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Exome sequencing identifies breast 
cancer susceptibility genes and defines the 
contribution of coding variants to breast 
cancer risk

Linkage and candidate gene studies have identified several breast cancer 
susceptibility genes, but the overall contribution of coding variation 
to breast cancer is unclear. To evaluate the role of rare coding variants 
more comprehensively, we performed a meta-analysis across three 
large whole-exome sequencing datasets, containing 26,368 female 
cases and 217,673 female controls. Burden tests were performed for 
protein-truncating and rare missense variants in 15,616 and 18,601 genes, 
respectively. Associations between protein-truncating variants and breast 
cancer were identified for the following six genes at exome-wide significance 
(P < 2.5 × 10−6): the five known susceptibility genes ATM, BRCA1, BRCA2, 
CHEK2 and PALB2, together with MAP3K1. Associations were also observed 
for LZTR1, ATR and BARD1 with P < 1 × 10−4. Associations between predicted 
deleterious rare missense or protein-truncating variants and breast cancer 
were additionally identified for CDKN2A at exome-wide significance.  
The overall contribution of coding variants in genes beyond the previously 
known genes is estimated to be small.

Breast cancer is the leading cause of cancer-related mortality for women 
worldwide. Genetic susceptibility to breast cancer is known to be con-
ferred by common variants, identified through genome-wide associa-
tion studies (GWAS), together with rarer coding variants conferring 
higher disease risks. The latter, identified through genetic linkage or 
targeted sequencing studies, includes protein-truncating variants 
(PTVs) and some rare missense variants in ATM, BARD1, BRCA1, BRCA2, 
CHEK2, RAD51C, RAD51D, PALB2 and TP53 (ref. 1). However, these vari-
ants together explain less than half the familial relative risk (FRR) of 
breast cancer2. The contribution of rare coding variants in other genes 
remains largely unknown.

Here we used data from the following three large whole-exome 
sequencing (WES) studies, primarily of European ancestry, to assess 
the role of rare variants in all coding genes: the Breast Cancer Risk after 
Diagnostic Gene Sequencing (BRIDGES) dataset that included sam-
ples from eight studies in the Breast Cancer Association Consortium 

(BCAC), the PERSPECTIVE (Personalized Risk assessment for preven-
tion and early detection of breast cancer: integration and implemen-
tation) dataset that included three BCAC studies (Supplementary  
Table 1) and UK Biobank (UKB). After quality control (QC; Methods), 
these datasets comprised 26,368 female cases and 217,673 female 
controls (Supplementary Table 2).

We considered the following two main categories of variants: 
PTVs and rare missense variants (minor allele frequency <0.001). 
Single-variant association tests are generally underpowered for 
rare variants; however, burden tests, in which variants are collapsed 
together, can be more powerful if the associated variants have simi-
lar effect sizes3. To further improve power, we incorporated data on 
family history of breast cancer (Methods)4. Association tests were 
conducted for all genes in which there was at least one carrier of a 
variant (15,616 genes for PTVs and 18,601 genes for rare missense  
variants).
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We next considered missense variants predicted deleterious 
combined with PTVs. We defined deleterious missense variants using 
Combined Annotation Dependent Depletion (CADD score > 20) (ref. 6)  
and Helix (Helix score > 0.5) (ref. 7). When using CADD, 33 genes had 
a P < 0.001, 22 of which corresponded to an increased risk of breast 
cancer (Supplementary Table 8 and Extended Data Figs. 3 and 4). Six 
genes met exome-wide significance, including the following known 
five risk genes: CHEK2 (P = 2.8 × 10−66), BRCA2 (P = 7.2 × 10−44), PALB2 
(P = 4.5 × 10−26), ATM (P = 3.3 × 10−21) and BRCA1 (P = 1.6 × 10−17), together 
with CDKN2A (P = 8.3 × 10−7). Associations with P < 1 × 10−4 were also 
observed for SAMHD1, MRPL27, EXOC4 and PPP1R3B. When instead 
defining deleterious rare missense variants using Helix and combin-
ing with PTVs, 29 genes had a P < 0.001, 25 of which corresponded to 
an increased risk of breast cancer (Supplementary Table 9). Only the 
known five genes met exome-wide significance. Associations with 
P < 1 × 10−4 were also observed for LZTR1, MAP3K1, DCLK1, MDM4, STX3 
and ATRIP.

Notably, of the genes with P < 1 × 10−4, MAP3K1, LZTR1, ATRIP, 
CDKN2A and SAMHD1 have prior evidence of being tumor suppressor 
genes (TSGs). MAP3K1 is a stress-induced serine/threonine kinase 
that activates the extracellular signal-regulated kinase (ERK) and Jun 
N-terminal kinase ( JNK) pathways by phosphorylation of MAP2K1 
and MAP2K4 (refs. 8,9). Inactivating variants in MAP3K1 are one of 
the commonest somatic driver events in breast tumors10,11. MAP3K1 is 
also a well-established breast cancer GWAS locus12; at least three inde-
pendent signals have been identified mapping to regulatory regions 
with MAP3K1 expression as the likely target13,14. To evaluate whether 
the MAP3K1 PTV association we observed was driven by the GWAS 
associations, or vice-versa, we fitted logistic regression models to UKB 
data in which the PTV burden variable and the lead GWAS SNPs (SNP1: 
rs62355902, SNP2: rs984113 and SNP3: rs112497245) were considered 
jointly (Supplementary Table 10). In the model with all variables, the 
OR associated with carrying a PTV (OR = 4.95 (2.27, 10.82)) was similar to 
the unadjusted OR. Similarly, the ORs for each of the SNPs were similar 
to the ORs without adjustment for PTVs. This suggests that the PTV 
burden and GWAS associations are independent and reflect the distinct 
effects of inactivating coding alterations and regulatory variants.

