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abstract

PURPOSE As immune checkpoint inhibitors (ICI) become increasingly used in frontline settings, identifying early
indicators of response is needed. Recent studies suggest a role for circulating tumor DNA (ctDNA) in monitoring
response to ICI, but uncertainty exists in the generalizability of these studies. Here, the role of ctDNA for
monitoring response to ICI is assessed through a standardized approach by assessing clinical trial data from five
independent studies.

PATIENTS AND METHODS Patient-level clinical and ctDNA data were pooled and harmonized from 200 patients
across five independent clinical trials investigating the treatment of patients with non–small-cell lung cancer with
programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1)–directed monotherapy or in combination
with chemotherapy. CtDNA levels were measured using different ctDNA assays across the studies. Maximum
variant allele frequencies were calculated using all somatic tumor-derived variants in each unique patient
sample to correlate ctDNA changes with overall survival (OS) and progression-free survival (PFS).

RESULTSWe observed strong associations between reductions in ctDNA levels from on-treatment liquid biopsies
with improved OS (OS; hazard ratio, 2.28; 95% CI, 1.62 to 3.20; P , .001) and PFS (PFS; hazard ratio 1.76;
95% CI, 1.31 to 2.36; P , .001). Changes in the maximum variant allele frequencies ctDNA values showed
strong association across different outcomes.

CONCLUSION In this pooled analysis of five independent clinical trials, consistent and robust associations
between reductions in ctDNA and outcomes were found across multiple end points assessed in patients with
non–small-cell lung cancer treated with an ICI. Additional tumor types, stages, and drug classes should be
included in future analyses to further validate this. CtDNAmay serve as an important tool in clinical development
and an early indicator of treatment benefit.
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INTRODUCTION

The recent approval of programmed cell death-1 (PD-
1)/programmed death ligand-1 (PD-L1) inhibitors as
frontline therapy for advanced non–small-cell lung
cancer (NSCLC) has changed the treatment paradigm
for this disease.1-6 However, not all patients respond to
immune checkpoint inhibitors (ICI), and some may
experience clinically significant, and sometimes long-
lived, toxicity.7 Disease response is currently assessed
with clinical and radiographic evaluation, with the first
imaging assessment usually after 8 weeks on ICIs.
However, clinical assessments are subjective, difficult

to standardize, may lack the necessary sensitivity to
identify very early stages of progressive disease, and
may misinterpret tumor responses in the case of
pseudoprogression.8 Hence, accurate, early, and ob-
jective predictors of response to ICI therapy are needed.

Next-generation sequencing of circulating tumor DNA
(ctDNA) has been recently established as a sensitive,
less invasive, and accurate means to detect thera-
peutically actionable mutations in patients as well as to
identify the emergence of resistance mutations in
patients receiving targeted therapies. However, the use
of this technology to monitor response to therapy is less
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defined for ICIs.9-13 Serial ctDNA measurements may yield
additional insights into a patient’s disease, providing a more
timely assessment of response to treatment than traditional
clinical and radiologic assessments. If shown to correlate
with treatment response, monitoring ctDNA changes during
treatment may improve disease management.14-18

Several recent studies suggest a potential role for ctDNA in
monitoring response to ICI therapy and have investigated
how changes in ctDNA levels may be associated with
outcomes. These studies have identified a correlation
between on-therapy reductions in ctDNA and objective
response rate, progression-free survival (PFS), and overall
survival (OS).19-23 However, uncertainty exists in the gen-
eralizability of these studies, since they often used different
methods of ctDNA assessment, had variable on-treatment
blood collection time points, had heterogeneity in the pa-
tient populations, and implemented a variety of methods to
calculate ctDNA changes over time.

