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Generalization of vision pre‑trained 
models for histopathology
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Out‑of‑distribution (OOD) generalization, especially for medical setups, is a key challenge in modern 
machine learning which has only recently received much attention. We investigate how different 
convolutional pre‑trained models perform on OOD test data—that is data from domains that have not 
been seen during training—on histopathology repositories attributed to different trial sites. Different 
trial site repositories, pre‑trained models, and image transformations are examined as specific aspects 
of pre‑trained models. A comparison is also performed among models trained entirely from scratch 
(i.e., without pre‑training) and models already pre‑trained. The OOD performance of pre‑trained 
models on natural images, i.e., (1) vanilla pre‑trained ImageNet, (2) semi‑supervised learning (SSL), 
and (3) semi‑weakly‑supervised learning (SWSL) models pre‑trained on IG‑1B‑Targeted are examined 
in this study. In addition, the performance of a histopathology model (i.e., KimiaNet) trained on 
the most comprehensive histopathology dataset, i.e., TCGA, has also been studied. Although the 
performance of SSL and SWSL pre‑trained models are conducive to better OOD performance in 
comparison to the vanilla ImageNet pre‑trained model, the histopathology pre‑trained model is still 
the best in overall. In terms of top‑1 accuracy, we demonstrate that diversifying the images in the 
training using reasonable image transformations is effective to avoid learning shortcuts when the 
distribution shift is significant. In addition, XAI techniques—which aim to achieve high‑quality human‑
understandable explanations of AI decisions—are leveraged for further investigations.

With artificial neural networks, model weights can be fitted to data to generate high-precision outputs, but 
generalization to unseen data remains challenging. These types of challenges can be addressed under different 
terminologies in the literature. Some works state that unsatisfactory out-of-distribution (OOD) generalization 
stems from learning shortcuts1–3 or biases4–6. Some other works focus on OOD generalization from a rather dif-
ferent perspective stating that existing domain shift between source and target domains is the reason behind a 
low OOD  performance7–9.

We can summarize different nomenclatures describing generalization issues as follows:

• Bias
  Definition: Inherent or acquired prejudice or favoritism toward an entity or group of entities known as 

bias, or  unfairness10.
  Example: Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) determines 

whether an offender is likely to commit another crime after being sentenced. COMPAS is used by judges 
to decide whether to release an offender or keep him or her in prison. The software was found to be biased 
against African-Americans after an  investigation10.

  Literature: 4–6.
  Outcome: Inducing the generalization issue on unseen data.
• Shortcuts
  Definition: A shortcut is a decision rule that performs well on independent and identically distributed 

(i.i.d.) test data but fails on OOD test data, resulting in a mismatch between what is intended and what has 
been  learned1.

  Example: There is a tendency for cows in unexpected environments (such as beaches instead of grasslands) 
to be misclassified since the background can be just as significant for recognition as the cow  itself11.

  Literature: 1–3.
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  Outcome: Inducing the generalization issue on unseen data.
• Domain/distribution shift
  Definition: In the context of transfer learning any differences between the source and target domain data 

is known as domain shift.
  Example: Differences in images due to sampling bias, differences in image content or view angle, or dif-

ferences in image characteristics such as brightness, noise or  color12.
  Literature: 7–9.
  Outcome: Inducing the generalization issue on unseen data.

In histopathology, Hägele et al13 categorized 3 different types of biases in histopathology setups as below:

• Dataset bias
  For example, only a small portion of each image is correlated with its class label. For instance, a small 

central region of each image represents the class label and the remaining parts are irrelevant. In this scenario, 
the deep network cannot generalize to test images in which subjects do not necessarily lie at the center.

• Label bias
  Biases that are by chance correlated with class labels. If an image of a particular class has a unique red spot 

for instance, it may end up in a deep network that does not generalize to test images lacking this defect.
• Sampling bias
  The absence of certain critical tissue textures, such as necrosis, in the training, can lead to performance 

degradation in deep networks when testing them on not-seen textures.

Although they have coined their own nomenclature for biases, but all their types of biases are commonly 
known as shortcuts in the machine learning community which can result in a deep network with a low OOD 
while proper in-distribution performance. In addition to categorizing different types of biases in histopathology 
setups, they have demonstrated the effectiveness of explainable AI techniques to visualize the  biases13.

