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Background: Artificial intelligence (AI) is rapidly being developed and implemented to augment and automate

decision-making across healthcare systems. Being an essential part of these systems, laboratories will see signifi-

cant growth in AI applications for the foreseeable future.

Content: In laboratory medicine, AI can be used for operational decision-making and automating or augmenting

human-based workflows. Specific applications include instrument automation, error detection, forecasting, result

interpretation, test utilization, genomics, and image analysis. If not doing so today, clinical laboratories will be

using AI routinely in the future, therefore, laboratory experts should understand their potential role in this new

area and the opportunities for AI technologies. The roles of laboratorians range from passive provision of data to

fuel algorithms to developing entirely new algorithms, with subject matter expertise as a perfect fit in the middle.

The technical development of algorithms is only a part of the overall picture, where the type, availability, and qual-

ity of data are at least as important. Implementation of AI algorithms also offers technical and usability challenges

that need to be understood to be successful. Finally, as AI algorithms continue to become available, it is important

to understand how to evaluate their validity and utility in the real world.

Summary: This review provides an overview of what AI is, examples of how it is currently being used in

laboratory medicine, different ways for laboratorians to get involved in algorithm development, and key consider-

ations for AI algorithm implementation and critical evaluation.

INTRODUCTION

Artificial intelligence (AI) is a decades-old con-
cept that is becoming a new practical reality in
medicine. AI algorithms are being developed at a
rapid pace and now becoming available for diag-
nosis, treatment, and prognosis. AI is broadly de-
fined as computers imitating human thinking but
can be further subdivided as shown in Fig. 1 into

Artificial General Intelligence (AGI), Artificial Narrow
Intelligence (ANI), and Artificial Superintelligence
(ASI). AGI, also called “strong AI,” refers to full
mimicry of human reasoning, learning, and deci-
sion-making. For example, AGI would describe the
ability to solving any real-world problem that
humans encounter daily. AGI is variably estimated
to be either decades away or never to occur
because of the extent of progress needed (1).
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ASI is extension of AGI, where computers can

reason and think but with orders of magnitude

more speed and complexity than humans. ASI is

the foundation for many science-fiction novels

and has no reasonable expectation of occurring

anytime soon. ANI, also known as “weak AI,” refers

to solving specific targeted problems, for which

algorithms are expressly designed and validated.

ANI is where there has been significant progress

in the development uptake and utility of practical

applications. ANI in combination with large data-

sets holds tremendous promise in laboratory

medicine and is the focus of this review; AI will

heretofore be synonymous with artificial narrow

intelligence.
AI (ANI) methodologies include natural language

processing, computer vision, robotics, expert sys-

tems, and machine learning. Natural language

processing describes the ability of computers to

analyze and understand text; for example, using

an automated phone tree to reach a unit in the

hospital. Computer vision is acquiring, analyzing,

and understanding images or video; for example,

face recognition. Robotics is a large field, but

includes control systems, sensors, autonomous

vehicles, and reinforcement learning among many

others (e.g., a robotic liquid handler). Expert sys-

tems rely on human knowledge to create decision

rules based on inputs; for example, if/then/else

rules for complex decision-making. Finally,

machine learning is a diverse set of algorithm cre-

ation methods that can be used to classify, group,

or make predictions.
Supervised and unsupervised learning are the

most commonly used types of machine learning.

In supervised learning, the inputs and outputs

(i.e., values or classes to be predicted) are known

and the computer attempts to learn the mathe-

matical function that best describes the relation-

ship between the inputs and outputs. Regression

and classification are forms of supervised learn-

ing. If data are not labeled, unsupervised

approaches can be used to associate or cluster

data into different groups. Unsupervised learning

can be useful to subcategorize groups with un-

known characteristics, for example into different

types of genomic markers in cancer. This is a dis-

covery type of activity that can lead to improved

understanding of why or how subgroups exist.

Unsupervised learning includes dimensionality re-

duction, such as principal components analysis,

which can be used to compress data into linear

combinations of features that explain its variance.

This is useful to increase analysis speed and

reduce storage needs where there are many

variables and large datasets that have high com-

putation demands.
Supervised learning is the prototypical method

of using known (classified/labeled) observations to

develop a model used to classify future unknowns.

