
Real-time Tracking and Classification of Tumor and Nontumor Tissue
in Upper Gastrointestinal Cancers Using Diffuse Reflectance Spectroscopy
for Resection Margin Assessment
Scarlet Nazarian, MBBS, BSc; Ioannis Gkouzionis, MEng; Michal Kawka, BSc; Marta Jamroziak, BSc;
Josephine Lloyd, MA; Ara Darzi, MD; Nisha Patel, MBBS, BSc, PhD; Daniel S. Elson, PhD; Christopher J. Peters, PhD

IMPORTANCE Cancers of the upper gastrointestinal tract remain a major contributor to the
global cancer burden. The accurate mapping of tumor margins is of particular importance for
curative cancer resection and improvement in overall survival. Current mapping techniques
preclude a full resection margin assessment in real time.

OBJECTIVE To evaluate whether diffuse reflectance spectroscopy (DRS) on gastric and
esophageal cancer specimens can differentiate tissue types and provide real-time feedback
to the operator.

DESIGN, SETTING, AND PARTICIPANTS This was a prospective ex vivo validation study. Patients
undergoing esophageal or gastric cancer resection were prospectively recruited into the
study between July 2020 and July 2021 at Hammersmith Hospital in London, United
Kingdom. Tissue specimens were included for patients undergoing elective surgery for either
esophageal carcinoma (adenocarcinoma or squamous cell carcinoma) or gastric
adenocarcinoma.

EXPOSURES A handheld DRS probe and tracking system was used on freshly resected ex vivo
tissue to obtain spectral data. Binary classification, following histopathological validation,
was performed using 4 supervised machine learning classifiers.

MAIN OUTCOMES AND MEASURES Data were divided into training and testing sets using
a stratified 5-fold cross-validation method. Machine learning classifiers were evaluated in
terms of sensitivity, specificity, overall accuracy, and the area under the curve.

RESULTS Of 34 included patients, 22 (65%) were male, and the median (range) age was 68
(35-89) years. A total of 14 097 mean spectra for normal and cancerous tissue were collected.
For normal vs cancer tissue, the machine learning classifier achieved a mean (SD) overall
diagnostic accuracy of 93.86% (0.66) for stomach tissue and 96.22% (0.50) for esophageal
tissue and achieved a mean (SD) sensitivity and specificity of 91.31% (1.5) and 95.13% (0.8),
respectively, for stomach tissue and of 94.60% (0.9) and 97.28% (0.6) for esophagus tissue.
Real-time tissue tracking and classification was achieved and presented live on screen.

CONCLUSIONS AND RELEVANCE This study provides ex vivo validation of the DRS technology
for real-time differentiation of gastric and esophageal cancer from healthy tissue using
machine learning with high accuracy. As such, it is a step toward the development of
a real-time in vivo tumor mapping tool for esophageal and gastric cancers that can aid
decision-making of resection margins intraoperatively.
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E sophageal and gastric cancers are associated with poor
prognosis, with 5-year overall survival of patients esti-
mated to be between 15% and 25%.1,2 This is despite

an improvement in survival over the last half century, owing
to advances in modern neoadjuvant therapies and the imple-
mentation of new surgical approaches.3-10

The use of neoadjuvant treatments makes accurate preop-
erative tumor mapping challenging because of the formation
of scar tissue over healthy areas adjacent to the tumor.11,12

Mapping tumor margins accurately is of particular impor-
tance for achieving a negative resection margin (R0), which
is the goal of curative cancer resection. Residual disease has
been shown to nearly double the risk of dying from esopha-
geal cancer.13-16 Similarly, a positive resection margin in gas-
tric cancer has been identified as an independent risk factor
for reduced overall and recurrence-free survival.17

The lack of accurate tumor mapping tools and anatomi-
cal limitations of the upper abdomen and thorax lead to dif-
ficulties in achieving negative resection margins.18,19 This is
compounded by the lack of consensus on optimal margin
length20,21 and attempts to preserve as much healthy tissue
as possible. Therefore, there is a pertinent need for develop-
ing accurate technologies and tools for preoperative or intra-
operative tumor mapping.

