce variability.

The proposed system could be applied in clinical practice as an
alert system.As such, any case classifiedpositive by thepathologist but
low-PS by the system would be alerted, and the alerts would be con-
sidered for re-examination. To test this idea, we asked the second
pathologist to re-annotate the 8 cases in the BCCA test cohort that
were classified positive by the first pathologist and low-PS by the sys-
tem. To remove bias, we first mixed these cases with another 100
randomly selected cases from the BCCA test cohort. In this manner,
the second pathologist was unaware of which of the cases were the
ones classified previously as positive or predicted as low-PS. We
repeated the process for the MA31 cohort (with the calibrated model).
Table 3b summarizes the results, and Fig. 4 shows the reviewed TMAs.

In the BCCA test set, there were 8 low-PS patients that were
classified positive by the first pathologist. Only 4 (50.0%) of these cases
were also classified by the second pathologist as positive. Among the
remaining, 3 caseswere classifiednegative, and 1 casewith no tumor to
determine. In MA31, there were 2 low-PS patients that were classified
positive by the first pathologist. Both cases were classified as negative
by the second pathologist. In other words, the two system alerts in
MA31 (patients classified positive by the pathologist and low-PS by the
system) were indeed both discordant between the pathologists and
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Fig. 3 | Impact of the proposed system on clinical practice. a The threshold for
splitting the patients’ prediction scores to low and high is tuned in the BCCA cross-
validation. Bottom: The sorted prediction scores of the patients, versus the per-
centage of patients classified below the threshold. Top: The cross-validation sen-
sitivity of the system, versus the percentage of patients classified below the
threshold (i.e., classified as low-PS), showing a trade-off between the two. The
thresholdwas selected as0.5, resulting in a sensitivity of 0.92 for BCCA-CVwith 58%
of the patients in the low-PS group. b Applying the selected threshold to the BCCA

test patients (top) and MA31 patients (bottom). Following the system’s predictions
allows the pathologists to focus on reviewing the cases classified as low-PS by the
system and positive by the pathologist, whichmay be prone tomiss-interpretation
or deficient PD-L1 staining. After removing the discordant cases from the analysis,
the sensitivity was increased (BCCA-test-con and MA31-con), revealing the inter-
pathologist variability. In addition to quality assurance, the systemcouldbeused to
allow pathologists to spare IHC staining and interpretation frommore than 70% of
the patients while retaining 100% sensitivity for PD-L1 expression in MA31.
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were among the four positive cases in MA31 that the second patholo-
gist re-classified as negative. An interesting observation is that if the
system alerts were not indicative of potentially discordant cases, the
probability for the two alerts to be among the four discordant patients
would have been low – 2.37% (calculated as 4/23 for the first alert to be
discordant, multiplied by 3/22 for the second alert to be discordant).
Also, note that random false positive classifications made by the
pathologist would likely be alerted by the system. The probability for a
random false positive classification to be alerted can be estimated as
the specificity, which is 64.6% on BCCA-test and 74.7% on MA31.

In our data, most of the patients who were classified as low-PS by
the system and positive by the first pathologist, were found discordant
by the second pathologist. Moreover, it is generally known that IHC
staining occasionally suffers from deficiencies. Thus, it is also possible
that someof the fewcases thatwere indeed confirmedpositive byboth
pathologistsmayhave, in fact, been PD-L1 negatives that suffered from
over-staining or other staining deficiency, and that the system, which
based its prediction on the robust H&E staining, could bypass these
staining errors. This analysis shows the potential benefit of the system
as quality assurance in clinical practice, by detecting cases that could
bemore sensitive formiss-interpretation and shouldbe reviewedor re-
stained again.

The interobserver variability between the two pathologists may
also indicate that the ground truth annotation, which the system’s
prediction was compared to, was not perfect. We removed the data of
the patients that the pathologists did not agree on from the analysis
(10 cases inMA31, and4 caseswithin the low-PS group in BCCA) and re-
analyzed the prediction performance. As a result, the AUC perfor-
mancewas improved from0.915 to 0.928 on the BCCA test set (Fig. 2a,
BCCA-test-con), and from 0.886 to 0.919 on MA31 calibrated model
(Fig. 2b, MA31-con). Please note that for the BCCA-test data, although
an increase in the performance was marked, the new AUC may be
biased because cases removed were only from the low-PS positive
group. On the BCCA-test set, the NPV was improved from 0.983 to
0.991, and the sensitivity from 0.943 to 0.971 (Fig. 3b, BCCA-test-con).
On the MA31 test set, both the NPV and sensitivity improved to 1.0
(perfect score), showing that any patient classified by the system as
low-PS andpositive by thefirstpathologist, was interpreted as negative
by the second pathologist, in favor of the system (Fig. 3b, MA31). This
implies that the system’s predictions from H&E images alone may
reveal additional information that could guide decisions in clinical
practice. Such a system can already be used as a quality assurance and
re-annotation recommendation tool for re-interpretation or even re-
staining for PD-L1, which does not require extensive validations or FDA
approvals.