IMPACT STATEMENT

Artificial intelligence (AI) is area of rapid growth and a fact of life when it comes to “big” data. Healthcare

and laboratory medicine in particular have numerous rich potential applications including how instruments

work, how data is interpreted, and the generation of entirely new predictions. Whatever the application, it

is important to understand how AI algorithms are developed, how to assess their validity, how to imple-

ment them, and where laboratorians fit in to this emerging area. This review provides a high-level overview

of the many considerations of AI with a focus on the perspective of laboratorians.

Artificial Intelligence and the Clinical Laboratory REVIEW

................................................................................................

2021 | 06:06 | 1640–1654 | JALM 1641

D
ow

nloaded from
 https://academ

ic.oup.com
/jalm

/article/6/6/1640/6348035 by eadaoinn_m
ulligan@

dfci.harvard.edu user on 25 August 2022



Fig. 1. Hierarchy of artificial intelligence concepts and tools.
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For example, predicting acute kidney injury (AKI)

from laboratory results using a logistic regression

trained on data from patients with and without

AKI. Supervised machine learning is the branch of

AI where most of the development and practical

applications are evolving in laboratory medicine

and will be the bulk of the focus of discussion

herein. Supervised machine learning includes an

array of techniques, such as support vector

machines (SVM), linear regression, neural net-

works, deep learning, and classification and re-

gression trees. At least a few of these, such as

linear regression, will be immediately recognizable

as a common statistics method. It is worth

highlighting here the nuance between machine

learning and a concept of statistical learning (2).

In machine learning, the focus is largely on getting

predictions correct. In statistical learning, there is

a further goal of better understanding how the

models work. Accurate predictions still matter, but

the model itself is of interest as it helps elucidate

relationships between variables and predictions.

In short, statistical learning is focused on making

predictions and inferences, whereas machine

learning is focused on predictions. This distinction

is largely one of intent, but different algorithms

contribute to interpretability. For example, a linear

regression model, with familiar concepts of opti-

mizing coefficients or weights to minimize error in

2 dimensions, is easier to comprehend than that

of SVM, which involves hyperplanes in N-dimen-

sional space.
Key AI concepts for laboratorians are borne

from questions that laboratories might ask of AI,

such as, “What is the role of the laboratory? What

is required to use an AI algorithm in production?

How should laboratorians participate in the devel-

opment of new algorithms? How can laborator-

ians assess the validity and utility algorithms?” This

review will provide an examples of AI use in the

laboratory, how and why laboratorians should

participate in the use and development of AI, and

an overview of how to evaluate and implement

AI algorithms.

MACHINE LEARNING APPLICATIONS IN
THE LABORATORY

There are many opportunities to apply machine

learning in laboratory medicine across all labora-

tory medicine specialties, yielding a plethora of

examples, some of which have received regulatory

approval for use as clinical diagnostics (3).

Machine learning applications to identify clinical

populations at risk for negative outcomes and to

aid with diagnosis and prognosis are outside of

the examples discussed in this section as they do

not typically originate from laboratory medicine or

guide its decisions. Many of these patient-level

risk prediction models include laboratory values

or engineered derivatives as features so they are

relevant to other sections of this review. Here, we

focus our attention on examples that aim to

improve the quality and efficiency of operations

and service in clinical laboratories.

Test Utilization

Test stewardship or utilization remains a major

emphasis for clinical laboratories. Machine learn-

ing has been used to predict test results from

other available data in an effort to minimize un-

necessary testing. Retrospective, integrated data

sets that contain related laboratory values, patient

demographics, and clinical labels from diagnosis

coding or provider notes, have been mined to in-

vestigate the utility of individual components of

multianalyte panel tests, specifically those focused

on an organ system (e.g., liver panel) or physio-

logic process (e.g., iron deficiency panel) (4, 5).