A criterion standard for any intraoperative tissue assess-
ment is frozen section analysis. This technique has been
shown to have a diagnostic accuracy of 93%, a sensitivity of
67%, and a specificity of 100% in gastric and esophageal
adenocarcinoma.22 However, frozen sections are limited by
a slow processing time and a finite number of distinct areas
that can be sampled, precluding a full resection margin as-
sessment in real time.23

These challenges can potentially be addressed by using
multispectral optical probes, which have been previously
shown to have high sensitivity and specificity (greater than
90%) for discriminating between normal and cancer
tissue.24 Diffuse reflectance spectroscopy (DRS), a point-
based spectroscopy technique, is particularly promising
because of its low cost and ease of use. Compared with
sophisticated microendoscopic probes, DRS is easier to
implement, as it does not require lasers or advanced magni-
fication optics.25 It can be used to differentiate tissue classes
through the quantification of otherwise invisible tissue and
cellular changes at microscale and nanoscale levels, present
at both early and late stages of malignant transformation.25

The DRS system has been applied to ex vivo differentiation
of tumors from healthy surrounding tissues across multiple
malignancy types, such as colorectal, lung, and breast
cancers.26-29 Nevertheless, to our knowledge, although DRS
has been used in the context of premalignant upper gastro-
intestinal disease,30,31 its use in esophageal and gastric can-
cer has not been fully explored. Therefore, the primary aim
of this validation study was to use DRS to accurately differ-
entiate cancer tissue from normal tissue in ex vivo gastric
and esophageal specimens and to develop a real-time classi-
fication system that is able to provide live feedback about
tissue type to the surgeon to aid margin assessment intra-
operatively.

Methods

Study Setting
Consecutive patients undergoing esophageal or gastric can-
cer resection were prospectively recruited into the study be-
tween July 2020 and July 2021 at Hammersmith Hospital in
London, United Kingdom. Ex vivo tissue specimens were in-
cluded for patients undergoing elective surgery for either
esophageal carcinoma (adenocarcinoma or squamous cell car-
cinoma) or gastric adenocarcinoma. The study was per-
formed with approval from the Harrow Research Ethics Com-
mittee, and all participants provided written informed consent.

DRS Instrumentation
A handheld reflection fiber probe (QR600-7-SR-125F; Ocean
Optics) was used to collect the DRS spectra. The probe con-
tained 6 peripheral illumination fibers together with a cen-
tral light collection fiber, each measuring 600 micrometers in
diameter, within a 0.125-inch ferrule in a cylindrical configu-
ration. The instrumentation and setup have been previously
described.32 A schematic representation and photograph of
the instrumentation for data acquisition is shown in Figure 1.

Real-time Tracking of DRS Probe
The main limitation of the DRS probe was that it did not leave
any marks on the tissue being scanned. To overcome this limi-
tation and localize the optical biopsy sites on the specimen,
an optical tracking method was used, as described in previ-
ous work.32 Briefly, to track the DRS probe, a color marker was
chosen based on the color distribution of biological tissue in
the hue saturation value (HSV) color space. Green plastic tape
was wrapped around the distal end of the DRS probe and used
as a marker. Tracking of the probe was achieved using a Kalman
filter.33 The exact probe coordinates at each sampling point
were recorded. In this way, the localization of the probe tip was
known in real time.

Data Acquisition Protocol
Data acquisition was performed within 15 minutes of resec-
tion of the surgical specimen and lasted approximately 10 min-
utes. An overview image and a video recording were cap-
tured by an RGB camera, which allowed for tracking of the tip

Key Points
Question Can the development of a diffuse reflectance
spectroscopy (DRS) probe aid cancer margin assessment in
esophageal and gastric cancer surgery?

Findings In this validation study including 37 patients, the
development of a DRS probe and tracking system showed that
machine learning can provide real-time discrimination of normal
and cancer tissue with high diagnostic accuracy of 93.9% and
96.2% for gastric and esophageal specimens, respectively.

Meaning This study highlights the potential for the DRS system
to be used intraoperatively to aid cancer margin assessment in
real time.
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of the DRS probe and mapping of sampling locations in real
time, as previously described.32

The DRS probe was then used to scan the outer wall of the
tissue, and spectral data were captured. Suspected normal and
cancerous tissues were identified by visual and haptic inspec-
tion by a surgeon. During the spectral data acquisition, the DRS
probe was tracked in real time on the live video feedback from
the camera. Normal tissue measurements were taken near the
resection margins, as far away from the suspected cancerous
location as possible. Sampling at the resection margin itself was
avoided to prevent any interaction with clips, sutures, or
staples. Staples and clips would be expected to affect the spec-
tral data because of their reflective properties (eFigure 1 in
the Supplement).