Overall, it is critical to ensure a reliable deployment of deep models in real-life environments if there is a 
distribution shift, evident in differences between source and target data. For example, differences in acquisition 
pipelines between trial sites, or over time, may introduce a domain shift in digital pathology due to subtle and 
perhaps visually not apparent differences among WSIs.

A deeper understanding of distribution shift and its consequences is required to harness the significant 
potential offered by deep learning in histopathology. Actions need to be taken to ensure that a model’s predic-
tions can be trusted when new data is introduced. Although correctly modeling and responding to data not 
seen during training is indeed a difficult problem, a few methods have recently been proposed to improve OOD 
generalization.

Multi-domain learning regimes (domain generalization and domain adaptation) leverage specialized training 
methods for OOD generalization. These types of techniques are mainly categorized into (1) simulating OOD 
data during  training14–16, (2) learning invariant  representations17, and (3) creating adversarial data acquisition 
 scenarios18.

Even though domain generalization is a relatively well-studied  field19, some works have cast doubt on the 
effectiveness of existing  methods20,21. For example, Wiles et al.22 focused on three types of shifts in distributions, 
(1) spurious correlations, (2) low-data drifts, and (3) unseen shifts. Although their results were more mixed than 
conclusive, they suggested that simple techniques such as data augmentation and pre-training are “often" effective. 
They also demonstrated that domain generalization algorithms are effective for certain datasets and distribution 
shifts. They showed that the best approach cannot be selected a priori, and results differ over different datasets 
and attributes, demonstrating the need to further improve the algorithmic robustness in real-world settings. 
Therefore, it would be reasonable to ask whether domain generalization has progressed over a standard Expec-
tation Risk Minimization (ERM)  algorithm22. While those results are discouraging, there are yet other works 
demonstrating that machine learning models can be generalized across datasets with different  distributions22,23. 
For instance, some works advocate that pre-training on large datasets is effective for OOD  generalization22,24.

This paper presents a systematic investigation of pre-trained models for OOD generalization. Extensive 
experiments are conducted on different types of pre-trained models (trained with either natural images or histo-
pathology images) with leave-one-hospital-out cross-validation. It means each of the WSI repositories associated 
with each hospital is held out in turn, and then the pre-trained models are fine-tuned using the remaining WSI 
repositories for the underlying task. To enable higher OOD generalization, our study focuses not on achieving 
state-of-the-art results on a benchmark dataset, but rather on a better understanding of how pre-trained models 
ensure proper OOD generalization. The results of this research should provide new insights into bridging the 
in-distribution and OOD gap for future research endeavors. Our contribution is three-fold:

1. In the context of OOD generalization, we show that even though pre-training on large datasets is criti-
cal (Semi-Weakly Supervised Learning (SWSL)25 and Semi-Supervised Learning (SSL)25 versus vanilla 
 ImageNet26 pre-trained model), the nature of the pre-trained model is crucial as well  (KimiaNet27 vs.  SWSL25 
and  SSL25). A lack of one of these components may degrade OOD generalization according to our experi-
ments.

2. With fixed-policy augmentations, OOD generalization can be improved by relying less on shortcuts and 
focusing more on semantically interpretable features. There is, however, a risk of complicating the deep 
network training as well. In other words, fixed-policy augmentation can be a friend or a foe. It all depends 
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on the OOD test data and we may not assume a fixed-policy augmentation a priori that works for all condi-
tions.

3. There are cases in which improving in-distribution performance may deteriorate OOD performance, show-
ing that in-distribution performance may not be a reliable indicator of OOD performance necessarily.

In the following, we introduce different types of pre-trained models that have been investigated in this study.

Vanilla pre‑trained models using ImageNet. The pre-training paradigm is dominant in computer 
vision because many vision tasks are related, and it makes sense that a model trained on one dataset would help 
with another. As a result, the vanilla ImageNet pre-trained models, i.e., supervised learning on ImageNet1K 
dataset, have been dominating model training for various computer vision  tasks28–31. Although mainly success-
ful, some reports cast a shadow over the usefulness of vanilla ImageNet pre-trained models. For instance, Shen 
et al.32 demonstrated that vanilla ImageNet pre-training fails when we consider a much different task such as 
Microsoft COCO object  detection33. Furthermore, using strong regularization, Ghiasi et al.34 found that a model 
trained with random initialization outperforms the ImageNet pre-trained model in COCO object detection. 
Thus, it seems one should not rely heavily on vanilla pre-trained models.

