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Neutral (passenger) mutations that do not provide a prolifer-
ative advantage to a cell dominate the mutational landscape 
of tumors1,2. Only a relatively small fraction of mutations 

are under positive selection3–5 due to their ability to drive cancer 
by promoting cell growth, resisting cell death or enabling tissue 
invasion6. Because positively selected mutations reoccur across 
tumors7, genomic elements (for example, coding sequences, pro-
moters, enhancers and long non-coding RNAs) with carcinogenic 
potential accumulate more mutations than expected compared to 
the rates at which neutral mutations occur when counted across 
multiple tumors8,9. Searching for mutational excesses attribut-
able to positive selection to discover driver mutations, genes and 
non-coding elements provides crucial insight into the mechanisms 
of cancer4,5,10–15.

Because robust identification of mutational excess requires an 
accurate model of the neutral mutation rate, computational tools 
that carefully model somatic mutation rates are central to locat-
ing additional cancer drivers. This task is made challenging by the 
highly variable and tissue-specific patterns of neutral mutations 
across the cancer genome16,17. Existing methods address this chal-
lenge by fitting bespoke statistical models of mutation rates to spe-
cific regions of the genome4,9,18–21. For example, methods designed 
to identify driver genes model mutation rates specifically within 
protein-coding sequences by using synonymous mutations as a 
proxy for neutral mutations3,4,21,22. Recent methods designed to 
identify non-coding cancer drivers train sophisticated machine 
learning methods, such as gradient boosting machines, to model 
mutation rates within a subset of the genome18–20 (~4% of the 
genome in a recent pan-cancer analysis of non-coding drivers5). 
Additionally, some models search for driver mutations in unex-
pected nucleotide contexts10, in unexpected clusters23 or by directly 

(and interpretably) predicting the consequences of variants within 
the coding sequence of select genes24. Despite this progress, the 
ability to search for evidence of driver mutations in arbitrary 
genomic regions remains incomplete: existing methods are not 
applicable to most of the genome (for example, because they oper-
ate only within coding sequences); require time-consuming and 
computationally expensive model training for each set of regions 
to test in a cancer cohort; or cannot test with base-pair resolution. 
These limitations contribute to catalogs of cancer driver elements 
remaining incomplete, particularly in the non-coding genome25, 
hindering precision oncology4,11,26,27.

Here we introduce a genome-wide neutral mutation rate model 
that allows rapid testing for evidence of positively selected driver 
mutations anywhere in the genome. This approach, called Dig, is 
predicated on two key methodological advances. First, we introduce 
a deep learning approach to map cancer-specific somatic mutation 
rates at kilobase-scale resolution across the entire genome. Second, 
we propose a probabilistic model that uses these maps to test any set 
of candidate mutations from an arbitrary cancer cohort for evidence 
of positive selection. Through this framework, our maps enable 
millions of mutations to be evaluated in arbitrary cancer cohorts 
in minutes using the resources of a personal computer. We applied 
our deep learning framework to map cancer-specific somatic muta-
tion rates for 37 cancer types present in the Pan-Cancer Analysis of 
Whole Genomes (PCAWG) dataset12, using high-resolution epigen-
etic assays from healthy tissues as predictive features (well-known 
correlates of tumor mutation rates at the megabase scale16,28). We 
then used Dig to identify new coding and non-coding candidate 
cancer drivers in publicly available whole-genome, whole-exome 
and targeted sequencing cancer datasets. Our mutation maps are 
publicly available both as an interactive genome browser and as a 
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standalone software tool for quantifying excess somatic mutations 
anywhere in the genome in a dataset of interest.

Results
Testing mutational excess with probabilistic deep learning. To 
enable rapid evaluation of mutational excess anywhere in the genome, 
we designed Dig to model somatic mutation rates genome-wide for 
a given type of cancer. Thus, the distribution of neutral mutations 
over any set of genomic positions for a cohort of tumors from that 
cancer type can be looked up nearly instantaneously. The method 
employs a probabilistic deep learning model that explicitly captures 
two central determinants of somatic mutation rate variability16,17,21: 
(1) kilobase-scale variation driven by epigenomic properties, such as 
replication timing and chromatin accessibility, that broadly impact 
efficacy of DNA repair9; and (2) base-pair-scale variation driven by 
the sequence context biases of processes that induce somatic muta-
tions, such as APOBEC-driven cytidine deamination and UV light 
exposure10,17,29,30. Kilobase-scale variation is modeled with a custom 
deep learning architecture31 that uses a neural network to predict 
cancer-specific mutation rates within 10-kb regions and a Gaussian 
process (GP) to quantify the prediction uncertainty, taking as input 
high-resolution epigenetic assays (and, optionally, flanking muta-
tion counts) (Fig. 1a, Extended Data Fig. 1 and Methods). By strictly 
partitioning the genome into non-overlapping train, validation and 
held-out test sets with five-fold cross-validation (predicting muta-
tion rates in each one-fifth of the genome using a model trained 
and validated on observed mutations in the remaining four-fifths; 
Methods), the network constructs a kilobase-scale map of the 
mutation rate genome-wide for a given type of cancer (Fig. 1b). 
Base-pair variation is subsequently modeled using a generative 
graphical model that simulates how mutations should be distrib-
uted to individual positions in a region according to the nucleotide 
biases of mutational processes (Supplementary Fig. 1 and Methods). 
The marginal distribution over the number of neutral mutations at 
any set of positions has a closed-form solution that depends on the 
predicted regional mutation rate, the prediction uncertainty and 
the genome-wide probability that a position is mutated based on 
its neighboring nucleotides (Methods). Thus, once values for these 
parameters are learned from a training cohort of a given cancer 
type, the distribution of mutations expected at any set of positions 
in the genome can be queried for any tumor cohort of the same can-
cer and used to test for evidence of positive selection by quantifying 
if excess mutations are observed (Fig. 1c and Methods).

We constructed mutation rate maps and inferred nucleotide 
mutation biases for 37 cancer types (Supplementary Tables 1 and 2  
and Supplementary Data File 1) based on somatic mutations from 
the PCAWG dataset12 and 100-bp patterns of 723 chromatin marks 
in 111 tissues from Roadmap Epigenomics32, replication timing 
from ten cell lines from ENCODE33, and average nucleotide and 

GC content of the reference genome (Supplementary Table 3). 
We then benchmarked the accuracy of our somatic mutation rate 
models using the metric of proportion of variance explained, which 
we calculated as the square of the correlation coefficient between 
predicted and observed mutation counts as in previous work16. 
Dig successfully predicted a median of 77.3% (mean, 70.6%; range, 
22.7–92.3%) of variance in observed single nucleotide variant (SNV) 
rates in 10-kb regions and a median of 94.6% (mean, 91.9%; range, 
73.1–98.0%) of variance in 1-Mb regions (Fig. 1b, Supplementary 
Table 4 and Methods) across 16 cancer types for which benchmark-
ing power was sufficient (>1 million mutations and excluding lym-
phomas, in which activation-induced cytidine deaminase produces 
extreme outlier mutation counts in locally hypermutated regions). 
Compared to existing methods designed specifically to analyze tiled 
regions34, coding sequence4,21 and non-coding elements in which 
synonymous mutations cannot be used to calibrate mutation rate 
models18,19 (for example, enhancers and non-coding RNAs), Dig 
explained the most variation of SNV counts within 10-kb regions 
in 14 of 16 cohorts, of non-synonymous SNV counts in 16 of 16 
cohorts and of enhancer and non-coding RNA SNV counts in 15 of 
16 cohorts, respectively (Fig. 1d, Table 1, Supplementary Fig. 2 and 
Supplementary Tables 4–6). Our approach’s accuracy is attributable, 
in part, to the ability of the deep learning network to identify local 
epigenetic structures, such as active transcription start sites, and to 
associate these structures with mutation rates (Extended Data Fig. 2 
and Supplementary Note 1).