The DRS probe acquired 80 spectra per second. Twenty
spectra per point of tissue sample were acquired and aver-
aged, and the mean spectrum was displayed in real time.
A minimum of 200 point-based spectral measurements per
tissue type (normal or tumor) were collected, depending on
the size of the sampled region.

Histopathology Correlation
After the acquisition of all spectra, the suspected tumor loca-
tion was painted with yellow tissue dye (Cancer Diagnostics Inc)
to allow for correlation with histopathological analysis, which
was used as a reference test. Samples were then placed into for-
malin and sent to the histopathology department, where they
were processed according to standard protocols. Macroscopic
photos of the whole specimen, as well as slices, were taken.

Once the painted area on the tissue samples was confirmed
as the tumor, the corresponding images were correlated with
the video frames and recordings containing the tracked posi-
tions of the suspected tumor (eFigure 2 in the Supplement).
The video frames were then manually labeled as tumor or
nontumor tissue. These labels were considered ground truth
labels for the training of machine learning classifiers.

For specimens in which the suspected tumor area was con-
firmed by the pathologist as fully regressed tumor following
neoadjuvant therapy (T0), only normal tissue data collected
for the specimen were analyzed. Tracked locations on the speci-
men, which could not be confirmed by the histopathological
analysis, were excluded.

Classification
Data from all patients were combined into either esophagus
or stomach data sets. Ex vivo labeling errors of spectral data
were identified and excluded from further analysis by review-
ing videos of real-time data acquisition retrospectively and ana-
lyzing the DRS probe position over the tissue areas. Probe con-
tact artifacts (eg, lack of probe contact with the tissue) were
automatically removed. To account for interpatient, back-
ground light, and signal quality variability, spectral normal-
ization and noise reduction were performed, using white re-
flectance standard and dark field readings. An automated
method was implemented for outlier (eg, erroneous measure-
ments or air interference) detection and removal.

To reduce overfitting and improve classification accu-
racy, feature extraction was performed on the esophagus and
stomach data sets. The 2 most prominent peaks of a spec-
trum were selected. The mean intensity values around the
spectral range of these peaks and the mean intensity value
across the overall spectral range were derived. Moreover, an-
other 3 feature extraction techniques were evaluated, namely
the permutation feature importance,34 the recursive feature
elimination,35 and the Boruta method.36

Data were divided into training and testing sets using
the repeated stratified k-fold cross-validation method, with
5 folds and 5 repeats. Binary classification into normal and tu-
mor tissue was performed using various supervised machine
learning classifiers, such as linear support vector machine, mul-
tilayer perceptron, light gradient boosting machine, and ex-
treme gradient boosting (XGB).

Figure 1. Diffuse Reflectance Spectroscopy (DRS) Instrumentation for Ex Vivo Data Acquisition

Photograph of setupB

DRS probe

Schematic diagram of setupA

2.13 mm

Light source

VNIR
spectrometer

Laptop

The DRS probe was connected to both the light source (HL-2000-HP; Ocean
Optics) and the spectrometer (USB4000; Ocean Optics) to allow for data
acquisition and sample illumination. All electronic devices communicated with

proprietary software designed with Python version 3.6 (Python Software
Foundation) on the laptop.32 VNIR indicates visible and near-infrared.
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Statistical Analysis
Machine learning classifiers were evaluated in terms of sensitiv-
ity, specificity, overall accuracy, and the area under the curve
(AUC). Overall accuracy was calculated as the proportion of cor-
rectly identified spectra over a total number of spectra. Receiver
operating characteristic (ROC) curves were plotted. Python ver-
sion 3.6 (Python Software Foundation) was used for machine
learning classification, MATLAB version R2020b (MathWorks)
was used for data processing, and R version 4.0 (The R Founda-
tion) was used for visualization and statistical analysis.