SSL and SWSL pre‑trained models. The common sense in the AI community is that a more diverse 
dataset for pre-training would lead to better OOD generalization. Moreover, there have been some strong pieces 
of evidence that pre-trained models on more diverse datasets achieve better OOD generalization in real-life 
distribution  shifts24,35. For instance, there are some types of pre-trained  models25 that have shown better per-
formance than vanilla ImageNet pre-trained models in terms of OOD and in-distribution top-1 accuracy levels 
(the one with the highest probability). Among these, two promising approaches have been introduced: (1)  SSL25 
pre-trained models, i.e., pre-training on a subset of the unlabeled YFCC100M public image  dataset36 and fine-
tuned with the ImageNet1K training dataset, (2)  SWSL25 pre-trained models, i.e., training on 940 million public 
images with 1.5 K hashtags and 1000 ImageNet1K synsets, followed by fine-tuning on ImageNet1K. Therefore, in 
this study, we investigate these types of pre-trained models to see how they perform in presence of distribution 
shift across different histopathology image repositories.

KimiaNet pre‑trained model. It is worth testing a deep model that has been pre-trained for histopathol-
ogy. Compared to models trained with natural images, one might expect better performance from such net-
works.  KimiaNet27 is a pre-trained model which has borrowed the DenseNet  topology37 and has been trained on 
the most diverse, multi-organ public image repository, namely The Cancer Genome Atlas (TCGA) dataset. The 
details of the pre-trained models in this study has been reported in Table 1.

Experimental setup and methods
In most cases, the datasets for studying OOD performance on histopathology setups come from TCGA 16,38,39. 
Given that  KimiaNet27 has already been trained on all WSIs on TCGA data, we may not define the OOD test set 
from that dataset. Hence, our options are further narrowed down to other datasets. CAMELYON17 is a proper 
option because it contains data from various hospitals. In the following section, we describe the data and models 
used in our study, followed by the setup of the experiments.

CAMELYON17 dataset. The CAMELYON17  dataset40 contains 1000 WSIs collected from five medical 
centers. These WSIs have not only spurious variations in stain  colors41 but also variations in morphology and 
tumor staging across the trial  sites42,43 (see Fig. 1). A total of 500 WSIs were used for training in the CAME-
LYON17 challenge, and the remaining 500 WSIs were used for testing. The training dataset of CAMELYON17 
consists of 318 negative WSIs and 182 WSIs with metastases. Since only 50 WSIs of all the slides contained 
pixel-level annotations, only these 50 slides were sampled for tumor and non-tumor cells. Samples of non-tumor 
cells from the remaining slides might introduce some more variations; however, they are not likely to have any 
significant effect on the  results9. Tumor areas often cover only a minor fraction of the slide area, contributing to 
a substantial patch-level imbalance. To address this imbalance issue, we applied a patch sampling strategy simi-
lar to that  in44. Specifically, we sample the same number of tumor/normal patches on each slide with a uniform 
distribution of patches. Finally, for each hospital, we ended up with approximately 3000 patches, half of which 
are tumors and half non-tumors.

Table 1.  Details of pre-trained models used in the study.

Pre-trained model Architecture Number of parameters Pre-training data Feature space dimension

Vanilla ResNet18 11,689,512 ImageNet 512

SSL ResNet18 11,689,512 IG-1B-Targeted, ImageNet 512

SWSL ResNet18 11,689,512 IG-1B-Targeted, ImageNet 512

KimiaNet DenseNet121 7,978,856 Subtying of TCGA WSIs 1024
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OOD hospital and data chunks. In this study, for each hospital, i.e., Hexternal, using leave-one-hospital-out, 
the backbone is only trained using the images of remaining hospitals, i.e., Hinternal. The Hinternal is then split into 
training, validation, and in-distribution test set with 70, 10, and 20% chunks, respectively. The accuracy on the 
Hexternal or OOD top-1 accuracy and in-distribution top-1 accuracy are calculated during the training at each 
epoch.

Different scenarios for the training data. Here, we propose different scenarios for fine-tuning or train-
ing the models in our experiments. To this aim, three different scenarios for the training are assessed according 
to Fig. 2 as follows:

Scenario 1: The training images, i.e., Hinternal, are fed to the network without any changes.
Scenario 2: Several types of distortions in histopathology setups (see Fig. 2) are simulated and randomly 

(uniformly) applied to Hinternal, before inputting these images to the deep network. These transformations are 
as follows:

• HED  jitter45 randomly perturbs the HED color space value on an RGB histopathology image. Firstly, the 
hematoxylin and eosin color channels are separated by a color deconvolution  method46. Following that, 
the hematoxylin, eosin, and Diaminobenzidine (DAB) stains are perturbed independently. In the end, the 
resulting stains are transformed into regular RGB color space. These perturbations are expected to make the 
model stain invariant.