PD-1 prediction on the BCCA cohort
The BCCA cohort also contained IHC-stained TMAs for PD-1. We thus
repeated the process for the annotation, training, and prediction of
PD-1 expression on BCCA. The annotation process of PD-1 on BCCA
resulted in extremely imbalanced data, in which almost all (96.9%) of
the patients were annotated as negative for PD-1 status (Table 1). We
used the same architecture and model for the training and prediction
as that of PD-L1. PD-1 prediction was surprisingly high in the BCCA
cross-validation (AUC=0.848) given the low number of positive sam-
ples the system could learn from (Fig. 2c). As to patients classified as
low-PS (41.0%), only a negligent part (0.2%) was found discordant due
to a positive classification by the pathologist (NPV =0.998, sensitiv-
ity = 0.974, Table 2).

In the BCCA test set, the model achieved an AUC close to that of
the cross-validation set. Amongst patients classified as low-PS (36.7%),
only 2 were designated positive by the first pathologist (NPV =0.994,
sensitivity = 0.931). Both cases were re-classified as negative by the
second pathologist, in favor of the system’s prediction. Removing
these cases increased the AUC from 0.825 to 0.875 and the NPV andTa
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sensitivity to 1.0 (perfect score). This shows that although PD-1 had an
extremely imbalanced dataset with a very small number of positive
samples to train the system on, its prediction performance was rela-
tively high and not much lower than that of PD-L1. Furthermore, the
system could detect PD-1 negative patients as accurately as with PD-L1.

Data interpretation by feature space visualization
t-distributed stochastic neighbor embedding (t-SNE)29 can be used to
visualize the data by mapping patients to points in space, based on
their image features. To better understand the correlation between
tissue architecture and PD-L1 expression, we applied t-SNE to the fea-
ture space representation of the BCCA test TMA images, produced at
the inference step of the CNN (See “Methods”). In this case, the t-SNE is
optimized to find amapping such that tissue architectures with similar
predictive characteristics for PD-L1 expression are mapped to near
points, while dissimilar architectures are mapped to far points. Fig. 5a
shows the resulting t-SNE distribution of the patients in 2-dimensional
space, colored by their PD-L1 prediction scores. One can see that
patients with low and high prediction scores were grouped almost
separately, indicating that they have distinctive tissue characteristics.
The low-PS cases that were classified as positive by the first pathologist
aremarked and can be seen to be uniformly distributedwithin the low-
PS group.

Next, we mapped the H&E-stained TMA images of the patients
based on the same t-SNE distribution (Fig. 5b), and an expert pathol-
ogist compared the TMAs of the different regions in the resulting
embedding. TMAsmapped at the bottom of the t-SNE embedding had
TMA images with partially missing tissues, showing that their inter-
pretation by the CNN was more distinctive than others, most likely
because they did not have enough tissue to obtain a conclusive pre-
diction. Low-PS tumors were characterized by dense streaming des-
moplastic stroma surrounding tumor ducts with variously sized
lumens, and these ducts were oriented along the stromal fascicles. The
tumor-to-stromal ratio was relatively low, and the number of tumor-
associated immune cells was low to absent. High-PS tumors were
characterized by a crowded population of solid-growing tumor nests,
islands with hyperchromatic nuclei, and no lumens. The tissue com-
ponents, such as stroma and glands, were less structurally oriented

than the low-PS ones. The stromawas haphazardly oriented and hardly
streaming, and its area was small with respect to the tumor. The tumor
associated-immune cells were present, sometimes in large numbers.
Supplementary Fig. 3 shows the corresponding t-SNE with IHC stains,
demonstrating that the brown staining, which represents the PD-L1
expression, is concentrated on the high-PS side of the map.