Beyond multianalyte tests, others have conducted

similar studies to predict the expected diagnostic

value of a test based on results from related tests.
Zhang et al. demonstrated that patient

history of malignancy with results from CBC and

Artificial Intelligence and the Clinical Laboratory REVIEW
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differential tests could be used to predict if

peripheral blood flow cytometry results would be

abnormal, showing potential to decrease unnec-

essary utilization of peripheral blood flow cytome-

try by 35–50% (6). In another example, results of

HBV surface antigen and anti-HCV antibody immu-

noassays can be predicted from patient demo-

graphics and other laboratory results (7). These

examples suggest machine learning approaches

may be used to reveal the complex nature of such

relationships and may offer support for reconsider-

ing the routine use of multianalyte or related tests.
Roy et al. found that low yield laboratory tests

were common in their institution and proposed

that rule-based algorithms and machine learning

methods could be used to aid in test utilization

(8). A follow up study evaluated their approach

with additional data and investigated the transfer-

ence of trained models for use at 2 additional

institutions (9). Although the cross-site perfor-

mance of the models to predict normal test

results decreased relative to local (i.e., where the

models were trained) performance, the prediction

power [as area under the receiver-operator curve

(AUROC)] remained reasonably high at both exter-

nal sites.

Automated Result Review

Autoverification of test results has become rou-

tine practice in clinical laboratories, particularly in

those with high throughput. These systems apply

rules-based logic frameworks to automate the

review and release of results, based on single or

multiple parameters that assess result quality. The

rules are often created based on laboratorian ex-

perience or simple signals commonly observed in

a limited set of results (typically 1–5 analytes con-

sidered simultaneously) and are deployed as a

chained series of decisions. Thus, there have been

several reports using machine learning methods

to potentially discern complex relationships in

more comprehensive data sets and improve the

efficiency and effectiveness of autoverification or

quality review (10–12).

Test Interpretation

As with radiology and pathology, there is inter-

est in applying machine learning to augment

result interpretation workflows in laboratory medi-

cine. Test panel interpretation requires recogni-

tion of patterns in multivariate data that are

interrelated—a task that is well suited to machine

learning methods. Two recently published exam-

ples demonstrate this proof of principle for classi-

fication of urine steroid and amino acid profiles

(13, 14). These attempts show great potential in

addressing an important problem for clinical labo-

ratories, particularly given the limited number of

experts who are trained to provide interpretations

for these specialized tests. As noted in an accom-

panying editorial, the amino acid example also

highlights the significant challenge in applying ma-

chine learning to rare disease diagnosis (15).

Because there were not enough cases of several

types of individually rare disorders, these were

grouped into a single class called “rare inherited

metabolic diseases” whose performance had rela-

tively poor accuracy. While these early reports do

not indicate that such solutions are ready as

standalone diagnostics, they do show promise as a

way to triage results that may be less clear and

require human review. Similar work done some

time ago demonstrated the use of neural networks

for interpretation of serum protein electrophoresis

(16). One could conceive of such approaches being

applied to the review and interpretation of other

profile-based assays, including urine organic acids

and hemoglobin electrophoresis.
Machine learning algorithms have also been

applied as an alternative to measurement of

6-thioguanine nucleotide metabolites for optimizing

thiopurine therapy for inflammatory bowel disease,

reducing total expenditures on send-out thiopurine

metabolite testing by $75000 per year (17).
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GENOMICS

Genomics is another area of laboratory medi-

cine with significant needs for assistance to pro-

cess high volumes of data into clinical information.

Clinical molecular laboratories employ bioinfor-

matic pipelines to process the large and complex

data resulting from modern sequencing methods.

Human review steps often follow computational

workflows and are time-consuming, costly, not

standardized, and lack reproducibility. As constitu-

tional and somatic genetic testing moves toward

panels with 100 s–1000 s of genes and even whole

exome or genome coverage, assays return variant

files whose complexity and size easily surpass hu-

man capacity for efficient or effective review. The

task becomes even more complicated as interpre-

tation of genetic variation also requires synthesis

of data from electronic health records and data-

bases containing information on population-level

allele frequencies (e.g., gnomAD) and reported

relationships between genomic variation and hu-

man health (e.g., ClinVar) or cancer (e.g., CIViC and

COSMIC). Thus, machine learning methods may

be employed to improve the scalability of genomic

analyses and improve their cost, efficiency, and

consistency (18–20). For example, Wu et al. found

that a random forest classifier could systematically

distinguish valid somatic variants from sequencing

artifacts in pediatric non-FFPE tumors, reducing

the required time to review variants and increas-

ing review capacity by 42% (21).