Figure 1.  The bulk RGB histogram of the 512 × 512 extracted patches as well as sample tumor and non-tumor 
patches of each center/hospital in the CAMELYON17 dataset. Hospitals 3 and 5 have quite different histograms 
in comparison to the rest of the hospitals.
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• Color jitter directly perturbs the image attributes including brightness, contrast, and saturation to increase 
image diversity so that the model is more robust to variations in color.

• Gaussian blurring adds some blurring using a Gaussian kernel with a specific radius.
• Identity does not make any changes to the input images.

Scenario 3: A digit (0: non-tumor and 1: tumor) corresponding to the label of images are overlaid on the 
top left corner of each image according to Fig. 2. We kept aside this experiment for the later sections when the 
shortcut learning is discussed.

Training the pre‑trained models. The vanilla ImageNet pre-trained model as well as  SSL25 and  SWSL25 
pre-trained models, all on the ResNet18  backbone47, have been used and assessed. In addition to pre-trained 
models on natural images, the KimiaNet pre-trained  model27, which is a domain-specific (histopathology) 
model, has also been assessed.

For all the experiments, according  to48,49, the total batch size was 32, and base learning rate was set to 0.01 for 
the training-from-scratch cases, and 0.001 for the pre-training cases along with step-LR schedule of 7 steps and 
γ = 0.1. Stochastic Gradient Descent (SGD) optimizer, a frequently used optimizer in the  literature50, was used 
for the training with the weight decay value of 1e − 4.

Results and discussion
During the experiments, it was observed that the in-distribution test accuracy was increasing almost smoothly 
during the training, while the OOD top-1 accuracy did not follow the same pattern. The underlying reason 
behind oscillating OOD top-1 accuracy across the epochs is that most likely during the training, a combination 
of both semantic and non-semantic features are learned. The non-semantic (or hospital-specific) features would 
counter-intuitively degrade the generalization of the OOD test data. In what follows, we compare different types 
of pre-trained models in terms of OOD performance.

Figure 2.  A sample training batch for different scenarios. Note that the patches in scenario 1 train sets did not 
undergo any augmentation. As it can be seen, among identity, HED jitter, color jitter, and Gaussian blurring 
transformations with uniform distribution (p = 0.25), in scenario 2, one transformation is picked for each image 
in the batch. In scenario 3, the correct label (0: non-tumor, 1: tumor) of each image is overlaid on the image 
itself.
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OOD performance of the pre‑trained models. From scratch versus pre-trained. The first observation 
was that pre-trained models outperform training from scratch on average by far. According to Table 2, the dif-
ference between training from scratch and pre-training is significant. One might conclude that using any types 
of reasonably pre-trained model is better than training from scratch when it comes to OOD generalization. This 
finding has already been reported  in49.

For the training-from-scratch cases, according to Table 2, scenario 2 underperforms scenario 1 in most cases. 
For the pre-trained models, according to Table 2, scenario 2 outperformed scenario 1 when the hold-out dataset 
was hospitals 2, 3, or 5. In other words, by starting from proper initial weights (pre-trained), adding complica-
tions (augmentation/diversification) to training would result in a more generalized model. In contrast, if the 
deep network does not start with a proper initial weight (training from scratch), adding complexity to training 
would confuse it and cause it to deviate from learning meaningful and semantic features.

Vanilla versus SSL and SWSL. In Table 2, the maximum performance on each hold-out hospital has been high-
lighted. Neither training from scratch nor the vanilla pre-trained model has been highlighted in none of the cases. 
It can be observed that  SSL25 and  SWSL25 pre-trained models are decent alternatives for the vanilla pre-trained 
model. This can be justified since these two pre-trained models, i.e.,  SSL25 and  SWSL25, have been pre-trained on 
a larger and more representative dataset enabling them to preserve more generic features. There have been some 
experiments in which training with scenario 2 has degraded OOD performance, for example, when hospital 2 
was the hold-out set. Considering that this hospital has a smaller number of images than other hospitals (≈ 2000 
to ≈ 3000), it may be suggested that image diversification/augmentation lowers performance as it increases the 
risk of complicating training of the deep network.