Aggressive tumors, such as triple negative breast cancer, are
usually hypercellular, with low stromal to tumor ratio, stroma rich in
immune cells, high nuclear to cytoplasm ratio, solid growth pattern,
and high mitotic index30. It has been shown that PD-L1 expression is
correlated with aggressive tumors and with the presence of immune
cells31. PD-L1 was also shown to be correlated with tumor mutational
burden (TMB)32, which was found to be correlated with high immune
cytolytic activity33. This could explain the features picked by the
algorithm to predict the PD-L1 expression. The visual comparison of
the high-PS and low-PS tumors showed that high-PS tumors were
indeed hypercellular, had aggressive characteristics, and had more
immune cells. The high-PS features were also in line with the finding
that TP53 mutation, which is found in aggressive triple-negative
tumors30, can trigger immune response34 and regulate PDL1
expression35.

To shed more light on the system’s decision making, we analyzed
the predictive power of the system for the BCCA-test set within each
histologic and tumor subtype, separately (Supplementary Fig. 4). In
Supplementary Fig. 4a, we show the t-SNE distribution for each sub-
type class, by keeping only the embedded points belonging to that
class. This analysis showed that the t-SNE distribution was not entirely
explained by any of the subtype classes on its own, and that the system
was able to accurately predict PD-L1 expression within each of the
classes. Both high-PS and low-PS groups contained all possible sub-
types. Additionally, the cases that were discordant between the
pathologists were uniformly distributed among the subtypes, showing
that there was no notable difference in the subtype composition of
discordant images compared to non-discordant ones. A comparisonof
the discordant and non-discordant H&E images of MA31 also showed
no notable difference between the features of these two groups
(Supplementary Fig. 5). In Supplementary Fig. 4b we show the AUC
performance for PD-L1 prediction within each of the classes. The AUC

H&E TMAs

IHC TMAs

H&E TMAs

IHC TMAs

BCCA-test (PD-L1) MA31 (PD-L1) BCCA-test (PD-1)

Nega�ve Nega�ve Nega�ve No tumor Nega�ve Nega�ve

Nega�ve Nega�vePosi�ve Posi�ve Posi�ve Posi�ve

Fig. 4 | Low-prediction score cases classified positive. Tissue images of patients
classified positive by the first pathologist and low-PS by the system. The BCCA-test
patients are shown on the left (by PD-L1) and right (by PD-1), and theMA31 patients
are shown in the middle (by PD-L1). For each patient, a representative H&E image

and its corresponding IHC image are displayed one below the other. The classifi-
cation of the second pathologist is registered below each sample, showing that
most of the low-PS cases that were classified positive by the first pathologist were
classified otherwise by the second one.
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of the entire data was within the 95% AUC-CI of any of the subtypes,
including the ERBB2 + class, which is in line with the previously shown
ability of the system to generalize to the MA31 cohort. For most sub-
types, the AUC was lower than the overall AUC. The lowest AUC was
obtained for the Luminal ERBB2 + subtype, probably because it con-
sisted of almost only PD-L1 negative cases. The AUC tendency to
decrease when constraining to subgroups of patients is an expected
outcome, which is due to the existence of correlations between the
subtypes and the PD-L1 expression that are explained by the AI-based
features.

To complete the analysis, we performed a univariate and a mul-
tivariate analysis for PD-L1 prediction based on the AI score and 19
additional molecular biomarkers (See “Methods”). The Univariate
analysis shows the correlation between each one of the biomarkers
and the PD-L1 status (Supplementary Table 1a). The multivariate ana-
lysis demonstrates which biomarkers significantly contribute to the
PD-L1 prediction when all biomarkers are used together (Supplemen-
tary Table 1b). The AI score had the highest χ2 value in both analyses.
FOXP3 and CD8 tumor infiltrating lymphocytes (TILs) significantly
contributed to PD-L1 prediction. This finding is in line with the