To address the need for a standardized approach to assess
the role of ctDNA as a potential tool for monitoring response to
ICI treatment as well as to develop a robust data set evaluating
the relationship between ctDNA changes during ICI treatment
and clinical outcomes, Friends of Cancer Research (Friends)
launched the ctDNA for Monitoring Treatment Response
(ctMoniTR) pilot project. The first step of ctMoniTR pooled
and harmonized data from five independent studies focused
on patients with NSCLC receiving PD-(L)1–directed mono-
therapy or combination with chemotherapy. The results from
this multi-institutional study are presented and discussed,
providing further evidence of ctDNA as a noninvasive and
dynamic indicator of clinical outcome to ICI.

PATIENTS AND METHODS

Patients

Anonymized patient-level clinical and ctDNA data from five
independent clinical trials were collected and included 254

patients (Data Supplement).20-22,24,25 Each study reviewed
patients’ informed consent approved by the local institu-
tional review board to ensure their data were suitable for
secondary use beyond their original intent. Patients with
NSCLC who had been treated with varying lines of anti–PD-
(L)1 therapy, either as monotherapy or in combination with
standard chemotherapy, and who had a pretreatment
ctDNA sample (no earlier than 14 days before the start of
treatment) and at least one on-treatment ctDNA sample (no
later than 70 days from the initiation of treatment) were
included. As this was a pilot project, these time points were
selected to allow inclusion of the largest number of sam-
ples. The five data sets were split into seven cohorts, with
each cohort representing a unique study or trial arm. Initial
criteria for patient inclusion/exclusion and strategies for
minimizing bias in a combined data set were established
before analysis (Data Supplement).

Clinical Outcomes and Covariates

OS and PFS were defined as the number of days between
treatment initiation and death resulting from any cause, and
the number of days between treatment initiation and death
from any cause or progression, respectively. Tumor re-
sponse was evaluated according to the RECIST, version
1.1, and confirmed by local or central review.26 Durable
clinical benefit was defined as maintenance of PFS at
6 months from treatment initiation (PFS6).27 Patients who
did not progress on study but were lost to follow-up within
6 months of treatment initiation (n = 11) were excluded
from the PFS6 analysis. Additional clinical descriptors were
collected and harmonized according to a common set of
definitions (Data Supplement).

ctDNA Data

All studies used similar plasma collection methods (Data
Supplement) that met the minimum prespecified assay
standards (Data Supplement) and provided ctDNA results
according to their individual protocols. Various next-generation

CONTEXT

Key Objective
Can changes in circulating tumor DNA (ctDNA) reflect clinical benefit across multiple, independent studies of patients with

non–small-cell lung cancer treated with immune checkpoint inhibitors?
Knowledge Generated
Analyses confirm an association between changes in ctDNA levels and clinical benefit for patients with non–small-cell lung

cancer treated with varying lines of anti–programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1) therapy.
Harmonization strategies were developed to help address differences in ctDNA collection timing, ctDNA assay results, and
clinical variables across different clinical studies.

Relevance
Our study provides supporting evidence that ctDNAmay serve as an early predictor of treatment response. Given themultitude

of recent studies investigating the use of ctDNA as a minimally invasive way to measure treatment outcome, these results
are timely by confirming observations seen across multiple, independent studies and by outlining harmonization strategies
to support future studies and meta-analyses to validate ctDNA as an end point in drug development.
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sequencing–based ctDNA assays (Data Supplement), in-
cluding targeted panels and whole-genome sequencing, were
used and, as a result, performancemetricsmay vary across the
platforms. Variant allele frequencies (VAF), defined as the
number ofmutant alleles divided by the total number ofmutant
and wild-type alleles, were reported from four of the five
studies. The fifth study assessed ctDNA changes with a whole-
genome sequencing approach using copy-number alterations
and local changes in ctDNA fragment length to determine a
tumor fraction ratio.21 Variants contributing to the calculation of
VAF met internal assay-specific quality standards. Germline
and clonal hematopoiesis variants were removed according to
each study’s original protocol (Data Supplement) or, for one
study, by the independent analysis center (Data Supplement).