Microscopic Image Analysis

There has been significant progress in applying

machine learning to medical image analysis.

Beyond digital pathology, this includes the auto-

mation of cell or particulate classification and

counting from microscopic images. The US FDA

has cleared several such methods for use as

clinical diagnostics. For example, the CellaVision

DM96 and DM1200 are machine learning-based

applications for automated image analysis and cell

classification and counting of white blood cells,

red blood cells, and platelets in blood and body

fluids (22, 23). Neural network approaches have

also been used to automate urine sediment analy-

sis on instruments such as the Iris Diagnostics au-

tomated microscopy system (iQ200) (24). Both of

these examples of AI-automated image analysis

are routinely used in clinical laboratories today.

AI and Laboratorians

With the above examples in mind, when it

comes to AI algorithms, laboratorians have a vari-

ety of potential roles to play (Table 1). These roles

include consuming information from algorithms

as users, developing algorithms, serving as subject

matter experts, evaluating AI work as peer

reviewers and administrative decision makers,

and being stewards of a raw data source. The level

of involvement in these roles ranges from essen-

tially no effort as a consumer or data source to

developing significant expertise for direction of al-

gorithm development or its evaluation. The bene-

fits to these roles are largely commensurate with

the level of investment and involvement, but

whichever path laboratorians take, it is important

to understand each.

LABORATORYAS DATA SOURCE

Foundationally, the fuel of AI is data. Laboratory

data comprises the largest transactional volume

of information in healthcare, such that it is no sur-

prise that laboratories play an important part in

clinical predictive models. Indeed, serving as a

data source is a current reality as laboratory

results are transmitted, extracted, interfaced,

warehoused, and cataloged across healthcare en-

tities and research databases. Simply persisting at

producing quality results, as laboratorians always

have, will enable AI research and development to

have an ever-growing fuel source.
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An important consideration for AI is data quality
(25, 26). High-quality data will yield better predic-
tions than large amounts of low-quality data.
Simply put, with AI, “garbage in garbage out” still

applies. Laboratory data is typically of consistent
structure and accurate, making it of use with
relatively little to no manipulation. Contrast this
with other sources, such as diagnostic codes or

administrative health data that may be riddled
with inaccuracies (27, 28) due to manual entry,
seriously limiting usage or requiring herculean

efforts to clean and resolve errors.
Beside laboratory results, laboratorians will be

familiar with other hidden data sources. These are
hidden in the sense that they may not be routinely
captured or analyzed, exist on hospital networks,

or be supported by hospital IT groups, and are
not part of the patient health record. These in-
clude quality assurance data, external proficiency
testing, procedures, and instrument “metadata.”

Metadata includes pump pressures, currents, re-
action rates, probe usage counts, etc., which are
unseen with results, but potential predictors for

algorithm development. Manufacturers already
use this data to identify potential instrument fail-
ures, and they could provide a window into speci-
men quality, individual test performance, and the

accuracy of patient results. While useful, metadata

may be difficult to capture because it may not be
connected to organizational networks.
While laboratory data is largely accurate and

consistent, AI algorithm developers must consider
overall data availability, missing values, outliers,

and time scales. Outliers and missing data can be
managed in data cleaning and preparation steps,
but when there are too many problems it can lead
to bias. This is particularly true for data that are

missing not at random. In this case, there is a rela-
tionship between the tendency of a value to be
missing and its values. This is a very common oc-

currence with laboratory data where test orders
are often strongly associated with each other and
the disease state and measurement methods
have limits that censor very high or low values.
In general, availability of data is one of the most

common barriers for deploying models in clinical
settings. Clinical data are highly distributed and
may not be well connected within computing net-

works. Another problem comes from differences
in the time scales in retrospective and production
data. Retrospective data sets often have data at
much greater frequency than may be available in

production data sources. Model development is
often conducted using retrospective data that are
accessed manually or in an ad hoc manner. When

a model is deployed, however, the data must be

Table 1. Potential roles for laboratorians related to AI technologies.