In the PTV meta-analysis, 30 genes were associated at P < 0.001 
(Supplementary Table 3 and Figs. 1 and 2). Of these, six met exome-wide 
significance (P < 2.5 × 10−6), of which five are known breast cancer risk 
genes— ATM, BRCA1, BRCA2, CHEK2 and PALB2. Associations were also 
identified for PTVs in MAP3K1 (P = 1.2 × 10−9). Associations at P < 1 × 10−4 
were also identified for PTVs in LZTR1, ATR interacting protein (ATRIP) 
and the known risk gene BARD1. Of the other previously identified 
breast cancer susceptibility genes, associations with P < 0.01 were 
observed for CDH1 and RAD51D (Supplementary Table 4). Associations 
significant at P < 0.01 were not observed for other known susceptibility 
genes, but PTV frequencies were very low and the confidence limits 
include the previous odds ratio (OR) estimates1,5.

There was no evidence for an excess of associations significant 
at P < 0.001 after allowing for the six exome-wide significant genes 
(Fig. 2). However, 28 of the 30 associations at P < 0.001 correspond 
to an increased risk, compared with ~15 that would be expected by 
chance. This imbalance suggests some of the other associations may 
be genuine.

We performed additional analyses by age and (within the BCAC 
dataset) the following disease subtypes: estrogen receptor (ER)+ or 
ER−, progesterone receptor (PR)+ or PR− and triple-negative disease. 
When restricting the age of cases to <50 years, 40 genes were associ-
ated (all with increased risk) at P < 0.001, suggesting an enrichment 
of associations in this age group (Supplementary Table 5), MGAT5 
met exome-wide significance, in addition to BRCA2, BRCA1, CHEK2, 
PALB2, ATM and MAP3K1. In the subtype-specific analyses (Supple-
mentary Table 6), the expected associations for known genes were 
observed, importantly, the higher OR for ER− and triple-negative dis-
ease for BRCA1 and higher OR for ER+ disease for CHEK2, but no other 
genes were associated with subtype-specific disease at exome-wide  
significance.

For the rare missense variant meta-analysis, 28 genes had a 
P < 0.001, 18 of which corresponded to an increased risk of breast can-
cer (Supplementary Table 7 and Extended Data Figs. 1 and 2) compared 
to 14 expected by chance. Only CHEK2 met exome-wide significance 
(P = 7.0 × 10−19). Associations with P < 1 × 10−4 were also observed for 
rare missense variants in SAMHD1, HCN2, CLIC6 and ACTL8.
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Fig. 1 | Manhattan plot of z scores from the meta-analysis assessing the 
association between protein-truncating variant carriers within genes and 
breast cancer risk. The x axis is the chromosomal position, and the y axis is 
the meta-analyzed z score from testing H0: β = ln(OR) = 0 in the UK Biobank and 

BCAC datasets (two-tailed). The blue lines correspond to z = ±3.29, P = 0.001, the 
red lines correspond to z = ±4.71, P = 2.5 × 10−6. All labeled genes are those with 
P < 0.001. All P values are unadjusted for multiple testing.
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ATRIP codes for a DNA damage response protein that forms a 
complex with ATR. ATR–ATRIP is involved in the process that activates 
checkpoint signaling when single-stranded DNA is detected following 
the processing of DNA double-stranded breaks or stalled replication 
forks15,16. LZTR1 codes for a protein found in the Golgi apparatus17. 
Germline mutations in LZTR1 have been associated with schwanno-
matosis, a rare tumor predisposition syndrome18,19. CDKN2A also codes 
for tumor suppressor proteins, including p16(INK4A) and p14(ARF)  
(ref. 20). CDKN2A is a known melanoma21 and pancreatic cancer suscep-
tibility gene and is an important TSG altered in a wide variety of tumors, 
including breast cancer22. There have been some previous suggestions 
that deleterious germline CDKN2A is associated with breast cancer 
risk23,24. SAMHD1 promotes the degradation of nascent DNA at stalled 
replication forks, limiting the release of single-stranded DNA25. SAMHD1 
also encodes dNTPase that protects cells from viral infections26 and is 
frequently mutated in multiple tumor types, including breast cancer. 
Furthermore, damaging germline variants in SAMHD1 have recently 
been associated with delayed age at natural menopause and increased 
all-cause cancer risk27. MDM4 encodes a p53 repressor overexpressed 
in a variety of tumors28 and is also a GWAS locus for triple-negative 
breast cancer13,29.

Pathology information was available for cases in the BCAC 
dataset. We tabulated pathology characteristics for carriers of 
variants in genes with P < 1 × 10−4 in the meta-analysis of PTVs or 
the meta-analysis of predicted deleterious (CADD) rare missense 
variants combined with PTVs (Supplementary Tables 11 and 12). 
These data suggest a slightly higher proportion of mixed lobular 
and ductal tumors for LZTR1 PTV carriers and MRPL27 deleterious 
rare missense variant or PTV carriers. There was a slightly higher 
proportion diagnosed >50 years for ATRIP PTV carriers and a higher 
proportion of HER2+ tumors for EXOC4 deleterious rare missense 

variant or PTV carriers. However, the number of carriers is small in  
each case.

We performed Gene Set Enrichment Analysis (GSEA) based on the 
PTV associations for pathways in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), BioCarta and Reactome. We did this for all genes 
including and excluding BRCA1, BRCA2, ATM, CHEK2 and PALB2. 
When including the five genes, 28 pathways had a false discovery rate 
(q) < 0.05 (Supplementary Table 13). Of these, all but one (Reactome 
peptide hormone biosynthesis) include BRCA1 or BRCA2. The top path-
way was Reactome DNA double-strand break repair. After excluding 
the five genes (Supplementary Table 14), the strongest enrichment was 
for the BioCarta NFKB and CD40 pathways (which contain MAP3K1), 
Reactome DNA double-strand break response and Reactome hormone 
peptide biosynthesis (all q < 0.10).