Fig. 5 | t-SNEembedding for visualizationof feature space. aA2Dvisualization of
the image feature vectors by applying t-SNE. Each point represents a single patient
in the BCCA test set. The t-SNE embedding maps patients with similar image fea-
tures to near points, and patients with dissimilar image features to far points. The
points are colored by the PD-L1 prediction scores of their corresponding patients.
The 8patients thatwere classifiedpositive by thefirst pathologist and low-PS by the

system are marked and their classifications by both pathologists are noted. b The
TMA images corresponding to the t-SNE embedding are presented. Several
examples of low and high prediction score images are shown, to demonstrate the
characteristics observed by the pathologists. Examples of partially missing tissues
are shown at the bottom.
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correlation between PD-L1 expression and the presence of immune
cells and FOXP3 expression36. The rest of the biomarkers, although
some were significantly correlated with the PD-L1 expression (Sup-
plementary Table 1a), did not further contribute significantly to the
combined prediction (Supplementary Table 1b). The overall AUC
performance for PD-L1 prediction using both the AI score and all bio-
markers was 0.928 (95% CI: 0.897–0.946). The addition of biomarkers
to the analysis has significantly increased theAUC (P = 0.006). The low-
PS group, however, still contained the same discordant cases. This
shows that the AI-based features alone could capture almost all
molecular information used for PD-L1 prediction. In addition, it can be
deduced that a combination of image features with molecular bio-
markers has the potential to further increase the ability to assess PD-L1.

Discussion
Our data and experiments showed that breast cancer tumors have
unique architectural signatures that hold information indicative of the
expression of PD-L1 and PD-1. These signatures could be revealed by
basic H&E staining with an adequate learning system that was trained
on pre-annotated examples. Our system showed high prediction abil-
ities for the expression of both PD-L1 and PD-1 based on H&E staining,
which is cheaper, more efficient, and more robust than immunohis-
tochemistry staining. Several independent previous studies demon-
strated the ability to predict ER, PR, and ERBB2 status from both H&E-
stained TMA and WSI images, ER status always obtaining the highest
prediction performance21–25. One of these studies was done on the
same BCCA cohort and predicted Estrogen receptor status with
AUC=0.88. Our study thus revealed that PD-L1 is evidently the bio-
marker with expression most correlated with tumor architecture in
breast cancer, obtaining the highest prediction performance
(AUC=0.91–0.93, Fig. 2a). As an additional verification for this
observation, we obtained the ER status data for BCCA, and repeated
the training and prediction with the same architecture of our system,
this time for ER prediction, and obtained AUC=0.89.

Our systemwas trained and validated in a cross-validationmanner
on the BCCA cohort, while separating patients between train and
validation folds. The system was then validated twice more, first on a
held-out test set thatwasnot a part of the cross-validation, and then on
an external test from the MA31 clinical trial, completely independent
from the original BCCA cohort. We showed that the systemwas able to
predict the expression of PD-L1 and PD-1 in all experiments, obtaining
slightly inferior results for the independent MA31 test. This outcome
could be explained by an unavoidable overfitting of the system to the
BCCA cohort on which it was trained, which had different character-
istics than MA31 (Table 1). This performance gap can be reduced by
significantly enlarging the training data and incorporating several
independent cohorts in the trainingphase. Instead, sinceour datawere
limited, we overcame this overfitting by re-calibrating the system to
betterfitMA31, using transfer learning28. The calibration required held-
out samples fromMA31 thatwere then excluded from the final test and
showed that indeed performance was increased (Fig. 2b).

PD-L1 staining and interpretation are known for having incon-
sistencies in diagnosis8–12. Thus, a quality assurance system that is
based on different data, such as H&E images, could improve diagnosis
by suggesting second reads for potentially miss-classified cases. To
estimate the inter-pathologist variability on our data, a second expert
pathologist repeated the annotation process for MA31. Even though
MA31 had much better staining quality and was less prone to inter-
pretability errors than BCCA, and even though the agreement between
our pathologists was higher than presented in previous studies, PD-L1
quantification by IHC on our data was far from being perfect (Table 3).
It is worth noting that CNNs have an inherent ability to be robust to
errors in the training data by learning a generalized underlying model.
In other words, as long as the errors in the training data are of a
reasonable amount, the CNN optimization is almost unaffected by Ta
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these errors. Thus, even though the ground truth data may have been
imperfect due to the reasons mentioned above, the system has prob-
ably learned to predict the true PD-L1 status.