Data source steward

Accurate, high volume, and consistently produced laboratory result data is used in AI today

Variations in availability and quality of some laboratory data can be problematic

Ancillary laboratory-related data sources have great potential as AI inputs

Subject matter expert

Operational knowledge: regulatory, economic, workflow constraints, and considerations

Clinical knowledge: nuance and specifics of specimens, test methods, and results

Method developer and evaluator

Involvement ranges from independent to collaborative and as drivers to consumers

Need for familiarity with at least basic principles of AI

Critical review and participation key to safe, effective, and sustained use of AI
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available at a frequency relevant to the model and

may need to be available in an automated way.

This is why it is often advisable to rely on accessing

or building database structures (data marts, data

warehouses) in modeling pipelines. For example, a

retrospective data set may have values from every

hour or minute of the day, whereas a production

data source may update only once per day.

Although one could develop a well-performing

model based on the hourly trends of data, if the

production data source only refreshes every day,

necessary data inputs will not be available to make

predictions. Overall, laboratory-generated, consis-

tent, high volume, high-quality data will continue to

be an important resource for AI in medicine whom-

ever develops the algorithm, but there are many

factors that need considered to use it effectively.

SUBJECT MATTER EXPERTS

While laboratories will continue to provide a rich

source of data, laboratorians can do much more.

As with many aspects of healthcare, laboratorians

can improve understanding and value of laboratory

results for AI by serving as subject matter experts

in clinical testing. Subject matter experts provide

domain-specific knowledge that AI programmers

and developers need to be successful in creating

effective algorithms. Laboratorians possess strong

understanding of constraints and considerations

due to regulatory, economic, and workflow aspects

of clinical laboratories and health systems. In addi-

tion, laboratorians have knowledge of important

and generally unknown aspects of laboratory data

and tests, such as reference intervals, method and

instrument changes, workflows, interferences, lot-

to-lot variation, ordering biases, imprecision, prea-

nalytical errors, interpretative comments, data

quality, and laboratory metadata.
Of these, instrument changes are perhaps the

most illustrative of the need for domain-specific

knowledge. When instrumentation changes over

time, laboratorians will be able to provide detailed
explanation as to when instruments changed, how
they compare with previous analysis, and how they
might be normalized. This could help either subse-
lect results in different time ranges or tune and re-
train the algorithm to consider these details.
Without that inside knowledge, predictors may fail
and potentially result in throwing away useful
information. This scenario also applies broadly to
result flags (e.g., high, low, critical), which may no
longer serve as the same benchmark for compar-
ing results as elevated or decreased.
Augmenting the knowledge of results from their

own laboratory, laboratorians are also able to pro-
vide perspective on variations in results, which
may be relevant when developing an AI algorithm
or implementing one from an outside institution.
Clinicians using laboratory data may need guid-
ance on how to integrate and use results from
many different laboratories or versions of similar
laboratory tests (i.e., laboratory vs point-of-care
glucose). This requires knowing the differences in
performance and bias between laboratories, char-
acteristics of the analytes or tests of interest, how
operational changes have occurred over time, and
an overall understanding of data quality. As a sim-
ple example, a laboratorian could readily provide
reality checks for analytes that are known to be
standardized vs those that would be expected to
differ (e.g., HbA1c vs TSH) or help map laboratory
values or guide retraining based on known instru-
ment bias. In more advanced use cases, knowl-
edge of seasonal variation and circadian rhythms
could be the difference between a useful predic-
tion and excluding the entire dataset. There are
many such examples, which illustrate how intrinsic
knowledge to laboratorians may be critical com-
ponents of feature selection and engineering in AI
model development or performance monitoring.
The ability to choose predictors and identify their
limitations takes AI algorithms from black boxes to
useful models that can potentially identify new
connections between variables (i.e., statistical
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learning). Another key attribute of laboratorians as