To evaluate the overall contribution of PTVs to the FRR, we fit-
ted models to the effect size using an empirical Bayes approach. We 
used whole-genome sequencing data in UKB to estimate the missing 
contribution due to large rearrangements. Under the assumption of 
an exponentially distributed effect size, the estimated proportion 
of risk genes (a) was 0.0047 with a median OR of 1.38. Under this 
model, an estimated 10.61% of the FRR would be explained by all 
PTVs, of which 9.64% would be due to the five genes BRCA1, BRCA2, 
ATM, CHEK2 and PALB2 and 0.97% due to all other genes combined 
with MAP3K1 contributing 0.14% (Supplementary Table 15). Only 
the six genes reaching exome-wide significance for PTVs had a pos-
terior probability of association >0.90. We repeated these analyses 
using the subsets of genes including breast cancer driver genes and 
target genes of GWAS signals identified in ref. 13, the list of cancer 
predisposition genes identified in ref. 30, Catalogue Of Somatic 
Mutations In Cancer (COSMIC) TSGs31 and the top pathways identi-
fied by GSEA (Supplementary Table 16). The largest contributions to 
the FRR, after excluding the five known genes, were for the BioCarta 
CD40 pathway (0.657%, n = 16, a = 0.628) and COSMIC TSGs (0.639%, 
n = 320, a = 0.196). Thus, these results suggest that the majority of the 
remaining risk genes are TSGs.

These results demonstrate that large exome sequencing stud-
ies, combined with efficient burden analyses, can identify additional 
breast cancer susceptibility genes. The excess of positive associa-
tions at P < 0.001 indicates that further genes should be identifiable 
through large datasets—the heritability analyses suggest the number 
of associated genes might be of the order of 90, with the majority of 
these being TSGs. Although the estimated risks associated with the 
new genes, in particular MAP3K1 PTVs, would be large enough to be 
of clinical relevance, the effect sizes might be over-estimated due to 
the ‘winner’s curse’32. Thus, further replication in larger datasets will 
also be necessary to provide more precise estimates for variants in 
the new genes, to define the set of variants in these genes associated 
with breast cancer, the clinic-pathological characteristics of tumors 
in variant carriers and the combined effects of pathogenic variants 
and other risk factors. The heritability analyses suggest that most of 
the contribution of PTVs is mediated through the five genes BRCA1, 
BRCA2, ATM, CHEK2 and PALB2, commonly tested for in clinical cancer 
genetics33. These analyses assume dominant inheritance and reces-
sive genes may also contribute to the familial risk, while subsets of 
missense variants may also make important contributions (exempli-
fied by CDKN2A and SAMHD1). However, these results suggest that 
the majority of the ‘missing’ heritability is likely to be found in the  
noncoding genome.
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Fig. 2 | Quantile–quantile plot of P values from the meta-analysis assessing 
the association between protein-truncating variant carriers and breast 
cancer risk. P values are from the meta-analyzed z score from testing H0: 
β = ln(OR) = 0 in the UKB and BCAC datasets (two-tailed). The x axis is the 
expected log10 P values from the null hypothesis, the y axis is the observed 
log10 P values. All highlighted genes have P < 0.0005 and are associated with an 
increased risk of breast cancer. All P values are unadjusted for multiple testing.

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01466-z


Nature Genetics

Letter https://doi.org/10.1038/s41588-023-01466-z

References
1. Dorling, L. et al. Breast cancer risk genes—association analysis in 

more than 113,000 women. N. Engl. J. Med. 384, 428–439 (2021).
2. Michailidou, K. et al. Association analysis identifies 65 new breast 

cancer risk loci. Nature 551, 92–94 (2017).
3. Lee, S., Gonçalo, Boehnke, M. & Lin, X. Rare-variant association 

analysis: study designs and statistical tests. Am. J. Hum. Genet. 
95, 5–23 (2014).

4. Hujoel, M. L. A., Gazal, S., Loh, P.-R., Patterson, N. & Price, A. L. 
Liability threshold modeling of case–control status and family 
history of disease increases association power. Nat. Genet. 52, 
541–547 (2020).

5. Hu, C. et al. A population-based study of genes previously 
implicated in breast cancer. N. Engl. J. Med. 384, 440–451 (2021).

6. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. 
CADD: predicting the deleteriousness of variants throughout the 
human genome. Nucleic Acids Res. 47, D886–D894 (2019).

7. Vroling, B. & Heijl, S. White paper: the helix pathogenicity 
prediction platform. Preprint at arXiv https://doi.org/10.48550/
arXiv.2104.01033 (2021).

8. Xia, Y., Wu, Z., Su, B., Murray, B. & Karin, M. JNKK1 organizes a 
MAP kinase module through specific and sequential interactions 
with upstream and downstream components mediated by its 
amino-terminal extension. Genes Dev. 12, 3369–3381 (1998).

9. Wagner, E. F. & Nebreda, Á. R. Signal integration by JNK and p38 
MAPK pathways in cancer development. Nat. Rev. Cancer 9, 
537–549 (2009).

10. Cancer Genome Atlas Network Comprehensive molecular 
portraits of human breast tumours. Nature 490, 61–70 (2012).

11. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast 
cancer whole-genome sequences. Nature 534, 47–54 (2016).

12. Easton, D. F. et al. Genome-wide association study identifies novel 
breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

13. Fachal, L. et al. Fine-mapping of 150 breast cancer risk regions 
identifies 191 likely target genes. Nat. Genet. 52, 56–73 (2020).

14. Dylan et al. Fine-scale mapping of the 5q11.2 breast cancer 
locus reveals at least three independent risk variants regulating 
MAP3K1. Am. J. Hum. Genet. 96, 5–20 (2015).

15. Zou, L. & Elledge, S. J. Sensing DNA damage through  
ATRIP recognition of RPA-ssDNA complexes. Science 300, 
1542–1548 (2003).

16. Zhang, H. et al. ATRIP deacetylation by SIRT2 drives ATR 
checkpoint activation by promoting binding to RPA-ssDNA. Cell 
Rep. 14, 1435–1447 (2016).

17. Nacak, T. G., Leptien, K., Fellner, D., Augustin, H. G. & Kroll, J.  
The BTB-kelch protein LZTR-1 is a novel Golgi protein that is 
degraded upon induction of apoptosis. J. Biol. Chem. 281, 
5065–5071 (2006).