Results
Cohort Characteristics
Atotalof37patientswererecruitedintothisstudy.Threepatients
were excluded due to incomplete data acquisition, resulting in
34 patients being included in the final analysis. Of these, 22 (65%)
were male, and the median (range) age was 68 (35-89) years. Ad-
ditional patient characteristics can be seen in Table 1. A total of
19 patients (56%) underwent an esophagectomy, and 15 (44%)
underwent a gastrectomy procedure. Most of the patients (27
[79.4%]) had cancer demonstrated to be adenocarcinoma at
histology, with 2 (5.9%) being squamous cell carcinoma. At
pathological staging, 5 of 34 tumors (14.7%) were found to be
regressed or showed no tumor presence.

Data Set Summary
Overall, 23 distinct sets of normal stomach data, 16 sets of
normal esophagus data, 10 sets of gastric cancer data, and 10
sets of esophageal cancer data were recorded. A total of 5496
mean spectra were collected for the normal stomach set, 2441

mean spectra for gastric cancer set, 3677 mean spectra for nor-
mal esophagus set, and 2483 mean spectra for esophageal can-
cer set. Each processed mean spectrum contained 505 equally
spaced intensity measurements in the 468 to 720 nanometer
spectral range (resolution, 0.5 nanometers), with data from the
420 to 468 nanometer and the 720 to 1000 nanometer spec-
tral ranges excluded following interim analysis. The means of
all spectra for each of the tissue classes are shown in Figure 2.

Tissue Classification
Results of the classification for stomach and esophagus spec-
tral data are presented in Table 2. The XGB classifier was the
best-performing machine learning algorithm for both stom-
ach and esophagus tissue. Compared with the other algo-
rithms tested in this study, the XGB model generally showed
better performance in terms of accuracy, sensitivity, and speci-
ficity for normal vs cancer tissue, achieving a mean (SD) over-
all diagnostic accuracy of 93.86 (0.66) for stomach tissue and
96.22 (0.50) for esophageal tissue. The mean (SD) sensitivity
and specificity of the classifier were 91.31% (1.5) and 95.13%
(0.8), respectively, for stomach tissue and 94.60% (0.9) and
97.28% (0.6) for esophageal tissue. The mean (SD) AUC of the
XGB classifier was 0.974 (0.002) for stomach tissue and 0.989
(0.001) for esophagus tissue. The ROC curves are shown in
Figure 2. In addition, the XGB model showed a much higher
computation speed than all the other algorithms used in this
study because of its inherent parallel processing, with only 3.5
seconds over both training and validation phases.

Real-time tissue classification was achieved and pre-
sented on the user interface when using the DRS probe. Real-
time tracking at each optical biopsy site coupled with the bi-
nary classification of each site was visualized as either normal

Table 1. Cohort Characteristics

Characteristic

No. (%)

All patients

Patients with cancer

Gastric Esophageal
Age, median (range). y 68 (35-89) 61 (43-89) 68 (35-80)

Sex

Female 12 (35.3) 4 (26.7) 8 (42.1)

Male 22 (64.7) 11 (73.3) 11 (57.9)

Procedure

Esophagectomy 19 (55. 9) 0 19 (100)

Gastrectomy 15 (44.1) 15 (100) 0

Tumor histology

Adenocarcinoma 27 (79.4) 12 (80.0) 15 (78.9)

Squamous cell carcinoma 2 (5.9) 2 (13.3) 0

Tumor stage (TNM staging)

0 5 (14.7) 1 (6.7) 4 (21.1)

1 6 (17.7) 5 (33.3) 1 (5.2)

2 4 (11.8) 3 (20.0) 1 (5.2)

3 15 (44.1) 4 (26.7) 11 (57.9)

4 4 (11.8) 2 (13.3) 2 (10.6)

Neoadjuvant therapy

Chemotherapy 24 (70.6) 8 (53.3) 16 (84.2)

Chemoradiotherapy 1 (2.9) 0 1 (5.3)

Radiotherapy 1 (2.9) 1 (6.7) 0

None 8 (23.5) 6 (40.0) 2 (10.5)
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(100% green) or tumor tissue (100% pink) using a graduated
color map. Tissue type was highlighted on the screen in real
time during sampling, as highlighted in Figure 3.

Discussion
In this ex vivo validation study, we show that, with the use of
a DRS probe together with a tracking system, machine learn-
ing can provide real-time discrimination of normal stomach
tissue from gastric cancer as well as normal esophagus tissue
from esophageal cancer with an overall accuracy of 93.9% and
96.2%, respectively. The machine learning classifier per-
formed with an AUC of 0.974 for stomach tissue and 0.989 for
esophagus tissue. Moreover, we were able to develop a real-
time classification system, providing live feedback on screen
to highlight the tissue type being sampled.