subject matter experts is the ability to classify or

label data to develop algorithms. This is an essen-

tial part of any algorithm development where the

true results need to be known to train, test, and

validate predictions (29, 30). As subject matter

experts in clinical testing, laboratorians can guide

AI algorithm development to maximize the utility

of the data inputs.
Further to clinical test knowledge is operational

understanding. This type of subject matter exper-

tise can help define how AI will be used, who will

use it, and how it will drive patient care or opera-

tions. Important operational considerations in-

clude the feasibility of a given prediction and

intervention strategy and associated details, such

as its timing or time scale, the level of specificity

needed, the allowable error in decision-making,

and who makes the decision and when or in what

workflow. These factors may dictate how the prob-

lem is formulated, what is predicted, and ultimately

how to best deploy the model. The most useful

models in laboratory medicine will be developed

with the support of laboratorians who provide in-

put and feedback throughout the development

process. This will help drive acceptance of the se-

lected model and shape expectations about what

the model does and does not do. Reiterating the

need to consider time scale, operational under-

standing is important. Consider that a retrospec-

tive analysis might attempt to use a send-out

laboratory test, but it cannot be effective if it is not

available at the time the algorithm needs it.
Collectively, as subject matter experts, labora-

torians have the ability to guide selection of

predictors, classify outcomes essential to train

algorithms, and focus efforts at realistic and

achievable predictions.

Algorithm Development and Evaluation

Beyond providing data and subject matter ex-

pertise, is algorithm development and evaluation.

The basic process of AI method development is
shown in Fig. 2. Like most projects, it starts with
defining the goals. Specifically, what is the prob-
lem and how might AI be the solution? Once the
problem is defined, this frames the selection of
inputs (i.e., data and features), potential algo-
rithms, and processes for validating and choosing
a model for implementation. Starting with defining
the problem, laboratorians are uniquely situated
to appreciate and benefit from AI applications.
To develop algorithms, there are several

paths for laboratorians, ranging from completely
independent work to fully collaborative interde-
partmental or interorganizational projects. For
some applications, laboratorians may choose to
implement a commercially available algorithm. In
any of these scenarios, the laboratorian serves as
both the evaluator and consumer of the algorithm
and a built-in subject matter expert as described
above. The specifics of how to develop a given
algorithm are beyond the scope of this review,
but there are numerous high-quality resources
available for free online through universities and
other educational sites (2, 31–34).
Similarly, the details of evaluating AI technolo-

gies are outside the scope of this review and have
been discussed elsewhere (35–38). With the in-
crease in AI-related publications and commercial
programs using AI, it is important that laborator-
ians become familiar with the basic principles of
these technologies and participate in their critical
review. It is worth noting that laboratorians are
accustomed to evaluating diagnostics and many
of the same principles apply to the assessment of
AI applications. With any new test or tool, a
consumer would want to know about the meth-
ods used to develop it, what is needed to use it,
where it can be applied, and how well it performs
at the task.
Poor reproducibility and inadequate descrip-

tions of methods have led to recommendations
and guidelines for clear and comprehensive
reporting of machine learning development and
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analyses (39–43). If followed, transparent method

descriptions and results should enable critical

review, of which some key steps are shown in

Table 2.
It is important to note that model performance

is not the same as its impact or value. The evalua-

tion of advanced analytic models typically focuses

on metrics such as AUROC and mean-squared

errors. These may provide a convenient quantita-

tive summary of the performance of the model

and describe its ability to represent the data, but

they do not reflect the consequences of taking

action based on the model’s output. Liu et al. offer

a framework for understanding a model’s value,

which is described as the tradeoff between the

resources used and benefits gained by developing

and deploying the model (44). Although presented

in the context of predictions for clinical decision

support, the idea of demonstrating model impact

or value should be considered more broadly to

ensure the effective and sustainable use of ma-

chine learning methods. If an algorithm is to be a

diagnostic test it also requires clinical validation,

which can be a significant barrier to implementa-

tion. The US FDA recently issued guidance for

validation of software as a medical device and has

Fig. 2. Overview of the predictive modeling process. Defining the problem or question is an essential
starting point.

Table 2. Key points and questions to consider when evaluating AI applications.

Are the purpose and goals for model clearly defined? Does it address a valid problem? Is AI a feasible solution?