This accuracy enabled correspondingly powerful driver iden-
tification. In benchmarks testing downstream ability to identify 
evidence of positive selection (that is, excess of mutations) within 
previously identified driver elements, Dig matched or exceeded 
the performance of methods tailored toward specific classes of ele-
ments4,18–21 in whole-genome and whole-exome sequenced samples 
(Fig. 1e, Supplementary Figs. 3–5, Supplementary Tables 7–10 
and Supplementary Notes 2 and 3). Considering driver genes—
for which high-quality databases of known driver genes that can 
approximate gold standard true positives exist (Methods)—Dig had 
the highest F1-score (a measure of accuracy) in 24 of 32 PCAWG 
cohorts (excluding skin and blood cancers as in previous work19 
due to local hypermutation processes) and the most power in 14 of 
16 whole-exome cohorts compared to widely used, burden-based 
driver gene detection methods (Fig. 1e, Supplementary Figs. 3 and 4 
and Supplementary Tables 8 and 9) (power was measured as the area 
under approximated receiver operating characteristic curves, which 
could be estimated due to the larger sizes of the exome-sequenced 
cohorts; Methods).

Identifying potential driver elements with Dig was 1–5 orders 
of magnitude faster than existing methods that train new mod-
els for every element and cohort analyzed (Fig. 1f). For example, 
testing 107 observed mutations for evidence of positive selection 

Fig. 1 | Modeling the genome-wide neutral somatic mutation rate and identifying cancer driver elements. a, Deep learning scheme to predict expected 
number of somatic mutations and prediction uncertainty using epigenetic sequencing of healthy tissue from the Roadmap Epigenomics consortium and 
ENCODE. b, Genome-wide neutral somatic SNV map and observed density of SNVs in 1-Mb windows from the PCAWG cohort (n = 2,279 samples). For 
clarity, only chromosomes 1, 3 and 5 are shown. Highlighted regions correspond to panels with the matching colored symbol. Inset: region on chromosome 1 
modeled at 100-kb and 10-kb resolution. The reported R2 statistic between observed and expected SNV counts was calculated genome-wide. c, Examples of 
burden tests in the PCAWG dataset (n = 2,279 samples) for coding mutations in NRAS (n = expected versus observed mutations; synonymous: 0.81 versus 
1; missense: 2.62 versus 15; nonsense: 0.22 versus 0; indels: 0.23 versus 3), non-coding mutations in the TERT promoter (SNVs: 2.12 versus 99; indels: 0.14 
versus 0) and splice site SNVs in VHL (canonical splice SNVs: 0.03 versus 5; cryptic splice SNVs: 0.17 versus 0). Expected is mean with 95% CIs. P values 
from Dig. d, Proportion of variance of non-synonymous SNV count in genes 1–1.5 kb in length (n = 3,740 genes) in 16 PCAWG cohorts explained by different 
methods (size of each cohort reported in Supplementary Table 1). Box plot elements are defined in Methods. e, Approximate numbers of false-positive and 
true-positive driver genes identified in the PCAWG cohort by method (across a range of calling thresholds). Numbers are approximated because the true set 
of driver genes is unknown. CGC genes were used as a conservative approximation of true positives (a non-CGC gene may still be a true driver). f, Runtime 
of coding and non-coding driver detection methods. Comparison was restricted to SNVs because not all methods support indels. Coding analysis over 
n = 19,210 genes for Dig and dNdScv and n = 18,862 genes for MutSigCV. Non-coding analysis over n = 139,404 elements for Dig, DriverPower and Larva and 
n = 117,180 of those elements for ActiveDriverWGS. ActiveDriverWGS required >2 days to analyze the largest cohort.
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within 105 non-coding elements with Dig completed in <90 sec-
onds on a single CPU core compared to between ~10 minutes and 
>2 days for other methods. Thus, our method matches or exceeds 

the power of existing approaches while requiring less runtime  
and providing flexibility to identify drivers with mutation-level 
precision genome-wide.
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Small mutation sets increase power to identify drivers. Previous 
searches for non-coding driver elements have concluded that such 
drivers are likely rare, carried by <1% of samples5. A power analy-
sis using our model’s generative capabilities concurred (Methods), 
indicating the most known non-coding elements (for example, 
enhancers) require at least 1–2% of samples to carry driver muta-
tions to have a >90% likelihood of detecting mutational excess at 
current sample sizes (~102 for individual cancer types; ~103 for 
pan-cancer cohorts) (Supplementary Fig. 6). However, by reduc-
ing the size of tested elements to encompass only tens to hundreds 
of positions (as opposed to the thousands of base pairs spanned 
by most non-coding elements considered to date—for example, 
average enhancer size: 1,717 bp; range, 600–30,200 bp), power to 
identify driver mutations in <1% of samples increased by ~20% 
(Supplementary Fig. 6). To demonstrate the ability of Dig to find 
putative drivers, we, thus, defined and tested specific sets of muta-
tions with potential functional impact for evidence of selection. The 
ability to test user-specified sets of specific mutations genome-wide 
is a unique feature (to our knowledge) of our method.

Quantifying pan-cancer selection on cryptic splice SNVs. 
Alternative splicing is increasingly recognized as functionally rele-
vant to cancer35,36, and recent studies have associated specific somatic 
mutations outside canonical splice sites with alternative splicing 
events observed in expression data37,38. We, thus, applied Dig to rig-
orously quantify the extent to which cryptic splice SNVs, which may 
exist in both exons and introns of a gene (Fig. 2a), occur in excess 
of the neutral mutation rate and, therefore, may function as driver 
mutations under selection. In tumor suppressor genes (TSGs) from 
the Cancer Gene Census (CGC)39, cryptic splice SNVs as predicted 
by spliceAI40 (Methods) occurred significantly more often than 
expected under neutrality (648 SNVs observed in 283 TSGs ver-
sus 550 SNVs expected; P = 2.38 × 10−5) (Fig. 2b and Supplementary 
Tables 11 and 12); were primarily enriched in introns (where most 
such mutations occur); and were biased to occur in sites with high 
predicted impact on splicing (SNVs with predicted impact Δ score 
>0.8 exhibited a 1.75-fold enrichment (95% confidence interval 
(CI): 1.31–2.22 fold), P = 2.52 × 10−5) (Fig. 2b,c). Overall, intronic 
cryptic splice SNVs were estimated to account for 4.5% (95% CI: 
1.3–7.4%) of excess (potential driver) SNVs in TSGs, similar in 
magnitude to the 7.4% (5.6–9.7%) attributable to canonical splice 