Derived ctDNA Metrics

Mean, median, and maximum VAF values were calculated
using all somatic tumor-derived variants eligible for analysis
in each unique patient sample, regardless of whether they
were detected at baseline. For patients with nondetectable
(ND) ctDNA, the VAFs were assumed to be indeterminably
low and were set to a value of 0; additional data handling
details are in the Data Supplement. The percent change of
the mean, median, or maximum VAF value from baseline
(T0) to the first on-treatment sample collected within
70 days of treatment initiation (T1) was calculated as

Percent Change of Mean VAF � (mean VAFT1

−mean VAFT0)
�
mean VAFT0

Percent Change of Median VAF � (median VAFT1

−median VAFT0)
�
median VAFT0

Percent Change of Maximum VAF � (maximum VAFT1

−maximum VAFT0)
�
maximum VAFT0 .

Then, three types of ctDNA metrics were calculated for
analysis: (1) continuous percent change variable using the
raw percent change value, with a cap in cases with per-
centage increase of 500% to mitigate the impact of outliers;
(2) binary variable using a cutpoint of –50% change in VAF
as the threshold, where this optimal cutpoint was deter-
mined using the running log-rank method28; and (3) the
three-level variable, which used cohort-specific thresholds
to identify the 50% most extreme patients within each
cohort exhibiting a strong decrease in ctDNA from baseline
(decrease), the 50% most extreme patients exhibiting a
strong increase in ctDNA (increase), and the remaining
patients in a middle category with modest reductions or
increases in ctDNA (intermediate; Data Supplement).

Statistical Analyses

The three-level ctDNA metric was modeled as an ordinal
variable with three categories representing patients with a
decrease in ctDNA from baseline, an intermediate change,
or an increase. Kruskal-Wallis tests were used to compare
the medians of continuous variables, and Wald chi-Square
tests were used to compare proportions of categorical

variables, with Fisher’s exact test used in cases where
assumptions for utilization of the chi-square test were not
met. Survival probabilities (OS and PFS) were estimated
using the Kaplan-Meier method,29 using a 70-day landmark
from treatment initiation to ensure that the ctDNA metric
reflected a change in ctDNA that occurred before patients
were assessed for survival outcome. Overall and pairwise
comparisons between strata in Kaplan-Meier analyses were
calculated using log-rank tests. Univariate and multivariate
Cox proportional hazards models were used to assess
associations with OS and PFS, with P values derived from
the log-likelihood test, and covariates that were measured
after treatment initiation modeled as time-dependent
covariates. Univariate and multivariate logistic regression
models were used to assess associations with binary
clinical end points (partial response [PR] or better, and
PFS6). All models accounted for cohort-specific risks using
cohort-stratified models, where cohort was adjusted by
stratification, which allows for a different baseline risk within
each cohort group. All statistical tests with P value , .05
were considered statistically significant. As this was an
exploratory pilot project, P values were not adjusted for
multiple tests. Analyses were done using the SAS statistical
software package (SAS Institute, Cary, NC) or R (R Foundation
for Statistical Computing, Vienna, Austria).

RESULTS

Analysis Data Set

A total of 254 patients were considered for inclusion, with
200 patients included in the final data set after excluding
patients who failed to meet study criteria (Fig 1; full pop-
ulation demographics shown in the Data Supplement).
Broad heterogeneity was observed across cohorts with
noticeable differences in age, sex, stage at enrollment,
histology, programmed death ligand-1 (PD-L1) expression,
and number of prior lines of therapy (Table 1). Among all
clinical covariates, smoking history was the only one to be
univariately associated with changes in ctDNA values (Data
Supplement).

ctDNA Collection Timing and ctDNA Metrics

Descriptive analyses revealed that the timing and frequency
of ctDNA samples varied between cohorts because of
differences in the protocols used within each study (Fig 2).
There was also variability across cohorts in the number of
variants detected, the magnitude of VAF values, and the
range of baselinemean, median, andmaximum VAF values
(Data Supplement). Considering the likelihood that differ-
ences in these data could be related to the assay used, the
3-level Max VAF Percent Change Group results are shown
here, since this metric accounted for differences in dis-
tributions by using cohort-specific thresholds to categorize
patients. This metric also demonstrated themost consistent
results for OS, PFS, and durable clinical benefit. The results
for the other ctDNA metrics are available in the Data
Supplement. Within the 3-level Max VAF Percent Change
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Group metric, 63 (32%) patients had a decrease, 103
(51%) had an intermediate change, and 34 (17%) an
increase in ctDNA levels from baseline while on treatment.