18. Smith, M. J. et al. Mutations in LZTR1 add to the complex 
heterogeneity of schwannomatosis. Neurology 84, 141–147  
(2015).

19. Paganini, I. et al. Expanding the mutational spectrum of LZTR1 in 
schwannomatosis. Eur. J. Hum. Genet. 23, 963–968 (2015).

20. Ferru, A. et al. The status of CDKN2A α (p16INK4A) and β (p14ARF) 
transcripts in thyroid tumour progression. Br. J. Cancer 95, 
1670–1677 (2006).

21. Rossi, M. et al. Familial melanoma: diagnostic and management 
implications. Dermatol. Pract. Concept. 9, 10–16 (2019).

22. Zhao, R., Choi, B. Y., Lee, M.-H., Bode, A. M. & Dong, Z. 
Implications of genetic and epigenetic alterations of CDKN2A 
(p16 INK4a) in cancer. EBioMedicine 8, 30–39 (2016).

23. Laduca, H. et al. A clinical guide to hereditary cancer panel 
testing: evaluation of gene-specific cancer associations and 
sensitivity of genetic testing criteria in a cohort of 165,000 
high-risk patients. Genet. Med. 22, 407–415 (2020).

24. Borg, A. K. et al. High frequency of multiple melanomas and 
breast and pancreas carcinomas in CDKN2A mutation-positive 
melanoma families. J. Natl Cancer Inst. 92, 1260–1266 (2000).

25. Coquel, F. et al. SAMHD1 acts at stalled replication forks to 
prevent interferon induction. Nature 557, 57–61 (2018).

26. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a 
deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 
379–382 (2011).

27. Stankovic, S. et al. Genetic susceptibility to earlier ovarian ageing 
increases de novo mutation rate in offspring. Preprint at medRxiv 
https://doi.org/10.1101/2022.06.23.22276698 (2022).

28. Li, Q. & Lozano, G. Molecular pathways: targeting Mdm2 and 
Mdm4 in cancer therapy. Clin. Cancer Res. 19, 34–41 (2013).

29. Garcia-Closas, M. et al. Genome-wide association studies identify 
four ER negative-specific breast cancer risk loci. Nat. Genet. 45, 
392–398 (2013).

30. Rahman, N. Realizing the promise of cancer predisposition genes. 
Nature 505, 302–308 (2014).

31. Sondka, Z. et al. The COSMIC cancer gene census: describing 
genetic dysfunction across all human cancers. Nat. Rev. Cancer 
18, 696–705 (2018).

32. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & 
Hirschhorn, J. N. Meta-analysis of genetic association studies 
supports a contribution of common variants to susceptibility to 
common disease. Nat. Genet. 33, 177–182 (2003).

33. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk 
prediction model incorporating genetic and nongenetic risk 
factors. Genet. Med. 21, 1708–1718 (2019).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

Naomi Wilcox1, Martine Dumont2, Anna González-Neira3, Sara Carvalho1, Charles Joly Beauparlant2, Marco Crotti1, 
Craig Luccarini4, Penny Soucy2, Stéphane Dubois2, Rocio Nuñez-Torres3, Guillermo Pita3, Eugene J. Gardner    5, 
Joe Dennis1, M. Rosario Alonso3, Nuria Álvarez3, Caroline Baynes4, Annie Claude Collin-Deschesnes2, Sylvie Desjardins2, 
Heiko Becher    6, Sabine Behrens    7, Manjeet K. Bolla1, Jose E. Castelao8, Jenny Chang-Claude7,9, Sten Cornelissen10, 
Thilo Dörk    11, Christoph Engel12,13, Manuela Gago-Dominguez14, Pascal Guénel    15, Andreas Hadjisavvas16, 

http://www.nature.com/naturegenetics
https://doi.org/10.48550/arXiv.2104.01033
https://doi.org/10.48550/arXiv.2104.01033
https://doi.org/10.1101/2022.06.23.22276698
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9671-1533
http://orcid.org/0000-0002-8808-6667
http://orcid.org/0000-0002-9714-104X
http://orcid.org/0000-0002-9458-0282
http://orcid.org/0000-0002-8359-518X


Nature Genetics

Letter https://doi.org/10.1038/s41588-023-01466-z

1Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 2Genomics Center, 
Centre Hospitalier Universitaire de Québec—Université Laval Research Center, Québec City, Quebec, Canada. 3Human Genotyping Unit-CeGen, Human 
Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 4Centre for Cancer Genetic Epidemiology, Department of 
Oncology, University of Cambridge, Cambridge, UK. 5MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, 
Cambridge, UK. 6Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 7Division of 
Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 8Oncology and Genetics Unit, Instituto de Investigación Sanitaria 
Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain. 9Cancer Epidemiology Group, University Cancer Center Hamburg 
(UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 10Division of Molecular Pathology, The Netherlands Cancer Institute, 
Amsterdam, the Netherlands. 11Gynaecology Research Unit, Hannover Medical School, Hannover, Germany. 12Institute for Medical Informatics, Statistics 
and Epidemiology, University of Leipzig, Leipzig, Germany. 13LIFE—Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, 
Germany. 14Cancer Genetics and Epidemiology Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo 
Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain. 15Team ‘Exposome and Heredity,’ CESP, Gustave Roussy, INSERM, 
University Paris-Saclay, UVSQ, Villejuif, France. 16Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute 
of Neurology & Genetics, Nicosia, Cyprus. 17Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, 
University of Cologne, Cologne, Germany. 18Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University 
of Cologne, Cologne, Germany. 19Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 
Singapore City, Singapore. 20Department of Surgery, National University Health System, Singapore City, Singapore. 21Department of Pathology, Yong 
Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore. 22Division of Gynaecology and Obstetrics, Klinikum rechts 
der Isar der Technischen Universität München, Munich, Germany. 23Genome Institute of Singapore, Agency for Science, Technology and Research, 
Singapore City, Singapore. 24Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus. 25Breast Cancer Research Programme, 
Cancer Research Malaysia, Subang Jaya, Malaysia. 26Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, 
Kuala Lumpur, Malaysia. 27Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands. 
28Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden. 29Metabolic Research Laboratory, Wellcome-MRC Institute 
of Metabolic Science, University of Cambridge, Cambridge, UK. 30Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, 
Spain. 31Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. 32Division of Psychosocial 
Research and Epidemiology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands. 33Center for Molecular 
Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. 34Département de Médecine 
Moléculaire, Faculté de Médecine, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Quebec, Canada. 
35Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands. 36Department of Human Genetics, Leiden University Medical 
Center, Leiden, the Netherlands. 45These authors jointly supervised this work: Douglas F. Easton, Jacques Simard. *A list of authors and their affiliations 
appears at the end of the paper.  e-mail: lijm1@gis.a-star.edu.sg; dfe20@medschl.cam.ac.uk