SNVs, whose driver potential is well-established4 (Fig. 2d) (exonic 
excess SNV estimates were consistent with estimates from dNdScv; 
Supplementary Fig. 7). Results were robust to high mutation bur-
den samples (Supplementary Fig. 8) and consistent with an analy-
sis that did not rely on our mutation maps (Supplementary Fig. 9). 
Neither control genes not in the CGC nor oncogenes in the CGC 
were enriched for cryptic splice SNVs (Extended Data Fig. 3 and 
Supplementary Table 11). The lack of enrichment in oncogenes 
suggests that gain-of-function splice mutations beyond those that 
induce skipping of MET exon 14 are extremely rare, which may 
reflect the low likelihood of an intronic splice mutation resulting 
in the in-frame addition of residues that pathologically activate an 
oncogene. Conversely, the enrichment in TSGs suggests that cryp-
tic splice mutations are generally inactivating, likely by triggering 
nonsense-mediated decay of mRNA transcripts or generating a  
protein with impaired function.

Considering individual genes, seven TSGs in 12 cancer types had 
a significant burden of intronic cryptic splice SNVs (false discovery 
rate (FDR) < 0.1 for n = 283 TSGs in 37 cancers) (Methods, Fig. 2e 
and Supplementary Table 13), with patterns of TSG–cancer associa-
tions consistent with known tissue specificity of TSGs. Pan-cancer, 
TP53 and SMAD4—both implicated in many cancers—carried an 
excess of cryptic splice SNVs. In contrast, the hematopoietic-specific 
TSG CIITA and the renal-specific TSG PBRM1 carried excess cryptic 
splice SNVs in blood and kidney malignancies, respectively. In fur-
ther support of these associations, the intronic cryptic splice SNVs 
observed in these TSGs, most (79.3%) of which fell outside anno-
tated splice regions (that is, >20 bp from exon–intron boundaries) 
(Fig. 2f), had significantly higher predicted impact on splicing than 
those observed in genes not in the CGC (Fig. 2c) (mean SpliceAI 
Δ score = 0.55 versus 0.33; P < 3 × 10−4; Methods). Moreover, of 
the six cryptic splice SNV carriers with available RNA sequenc-
ing (RNA-seq) data with sufficient coverage, five had evidence of 
alternative splicing (Fig. 2g, Supplementary Fig. 10, Supplementary 
Table 14 and Supplementary Note 4) as quantified by LeafCutter41 
(Methods). Overall, these results provide evidence that intronic 
cryptic splice SNVs are under positive selection in TSGs and likely 
act as driver events in several percent of tumors across multiple  
cancer types.

Nine genes not in the CGC also had a significant burden of 
intronic cryptic splice SNVs in six cancers (Supplementary Table 15)  
at FDR < 0.1, of which two genes had a significant burden at the 
more stringent Bonferroni (α < 0.05) correction for 712,600 tests 
conducted across all genes and cancers. The burdens of four genes 
were driven by recurrent mutations at a single intronic location per 
gene (Supplementary Table 16). Implicated genes include BTG2 in 
lymphoma, which is involved in the regulation of the G1/S transi-
tion of the cell cycle and has recently been implicated as a driver 
of blood cancers based on mutations in its coding sequence10, and 
ADAM19 in hemopoietic tumors, which has been implicated in the 
oncogenesis of breast42, prostate43, colorectal44 and ovarian45 can-
cers. Although the computational prediction of new drivers should 
be interpreted with caution (Discussion), these genes may be prom-
ising targets for future experimental studies to investigate their 
potential tumorigenic properties.

Non-coding candidate cancer driver mutations in 5′ untranslated 
regions. Hypothesizing that indels could have large effect size on 
gene expression by disrupting transcription factor binding motifs, 
we searched promoters (n = 19,251) for a burden of indels in the 
PCAWG dataset (Methods). The TP53 promoter was the only ele-
ment with a genome-wide significant (FDR < 0.1) burden of indels 
(7 observed versus 0.54 expected; P = 9.4 × 10−7) (Fig. 3a), consis-
tent with a previous analysis that used restricted hypothesis testing 
to boost statistical power5. The observed mutations—all deletions 
significantly larger than expected (Fig. 3b) (median length = 17 bp 

Table 1 | Proportion of variance in observed SNV counts in the 
PcAWG cohort (n = 2,279 samples) explained by different 
methods

Percent of variance explained in observed SNV count 
(Pearson R2 between observed and predicted SNV 
counts)

Method 10-kb 
regions

Non-synonymous 
SNVs in coding 
sequences

enhancers and 
non-coding 
RNAs

Dig (this work) 92.3% 39.5% 49.0%

NBR34 85.3%

dNdScv4 35.7%

MutSigCV21 17.8%

Larva18 26.4%

DriverPower19 47.5%

To minimize confounding from variation in element length (as longer elements are expected to have 
more mutations on average than shorter elements), the comparisons were restricted to genes with 
coding sequence 1–1.5 kb in length (n = 3,740 genes) and to non-coding elements 0.5–1 kb in length 
(n = 7,412 elements). A blank entry indicates that the method did not produce predictions over 
the associated annotation (NBR was able to analyze a subset of 6,024 enhancers and non-coding 
RNAs; it explained 1.8% of SNV count variation in those regions).
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in genes not in the CGC (** indicates bootstrapped P < 3 × 10−4; Methods). Box plot elements are defined in Methods. d, Proportion of excess SNVs in TSGs 
contributed by each protein-altering SNV category. e, Known TSGs per cancer with a significant burden (FDR < 0.1) of predicted intronic cryptic splice 
SNVs (n mutations per gene in Supplementary Table 13). f, Distribution of distance to nearest exon boundary for the intronic cryptic splice SNVs observed 
in recurrently mutated TSGs. g, Pileup of RNA-seq reads in a Lymph-BNHL carrier of a predicted, deeply intronic cryptic splice SNV (labeled in red) in 
CIITA and a control Lymph-BNHL sample, showing the inclusion of a cryptic exon (gold) in the cryptic splice SNV carrier. Arc labels indicate the number of 
RNA-seq reads that support each exon junction.
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versus 1 bp expected; P = 7.4 × 10−4, one-sided Mann–Whitney 
U-test)—specifically affected exon 1 of the canonical 5′ untrans-
lated region (UTR), disrupted critical sequence elements (transcrip-
tion start site, WRAP53 binding sequence46, internal ribosome entry 
site47,48 and the donor splice region of the multi-exonic 5′ UTR) 
(Fig. 3a) and exhibited enrichment comparable to cryptic exonic 
splice SNVs in TP53, which are well-characterized cancer drivers49 
(Fig. 3c). More than half of the mutations (four of seven) within 
the exon 1 splice region did not alter the canonical splice sites, an 
unexpected pattern compared to other TP53 splice regions (Fig. 3d) 

(P = 1.8 × 10−3, two-sided Fisher’s exact test). The 5′ UTR mutation 
carriers had significantly lower expression of TP53 than individuals 
without TP53 mutations and individuals with predicted functional 
coding TP53 mutations (1–2 standard deviation decreases in TP53 
expression compared to non-carriers, P = 1.2 × 10−4; Methods, Fig. 3e 
and Supplementary Fig. 11), suggesting that these mutations either 
directly inhibit TP53 transcription or result in nonsense-mediated 
decay of the mRNA transcripts. Corroborating these results, seven 
of 2,399 distinct samples from the Hartwig Medical Foundation50 
showed a similar mutational pattern, with three carrying >10-bp 
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deletions and four carrying SNVs in TP53 exon 1 and its donor 
splice region (Fig. 3a).