Intraoperative margin mapping techniques have become in-
creasinglycommoninthelast10years.Theseincluderapidevapo-

rative ionization mass spectrometry,37 ultrahigh-resolution op-
tical coherence tomography,38 bio-impendence measurement,39

and fluorescence-guided imaging.40 However, these techniques
have either failed to or have not yet translated into routine clini-
calpracticebecause,whilepotentiallyreducingthetimerequired
fordefinitivetissueclassification,theyeithercannotprovidereal-
time data, do not fit into the surgical workflow, or have been
designed as bench-top adjuncts only.37-41

The DRS system presented here shows suitability for use
intraoperatively to aid margin assessment in cancer surgery.
We developed a system with high spectral resolution and high
data acquisition speed. As a result, we were able to scan a large
area on the tissue and differentiate tissue in real time while
creating minimal disruption to the surgical workflow. Differ-
entiation was achieved as a result of distinct differences in the
data between the mean spectra for normal and cancer tissue
for the stomach and esophagus. The cause for the prominent
difference in spectra, especially between a wavelength of 600
and 700 nanometers, for stomach and esophageal tissue is

Figure 2. Mean Spectra of the Stomach and Esophagus
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A and B, Sample size of 34 patients, including 7937 mean spectra for stomach
tissue and 6160 mean spectra for esophagus tissue. C and D, Receiver operator
characteristic (ROC) curves for stomach and esophagus tissue. AUC indicates

area under the receiver operating characteristic curve; LGBM, light gradient
boosting machine; MLP, multilayer perceptron; SVM, support vector machine;
XGB, extreme gradient boosting.
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unclear but likely based either on tissue vascularity signals or
on the specific quantities of different chromophores in each
tissue.42 Further work is needed in this area.

A major limitation of ex vivo sampling is potential tissue deg-
radation following resection and blood supply being cut off43;
however, given that the entirety of the data acquisition proto-
col lasted approximately 10 minutes, we believe that the effect
of this was minimized and tissue characteristics were preserved.
Furthermore, the intuitive and easy-to-use graphical user inter-
face we implemented would allow the surgeon to perform the
sampling procedure within a timely manner in the operating
room, preventing a substantial delay to the surgical procedure.

Compared with the current criterion standard of frozen
sections, which can cost more than $3000 per patient to
perform,44 our system has much lower costs, has a portable
setup system (Figure 1), and does not require additional work-
force. The system we have developed has a one-off cost of
£8000 (US $9727), and given that it can be used for multiple
sampling events, the per-patient costs would be much less. Our
DRS system is also completely noninvasive and does not dis-
rupt the tissue itself or interfere with its structure, allowing
for a full analysis when sent to the histopathology depart-
ment, especially important for small tumors. Nevertheless, the
aim is for the DRS system to be integrated into the surgical

workflow in the future as a device to assess tumor margins,
with the intention to help reduce the burden on histopathol-
ogy departments once the system has been fully developed,
with less requirement for frozen section analysis.

Our method for real-time probe tracking has demon-
strated high accuracy compared with ground truth and over-
comes the point-based limitation that other DRS systems have
faced.26,29 This enables the surgeon to follow the exact areas
being sampled based on augmented data acquisition video feed.
This tracking system together with the classification of each
sample site on the tissue can be used to assess the resection mar-
gins of cancer intraoperatively. In this way, less healthy tissue
could be removed, leading to a lower risk of morbidity for the
patient. As such, the system has the potential to influence
the intraoperative procedure and decision-making process.