Changes in ctDNA Are Associated With Survival

End Points

Strong and consistent associations between reductions in
ctDNA levels and improved OS were observed in unad-
justed Cox models (Data Supplement) and adjusted Cox
models with cohort stratification and adjustment by baseline
clinical covariates (Fig 3A). For example, each increase in
the category of the three-level Max VAF Percent Change
Group variable (from decrease, to intermediate, to increase
in Max VAF) was associated with an increased risk of death
(adjusted hazard ratio, of 2.28 [95% CI, 1.62 to 3.20; P ,
.001]), after adjusting for baseline clinical covariates.
Baseline ctDNA values, including ND samples, were not
found to be associated with OS (Data Supplement). OS
Kaplan-Meier plots showed a strong separation in the dif-
ferent ctDNA categories, with statistically significant dif-
ferences in the pairwise comparisons, and 1-year survival
rates of 75%, 58%, and 32% for patients with a decrease,
intermediate change, or increase in Max VAF, respectively
(Fig 3B). Additional Kaplan-Meier and univariate associa-
tions for OS are available in the Data Supplement.

Similar observations occurred when examining the ctDNA
associations with PFS in unadjusted Cox models (Data
Supplement) and adjusted Cox models with cohort stratifi-
cation and adjustment by baseline clinical covariates (Fig 4A),
where the adjusted hazard ratio of 1.76 (95% CI, 1.31 to
2.36;P, .001) indicated that each increase in the categories
of the three-level Max VAF Percent Change Group variable
(from decrease, to intermediate, to increase in Max VAF) was
associated with an increased risk of progression or death,
after adjusting for baseline clinical covariates. Similar to the
OS analysis, baseline ctDNA values, including ND samples,
were not associated with PFS. The PFS Kaplan-Meier plot

revealed that patients with a decrease in the maximum VAF
had better PFS comparedwith the other two groups, but there
was no apparent separation in PFS between patients in the
intermediate and increase categories (Fig 4B). Additional
Kaplan-Meier and univariate associations for PFS are avail-
able in the Data Supplement. Of note, in the adjusted Cox
models for both OS and PFS, smoking history was associated
with improved survival outcomes. This finding is consistent
with previous studies that argued that cancers resulting from
the accumulation of tobacco-related mutations may have
increased tumor mutational burden and respond especially
favorably to immunotherapies.30,31 Additionally, there was a
lack of association with PD-L1 positivity, which was likely
because of variation in how it is measured and defined in
each clinical trial.

Changes in ctDNA Are Associated With Improved

Tumor Response

Reductions in ctDNA were also associated with improved
tumor response, defined as achieving a RECIST classifi-
cation of PR or complete response. Logistic regression
models with cohort stratification and adjustment by
baseline clinical covariates yielded an adjusted odds ratio of
0.19 (95% CI, 0.08 to 0.45; P , .001) for intermediate
versus decrease and 0.11 (0.03 to 0.38) for increase versus
decrease, suggesting that each increase in the strata of the
three-level Max VAF Percent Change Group variable was
associated with a decreased likelihood in achieving PR or
better, after adjusting for baseline clinical covariates
(Table 2). Baseline ctDNA values were not univariately
associated with achieving PR or better (Data Supplement).
Additional univariate associations and results for other
ctDNA metrics are included in the Data Supplement.