These results motivated a targeted search for mutational burden 
in 5′ UTRs and their splicing regions across 106 TSGs and 95 onco-
genes with multi-exonic 5′ UTRs (Methods). One additional ele-
ment, the 5′ UTR of ELF3, had a significant burden of SNVs (Fig. 3f)  
in PCAWG samples (6 observed SNVs versus 0.96 expected; 
P = 2.9 × 10−4); samples from the Hartwig Medical Foundation 
displayed a similar enrichment (10 observed versus 1.5 expected; 
P = 3.8 × 10−4; Methods). In both sets of samples, the enrichment 
was concentrated within the canonical ELF3 5′ UTR; surrounding 
sequences (upstream promoter and intron 1) were not enriched 
for mutations (Fig. 3f). The 16 mutations largely altered distinct 
base pairs within the 5′ UTR—although two positions mutated in 
PCAWG samples were also mutated in the Hartwig samples—sug-
gesting that this 5′ UTR might be broadly sensitive to perturbation, 
possibly by prompting changes in promoter methylation that alter 
ELF3 expression51. An alternative possibility could be an unmod-
eled local mutational process or technical artifact in this region9; 
however, a careful analysis did not find evidence for any such fea-
tures that have explained other non-coding mutational hotspots5 
(Supplementary Note 5). The small number of carriers and lim-
ited availability of transcriptomic assays (only three carriers from 
PCAWG had RNA-seq data) prevented investigation into the possi-
ble function of these 5′ UTR mutations. Thus, additional follow-up, 
particularly experimental assays assessing the impact of 5′ UTR 
mutations52, will be necessary to determine whether the mutational 
enrichment here represents positive selection or represents a new 
neutral mutational process.

The shared landscape of common and rare driver genes. Small 
sample sizes have limited assessment of whether rare coding muta-
tions (which account for most exonic mutations in tumors) act as 
drivers even in well-characterized driver genes. We increased sta-
tistical power in two ways: (1) by analyzing large meta-cohorts of 
non-synonymous SNVs from 14,018 whole-exome and targeted 
sequencing samples, representing ten solid tumor types (median 
samples per cancer, 1,195; range, 515–3,110) (Supplementary  
Table 19 and Methods); and (2) by considering only activat-
ing mutations in oncogenes (obtained from the Cancer Genome 
Interpreter23) and predicted loss-of-function (pLoF) mutations in 
all other genes. Such analysis has previously been impeded by the 
exclusion of synonymous mutations from large, publicly available 
targeted sequencing datasets53–57 because existing driver gene detec-
tion methods are reliant upon synonymous mutations. Dig circum-
vents this difficulty because model parameters have already been 
inferred from a separate training cohort.

For each cancer, we first restricted our analysis to ‘long-tail’ 
genes, which we defined as oncogenes and TSGs not associated with 
that cancer type in any of three recent, large, pan-cancer surveys 
of driver genes7,10,11. Dig estimated that 1–5% of samples (depend-
ing on the cancer) carried activating SNVs in long-tail oncogenes 
(Fig. 4a) and 3–6.5% carried pLoF SNVs in long-tail TSGs (Fig. 4b). 
These rates were significantly higher than expected (P < 3.78 × 10−9 
for activating SNVs in all cohorts; P < 3.10 × 10−4 for pLoF SNVs in 
all cohorts except prostate (P = 0.056 for prostate)) (Supplementary 
Fig. 12, Supplementary Tables 20 and 21 and Methods). These rates 
were consistent when we restricted the analysis to only whole-exome 
sequenced samples, although power to detect positive selection was 
decreased due to reduced sample size (Supplementary Fig. 13 and 
Supplementary Tables 22 and 23). Considering individual genes, 92 
oncogene–tumor pairs not reported in recent pan-cancer surveys of 
driver genes had a significant (FDR < 0.1) burden of activating SNVs 
(Fig. 4c and Supplementary Table 24). Forty-six TSG–tumor pairs 
not reported in the pan-cancer surveys had a significant burden of 
pLoF mutations (Fig. 4d and Supplementary Table 25). The newly 

identified candidate driver genes were rare compared to driver 
genes in existing databases (0.28% (interquartile range, 0.14–0.53%) 
versus 1.3% (interquartile range, 0.59–3.0%) for newly implicated 
and known driver genes, respectively; P = 3.1 × 10−27, two-sided 
Mann–Whitney U-test). Further supporting these predictions, the 
distribution of activating mutations in a given driver gene was simi-
lar between cancers in which the gene is a known, common driver 
and cancers in which we newly implicated the gene as a putative rare 
driver (Extended Data Fig. 4). For example, the G12, G13, Q61 and 
A146 positions of KRAS accounted for most KRAS SNVs in both 
common and rare scenarios (lung non-small-cell tumors: 568/586 
mutations; prostate tumors: 12/17 mutations; gliomas: 11/15), and 
the V600E mutation accounted for the plurality of BRAF SNVs in 
common and rare scenarios despite each gene having dozens of 
known activating SNVs (52 and 71, respectively). Additionally, car-
riers of mutations in several predicted rare driver genes exhibited 
phenotypes consistent with those reported in tumors in which the 
genes are common drivers (Supplementary Note 6). For example, 
central nervous system tumors with rare pLoF mutations in the 
DNA mismatch repair genes MSH2 and MLH1 exhibited sig-
nificantly increased global mutation rates across 213 targeted 
sequenced genes (MSH2: mean 30.1 mutations in carriers versus 
3.0 in non-carriers; P = 3.8×10−7, one-sided Mann–Whitney U-test; 
MLH1: mean 35.3 mutations in carriers versus 3.1 in non-carriers; 
P = 8.8×10−6, one-sided Mann–Whitney U-test).

A further 29 gene–tumor pairs had a significant (FDR < 0.1) 
burden of pLoF mutations in genes not in the cancer driver data-
bases for any cancer (Methods and Supplementary Table 26), 
of which two were significant at the more stringent Bonferroni 
(α < 0.05) correction for the total number of genes tested, and six 
were additionally supported by a nominal (P < 0.05) burden of mis-
sense mutations. The top hit is the cell polarity gene PARD3 in gas-
troesophageal cancer (9 observed pLoF SNVs versus 1.1 expected; 
P = 1.57 × 10−6), which, despite not appearing in major driver gene 
databases, is a known fusion partner of the oncogene RET and has 
been implicated in the tumorigenesis of multiple solid cancers58. 
The ability to distinguish mutational burdens in genes with a low 
frequency of mutations, such as PARD3 (nine carriers in 827 sam-
ples), highlights the increased statistical power that our approach 
can achieve by testing specific sets of mutations in large cohorts for 
evidence of positive selection.