SGBCC Investigators

Benita Kiat-Tee Tan37,38,39, Veronique Kiak Mien Tan37,38, Su-Ming Tan40, Geok Hoon Lim41, Ern Yu Tan42,43,44, Peh Joo Ho23 & 
Alexis Jiaying Khng23

37Department of Breast Surgery, Singapore General Hospital, Singapore City, Singapore. 38Division of Surgical Oncology, National Cancer Centre, 
Singapore City, Singapore. 39Department of General Surgery, Sengkang General Hospital, Singapore City, Singapore. 40Division of Breast Surgery, 
Department of General Surgery, Changi General Hospital, Singapore City, Singapore. 41KK Breast Department, KK Women’s and Children’s Hospital, 
Singapore City, Singapore. 42Department of General Surgery, Tan Tock Seng Hospital, Singapore City, Singapore. 43Lee Kong Chian School of Medicine, 
Nanyang Technological University, Singapore City, Singapore. 44Institute of Molecular and Cell Biology, Singapore City, Singapore. 

Eric Hahnen17,18, Mikael Hartman19,20,21, Belén Herráez3, SGBCC Investigators*, Audrey Jung7, Renske Keeman10, 
Marion Kiechle22, Jingmei Li    23 , Maria A. Loizidou16, Michael Lush    1, Kyriaki Michailidou    1,24, 
Mihalis I. Panayiotidis    16, Xueling Sim    19, Soo Hwang Teo    25,26, Jonathan P. Tyrer    4, Lizet E. van der Kolk27, 
Cecilia Wahlström28, Qin Wang    1, John R.B. Perry    5,29, Javier Benitez30,31, Marjanka K. Schmidt    10,32, 
Rita K. Schmutzler17,18,33, Paul D. P. Pharoah    1,4, Arnaud Droit2,34, Alison M. Dunning    4, Anders Kvist    28, 
Peter Devilee    35,36, Douglas F. Easton    1,4,45  & Jacques Simard    2,45

http://www.nature.com/naturegenetics
mailto:lijm1@gis.a-star.edu.sg
mailto:dfe20@medschl.cam.ac.uk
http://orcid.org/0000-0001-8587-7511
http://orcid.org/0000-0001-5945-3440
http://orcid.org/0000-0001-7065-1237
http://orcid.org/0000-0002-1450-3552
http://orcid.org/0000-0002-1233-7642
http://orcid.org/0000-0002-0444-590X
http://orcid.org/0000-0003-3724-4757
http://orcid.org/0000-0002-9139-0627
http://orcid.org/0000-0001-6483-3771
http://orcid.org/0000-0002-2228-429X
http://orcid.org/0000-0001-8494-732X
http://orcid.org/0000-0001-6651-7166
http://orcid.org/0000-0002-1358-0695
http://orcid.org/0000-0002-8023-2009
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0001-6906-3390


Nature Genetics

Letter https://doi.org/10.1038/s41588-023-01466-z

Methods
UKB
The UKB is a population-based prospective cohort study of more than 
500,000 subjects. More detailed information on the UKB is given 
elsewhere34,35. The study received ethics approval from the North West 
Multi-center Research Ethics Committee. All participants signed writ-
ten informed consent before participating. WES data for 450,000 
subjects were released in October 2021 and accessed via the UKB DNA 
Nexus platform36. QC metrics were applied to Variant Call Format (VCF) 
files as discussed in ref. 37, including genotype level filters for depth 
and genotype quality.

Samples with disagreement between genetically determined and 
self-reported sex, sex aneuploidy or excess relatives in the dataset 
were excluded. Excess relatives were identified by considering pairs 
of individuals with kinship >0.17. If one individual in a pair was a case 
and one was a control then the case was preferentially selected; oth-
erwise, one individual was selected at random. Genetic ancestry was 
estimated using genetic principal components and the Gilbert–John-
son–Keerthi distance algorithm38. If genetic principal components were 
not available, self-reported ancestry was used. Samples of ancestry 
other than European were excluded. The final dataset for analysis 
included 419,307 samples with 227,393 females. Cases were defined 
by having invasive breast cancer (International Classification of Dis-
eases (ICD)-10 code C50) or carcinoma in situ (D05), as determined 
by linkage to the National Cancer Registration and Analysis Service 
(NCRAS), or self-reported breast cancer. Both prevalent and incident 
cases were included. Only breast cancers that were an individual’s first 
or second diagnosed cancer were included as cases. By this definition,  
17,958 female and 94 male cases were included.

For structural variants, we accessed the structural variant popu-
lation VCF files for the initial release of UKB whole-genome sequenc-
ing via the DNA Nexus platform. These deletions, duplications and 
insertions were called using GraphTyper (2.7.1) (refs.39,40). We identi-
fied any structural variant that passed the GraphTyper QC filters and 
overlapped an exon of the MANE transcripts of each gene. The sam-
ples were filtered using the above exclusions leaving 64,264 samples  
(4,847 female breast cancer cases and 59,417 female controls). The 
frequency of structural variants was then calculated for each gene and 
used to adjust the PTV frequency (Supplementary Methods).