Changes in ctDNA Are Associated With Durable

Clinical Benefit

Logistic regression models with cohort stratification and
adjustment by baseline clinical covariates found that

Assessed for eligibility (N = 254) 

Excluded because of missing
baseline ctDNA sample (n = 16) 

Patients with baseline ctDNA sample
(n = 238) 

Excluded because of missing T1
ctDNA sample (n = 12)

Excluded because baseline ctDNA
sample collected ���14 days before
treatment initiation, or T1
ctDNA sample collected ��70 days
after treatment initiation (n = 26)   

Patients with baseline and T1 ctDNA 
sample (n = 226)

Patients with baseline and T1 ctDNA
samples within time constraints (n = 200)

FIG 1. Flow diagram. ctDNA, circulating
tumor DNA.
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TABLE 1. Patient Demographics

Trait Description

Cohort

P Overall, n/N (%)1 2 3a 4a 4b 5a 5b

Age, years Age ≥ 66 years at enrollment, No. (%) 19/20 (95) 9/16 (56) 19/43 (44) 16/55 (29) 5/15 (33) 12/24 (50) 14/27 (52) , .001 94/200 (47)

Sex Female, No. (%) 9/20 (45) 8/16 (50) 10/43 (23) 22/55 (40) 2/15 (13) 15/24 (63) 11/27 (41) .013 77/200 (39)

Race White, No. (%) 13/20 (65) 8/14 (57) 32/43 (74) 28/55 (51) 11/15 (73) 15/24 (63) 22/27 (81) .094 129/198 (65)

Smoking status Ever smoked, No. (%) 15/20 (75) 12/14 (86) 37/43 (86) 47/55 (85) 12/15 (80) 23/24 (96) 24/27 (89) .577a 170/198 (85.9)

ECOG ECOG performance status ≥ 1, No. (%) 13/19 (68) ND 26/43 (60) 35/55 (64) 12/15 (80) 11/24 (46) 18/27 (67) .360 115/183 (63)

Stage at enrollment Advanced stage (stage IV), No. (%) 18/20 (90) 14/16 (88) 43/43 (100) 39/55 (71) 13/15 (87) 24/24 (100) 27/27 (100) , .001a 178/200 (89)

Histology Squamous, No. (%) 3/20 (15) 7/16 (44) 12/43 (28) 13/55 (24) 9/15 (60) 7/24 (29) 0/27 (0) , .001 51/200 (26)

PD-L1 expression PD-L1–positive (TPS ≥ 1%, or TC/IC
PD-L1–positive), No. (%)

14/19 (74) 11/11 (100) 30/42 (71) 48/53 (91) 12/15 (80) 23/24 (96) 13/26 (50) , .001a 151/190 (79)

Prior therapy Prior lines of systemic treatment ≥ 1, No. (%) 8/20 (40) 11/15 (73) 43/43 (100) 55/55 (100) 11/15 (73) 6/24 (25) 0/27 (0) , .001 134/199 (67)

NOTE. Each cohort represents a unique study (cohort number) or trial arm (cohort letter) within a study. The proportion is calculated as the percent of patients with a given trait, within each cohort. If a
patient was missing data on a given trait, this was reflected in the total count for the cohort; therefore, N may be , 200. Studies were blinded for analyses.

Abbreviations: ECOG, Eastern Cooperative Oncology Group; ND, no data; PD-L1, programmed death ligand-1; TC/IC, tumor cells/immune cells; TPS, tumor proportion score.
aP value from Fisher’s exact test, otherwise χ2.
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decreases in ctDNAwere associated with achieving durable
clinical benefit, defined as PFS ≥ 6 months (PFS6). This
analysis yielded an adjusted odds ratio of 0.13 (95% CI,
0.05 to 0.34; P , .001) for intermediate versus decrease,
and 0.06 (95% CI, 0.02 to 0.22) for increase versus de-
crease, interpreted as a decreasing likelihood of achieving
PFS6 with each increase in the ctDNA Max VAF metric
category (Table 2). No other clinical covariates were sta-
tistically significant in the adjusted model, and the ctDNA
values at baseline were also not found to be associated with
PFS6. Additional univariate associations and results for
other ctDNA metrics are included in the Data Supplement.