KimiaNet. Table 3 summarizes the result of the KimiaNet for (1) linear  probing51 (which freezes the feature 
extractor and trains only the classification head), and for (2) fine-tuning (all the model parameters are updated). 
As apparent from Table 3, the results of the fine-tuning outperformed linear probing. The average results in hos-
pitals 2, 3, and 5 are lower and more variable in comparison to hospitals 1 and 4. Training using scenario 2 has 
outperformed scenario 1 when the hold-out trial site was hospitals 1, 3, and 5.

Considering both Tables 2 and 3, KimiaNet outperformed all the other pre-trained models at least for three of 
five external validations. Hence, the domain-specific (histopathology) pre-trained model is conducive to better 
OOD generalization. Although linear probing, in both scenario 1 and scenario 2 cases, has outperformed train-
ing from scratch, it has underperformed all the fine-tuning cases regardless of the utilized pre-trained model.

Hospitals 3 and 5 OOD versus in-distribution performance. The variation in accuracy and performance in 
Tables 2 and 3 between pre-trained models and training-from-scratch for hold-out hospitals from training-from-
scratch shows that deep networks perform the least among the other holdout hospitals when hospitals 2, 3 and 
5 are the hold-out hospitals. Hospital 2 in comparison to the other hospitals has a lower amount of patches (≈ 
2000 vs. ≈ 3000) so the variability of results and lower performance when it is used as the hold-out OOD hospi-

Table 2.  The OOD performance of training from scratch versus the pre-trained models (vanilla, SSL, and 
SWSL). Each column represents the OOD top-1 accuracy on the hold-out set.

Pre-training Weights Training scenario Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Average

F Random S1 93.01 89.22 84.95 91.06 81.09 87.9 ± 4.22

F Random S2 92.72 90.28 82.01 90 80.71 87.1 ± 4.73

T Vanilla S1 98.75 96.03 94.42 96.65 90.54 95.3 ± 2.69

T Vanilla S2 98.62 93.6 97.06 97.19 91.67 95.6 ± 2.52

T SSL S1 98.52 96.92 94.8 97.46 96.61 96.9 ± 1.19

T SSL S1 99.18 94.98 95.09 97.79 97.21 96.8 ± 1.59

T SWSL S2 99.08 96.52 94.97 98.12 83.93 94.5 ± 5.37

T SWSL S2 99.31 96.19 97.44 98.09 89.71 96.1 ± 3.3

Average 97.4 ± 1.95 94.2 ± 2.05 92.6 ± 4.01 95.8 ± 2.29 88.9 ± 4.48

Table 3.  The OOD performance of linear-probing versus the fine-tuning of KimiaNet. Each column 
represents the OOD top-1 accuracy on the hold-out (external) hospital.

Fine-tuning v.s. Linear-probing Training scenario Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Average

Fine-tuning S1 98.75 96.6 96.44 98.58 95.54 97.2 ± 1.24

Fine-tuning S2 99.18 95.95 99.18 98.45 97.85 98.1 ± 1.17

Linear-probing S1 97.59 86.77 92.45 95.58 80.57 91.2 ± 5.82

Linear-probing S2 96.77 86.77 94.71 96.7 91.62 93.3 ± 3.69

Average 98.1 ± 1.08 92.3 ± 4.69 95.7 ± 2.78 97.3 ± 1.42 91.4 ± 7.51
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tal is justifiable. However, there is a need to investigate hospitals 3 and 5 since their variability can indicate that 
these two medical centers are likely to have a disproportionate distribution shift from others. The OOD versus 
in-distribution accuracies has been plotted according to Fig. 3.

Better OOD performance is preferred when it comes to real-world applications. Among different pre-trained 
models, we can see that when the hold-out set was hospital 5, KimiaNet outperformed other pre-trained models 
in terms of OOD performance.  SWSL25, vanilla, and  SSL25 pre-trained models secured the next places when 
training using scenario 2 is considered. However, in scenario 1 KimiaNet secured the first rank, and SWSL, SSL, 
and vanilla pre-trained models came after respectively.