The BCAC datasets
The BRIDGES and PERSPECTIVE samples were from studies in the BCAC 
(BRIDGES: eight studies, PERSPECTIVE: three studies; Supplementary 
Table 1). All studies were approved by ethical review boards (Supple-
mentary Table 17). All subjects provided written informed consent. 
Most samples were previously included in a targeted panel sequenc-
ing project1. Phenotype data were based on the BCAC database v14. 
Samples were oversampled for early-onset (age of diagnosis below 
50 years) or family history of breast cancer. Cases were preferentially 
selected to have information on tumor pathology. Samples with previ-
ously identified pathogenic mutations in BRCA1, BRCA2 or PALB2 (348 
cases, 176 controls) were not included.

For BRIDGES, library preparation was conducted in the three labo-
ratories using the Nextera DNA Exome kit (Illumina) for tagmentation, 
barcoding and amplification steps. Subsequently, 500 ng of DNA per 
sample was pooled in 12-plex and concentrated using a vacuum system. 
Afterward, hybridization capture reagents for DNA libraries were used 
for overnight hybridization with the xGen Exome Research panel (Inte-
grated DNA Technologies), capture and amplification. Barcoded pooled 
libraries of 96 samples were sequenced on each lane of a NovaSeq  
6000 S4 flowcell (Illumina) using NovaSeq XP 4-Lane Kit (2 × 100 bp).

For PERSPECTIVE, library preparation was conducted using Agi-
lent SureSelect Human all exon V7 (48.2 Mb). Barcoded libraries of  
88 samples were sequenced on a NovaSeq 6000 S4 flowcell (Illumina) 
using NovaSeq XP 4-Lane Kit (2 × 100 bp).

The same pipeline for variant calling was applied to both the 
BRIDGES and PERSPECTIVE data and followed the Genome Analysis 
Toolkit (GATK) best practices. Briefly, raw sequence data (FASTQ for-
mat) were preprocessed to produce BAM files. This involved alignment 
to the reference genome (hg38) using BWA (v0.7.17) and the sorting and 
indexing of the reads using samtools (v1.10). Identification and removal 
of duplicate read pairs from the same DNA fragments were performed 
using Picard’s MarkDuplicates (v2.1.1). Base recalibration included the 
generation of a base quality score recalibration table with the GATK 
BaseRecalibrator software (v4.1.4.1), later applied to the read bases 
to adjust their quality scores and increase the accuracy of the variant 
calling algorithms with the GATK BQSR (v4.1.4.1). An intermediate and 
informal QC was performed for a sanity check, including coverage and 
alignment mapping metrics using samtools flagstat software (v1.10) 
and Picard (v2.22.2). Variants were then called using GATK Haplotype-
Caller (v4.1.4.1). The GATK GenotypeGVCFs (v4.1.4.1) tool was used for 
the joint genotyping step on each genomic database. The variants with 
excess heterozygosity were filtered out using GATK VariantFiltration 
(v4.1.4.1) and GATK MakeSitesOnlyVcf (v4.1.4.1). The GATK VariantRe-
calibrator (v4.1.4.1) software was used to produce tranches files on SNPs 
and indels separately. Finally, the tranches files were used to apply the 
recalibration using the GATK ApplyVQSR (v4.1.4.1). Further details are 
provided in Supplementary Methods.

For the final dataset, similar QC filtering as for the UKB was 
applied, using VCFtools (v0.1.15), BCFtools (v1.9), Picard (v2.22.2) 
and PLINK (v1.90b). At the genotype level, SNPs were excluded with 
sequencing depth <7 or heterozygous allele balance <0.15 or >0.85. 
Indels were excluded with sequencing depth <10 or allele balance <0.2 
or >0.8. On males’ X chromosomes, depth filters were reduced to 5 for 
SNPs and 7 for indels. Samples with missing calls for >15% and variants 
with missing calls for >15% of samples were excluded. Variants with 
Hardy–Weinberg equilibrium P value 10−15 were also removed. We also 
excluded samples where the genotypes were inconsistent with previous 
array genotyping or targeted sequencing data1,2.

The BRIDGES study sequenced 6,912 samples, of which 3,461 cases 
and 3,200 controls remained in the final dataset after QC. The PERSPEC-
TIVE study sequenced 10,523 samples, of which 4,777 cases and 5,210 
remained in the final dataset.

Data preparation
For both the UKB and BCAC datasets, Ensembl Variant Effect Predictor 
(VEP) v101.0 was used to annotate variants41. Annotations included 
the 1000 genomes phase 3 allele frequency, sequence ontology vari-
ant consequences and exon/intron number. For each gene, the MANE 
Select42 transcript was used if it was available for that gene, or the 
RefSeq Select transcript43. Annotation files were used to identify PTVs 
and rare (allele frequency <0.001 in both the 1000 genomes dataset 
and the current dataset) missense variants. PTVs in the last exon of 
each gene and the last 50 bp of the penultimate exon were excluded 
as these are generally predicted to escape nonsense-mediated mRNA 
decay. VEP was also used to annotate missense variants by CADD score 
(v1.6) (ref. 6). Here CADD ≥ 20 was used to define variants predicted to 
be deleterious. We also defined deleterious missense variants using 
Helix scores (v4.4.1) (ref. 7).