DISCUSSION

Among patients with NSCLC treated with ICI whose data
were analyzed in aggregate, consistent and robust associ-
ations between reductions in ctDNA and clinical benefit were
found across multiple end points. Although the results
presented in this manuscript are consistent with recent
reports, these individual studies have limited sample sizes,
and were constrained in their generalizability, given that each
study used a particular treatment and a specific ctDNA assay
on a carefully selected group of patients.19-23,25,32 The het-
erogeneity of the data sets included required various har-
monization strategies to address differences in ctDNA
collection timing, ctDNA assay results, and clinical variables.

These strategies successfullyminimized bias and confounding
factors and were equally valuable in establishing useful
methodologies for combining data sets collected from dis-
parate sources. By pooling and harmonizing the results from
independent studies, the results of this study show that, even
when analyzed across five different clinical trials, using mul-
tiple ICIs in differing NSCLC populations, with different sample
collection time points and different ctDNA assays, the on-
treatment changes in ctDNA levels correlate with outcome.
These correlations hold true in analyses using ctDNA as a
dichotomized, trichotomized, or continuous variable, and
using all outcome measures evaluated (OS, PFS, best re-
sponse, and PFS6).

In the literature, there is a lack of standardization in the
methods used to quantitate ctDNA changes and evaluate
their association with clinical outcomes. Previous studies
have generally used different metrics, such as mean,
median, or maximum VAF, mutant molecules per unit
volume of blood or plasma, or absolute numbers of mu-
tations observed at one point in time.24,32 Moreover, dif-
ferent thresholds have been used to determine significant
changes in ctDNA, such as one log reduction, two-fold
change or statistically distinguishable changes with non-
overlapping CIs, percent change in the absolute ctDNA
levels, or a ratio of on-treatment VAF to baseline VAF, with a
molecular response set at . 50% decrease.19,21,23,32,33
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FIG 2. Timing of plasma collection and tu-
mor response per patient by study in the
analysis data set (N = 200). Unique patients
are represented as horizontal lines, with
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having longer follow-up. ctDNA, circulating
tumor DNA.
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Thus, one aim of this study was to compare different ctDNA
metrics to identify those that yielded the most consistent
and robust associations across multiple technologies and
clinical outcomes. The analyses presented in this manu-
script were focused on metrics on the basis of VAF or tumor
fraction values, since these were available for studies in this
evaluation.

When comparing changes in the mean, median, or max-
imum VAF values, it was generally observed that the mean
and maximum VAF ctDNA values showed similarly strong
and consistent univariate associations with different out-
comes, whereas median VAF had a weak and inconsistent
signal (Data Supplement). One possibility is that median
values minimize the impact of large, outlier VAF values that
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are clinically meaningful, suggesting that large VAF values
may be the most informative when assessing treatment
responses. Thus, the single highest somatic VAF value,
regardless of the gene and mutation that contributed to the
calculation, may be a superior proxy for disease burden, as
opposed to other summary measurements that give more
weight to rare variants with low VAFs. However, capturing a

single highest variant will be sensitive to the panel used,

and a mean VAF may be more robust across tumor types

and molecular subtypes, especially those without defined

driver mutations.

When comparing the continuous, two-level, and three-
level ctDNA metrics, the three-level, and to a lesser

B

53 17 3 0

76 14 1 0

19 4 0 0

No. at risk (n):

0 1 2 3

Postlandmark Survival Time (years)

Pe
rc

en
t

0

20

40

60

80

100

Log-rank P value = .0010

24% (4, 44)0.2 (0.1, 0.6)14/19Max VAF change group - increase

34% (22, 46)0.4 (0.3, 0.6)48/76Max VAF change group - intermediate

54% (38, 69)1.9 (0.9, .)22/53Max VAF change group - decrease

Estimatein YearsEvents/N

1-YearMedian

Decrease

IntermediateIncrease

Log-Rank Pairwise P

Decrease

Decrease

-

.001

< .001

-

.426 -

Intermediate

Intermediate

Increase

Increase

A

0 1 2 3 4

Multivariate Forest Plot for PFS

(HR w/ 95% CI)