Another observation was that training using scenario 2 improves OOD performance better than scenario 1 
while worsen in-distribution performance for all types of pre-trained models. In other words, the transformations 
used in scenario 2 are effective in improving OOD performance while they caused degrading the in-distribution 
performance. This implies that in-distribution accuracy cannot be an indicator of OOD performance neces-
sarily. For instance, the KimiaNet in scenario 2 has the worst in-distribution performance while the best OOD 
performance. It is also a noteworthy point that KimiaNet in scenario 1, when the hold-out hospital was hospital 
3, has the best in-distribution and OOD performance while scenario 2 boosted the OOD performance at the 
cost of degrading in-distribution performance. This is the case for shortcut learning since the shortcuts, based on 
our general understanding, make satisfactory in-distribution performance while degrading OOD performance. 
Hence, we further study this case using XAI techniques to shed light on possible shortcuts.

Uncovering shortcut learning. Neural networks (or any machine learning algorithm) generally imple-
ment decision rules that define a relationship between input and output, e.g., assigning a category to each input 
image in classification tasks. Relying on shortcuts, the network performs well on training and in-distribution 
tests but not on OOD tests, indicating a mismatch between intended and learned  solutions1.

Shortcut v.s. bias. In machine learning, bias is any kind of favoritism toward an  entity52. Favoritism can be 
directed toward a specific race, or it can be directed toward particular data from a specific hospital, or even 
some data with specific characteristics. These types of favoritism may/may not lead to shortcut learning. It may 
be assumed that a bias exists when just the images from a single specific trial site are included in the training 
of the deep network. As a result, we would train a biased deep network that could/could not perform decently 
on OOD test images. The diversity of the images in that trial site determines the outcome. We may encounter a 
generalization issue if the images from a particular trial site are not diverse enough. Using scenario 3, we simulate 
a scenario in which the training images contain meaningful digits indicating their true labels. We may bias our 
results in favor of images with overlaid labels in this manner. While this bias results in satisfactory results when 
tested on images with overlaid labels, it causes the deep network to ignore the remaining contexts of the images, 
i.e., become biased towards the overlaid labels. In overall, all shortcuts can be termed as a bias but not all biases 
can be assumed as shortcuts necessarily. In other words, among all types of biases, those that end up with high 
in-distribution performance and low OOD performance are referred to as biases.

For all the experiments in this section, we used  KimiaNet27 with the same hyperparameters that we already 
used in former sections, with hospital 3 as the hold-out set.

Scenario 3. As experimental shortcuts, one can overlay the true labels on the training images. When the deep 
network is trained using scenario 3, it may use this opportunity during training, and most likely some deci-
sion rules are learned based on this shortcut opportunity. This type of shortcut are termed as label bias in the 
 literature13. The network will not take into account the intended and general features of the tissue context but 
rather the overlaid label digit. When an image without an overlaid label is tested after training, since the network 
has not learned meaningful decision rules, it will just output the overlaid category.

GradCAM53 was used to provide some explainability such that providing heatmaps containing the salient 
areas relevant to the classification. According to Figs. 4 and 5, the GradCAM heatmaps show that scenario 3 
caused the deep network to focus on the overlaid label and failed to pay attention to the tissue morphology.

Figure 3.  The OOD versus in-distribution top-1 accuracy for the model trained using scenario 1 versus scenario 
2 for the hospitals 3 and 5 with significant distribution shift relative to other hospitals.
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In other words, the extreme case of a shortcut which can be the overlaid label of the image takes precedence 
over any other content of the image in these cases. The deep network in these cases, similar to a digit recognizer, 
can only make a decision based on the digit overlaid on the image. When the overlaid class label is missed or 
misleading the deep network cannot provide satisfactory results.

We also tested the KimiaNet trained using scenario 3 with images without class labels overlaid. The result 
was the deep network randomly generated class labels and similar to flipping a coin, the accuracy was ≈ 50%.

Scenario 1 and 2. We trained KimiaNet by holding out the hospital 3 images and using both scenarios 1 and 2.
An OOD tumorous patch from hospital 3 with pathologist pixel-level annotation for the tumorous area is 

shown in Fig. 6i–ii. The model trained using scenario 2, correctly classified the image as tumorous and Fig. 6iii 
shows its salient tumorous area. While The model trained using scenario 1 misclassified the patch as healthy, the 
explainability heatmap for salient healthy areas is shown in Fig. 6iv. Although some tumorous areas are missed 

Figure 4.  KimiaNet trained using Scenario 3 when tested with a tumorous OOD patch with different class 
labels overlaid and their corresponding GradCAM heatmaps. (left) When false label (0: non-tumor) has been 
overlaid on the image. According to the class prediction of the network, the network has thoroughly paid 
attention to the overlaid digit and misclassified the image with its misleading shortcut. (right) When the true 
label (1: tumor) has been overlaid. The network, by focusing on the shortcut, classified the patch with a high 
degree of certitude.