Our results represent progress toward an unbiased, pan-cancer 
catalog of driver genes and suggest that driver mechanisms are 
shared across the common and rare driver landscape of solid can-
cers. However, computational identification of rare driver genes at 
current sample sizes relies upon small mutation counts, and predic-
tions should be interpreted with care. Experimental characteriza-
tion of the functions of genes in the relevant cancers is essential to 
confirming their carcinogenic roles.

Discussion
Dig is a probabilistic deep learning method that enables rapid tests 
for evidence of positive selection on genomic elements that can be 
defined with the precision of individual mutations anywhere in the 
genome. The strong performance of the method in modeling muta-
tion rates and identifying candidate drivers highlights the power 
of deep learning to capture complex cellular processes with data 
derived from high-throughput sequencing40,59–63. Specifically, build-
ing upon the observation that epigenetics correlate with somatic 
mutation rates17, we showed that neural networks applied to a cor-
pus of high-resolution chromatin immunoprecipitation followed by 
sequencing (ChIP-seq) assays are able to learn nuanced, non-linear 
associations between local epigenetic structures and patterns of 
somatic mutations. Moreover, techniques presented here are adapt-
able to other contexts. For example, quantification of prediction 
uncertainty by coupling a Gaussian process to the final layer of a 
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neural network may be a practical solution to improve the reliability 
and interpretability of predictions in other deep learning settings64.

The application of our high-resolution mutation rate maps to 
quantify mutational burdens genome-wide provides a glimpse into 
the landscape of rare and non-coding driver mutations that we 

anticipate will emerge as cancer sequence sample sizes continue to 
grow. Although the driver candidates we report—in cryptic splice 
sites, 5′ UTRs and rarely mutated genes—occurred at low frequen-
cies individually, our estimates suggest that they collectively con-
tribute to the disease pathology of up to 10% of tumors (summing 
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across the percent of tumors predicted to carry excess mutations 
in each of these elements). This estimate may be conservative, as 
several analyses used datasets of mutations that are unlikely to be 
comprehensive (for example, catalogs of predicted cryptic splice 
SNVs and known activating SNVs). The quantification of these rare 
driver events is important, in part, because it suggests avenues to 
expand patient treatment options by repurposing therapeutics; a 
targeted therapy approved for a mutation in one cancer type may 
prove beneficial to patients with the same mutation in other cancer 
types. Indeed, cancer-agnostic approaches to patient stratification 
are currently being deployed at some cancer centers65.

Additionally, current sample sizes are not adequate to uncover 
infrequent drivers under moderate or weak positive selection. We 
anticipate that Dig will be particularly useful in uncovering such 
mutations due to its ability to rapidly evaluate mutations spread 
over large swaths of the genome. For instance, a preliminary 
analysis that we performed on enhancer networks identified sev-
eral genes with a burden of enhancer mutations (Supplementary 
Table 27 and Supplementary Note 7), including FOXA1, in which 
promoter mutations are thought to drive breast cancer by increas-
ing gene expression66. A possible approach to increase sample size 
with existing data is to call somatic mutations in regions flank-
ing coding sequence using off-target reads from large targeted or 
whole-exome sequenced clinical cohorts.

However, computational prediction alone is not sufficient to 
establish the causal role of an element or mutation in cancer pathol-
ogy because an excess of mutations compared to the neutral muta-
tion rate does not definitively prove positive selection. Moreover, 
recent studies have shown that canonical cancer driver mutations 
can be present in seemingly healthy tissues67–71, adding an additional 
layer of complexity to interpreting whether or how a mutation caus-
ally contributes to a malignant phenotype. Ultimately, experimental 
validation is necessary to establish the causal role for a mutation 
as a driver of cancer. Dig provides a tool for in silico guidance of 
in vitro and invivo studies because it enables prioritization of pre-
cise sets of mutations that may act as drivers in both the coding 
and non-coding genome. These specific sets of mutations can then 
be evaluated in experimental systems. For example, the predicted 
cryptic splice mutations that Dig identified as putative drivers could 
be evaluated as possible drug targets by CRISPR base editing of cell 
lines, followed by drug screening assays72. Thus, we anticipate that 
deep learning generally, and our tool specifically, can improve com-
putational, experimental and clinical utility of the growing body of 
cancer genome sequencing data.
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Methods
Sequencing data curation. PCAWG dataset. We obtained somatic SNVs and indels 
from whole-genome sequencing of 2,583 unique tumors from the International 
Cancer Genome Consortium (ICGC) data portal (https://dcc.icgc.org/) and the 
database of Genotypes and Phenotypes (dbGaP) (project code: phs000178) that 
previously passed quality control5. The somatic mutation calls in this dataset have 
previously been stringently filtered to remove possible germline calls, false-positive 
calls due to oxidative DNA damage and calls with high strand bias12. Following 
procedures described in Rheinbay et al.5, we grouped samples into 38 individual 
cancer types and 14 meta-cohorts that combined similar tumor types, including 
a pan-cancer cohort that included all samples except melanoma and lymphoma 
tumors (consistent with Rheinbay et al.5). We removed samples with reported 
high microsatellite instability from all cohorts except the pan-cancer cohort and 
annotated autosomal coding SNVs and indels with their predicted functional 
impact using a custom annotation method. (We excluded sex chromosomes 
because the number of observed mutations on the X chromosome depends on the 
sex composition of a cohort). For the creation of somatic mutation maps and driver 
element analysis, we considered cohorts with at least 20 samples and >105 SNVs 
(Supplementary Table 1). This resulted in a set of 23 individual cancer types and  
14 meta-cohorts.

Dietlein et al. dataset. We obtained somatic SNVs and indels from whole-exome 
sequencing of 11,873 tumors from 28 cancer types that had previously been 
curated in Dietlein et al.10 from http://www.cancer-genes.org/; the dataset 
previously underwent filtering to remove germline calls and due to oxidative 
DNA damage, as described in Dietlein et al10. We restricted to a set of 8,617 tumor 
samples from 17 cancer types for which we had mutation rate models trained 
on the PCAWG dataset (Supplementary Table 28). We additionally constructed 
a pan-cancer dataset by merging somatic mutations from all samples excluding 
melanoma and hematopoietic malignancies as in PCAWG5. Coding mutations 
were annotated for their predicted functional impact as above.

Target sequencing datasets. We obtained somatic SNVs from targeted sequencing 
of ten types of solid cancers performed using the IMPACT protocol at Memorial 
Sloan Kettering Cancer Institute from cbioportal53 (https://www.cbioportal.org/) 
(Supplementary Table 19). Possible germline calls were previously excluded from 
these datasets. We removed duplicate patients and hypermutated samples with 
>100 coding mutations in 221 genes common to all whole-exome and targeted 
sequenced samples (removal of hypermutated samples is common in driver gene 
detection and has been shown to improve accuracy4). Coding SNVs were then 
annotated for their predicted functional impact in coding sequence as above and 
merged with SNVs from the whole-exome datasets (after removing hypermutated 
samples) of the corresponding cancer type to form mega-cohorts with aggregate 
sample size of 14,018 tumors in ten cancer types.