3-level Max VAF Percentage Change Group* 1.76 (1.32, 2.36) < .001

PD-L1 3-level (0%, 1-49%, > = 50%) 0.83 (0.59, 1.16) .267

Prior Systemic Treatment > = 1 (vs 0) 1.26 (0.56, 2.87) .578

Squamous (vs Else) 0.85 (0.52, 1.41) .534

Advanced Stage 0.35 (0.16, 0.76) .008

Ever Smoked (vs Never Smoked) 0.37 (0.20, 0.68) .001

White (vs Else) 0.99 (0.64, 1.54) .976

Female (vs Male) 0.82 (0.52, 1.30) .393

Age > = 66 (vs < 66) 1.45 (0.95, 2.23) .087

Better outcome <--- ---> Worse outcome
*Denotes a time-
dependent
variable.

Factor- Stratified by Cohort HR (LL, UL) P-value

FIG 4. (A) Forest plot with Cox regres-
sion results for PFS and the three-level
max VAF percent change group vari-
able, adjusted by baseline clinical
covariates. Red means the HR is . 1.0
(increased risk of death/progression)
and blue means the HR is , 1.0 (de-
creased risk of death/progression); un-
filled box = nonsignificant P value, filled
box = significant P , .05. (B) Kaplan-
Meier plot for PFS and the three-level
max VAF percent change groups,
landmarked at 70 days from treatment
initiation (the sampling window for the
first on-treatment ctDNA sample); pa-
tients with an event during the 70-day
landmark were excluded from the
analysis. aDenotes a time-dependent
variable. ctDNA, circulating tumor
DNA; HR, hazard ratio; LL, lower limit;
PD-L1, programmed death ligand-1;
PFS, progression-free survival; UL, up-
per limit; VAF, variant allele frequency.
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TABLE 2. Multivariate Testing for Association With PR or Better, or PFS at 6 Months

Factor

PR or Better (N = 187) PFS at 6 Months (N = 178)

With Factor Without Factor OR (95% CI) P With Factor Without Factor OR (95% CI) P

Age ≥ 66, years, No. (%) 28/88 (32) 32/99 (46) 0.85 (0.39 to 1.89) .696 43/84 (51) 43/94 (46) 0.86 (0.38 to 2.04) .735

Female, No. (%) 25/70 (36) 35/117 (30) 2.31 (1.00 to 5.31) .050 35/65 (54) 51/113 (45) 1.84 (0.78 to 4.37) .165

White, No. (%) 40/122 (33) 20/65 (31) 0.77 (0.35 to 1.71) .521 64/119 (54) 22/59 (37) 2.12 (0.93 to 4.85) .075

Ever smoked, No. (%) 57/160 (36) 3/27 (11) 3.23 (0.80 to 13.01) .100 81/153 (53) 5/25 (20) 2.44 (0.76 to 7.86) 0.134

Advanced stage (stage IV), No. (%) 56/168 (33) 4/19 (21) 3.45 (0.85 to 14.04) .097 82/160 (51) 4/18 (22) 3.52 (0.86 to 14.49) .081

Squamous, No. (%) 18/46 (39) 42/141 (30) 2.62 (1.06 to 6.49) .037 18/42 (43) 68/136 (50) 1.12 (0.45 to 2.81) .812

PD-L1 3-level, No. (%)

0% 15/39 (38) Reference — 21/38 (55) Reference —

1%-49% 14/62 (23) 0.45 (0.15 to 1.31) .144 24/61 (39) 0.51 (0.17 to 1.55) .236

≥ 50% 31/86 (36) 0.75 (0.24 to 2.30) .614 41/79 (52) 0.64 (0.20 to 2.08) .462

Prior systemic treatment ≥ 1, No. (%) 27/61 (44) 27/61 (44) 0.77 (0.19 to 3.12) .714 44/121 (36) 42/57 (74) 0.77 (0.20 to 2.95) .706