Figure 5.  KimiaNet trained using Scenario 3 when tested with a healthy (non-tumor) OOD patch with different 
class labels overlaid and their corresponding GradCAM heatmaps. (left) When true label (0: non-tumor) has 
been overlaid on the image. The network, by relying on the shortcut, classified the patch with confidence. (right) 
When the false label (1: tumor) has been overlaid. According to the class prediction of the network, the network 
has thoroughly paid attention to the overlaid digit and misclassified the image with its misleading shortcut.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6065  | https://doi.org/10.1038/s41598-023-33348-z

www.nature.com/scientificreports/

in the explainability heatmap (Fig. 6iii), the activated areas correlate well with the expert annotation whereas 
lymphocyte areas have not been activated. In contrast, the model trained using scenario 1 misclassified the patch 
as healthy; Fig. 6iv shows its heatmap for salient healthy regions. Although this heatmap is highly correlated 
with the healthy area (according to Fig. 6ii) but some tumorous regions erroneously have been activated as well. 
These regions may be attributed to shortcut opportunities that have been eliminated using the transformations 
of scenario 2.

Figure 7i shows a patch containing healthy tissue. The trained network using scenario 1, erroneously classified 
this image as tumorous while the model trained by scenario 2 correctly classified it as healthy. Figure 7ii and iii 
show heatmaps for salient tumorous and healthy areas for scenario 1 and scenario 2, respectively. As it can be 
seen, the shortcut-trained model, or the model trained using scenario 1, has correlated fibrous tissues with the 
tumorous region. While in the model trained using scenario 2 salient healthy areas are mostly immune cells and 
adipocytes. Thus, it can be observed that training using scenario 2 defocused the deep network on non-semantic 
features (induced by spurious variations in stain colors or differences in morphology and tumor staging across 
hospitals/trial sites) rather than what we intend to, that is the semantics of tumorous or healthy patterns.

Different pre‑training: paying attention to different image aspects. Pre-training on a related task 
vs. ImageNet. While pre-training on natural images, such as vanilla, SSL, and SWSL pre-trained weights, has 
been dominant for many computer vision tasks, there is evidence to suggest that domain-specific pre-trained 
weights may be more effective for certain  tasks54,55. Accordingly, it is likely that a pre-trained model on a compre-
hensive histopathology task, e.g., cancer subtyping on TCGA, would perform better than ImageNet pre-training 
for a histopathology downstream task, i.e., tumorous vs. non-tumorous breast tissues on CAMELYON. This 
is perhaps because histopathology images have unique characteristics, such as variation in cell structures and 
tissue patterns, that may not be well represented in ImageNet, which is a dataset of natural images. Through pre-
training on TCGA, the model would have learned more relevant features and patterns for better performance on 
histopathology downstream tasks.

Moreover, KimiaNet has been trained on all the common cancer types from various hospitals such as Memo-
rial Sloan Kettering Cancer Center (MSKCC) and National Cancer Institute Urologic Oncology Branch (NCI), as 
well as others. Through Empirical Risk Minimization (ERM) with the labels being cancer subtypes, the trained 
representations can be considered hospital-invariant to some extent. The variation among hospitals can indeed 
act as a form of data augmentation that can indirectly help improving the generalization of the KimiaNet. As 
a result, pre-training on TCGA can end up overlooking some irrelevant hospital-specific aspects of the images 

Figure 6.  The result of training using scenario 1 and scenario 2: (i) an OOD tumorous patch (from hospital 3) 
with different anatomical structures, Ⓣ: Tumor cells, Ⓛ: Lymphocyte, Ⓔ: Erythrocyte. (ii) Expert annotation 
for tumorous regions. (iii) GradCAM heatmap for the model trained using scenario 2 which correctly classified 
the patch, (iv) GradCAM heatmap for the model trained using scenario 1 which misclassified the patch as a 
healthy patch.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6065  | https://doi.org/10.1038/s41598-023-33348-z

www.nature.com/scientificreports/

way better than pre-training on ImageNet. To support this hypothesis, heatmaps produced by XAI techniques 
were utilized in the following manner.