Additional filtering of germline mutations. Any mutation occurring in an element 
with a nominally FDR < 0.1 significant burden of mutations was cross-referenced 
with the Genome Aggregation Database (gnomAD) version 2.1.1 (ref. 73) and 
excluded if it occurred in gnomAD with an allele count of five or more in any 
population, unless the mutation occurred primarily in a single population and 
the carrier was not of that population (this occurred only once; the mutation 
1:43804317-C>T was observed in a carrier of European ancestry but is reported 
in gnomAD as occurring in Latino/admixed American populations). If the 
mutational burden of the element did not remain FDR < 0.1 significant after 
exclusion of these possible germline mutations, it was removed from further 
analysis. This filter was applied to all datasets.

Identification of mutational excess with probabilistic deep learning. Dig 
consists of two components: (1) a deep learning module that models approximately 
constant somatic mutation rates within kilobase-scale regions (for example, 
10–50 kb) due to epigenetic features (for example, chromatin compactness) that 
vary at this scale5; and (2) a generative probabilistic model that captures the 
likelihood that a given position is mutated in a cancer cohort, conditioned on its 
sequence context10,29,30,34 and the kilobase-scale mutation rate of that cancer type. 
Intuitively, the kilobase-scale model provides information about how many neutral 
mutations should be present in a region, whereas the nucleotide context model 
determines how those mutations should be distributed among individual positions.

Modeling kilobase-scale mutation rates with deep learning. Model architecture. 
The purpose of the deep learning model is to (1) predict the mutation rate 
μR and (2) quantify prediction uncertainty σ2

R conditioned on the epigenetic 
organization of the region R. The architecture was previously described31. In brief, 
the network consists of a convolutional neural network (CNN) that takes as input 
a high-dimensional matrix of epigenetic assays (see ‘Model input and output’ 
section) and projects the matrix into a 16-dimensional vector. Optionally, the CNN 
also embeds into the 16-dimensional vector the mutation counts observed in the 
100-kb regions flanking the region of interest. The low-dimensional embedding is 
then provided as input to a GP that predicts the mean and variance of number of 
mutations in the region. Technical details are provided in Supplementary Methods.

Model input and output. The CNN and GP were trained sequentially to predict 
somatic SNV counts in non-overlapping 10-kb regions by minimizing mean 
squared error loss between predicted values and observed counts from the PCAWG 
dataset for each of 37 cancer types. The network received as input matrices of size 
735 × 100 where each row was an epigenetic feature track, and each column was 
the average track value in non-overlapping 100-bp windows. In total, 723 rows 
were uniformly processed −log10 P values for peaks of chromatin markers from 
111 tissues; ten rows were replication timings of ten cell lines from ENCODE33; 
and two were the average nucleotide content and average GC content of the human 
reference genome (Supplementary Table 3). The network additionally received as 
input somatic SNV counts in 100-kb regions flanking each 10 kb of interest from 
the relevant cancer in the PCAWG dataset. However, the accuracy of the method 
over 1-Mb regions was benchmarked using networks trained without flanking 
region counts to avoid any leakage of information between train and test sets.

Model training. For each cancer, predictions in each non-overlapping 10-kb region 
R of the autosome was obtained via the following five-fold cross-validation strategy. 
Bins that passed quality control (Supplementary Methods) were randomly divided 
into five equal-size folds, each containing 20% of the bins. Sequentially, each fold 
was withheld, and a deep learning model was trained using 80% of the remaining 
bins and validated over the other 20% of the remaining bins to avoid overfitting 
(Supplementary Methods). Prediction was then performed over the held-out 
fold (20% of the genome) and over regions filtered by quality checks. Additional 
technical details of model training are described in Supplementary Methods.

Testing mutational burden with a graphical model. Genome-wide likelihood of 
mutation from sequence context. For each cancer, maximum likelihood estimation 
was used to estimate the genome-wide probability of a mutation in each of 192 
possible trinucleotide contexts using SNV counts from the PCAWG dataset. The 
statistical procedure is described in Supplementary Methods.

Modeling mutation counts over an arbitrary set of positions. We conceptualized 
that mutations arise in a region R with an unknown rate whose possible values are 
drawn from a distribution defined by the mean and variance predicted by the deep 
learning network. As mutations arise, they are distributed to individual positions 
based on the probability that each position in R is mutated based on its sequence 
context. Let Mi,aX→Yb be the number of SNVs of the form aX → Yb at position i 
in region R in some cancer cohort of interest. Then, under a probabilistic graphical 
model described in Supplementary Methods, the marginal distribution over a set of 
possible SNVs, I, in a region is31:

∑

I
Mi,aX→Yb ∼ NegativeBinomial

(

αR,
1

1 + CSNV · θR ·

∑

I pR,aX→Yb

)

.

where αR = μ2
R/σ2

R and θR = σ2
R/μR (recall μR and σ2

R are the mean and variance of 
mutation rate in region R estimated by the deep learning model); pR,aX→Yb is the 
genome-wide probability of a mutation of the form aX → Yb, normalized such 
that the probability of all possible mutations in R sums to 1; and CSNV is a constant 
scaling factor that accounts for the difference in sample size between the cohort of 
interest and the training cohort.

All parameters in the distribution except CSNV are already estimated from 
the training cohort. By default, CSNV is calculated as the ratio of the number of 
observed synonymous SNVs in the target dataset to the number of expected 
synonymous SNVs in the training cohort across all genes excluding TP53 (in which 
some synonymous mutations are under positive selection4). Thus, once the model 
has been trained once on the training cohort, calculating the distribution over any 
set of mutations in a target cohort of interest is essentially reduced to the constant 
time look-up of parameters. More details on the graphical model, including its 
extension to indels, multi-allelic variants and sets of variants that span multiple 
regions, are described in Supplementary Methods.

Comparison to existing driver detection methods. We compared Dig’s 
performance to that of six existing methods (NBR34, dNdScv4, MutSigCV21, 
Larva18, DriverPower19 and ActiveDriverWGS20) over two benchmarks: accuracy 
of the background mutation rate models and accuracy of driver detection. The six 
comparison methods were chosen because they are state-of-the-art methods that 
(1) identify putative driver candidates by searching for mutational excess and  
(2) are designed to model diverse regions of the genome: tiled regions (NBR), 
coding sequence (dNdScv and MutSigCV) and non-coding elements such as 
enhancers (Larva, ActiveDriverWGS and DriverPower). All methods were run 
with default parameters.