Assess the relevance and adequacy of the data, including collection, cleaning, and annotation/labeling procedures. Are potential
sources of bias identified and mitigated? Are there sufficient numbers of observations? For classifications, are the subgroups or
classes balanced? Is there potential for data leakage?

Are key components of the model (e.g., algorithm type, features, weights, model-specific hyperparameters) described in
appropriate detail? Are selection criteria specified? Is the level of interpretability suitable for the problem?

Are features and their relative contributions consistent with available knowledge of the system or workflow?

Review the rigor of the methods for replication, testing, or external validation. Will the results support the generalization of the
model?

Does the model demonstrate acceptable performance on a test or external validation set? Are the selected error metrics
meaningful for the specific problem? Is there evidence of issues with overfitting? Recognize that training error is usually less
than test error and is not a reliable indicator of model performance on new data.

Are data sources adequately described or available? Are software methods and versions defined and is source code available?
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cleared several machine learning-based diagnos-

tics through this and other pathways (45).

Algorithms developed and implemented as diag-

nostics at a single laboratory may also be used as

Laboratory Developed Tests. Other algorithms

may be used as clinical decision support tools.

AI ALGORITHM IMPLEMENTATION

Despite their promise, there remains a gap in

translating AI algorithms into production. The lack

of translation may help drive a common percep-

tion that the machine learning code is the greatest

component of a ML-based application and that a

successful model equates to a useful application.

In reality, for production systems, the ML code is a

relatively small component in the overall system,

although a very critical one around which other

functionality is assembled or architected (46).

Barriers to implementation are more often related

to data, human factors, and infrastructure

requirements.

Computational (or Informatic) Infrastructure

Infrastructure for machine learning consists of

several connected IT components and the under-

lying code base constructed into a pipeline, as is

shown in Fig. 3, A. This graphic depicts the deploy-

ment of a static model—one whose specification

does not change for a while. In this case, the train-

ing and testing steps are shown in gray and are

performed offline to find the best model, which is

selected and implemented. Further retraining may

be necessary over time due to changes in input

data or workflows, much like routine calibration

performed for laboratory instrumentation. The

process begins on the left with data ingestion

from a raw data store. In a clinical laboratory, this

may be the database underlying the LIS or EHR,

for example. Machine learning pipelines often rely

on relational databases and other aggregated

data sources. The system may be designed to

include data preparation steps that would gener-

ate commonly used features or those designed

for specific models. Calculating and saving a field

for age, based on the raw output of date of birth,

is an example of a feature commonly of interest

when developing clinical models. Calculating the

weekly lagged volume for a test or a scaled result

value are examples of features that may be cre-

ated and stored to support specific, implemented

models. The processed data are fed to the imple-

mented model automatically or at a defined

interval—depending on whether the system is

running in continuous or batch mode. An output

(also called a score) is calculated using input data

and any required parameters specified in the

model formulation. The score is displayed to the

user in the designated interface and point in their

workflow. The output and any required metadata

may be stored in a database that can also be used

for monitoring model performance over time (Fig.

3, B). Although shown as individual entities in this

example, the data stores in an analytics pipeline

may also be components of a single database.

This may be the case if data from an LIS is used in

an algorithm and the result is sent back to the LIS.
In its simplest form, the processes in Fig. 3 may

be conducted on a single computer, including a

personal workstation or server. Basic machine

learning development work is often performed us-

ing local workstations, such as laptops, personal

computers, and virtual desktop machines. More

advanced efforts may involve production-level

pipelines using servers configured for distributed

computing [either on premises (local IT) or in the

cloud]. Cloud computing is the web-based delivery

of servers, storage, databases, software, and other

applications in a flexible manner dependent on

user demand. Distributed systems maximize effi-

ciency by using multiple, connected computers to

work together on the same task, enabling comput-

ing processes to occur independently and in

parallel.
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Fig. 3. Machine learning pipeline. (A), Static algorithm. (B), Adaptive algorithm.
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Machine learning workflows are reliant on vari-
ous software frameworks and computer program-
ming scripts that are commonly connected
through application programming interfaces
(APIs). The most popular coding languages for
data science and machine learning are R and
Python. Both are available in free, open-source
versions. These languages are often used with
software libraries, toolkits, or user interfaces that
aid in executing the machine learning process and
facilitating reproducible workflows. Amazon,
Microsoft, and Google also have machine learning
applications that provide user interfaces for build-
ing, training, testing, and deploying models by
leveraging APIs to and from data sources, distrib-
uted computing platforms, machine learning
libraries, and other resources.
The management and scaling of the system