Heatmaps of the initial layers. The heatmaps generated by XAI techniques, especially GradCAM in this study, 
for the initial layers tend to highlight low-level features such as edges and corners in comparison to deeper layers 
which are more abstract and high-levels. These initial layers are usually left unchanged when fine-tuning a well-
suited pre-trained model for the problem at hand, as they have already learned to detect “useful” features that are 
likely relevant to the new downstream  task56. Accordingly, a crucial aspect of determining whether pre-trained 
weights are well-suited for downstream tasks is to assess whether fine-tuning induces significant changes to the 
initial layers. In this study, we investigated this issue by analyzing GradCAM heatmaps of the image shown in 
Fig. 8 for the first layer of each pre-trained model before and after fine-tuning (Fig. 9). Our results indicate that 
the initial layer responses of KimiaNet remain consistent after fine-tuning on an OOD healthy patch belonging to 
hospital 3, suggesting that the features captured by this pre-trained model are well-suited for the downstream 
task. However, for the other pre-trained models, changes in initial layer responses were observed, with the ran-
dom weight model displaying the most dramatic changes. These findings suggest that careful consideration 
should be given to the choice of pre-trained weights for downstream tasks.

Conclusions
Although a fixed-policy diversification of images, similar to scenario 2 in this study, may lead to OOD gener-
alization improvement, that is not necessarily the case. We showed that in some cases the data diversification, 
counter-intuitively, leads to poor OOD and in-distribution performance due to complicating the training of the 
deep networks. Hence, it is not always possible to a priori assume a policy that fits all scenarios unless the target 
test data and its distribution are available/known. A good example is the learnable augmentation  policies57 using 
Cycle-Generative Adversarial Networks (Cycle-GANs)58 which is utilized for adapting the target data to source 
data for improving the OOD generalization. However, in this study, we assumed that there is no access to the 
target data during the training.

Figure 7.  (i) an OOD healthy patch with different anatomical structures, Ⓘ: Immune cells, Ⓐ: Adipocyte, 
Ⓕ: Fibrous tissue, Ⓔ: Erythrocyte. (ii) GradCAM heatmap for the model trained using scenario 1 which 
misclassified the patch as a healthy patch. (iii) GradCAM heatmap for the model trained using scenario 2 which 
correctly classified the patch.
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Although there are some works claiming that pre-training is not sufficiently effective, this paper showed 
that the use of pre-training in computer vision should not be dismissed. We have demonstrated that the newly 
released pre-trained vision models (SWSL, and SSL) do improve performance in many scenarios as other works 
have already shown  that49. Additionally, we showed that KimiaNet which is a histopathology-tailored pre-trained 
model can outperform pre-trained models tailored toward natural images by far when the distribution shift is 
significant and the domain of study is histopathology.

We utilized XAI techniques to provide explanations and interpretations for certain conclusions. We presented 
empirical evidence that data diversification could enhance OOD performance by eliminating shortcuts, and 
investigated how the suitability of various pre-trained models affects the activation maps of the initial layers in 
deep networks.

Although some of these conclusions may be obvious, this paper presented a thorough examination of various 
histopathology trial site repositories, pre-trained models, and image transformations. Moreover, the paper could 

Figure 8.  Sample non-tumorous patch at 20 × magnification from Hospital 3.

Figure 9.  Activation maps of first layer weights: pre-trained weights (Gray-highlighted) and fine-tuning 
(Yellow-highlighted) using the same downstream task for each pre-training scenario.
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serve as a reference for practitioners who are not acquainted with the prevailing ideas in the field. It seems it is 
a common practice among the computational pathology community is to utilize ImageNet pre-trained models 
for their histopathology downstream tasks.

Limitations. Although our study extensively examined the performance of various pre-trained models on 
OOD test data in histopathology repositories, it is important to acknowledge its limitations. Firstly, the study 
only applied ERM on different pre-trained models and did not explore other approaches such as domain adapta-
tion and domain generalization that may offer better generalization on OOD data. Secondly, while XAI tech-
niques were employed for interpreting the results, the explanations generated were not thoroughly analyzed. 
A more comprehensive investigation of these explanations could provide deeper insights into the causes of the 
distribution shift in histopathology domains.

Furthermore, our study only considered a limited set of pre-trained models, including vanilla ImageNet, SSL, 
SWSL, and KimiaNet pre-trained models. There are many other pre-trained models designed for different tasks. 
Therefore, the results may not be generalized to all pre-trained models.

Data availability
The dataset CAMELYON17 analysed during the current study is available in the Grand Challenge repository: 
https:// camel yon17. grand- chall enge. org/.
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