Comparing background mutation rate models. We compared the variance 
explained of observed SNV counts between models. Variance explained is the 
proportion to which a mathematical model accounts for variation in a dataset, 
which we calculated as the square of the Pearson correlation coefficient between 
predicted and observed SNV counts, as in previous work16. To ensure sufficient 
benchmarking power, we restricted comparisons to 16 cancer types in the PCAWG 
dataset with >1 million mutations because the variance-explained statistic becomes 
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deflated when observed counts are low in a discrete system (Supplementary 
Methods). Comparisons were performed over non-overlapping 10-kb regions 
of the genome (Dig versus NBR), non-synonymous SNVs in coding sequences 
(Dig versus dNdScv versus MutsigCV) and the non-coding elements enhancers 
and long and short non-coding RNAs (Dig versus Larva versus DriverPower) 
(ActiveDriverWGS was not included because it does not output its internal 
estimates of mutation counts). We chose enhancers and non-coding RNAs because 
they are non-coding elements that all three methods could analyze and are 
sufficiently far from coding sequence that synonymous mutations cannot be used 
in general to estimate the neutral mutation rate. To control for confounding from 
element length (longer elements have more mutations on average than shorter 
elements), we restricted the analysis to genes 1–1.5 kb in length (n = 3,740) and 
non-coding elements 0.5–1 kb in length (n = 7,412). Additional details of region 
selection are described in Supplementary Methods.

Comparing driver element identification accuracy. Coding models. We compared 
the sensitivity, specificity and F1-score (harmonic mean of sensitivity and 
specificity) for driver gene detection from coding sequence mutations among 
Dig, MutSigCV and dNdScv across the 32 PCAWG cohorts (melanomas 
and hematopoietic cancers were excluded as in previous comparisons19). We 
additionally compared power over the 16 whole-exome sequenced cohorts from 
Dietlien et al.10 (excluding hematopoietic cancers as above). Details of both 
comparisons are provided in Supplementary Methods.

Non-coding models. We compared the sensitivity, specificity and F1-score for 
driver non-coding element identification from non-coding SNVs among Dig, 
DriverPower, Larva and ActiveDriverWGS20 across the 32 PCAWG cohorts 
(excluding melanoma and hematopoietic cancers as above). We chose to compare 
to these three methods because they are recently introduced methods for 
non-coding driver element identification that rely on neutral mutation models to 
test for selection. Details are provided in Supplementary Methods.

Power analysis. We conservatively simulated the power of Dig to detect driver 
SNVs at different carrier frequencies across enhancers and non-coding cryptic 
splice sites under the pan-cancer mutation map using a Monte Carlo approach 
described in Supplementary Methods.

Quantifying selection on cryptic splice SNVs. Curation of predicted splice SNVs. 
From SpliceAI40, we obtained a list of every possible SNV in the body of 17,816 
autosomal genes with predicted impact on splicing (that is, SpliceAI Δ score) 
>0.2. Predicted splice-altering SNVs were separated into canonical (altering 
positions 1 bp or 2 bp 5′ or 3′ to an exon boundary) from cryptic splice SNVs (all 
other SNVs excluding sites that were 5 bp 3′ to an exon boundary that had been 
included in the definition of ‘essential splice sites’ considered by Martincorena 
et al.4— excluded to ensure that any enrichment we observed was independent 
of enrichment reported in that work). SNV positions were assigned based on the 
GENCODE V24 list of basic transcripts. Cryptic splice SNVs were further divided 
into coding SNVs (defined as synonymous SNVs common to each transcript of a 
gene) and intronic SNVs (defined as SNVs not falling within any coding sequence 
of any transcript).

Enrichment of coding mutations and splice SNVs in PCAWG. Dig was applied with 
default settings to the following sets of mutation from the PCAWG cohort in 
each of 17,815 genes for which we had predicted splice SNVs: synonymous SNVs, 
missense SNVs, nonsense (stop-gained) SNVs, coding indels, canonical splice 
SNVs and cryptic splice SNVs. Mutation enrichment was defined as the ratio  
of the observed mutations to expected mutations (this statistic is conceptually 
similar to the selection coefficient reported for coding mutations by dNdScv).  
P values for a gene set and mutation type were exactly calculated by convolving the 
mutation-type-specific negative binomial distributions for each gene in the gene 
set and summing the upper-tail probability that at least the number of observed 
mutations occurred by chance. We used a Monte Carlo simulation approach to 
estimate the 95% CIs of enrichment within a set of genes and given mutation type 
(Supplementary Methods). To further assess mutational enrichment, we directly 
compared the rate of mutations in TSGs and oncogenes to the rate in genes not 
in the CGC (Supplementary Methods). The excess of SNVs in TSGs in the CGC 
stratified by function (missense, nonsense, canonical splice and non-coding 
canonical splice) was calculated as the difference between the number of mutations 
observed and the number expected. The relative contribution for each functional 
category was defined as the excess for that category normalized by the sum of the 
excess across all categories. The 95% CI for the contribution of each category was 
calculated using a Monte Carlo approach (Supplementary Methods).

Genes enriched for non-canonical cryptic splice SNVs. In each of the 37 PCAWG 
cohorts, we identified genes with a significant burden of non-canonical cryptic 
splice SNVs as quantified by Dig. We considered two sets of genes: (1) all TSGs 
in the CGC (n = 283) and (2) all autosomal genes with predicted splice SNVs 
(n = 17,815). The significance threshold was defined per cancer as FDR q < 0.1 
corrected for the number of tests (n = 283 or n = 17,815). We excluded genes where 

multiple SNVs contributing to the burden were observed in a single sample. We 
used a bootstrap method to determine whether predicted cryptic splice SNVs 
observed in TSGs with a significant burden were enriched for high predicted 
impact on splicing (Supplementary Methods).

Analysis of alternative splicing events in RNA-seq data. We obtained RNA-seq data 
for eight samples carrying deep intronic predicted cryptic splice SNVs (that is, 
distance to nearest exon boundary >20 bp) in TSGs with a significant burden of 
predicted non-coding cryptic splice SNVs and 41 control samples without a cryptic 
splice SNV. For each carrier–control pair of the same cancer type, we performed 
differential splicing analysis using LeafCutter as described by Li et al.41. Further 
details of the analysis are provided in Supplementary Methods.

Quantifying mutational excess in promoters and 5′ UTRs. Discovery of elements 
with a burden of mutations. Dig with default parameters was used to evaluate the 
PCAWG cohort (excluding hypermutated samples with >3,000 coding mutations) 
for mutational excess within two sets of regions: (1) indel excess within promoters 
previously defined by the PCAWG consortium5 (n = 19,251) and (2) SNV and indel 
excess within 5′ UTRs of TSGs (n = 106) and oncogenes (n = 95) in the CGC that 
spanned multiple exons of the canonical transcripts of genes (as defined by the 
UCSC genome browser for GRCh37); we additionally included the splice regions 
of the 5′ UTRs in our analysis, defined as the 20 bp bordering the start or end of an 
exon. The significance threshold was defined per cancer as FDR q < 0.1 corrected 
for the number of tests (n = 19,251 or n = 201).

ELF3 5′ UTR mutations in the Hartwig Medical Foundation cohort. We downloaded 
somatic mutations observed in the Hartwig Medical Foundation metastasis 
cohort50 from their online data portal (https://database.hartwigmedicalfoundation.
nl/), excluding skin and hematopoietic tumors. Because we could only download 
mutations specific to a gene, we did not quantify burden with Dig. Rather, we 
directly compared the rate of SNVs in the 5′ UTR, first intron and 1-kb upstream 
region of ELF3 to the rate of synonymous mutations in ELF3 using a two-sided 
Fisher’s exact test.