Limitations
This study has limitations. First, this is a single-center study,
which limits the generalizability of its conclusions. A multicenter
trialwouldhelprecruitparticipantsfromawiderpopulation.Sec-
ond, our method for correlation of tumor location on the speci-
men was limited by the histopathology protocols. Standard his-
topathological analysis of the specimens focused on the depth
of the tumor to assess tissue invasion rather than the surface area

Table 2. Performance Metrics for the Spectral Data Classification Using Supervised Machine Learning
and Permutation Feature Importance for the Feature Selectiona

Classifier

Mean (SD)

Accuracy Sensitivity Specificity AUC
Stomach

XGB 0.938 (0.006) 0.913 (0.015) 0.951 (0.008) 0.974 (0.002)

LGBM 0.9363 (0.007) 0.910 (0.016) 0.949 (0.007) 0.973 (0.002)

MLP 0.900 (0.009) 0.862 (0.044) 0.917 (0.014) 0.961 (0.005)

SVM 0.876 (0.008) 0.834 (0.012) 0.895 (0.010) 0.943 (0.005)

Esophagus

XGB 0.962 (0.005) 0.946 (0.009) 0.972 (0.006) 0.989 (0.001)

LGBM 0.962 (0.026) 0.943 (0.009) 0.974 (0.005) 0.990 (0.001)

MLP 0.919 (0.029) 0.851 (0.040) 0.959 (0.029) 0.960 (0.004)

SVM 0.883 (0.009) 0.821 (0.043) 0.923 (0.023) 0.957 (0.005)

Abbreviations: AUC, area under
the receiver operating characteristic
curve; LGBM, light gradient boosting
machine; MLP, multilayer perceptron;
SVM, support vector machine;
XGB, extreme gradient boosting.
a Data showing the ability of multiple

classifiers to detect normal vs
cancerous tissue presented as mean
(SD). Overall accuracy is calculated
as the proportion of correctly
identified spectra over the total
number of spectra.

Figure 3. Three Illustrations of Real-time Diffuse Reflectance Spectroscopy Probe Tracking and Classification
at Different Frames During Scanning of an Esophageal and Gastric Ex Vivo Tissue Specimen

Normal esophagus (frame 001)A Tumor esophagus (frame 230)B Normal esophagus (frame 484)C

TumorNormal

Real-time tracking at each optical biopsy site coupled with the binary classification of each site on an esophageal and gastric specimen. Tissue type highlighted on
the screen in real time.
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of the cancer on the specimen, which was the basis of our sam-
pling process. As a result, we had to use the hematoxylin-eosin
slides together with the images of the sliced tissue and the im-
ages of the whole specimen to manually label tumor areas. This
has potentially led to mislabeling of some of the data points on
the border between the tumor and healthy tissue. Moreover, in
this study, we excluded samples which were labeled as tumor but
confirmed to be regressed tumor or fibrosis tissue. Given that this
type of tissue is difficult to distinguish by a surgeon through tac-
tile and visual assessment alone, it would be of great benefit to
classify these types of tissue in future studies. Unfortunately, be-
cause of the sparsity of these samples, accurate analysis could
not be made to include this data. Additionally, in our study, sam-
pling was performed by 3 operators, which introduced interop-
erator variability with regard to sampling technique, potentially
affecting the resulting DRS data. Probe angle should therefore
be further explored to elucidate its effect on the results.

Lack of external validation is a major barrier to the safe
implementation and routine use of artificial intelligence clas-
sification models in clinical practice.45 As such, external vali-
dation of our classification model on a separate cohort of pa-
tients is a crucial step toward the clinical translation of this
technology. It is also vital that decision analysis studies and
key stakeholder interviews are conducted to identify the op-
timal use-cases for the technology as well as the barriers and
facilitators to its adoption in the future.46,47 The integration
of the DRS technology into the surgical workflow to allow tu-

mor mapping can be facilitated via augmented reality or an op-
tional heatmap overlay added onto a laparoscopic or robotic
camera feed, which constitutes only a minimal deviation from
the standard plan of care.48

We have planned a concurrent in vivo validation of the real-
time tracking technology and classification, for which adap-
tation of the probe tracking system will be needed. In the
future, advanced deep learning neural networks can be used
to help with accurate probe tip location detection and track-
ing. Moreover, correlation of the real-time tissue classifica-
tion with clinical outcomes, such as recurrence, positive re-
section margin rate, or overall survival, will be required to show
the clinical utility of this technology before its potential
clinical adoption.49

Conclusions
This study provides ex vivo validation of the DRS technology
for real-time differentiation of gastric and esophageal cancer
from healthy tissue using machine learning. As such, it is a step
toward the development of a real-time in vivo tumor map-
ping tool. In the future, DRS technology and probe tracking
need to be externally validated and tested in an intraopera-
tive setting to assess their real-life utility for resection margin
assessment and the potential of this technology in improving
long-term outcomes.
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