3-level max VAF percent change group, No. (%)

Decrease 34/59 (58) Reference — 43/56 (77) Reference —

Intermediate 22/95 (23) 0.19 (0.08 to 0.45) , .001 36/90 (40) 0.13 (0.05 to 0.34) , .001

Increase 4/33 (12) 0.11 (0.03 to 0.38) , .001 7/32 (21.8) 0.06 (0.02 to 0.22) , .001

NOTE. The proportion is calculated as the percent of patients with a given factor, who had the outcome (PR, or better, or PFS, at 6 months). Conversely, among the 99 patients younger than 66 years, 32
patients (or 46%) achieved PR, or better.

Abbreviations: NA, not applicable; OR, odds ratio; PD-L1, programmed death ligand-1; PFS, progression-free survival; PR, partial response; P, P value fromWald χ2 test in logistic regression; VAF, variant
allele frequency.
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extent, the two-level ctDNA metric (Data Supplement),
consistently showed strong associations with patient
outcomes. The continuous ctDNA metric on the basis of
the raw percent change value had inconsistent associ-
ations with patient outcomes. Modeling the continuous
variable was challenging, as the natural range of a per-
cent change calculation (potentially ranging from –100%
to +infinity) made data transformations problematic to
implement and produced a distribution of the values that
resulted in several outliers that could strongly bias a
model that assumes a linear association. Conversely, the
three-level ctDNA metric grouped extreme and moderate
patients (who unquestionably had a substantial change in
their ctDNA levels from baseline) and appeared to classify
patients into appropriate categories despite potential
differences that may exist across ctDNA platforms or
clinical situations. Absolute ctDNA values, such as mu-
tant molecules per volume of plasma, were not evaluated
because these data were not available for all studies but
should be examined in greater depth in future studies.
Assessment of overall tumor fraction from plasma data is
a field with ongoing development. Incorporating analyt-
ical characteristics of specific assays, like limit of de-
tection and precision as well as further improvements on
filtering and dynamics of variant VAFs over time, could be
hypothesized to further improve predictive power of re-
sponse assessment. These should continue to be inte-
grated into assessment of molecular response, building
off the standardized VAF-based approaches established
within the ctMoniTR Project.

Other lines of inquiry include determining how early a change
in ctDNA can accurately reflect a patient’s response to

treatment, especially if it can reveal tumor responses earlier
than radiographic evaluation, and whether baseline ctDNA
values are associated with clinical outcomes, as this has been
reported previously.23,32 In the current study, however, we did
not observe an association between baseline ctDNA VAF and
clinical outcomes, which could be related to all patients
harboring advanced NSCLC or failing a prior line of systemic
therapy. Still, our data suggest that ctDNAmeasurementsmay
help guide treatment decisions, either independently or in
conjunction with radiographic evaluation, especially in tumors
that are challenging to assess.

Future work from the ctMoniTR Project will expand the scope
to include additional tumor types, stages, and drug classes to
further validate the association between harmonized ctDNA
levels and clinical outcomes in different clinical settings. More
specifically, future analyses will focus on better understanding
how early changes in ctDNA could be associated with
treatment outcomes, and how longitudinal ctDNA mea-
surements can reflect ongoing changes in an actively evolving
tumor. Larger data sets will also enable subgroup analyses
where relevant covariates can be further investigated. Future
efforts will aim to recommend common standards for ctDNA
evaluation for use in pharmaceutical trials and clinical
practice. Additionally, standardization of ctDNA sampling
time points is recommended for future studies, and addi-
tional modeling techniques to account for left-truncated data
may be considered in future analyses.34 Ongoing work in the
ctMoniTR Project will focus on improving measurements
and comparability in ctDNA studies, facilitating acceleration
in the regulatory adoption of reliable ctDNA measures of
responsiveness to treatment, and investigating ctDNA as an
intermediate measure of treatment success.
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