Burden test analysis
Association analyses were carried out for each gene separately for PTVs, 
rare missense variants and predicted deleterious rare missense variants 
(defined by CADD score ≥ 20 or Helix score > 0.5) and PTVs combined. 
The main association analyses were burden tests in which genotypes 
were collapsed to a 0/1 variable based on whether samples carried a 
variant of the given class. That is, Gi = 1 if∑p

j=1 gij > 0and0 if∑p
j=1 gij = 0, 

where gij = 0, 1, 2 is the number of minor alleles observed for sample i at 
variant j, and p is the number of variants in the gene (thus, heterozygous 
and homozygous carriers were combined). All P values were two-sided.
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We used logistic regression analysis to test for an association 
between carriers of variants within a gene and breast cancer status. We 
incorporated family history as a surrogate for disease status, similar 
to the method presented in ref. 44. This markedly improves power 
because susceptibility variants will also be associated with family his-
tory; in particular, it allows information on males in the cohort with a 
family history of female breast cancer to be used. To do this, we treated 
genotype (0/1) as the dependent variable and family history weighted 
disease status as the covariate; the latter is defined as d + 1/2 f, where 
d = 0, 1 was the disease status of the genotyped individual and f = 0 or 
1 according to whether the individual reported a positive first-degree 
family history. The rationale for this weighting is that, for small effect 
sizes, the log-OR associated with a positive first-degree relative is 
approximately ½ that associated with the disease. (The approach 
of using family history as a surrogate was suggested in ref. 44. This 
method differs in that family history is included with a weight of ½ 
rather than 1, or using a 2-degree freedom test.) For the BCAC dataset, 
we adjusted for country and library preparation method (BRIDGES 
versus PERSPECTIVE). Ancestry was not adjusted for as within each 
country ancestry was constant. For the UKB dataset, we adjusted for 
the first ten principal components and sex. For genes on chromosome 
X, only females were used in the analysis. When looking at case–control 
analyses for subtypes of the disease, for example ER status, in the BCAC 
dataset logistic regression was also used.

NUDT11 was excluded because missing genotypes (which were 
treated as noncarriers) led to spurious associations, although the vari-
ants passed QC filtering. AFF1 was also removed as the PTV frequency 
was high in PERSPECTIVE but rare in BRIDGES and UKB. This was likely 
due to a single PTV artifact within the PERSPECTIVE dataset.

To combine the results from the BCAC and UKB datasets in a 
meta-analysis, the association tests for each gene were converted to z 

scores. The combined z score was defined as zM = ∑j wjzj

√w2
j

. Here zM is the 

combined z score, zj is the z score for study j and wj is the weight 
associated with study j.

A standard meta-analysis would define the weights wj using inverse 
variance or effective sample sizes. However, the effect sizes from the 
BCAC and UKB may not be comparable, because the BCAC studies 
oversampled for family history and early age at onset, which may have 
increased the estimated effect. Therefore, we defined weights by using 
the associations in the known risk gene CHEK2 as a standard—we ration-
alized that the CHEK2 PTVs provided the best standard as the associa-
tion is well-established and the OR is highly reproducible1,5,45. Moreover, 
the OR (~2 to 3) was representative of the size of effects we hoped to 

detect for other genes. Thus, we defined (w1,w2) = ( z1
z2
, 1), where z1

z2
 is 

the ratio of z scores for CHEK2 for the BCAC dataset and UKB. 
The approach is equivalent to a meta-analysis of risk per unit dose in 
studies with different levels of exposure or dose (with dose here being 
the log-OR for CHEK2)46,47. As a sensitivity analysis, we also derived 
weightings based on a combined analysis of the five known genes ATM, 
BRCA1, BRCA2, CHEK2 and PALB2. This gives slightly more weight to UKB 
(BCAC: UKB 0.307 versus 0.473) but does not change the genes reaching 
exome-wide significance (the ten most significant genes for PTVs were 
identical; Supplementary Table 18). The same weights were applied for 
the meta-analysis of the other variant categories. The zM scores were 
plotted in Manhattan plots, and associated P values were plotted in 
quantile–quantile plots. For PTVs, the lambda statistic for inflation in 
the test statistics (based on the median chi-squared statistic) was 0.766 
for UKB, 0.688 for BCAC and 0.725 for the meta-analysis, indicating 
that the tests were somewhat conservative on average.

We compared this approach to the method outlined in ref. 48. 
This method is similar to a random-effect meta-analysis but assumes 
no heterogeneity under the null hypothesis. When heterogeneity 
is present, this method can achieve greater power than traditional 

random-effect methods that do not normally achieve greater power 
than fixed-effect methods. We tested this method for genes with 
P < 1 × 10−4 from the PTV meta-analysis as described above. P values 
using this method were only smaller for the genes BRCA1, BRCA2 and 
PALB2. Furthermore, tau, the estimated amount of total heterogene-
ity, was estimated to be 0 for all genes apart from BRCA1 and BRCA2, 
suggesting that for most genes this method is not an improvement to 
the method above using CHEK2 PTV z scores as weights in a fixed-effect 
approach (Supplementary Table 19).

To investigate the joint effect of PTVs in MAP3K1 and common 
susceptibility variants in the region identified through GWAS, we 
accessed imputed genotype data from UKB for the lead SNPs as iden-
tified through previous fine-mapping analyses13,14. We fitted logistic 
regression models including covariates for PTVs and the lead SNPs 
and compared the fit of the model and effect sizes, with the model in 
which the PTVs or the lead SNPs were excluded.

Data on clinicopathological characteristics of cases in the BCAC 
dataset were also accessed, and the proportion of individuals with spe-
cific pathologic features, for example stage and grade, were compared 
between carriers of variants in a specific gene, for example, MAP3K1 
PTV carriers, and the overall dataset.

Pathway analysis
We performed GSEA49 to evaluate the enrichment of genes in KEGG50, 
Reactome51 and BioCarta52 pathways in breast cancer risk using the R 
package clusterProfiler53. Pathway lists were accessed using MSigDB54,55. 
We used z scores from the PTV meta-analysis to create an ordered gene 
list. We did this using all genes in each pathway and excluding BRCA1, 
BRCA2, CHEK2, PALB2 and ATM. Results were presented in terms of false 
discovery rates (q).