may be automated using workflow orchestration
software to control the scheduling and execution
or resource allocation (47). Models are increas-
ingly being deployed using container- and cloud-
based technologies, which require additional
expertise and configuration (48, 49). In addition to
the computing and IT infrastructure components,
there are other, human resources, that may be
new to healthcare organizations, such as data
scientists, machine learning engineers, data archi-
tects, and solution architects. For comparison, Fig.
3, B shows an adaptive or online model, which
would require additional configuration to facilitate
the live training and selection of models and
features based on continued data inputs and
feedback from outputs. This is an even more
complex system to deploy and manage.
The choices about where or how to implement

a model typically depend on whether it is a cus-
tom model or one available from a vendor and if it
will be deployed within the EHR or a different clini-
cal system. Still undergoing rapid development,
EHR vendors have invested significant resources
in enabling advanced analytics within medical
records. This includes standing up cloud-based

machine learning platforms that integrate with

EHRs to score models and provide results at

the point of care. These environments facilitate im-

plementation of vendor-provided models for pre-

dicting risk of sepsis, AKI, and readmission, for

example, and with more work, also can support

custom-built models or those from third parties.

Making use of the rule builder or scoring systems

within EHRs is limited to less complex models, such

as linear and logistic regression that can be speci-

fied with basic algebraic formulations. Interfacing

standards and frameworks, such as FHIR (Fast

Healthcare Interoperability Resource) may also be

leveraged to connect third-party AI applications to

the EHR. Alternatively, an external mechanism such

as the example depicted in Fig. 3 may be devel-

oped to ingest data, run the algorithm, score the

model, and send the results back to the EHR.

These same types of external setup may be used

to implement models outside of the EHR (i.e., LIS,

other laboratory interfaces). Basic models may also

be deployed using commonly available business

applications, such as Excel and PowerBI or Tableau.

Finally, there is future potential for laboratory mid-

dleware programs to deploy analytic models.

SUMMARY

AI is changing healthcare. It is adding information,

integrating and interpreting existing data, and

will be an area of high growth for the foreseeable

future. Laboratories are well-positioned for

AI because they are a rich source of actionable data

and have a unique and valuable discipline expertise.

For laboratorians, AI offers potential improvements

to testing methods, quality assurance, operations,

and diagnostic interpretation and reporting work-

flows. Implementation of AI algorithms is analogous

to bringing in new testing, with both benefits and

challenges. The roles laboratories play will be impor-

tant both for the utility of the algorithms and the

value of laboratorians themselves.
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49. Garcı́a ÁL, Lucas JMD, Antonacci M, Castell WZ, David M,
Hardt M, et al. A cloud-based framework for machine
learning workloads and applications. IEEE Access 2020;8:
18681–92.

REVIEW Artificial Intelligence and the Clinical Laboratory

...................................................................................................

1654 JALM | 1640–1654 | 06:06 | 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/jalm

/article/6/6/1640/6348035 by eadaoinn_m
ulligan@

dfci.harvard.edu user on 25 August 2022

https://www.coursera.org/
https://www.edx.org/
https://ocw.mit.edu/index.htm
https://www.classcentral.com/university/umich
https://www.classcentral.com/university/umich
https://www.bmj.com/content/368/bmj.m689
http://arxiv.org/abs/2003.12206
http://arxiv.org/abs/2003.12206
https://www.cs.mcgill.ca/&hx0026;sim;jpineau/ReproducibilityChecklist.pdf
https://www.cs.mcgill.ca/&hx0026;sim;jpineau/ReproducibilityChecklist.pdf
https://www.cs.mcgill.ca/&hx0026;sim;jpineau/ReproducibilityChecklist.pdf
https://www.fda.gov/media/100714/download
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