We showed that the system could serve as a decision support and
quality assurance in clinical practice. Our system classified patients by
their prediction scores to low-PS and high-PS, based on their H&E
images. Patients who were predicted as low-PS were very unlikely
(0.0–2.4% probability) to be PD-L1 positives (Fig. 3 and Table 2). Low-
PS patients who were classified positive by the first pathologist were
often re-interpreted as negative by the second pathologist. In fact, the
probability of discovering a random false positivemisclassification can
be estimated as the specificity, i.e., the percentage of low-PS cases out
of the negative cases (64.6% on BCCA-test and 74.7% on MA31). This
shows that H&E analysis may provide an additional, yet unexploited
information, that could guide pathologists’ attention to cases that are
more prone to miss-interpretation. The quantification of PD-L1
expression depends not only on the pathologists’ interpretation but
may significantly change due to the choice of antibody and staining
method8,9. Thus, further study, in which samples can be re-stained, is
required to analyze the few remaining cases thatwere classified as low-
PS by the system and positive by both pathologists. Lastly, the results
on the independent externalMA31 test set showed that roughly 70%of
the cases could be ignored while obtaining 100% sensitivity. Thus, a
system for PD-L1 status prediction based on H&E could be used to
eliminate the need for immunohistochemistry for the majority of the
samples, or at least to prioritize those which were among the 30%
inconclusive cases.

The lack of interpretability of machine learning poses challenges
and complicates supervision of the system37,38. Grad-CAM39 is a com-
monly used approach for highlighting the image regions the system
relied on formaking its decision. Nevertheless, the highlighted regions
may not always provide a meaningful understanding of the system’s
decision-making (see supplementary discussion on Grad-CAM). To
gain a better understanding of the system’s decision process, we
applied a t-SNE embedding on the feature space of the H&E image
features for visualization of the data in a 2-dimensional space. The
t-SNE visualization showed that images classified as low and high PD-L1
expression prediction scores had distinct features. A visual examina-
tion of the low-PS and high-PS H&E images by an expert pathologist
showed that low-PS tumors were characterized by denser and more
oriented desmoplastic stroma than the high-PS tumors. Additionally,
tumors classified as low-PS had significantly less tumor associated-
immune cells and lower tumor-to-stromal ratio than high-PS tumors.
These features were in line with the findings that PD-L1 expression is
correlatedwith aggressive tumors and the presenceof immune cells. A
subtype and multivariate analysis showed that the AI-based features
captured information that was beyond the explainability of any other
single molecular biomarker or tumor subtype, and that the additive
value of all 19 biomarkers together over the AI score for PD-L1 pre-
diction was only moderate.

PD-L1 expression in breast cancer has gained attention only
recently, following its endorsement as a predictive biomarker for
immunotherapy response in lung cancer. The effect of PD-L1 expres-
sion on breast cancer prognosis has only recently begun to be studied
in clinical trials, and large breast cancer datasets, containing H&E and
slides and corresponding PD-L1 expression annotations simply do not
exist yet. What made this study possible was that we exploited a large
tissue microarray repository containing H&E-stained images and
multiple corresponding stains for various biomarkers. We invested
effort in constructing and organizing two datasets, MA31 and BCCA,
out of the repository. With a joint effort of two expert pathologists,
aided with a computerized application that we designed for fast
annotation, we were able to annotate the entire data. Indeed, one of
the drawbacks of this study is that it was conducted on tissue micro-
array images that have limited clinical translation, rather than whole

slide images. And yet, our H&E-stained TMA analysis could accurately
predict the PD-L1 expression and even detect instances of discordance
between the pathologists. Whole slide images are used in clinical
practice and contain much more information than tissue microarrays.
They are more challenging to analyze because they require more sto-
rage, longer training times, and dealing with artifacts and background
segmentations. A review of the previously mentioned studies shows
that whole slide image analysis obtains better performance than tissue
microarray on different prediction tasks. Thus, one can expect that a
future study on prediction of PD-L1 status from whole slide H&E ima-
ges, upon constructing such a database, can only improve our pre-
diction results. Finally, our systemcanbe applied towhole slide images
by automatically selecting tiles from regions of interest40.

Methods
Characteristics of the patients and the stains
The dataset used in this study consists of two independent cohorts:
BCCA and MA31 (Table 1). Each cohort contains breast cancer tissue
samples and clinicopathological data with TMA images. Eachpatient in
the BCCA cohort had 3 H&E-stained TMA cores, one IHC-stained TMA
for PD-L1, and one for PD-1. Each patient in the MA31 cohort had
between 1 to 4 H&E-stained images, and one PD-L1-stained image
corresponding to each H&E image. An expert pathologist annotated
the data for PD-L1 positive or negative status, by going through all
available H&E and IHC-stained TMA images (Fig. 1a). Some of the
samples were annotated to be excluded from the analysis (Table 1),
while the rest of the patients were classified as either negative or
positive for PD-L1 status. BCCA median follow-up was 12.4 years, and
age atdiagnosis 62 years.MA31median follow-upwas 21.5months, and
mean age at diagnosis was 55 years. The TMA images from both
cohorts contain 0.6-mm-diameter cores and were scanned using the
Bacus Laboratories, Inc. Slide Scanner (Bliss) scanner at a resolution of
2256× 1440 pixels.