Contribution of PTVs to the FRR
We estimated the overall contribution of PTVs to the FRR of breast 
cancer using an empirical Bayesian approach. Given the aggregate 
frequency pj of PTVs in a gene is rare, and all PTVs confer the same rela-
tive risk eβj, the FRR due to one gene, given pj and eβj, is1

λj = 1 +
pj(eβj − 1)

2

(2pj (eβj − 1) + 1)
2

Under the additional assumption that the risks conferred by vari-
ants in different genes are additive, the total contribution over J genes 
is given by

λ = 1 +
J
∑
j=1

(λj − 1)

We ignored recessive effects in this analysis—because PTV homozy-
gotes are extremely rare for most genes their effect is difficult to esti-
mate. These results can therefore be interpreted as the contribution 
to the FRR to the offspring of affected individuals. However, there is 
limited evidence of a higher familial risk of breast cancer to siblings that 
would indicate an important rare recessive component. We assumed 
a prior distribution for effect sizes (log-OR) in which a proportion α of 
genes are risk associated and the estimated log-OR, β, for associated 
genes have an exponential distribution with parameter η; this distribu-
tion was chosen because the distribution of effect sizes is likely to be 
skewed, with only a small number of genes have a large effect size and 
most undiscovered genes having smaller effect sizes. An approximate 
likelihood of the observed carrier count data, by gene, was derived, 
summed over all genes and maximized numerically to estimate α and 
η, and hence posterior effect size distributions given the data. We esti-
mated pj for each gene using the PTV carrier counts and then updated 
this to additionally account for the structural variant frequency in the 
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gene. The total contribution to the FRR was estimated by integrating 
the FRR estimates given βj over the posterior distribution. Further 
details for the methods are given in Supplementary Methods.

We calculated the contribution of PTVs to the FRR for all genes in 
the dataset and also for subsets of genes including breast cancer driver 
genes and target genes of GWAS signals identified in ref. 13, the list of 
cancer predisposition genes identified in ref. 30, COSMIC TSGs31 and 
the top pathways identified by GSEA.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. 
The experiments were not randomized, and we did not use blinding. 
Some samples were excluded for reasons as described in the methods 
above, for example, for sex discrepancies, excess relatives or discrep-
ancies with previous genotyping. The analyses were conducted as 
meta-analyses combining the BCAC and UKB datasets.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Meta-analysis summary statistics are available from the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/; https://ftp.ebi.ac.uk/pub/databases/ 
gwas/summary_statistics/), accession numbers GCST90267995, 
GCST90267996, GCST90267997 and GCST90267998. Summary sta-
tistics are provided for all ancestries combined as the sample size 
for non-European ancestry subjects is too small to provide meaning-
ful statistics. Individual level data for the BCAC data are not publicly 
available due to ethical review board constraints but are available on 
request through the BCAC Data Access Co-ordinating Committee 
(BCAC@medschl.cam.ac.uk). Requests for access to UK Biobank data 
should be made to the UK Biobank Access Management Team (access@
ukbiobank.ac.uk).

Code availability
Quality control filtering of VCF files was performed using VCFtools 
(v0.1.15), BCFtools (v1.9), Picard (v2.22.2) and PLINK (v1.90b), as out-
lined in the Methods. Variants were annotated using Ensembl Variant 
Effect Predictor v101 with assembly GRCh38. The code for each soft-
ware is available on the website of each package. Data manipulation 
and analysis were performed using R-4.13 with packages clusterProfiler 
(4.2.2), data.table (1.14.2), dplyr (1.0.9), gtools (3.9.2.1), HGNChelper 
(0.8.9), msigdbr (7.5.1), tibble (3.1.7) and tidyr (1.2.0). Plots were cre-
ated using R-4.13 using additional packages ggplot2 (3.3.6) and ggre-
pel (0.9.1). The code for each of the R packages can be found in their 
associated vignettes.
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Extended Data Fig. 1 | Manhattan plot of Z-scores from the meta-analysis 
assessing the association between rare missense variant carriers by gene and 
breast cancer risk. The x-axis gives chromosomal position, and the y values are 
the meta-analyzed Z-scores from testing H0: β = ln (OR)=0 β =ln =0 in the UKB and 

BCAC datasets (2-tailed). The blue lines correspond to Z=±3.29 ± 3.29, P = 0.001, 
the red lines correspond to Z=±4.71 ± 4.71, P = 2.5 × 10−6. The labeled genes are 
those with P < 0.001. All P-values are unadjusted for multiple testing.
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Extended Data Fig. 2 | Quantile-quantile plot of P-values from the meta-
analysis assessing the association between rare missense variant carriers  
by gene and breast cancer risk. P-values are from the meta-analyzed Z-score 
from testing H0: β=ln(OR)=0β=ln =0 in the UKB and BCAC datasets (2-tailed).  

The x-axis gives the expected log10 P-values under the null hypothesis and the 
y-axis the observed log10 P-values Highlighted genes are those with P < 0.0005. 
Blue corresponds to an increased risk of breast cancer, and cream corresponds to 
a decreased risk of breast cancer. All P-values are unadjusted for multiple testing.
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Extended Data Fig. 3 | Manhattan plot of Z-scores from the meta-analysis 
assessing the association between PTV or deleterious (CADD > 20) rare 
missense variant carriers by gene and breast cancer risk. The x-axis gives the 
chromosomal position, and the y values are meta-analyzed Z-scores from testing 

H0: β = ln (OR) = 0 β = ln =0 in the UKB and BCAC datasets (2-tailed). The blue  
lines correspond to Z=±3.29 ± 3.29, P = 0.001, the red lines correspond to  
Z= ± 4.71 ± 4.71, P = 2.5 × 10−6. All labeled genes are those with P < 0.001.  
All P-values are unadjusted for multiple testing.
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Extended Data Fig. 4 | Quantile-quantile plot of P-values from the meta-
analysis assessing the association between PTV or deleterious (CADD > 20) 
rare missense variant carriers by gene and breast cancer risk. P-values are 
from the meta-analyzed Z-score from testing H0: β = ln(OR)=0 β = ln =0 in the UKB 
and BCAC datasets (2-tailed). The x-axis gives the expected log10 P-values under 

the null hypothesis and the y-axis the observed log10 P-values Highlighted genes 
are those with P < 0.0005. Blue corresponds to an increased risk of breast cancer, 
and cream corresponds to a decreased risk of breast cancer. All P-values are 
unadjusted for multiple testing.
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