Analysis of expression levels. We obtained gene expression levels (FPKM) and 
gene-level copy number estimates from the PCAWG data portal for all tumors 
for which RNA sequencing was performed. For a gene of interest, we applied 
a fixed-effects linear regression model to residualize the expression values for 
gene-level copy number per sample and the interaction between gene-level copy 
number and the cancer project that originally generated the RNA-seq data. 
We then normalized the residual expression values to have mean zero and unit 
variance across all samples and compared the normalized values between mutation 
carriers and non-carriers using a two-sided Mann–Whitney U-test.

Driver gene prediction in whole-exome and targeted sequenced samples. 
Mutational excess in ‘long-tail’ driver genes. For each of the ten cancer types for 
which we compiled SNVs from whole-exome and targeted sequenced cohorts, 
we assembled a list of known driver genes identified in any of three recent 
pan-cancer driver gene discovery efforts7,10,11 (we required genes be discovered 
with FDR < 0.1, the significance threshold common across the driver element 
detection literature) that were also common to all whole-exome and targeted 
sequenced samples (n = 69 oncogenes and n = 56 TSGs). For a given cancer, we 
considered ‘long-tail’ genes to be driver genes that were not on the list of known 
driver genes for the given cancer (that is, they were driver genes associated 
with other cancers). Dig was then used to quantify mutational excess in those 
long-tail genes. Because synonymous mutations were not available from the 
targeted sequenced samples, we instead used missense mutations with CADD 
phred score <15 to estimate the scaling factor that adapted the somatic mutation 
maps trained on PCAWG cohort to the meta-cohorts (details in Supplementary 
Methods). We directly estimated the P value of the mutational burden long-tail 
genes by convolving the neutral mutation distributions for each individual gene 
and calculating the upper-tail probability of at least the number of observed 
mutations across all genes occurring by chance under the null distribution. We 
calculated 95% CIs of excess mutations using the same Monte Carlo approach as 
in our analysis of cryptic splice SNVs. Excess rate per sample was calculated as 
the number of excess SNVs divided by the number of samples in the cohort for a 
given cancer type.

Identification of putative driver genes. We used Dig to identify individual genes with 
an excess of mutations in two cases: (1) in our meta-cohorts, testing 69 oncogenes 
for an excess of activating SNVs and 56 TSGs for an excess of pLoF SNVs (these 
were the set of known driver genes common to all whole-exome and targeted 
sequenced cohorts); and (2) in the exome-sequenced cohorts alone, testing 19,210 
autosomal genes for an excess of pLoF SNVs. In each case, significance was defined 
as FDR q < 0.1 for the number of genes tested.

Box plot elements. All box plots have the following elements: center line, median; 
box limits, upper and lower quartiles; and whiskers, 1.5× interquartile range. 
Where shown, points depict all points used to construct the box-plot.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data generated as part of this study are available as supplementary tables or from 
http://dig-cancer.csail.mit.edu/. Browsable mutation maps for 37 cancer types 
are provided at https://resgen.io/maxsh/Cancer_Mutation_Maps/views. PCAWG 
data are available from https://dcc.icgc.org/releases/PCAWG/. Hartwig Medical 
Foundation data are available from https://database.hartwigmedicalfoundation.nl/. 
Whole-exome sequencing data compiled by Dietlein et al. are available from http://
www.cancer-genes.org/. Targeted sequencing data are available from https://www.
cbioportal.org/. The list of genes in the Cancer Gene Census is available at https://
cancer.sanger.ac.uk/cosmic/download.

code availability
The method described in this manuscript (Dig) is available as a package hosted 
on the conda repository (https://anaconda.org/mutation_density/digdriver). 
Installation instructions and documentation are available at https://github.com/
maxwellsh/DIGDriver/wiki. The Dig source code is available on GitHub (https://
github.com/maxwellsh/DIGDriver). All other code used in this study is available 
from the authors upon reasonable request.
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Extended Data Fig. 1 | Detailed overview of the Dig model. a, Dig takes as input somatic mutations (SNVs and/or indels) (Step 1) identified from a 
cancer cohort sequenced with any methodology and a set of genomic elements of the user’s interest (Step 2). The neutral mutation rate from an available 
neutral somatic mutation map (detailed in panel b) is transferred to the selected SNV dataset via a closed-form probabilistic model (a split-Poisson 
gamma distribution31), that infers only a single scaling parameter at runtime (Step 3); then, a P-value for positive selection is calculated for each element 
by comparing the number of observed mutations to the number of expected neutral mutations (Step 4). b, A neutral mutation map for a particular 
cancer consists of 1) the mean and variance of the number of neutral mutations in kilobase-scale regions of the genome (default: 10 kb) as inferred by a 
convolutional neural network (CNN) and Gaussian process (GP) based on 735 epigenetic features from the Roadmap Epigenomics dataset and ENCODE 
(and optionally the number of mutations observed 100 kb up- and downstream of the region in the a training cancer cohort dataset); and 2) a sequence 
context model that provides the genome-wide likelihood of a mutation given its sequence context (default: trinucleotide sequences).
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Extended Data Fig. 2 | epigenetic input features used by Dig to predict mutation density in nine cancer types. a, An example of a feature map across 
the 735 input features in a 50 kb region. The attention column is highlighted. b, UMAP visualization of the epigenetic content within attention columns, 
produced by averaging the same chromatin marks (for example, H3K27ac) across tissues, for nine types of cancer. The epigenetic content consistently 
formed five clusters in each cancer type. c, An example of the average epigenetic content of each cluster from lung squamous cell carcinoma. Each 
chromatin mark is the average across tissues with 95% CI. d, The epigenetic content of each cluster as determined by epilogos74, averaged across the nine 
cancer types. e, Boxplots of the number of mutations in regions containing an attention column from a given cluster, stratified by cancer type (boxplot 
elements defined in Methods). Skin-melanoma: N = 107 samples, Colorectal-AdenoCa: N = 50 samples, Liver-HCC: N = 314 samples, Eso-AdenoCa: 
N = 97 samples, Lung-SCC: N = 47 samples, Head-SCC: N = 56 samples, Prost-AdenoCa: N = 199 samples, CNS-GBM: N = 39 samples, Bladder-TCC: 
N = 23 samples.
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Extended Data Fig. 3 | cryptic splice SNV enrichment in oncogenes and genes not in the cGc. Estimated SNV enrichment with 95% CIs as in Fig. 3b for 
oncogenes in the CGC, a, and 500 randomly selected genes not in the CGC, b. Enrichment is not significant in any category after accounting for multiple 
hypothesis testing except missense mutations and indels in oncogenes, as expected. (N = 2,279 samples in each panel; number of mutations per category 
in Supplementary Table 11).
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Extended Data Fig. 4 | examples of distribution of activating mutations in gene-tumor pairs. Top y-axis: distribution in cancers for which the gene is a 
known common driver. Bottom y-axis: distribution in cancers for which the gene is a newly proposed rare driver. The genes shown are the five long-tail 
genes with the highest carrier frequency across the cancer types tested. Color of the ball indicates cancer type.
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