Computer aided application for fast annotation
To enable a fast and accurate annotation procedure, we created a
computer-aided application for PD-L1 and PD-1 annotation, based on
an interactive visualization of each patient’s H&E and IHC-stained TMA
images. A dedicated button was used to swap between the patients,
and between H&E and corresponding IHC images of the same patient.
For each case, the pathologist could press one of seven dedicated
buttons to choose between “Negative”, “Positive”, “No TMA”, “No tis-
sue”, “No tumor”, “Deficient staining” and “Out of focus”. When
pressing a label button, the display window was immediately colored
with a distinct color to visualize the selected label and thus prevent
mislabeling errors. Additional buttons were designated for navigating
to previous patients, inserting comments for specific cases, and for
saving the inputs, to continue the annotation process later. To avoid
undesired bias, the pathologists did not have any access to metadata
such as the patient IDs.

Assessment of PD-L1 and PD-1 expression
PD-L1 expression was determined using the Ventana PD-L1 (SP142)
assay as the proportion of tumor area occupied by PD-L1 expressing
tumor-infiltrating immune cells (IC), and an expression in ≥1% IC was
defined as PD-L1 positive status, in accordance with the FDA
guidelines7,41. PD-1 expression (VentanaNAT105)was determinedusing
the combined positive score (CPS), corresponding to the proportion
of PD-1-stained cells (tumor cells, lymphocytes, macrophages) out of
the total number of viable tumor cells, and was considered positive
if CPS ≥ 1%.

Data pre-processing and augmentation
First, a square section of 1440 × 1440 was cropped from the center of
each TMA image. During training, the squared section was randomly
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cropped from within the 1640 × 1440 middle section of the image,
while during inference, it was fixed to the center 1440 × 1440 pixels of
the image. This random crop mechanism was designed to make the
model more robust to the variance in the location of the tissue in the
scanned slides,which is not alwaysperfectly centered. Then, all images
were resized to a resolution of 512 × 512. Next, we performed data
augmentation to help the model deal with variability in staining
methods and between the cohorts. Specifically, we randomly flipped
and rotated each image, and performed color jittering. The color jit-
tering included gamma correction, jittering the saturation and tem-
perature of the image, additive Gaussian noise, and blur
augmentations. No data augmentations were performed during
inference.

Convolutional neural network architecture
Inspired by the ResNet42 architecture, we used a CNN with residual
connections to train and test the model (Supplementary Fig. 1). The
CNNmodel consists of an initial convolution layer followed by a ReLU
activation and a BatchNorm layer. Then, a CNN backbone that consists
of 4 blocks encodes the input to an embedding vector in the latent
space of R256. Each block in the CNN contains a spatial downsample
operation, implemented by a convolution layer with stride 2, followed
by three convolution layers with stride 1. Each convolution layer was
chosen with a kernel of size 3 × 3, followed by a ReLU activation
function and aBatchNorm layer. Following thedownsampleoperation,
a residual skip connection adds the input and output of each block. At
the end of the last block, we added an Average Pooling layer to reduce
the spatial dimensions to a single embedding vector of size 1 × 256,
which is the final descriptor of the input image. The embedding vector
was then classified to a specific label using a Linear layer of size 256 × 2.
Theoutput vector of size 2 contained thefinal scores for each label and
was then passed to a SoftMax activation to compute the final class
probabilities. The complete model contains 2,755,538 trainable
parameters.

Due to the imbalance in thedata labels (seeTable 1), we used Focal
Loss43 as the training target function. An undesired bias may occur
when unbalanced train data are presented to a deep learning training
pipeline using the commonly used cross-entropy loss. Thenetworkwill
be biased toward learning the dominating negative class rather than
the actual distribution of the data. Focal Loss tackles this problem by
reshaping the standard cross-entropy to scale down the loss assigned
to well-classified examples. Thus, the Focal Loss focuses the training
on hard examples and prevents the dominating number of easy
negatives from overwhelming the network during training, achieving
better generalization, and limiting undesired bias.

Training configurations
We used the same hyperparameters in all experiments. We trained
eachmodel usingRAdam44 optimizer, with a batch size of 32, for a total
of 110 epochs. We used a learning rate of 0.001 in the first 80 epochs,
followedby 30 epochswith a learning rate of 0.0001. For the focal loss,
the gamma value was set to 3. Any data split to either validation,
training, test, or calibration sets,was always performedper patient. For
example, if a TMA image of some patient was included in the test set,
any other information of that patient was also included in the test set,
and never seen by the system during training. To obtain a prediction
scoreper patient, we considered themaximumof the scores of its H&E
images. After the cross-validation stage, the final model was run once
on the BCCA test set and the MA31 set to estimate generalization
performance. To calibrate the system to perform better on the MA31
dataset, the MA31 set was randomly split at the patient level into cali-
bration (50%) and test (50%) sets. We used the calibration set of
patients to fine-tune the last layer of the CNN, following the transfer
learning approach28, and then applied the calibrated model to the test
patients. The calibration experiment was repeated 5 times and scores

were averaged per patient. The threshold for classifying patients to
low-PS and high-PS was determined once during the cross-validation
and was set to 0.5 for PD-L1 and to 0.28 for PD-1.

Statistical analysis
Data were collected, annotated, and analyzed from July 1, 2015,
through February 1, 2022. We used the area under the curve (AUC),
Cohen’s kappa45, specificity, sensitivity (=recall), positive predictive
value (=precision) and negative predictive value (NPV) as our statistical
measures. The receiver operating characteristics (ROC) curves were
plotted as sensitivity vs specificity. The confidence intervals were
computed using bootstrapping. P < 0.05 with a 1-tailed hypothesis
test indicated statistical significance. The accuracy wasmeasured after
binarizing the scores with a threshold that was optimized using the
BCCA training data. The Univariate analysis was done by fitting a
logistic regression for each variable separately for predictionof the PD-
L1 status. The multivariate analysis was done by fitting an
L1-regularized logistic regression for all variables together using the
BCCA training data. The regularization was chosen as the one obtain-
ing the optimal fit, and then the model was applied to the BCCA test
set. The statistical analysis was implemented using Matlab (R2019a).

Visualization by t-SNE distribution
To create the t-SNE visualization, for each H&E-stained TMA image we
extracted the features of the last layer of the CNN during the inference
step. Then, each patient was represented by the feature vector of its
H&E image that obtained the highest prediction score. t-SNE was then
applied to the feature vectors to obtain a 2D representation for each
patient. The deconvolution into hematoxylin and DAB channels in
Supplementary Fig. 3 was done using the unmixing model46.

Hardware and software
All data were stored and processed on our in-house servers, graphics
processing units (GPUs), and central processing units (CPUs): a cluster
of 14 Intel Xeon CPUs and 30 1080ti and 2080ti GPUs scheduled by a
Slurm systemwithNAS storage.We used Python 3.7with Pytorch 1.8 to
train and test the models. Each model was trained on a single GPU. All
code was developed using open-source tools and packages.

Ethical review
All researchat theGenetic Pathology EvaluationCentre is performed in
accordance with institutional and provincial ethical guidelines.
Because the data did not include patient contact or medical record
review, informed consent was not required.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The database was composed from a publicly available tissue micro-
array (TMA) library, published by the Genetic Pathology Evaluation
Centre. The TMA datasets can be downloaded from http://bliss.gpec.
ubc.ca by navigating to 02-008 for the BCCA cohort and to MA31 for
the MA31 cohort. Source data are provided with this paper.

Code availability
Our code and experiments can be reproduced by utilizing the details
provided in the “Methods” section on data pre-processing and aug-
mentation, model architecture, and training configurations. Data pre-
processing is based on imgaug library (https://github.com/aleju/
imgaug). The components of our model architecture and training
protocol can be reproduced using ResNet (https://pytorch.org/vision/
0.8/_modules/torchvision/models/resnet.html) and Focal Loss (https://
pytorch.org/vision/stable/_modules/torchvision/ops/focal_loss.html).
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Our Computer aided application for fast annotation is available at
https://github.com/amirlivne/PD-L1_Annotator. Our trained model is
also available in https://github.com/amirlivne/PD-L1_predictor.
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