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A framework for clinical cancer subtyping
from nucleosome profiling of cell-free DNA
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Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification
and help guide clinical precision oncology. Here we develop Griffin, a frame-
work for profiling nucleosome protection and accessibility from cfDNA to
study the phenotype of tumors using as low as 0.1x coverage whole genome
sequencing data. Griffin employs a GC correction procedure tailored to vari-
able cfDNA fragment sizes, which generates a better representation of chro-
matin accessibility and improves the accuracy of cancer detection and tumor
subtype classification. We demonstrate estrogen receptor subtyping from
cfDNA in metastatic breast cancer. We predict estrogen receptor subtype in
139 patients with at least 5% detectable circulating tumor DNA with an area
under the receive operator characteristic curve (AUC) of 0.89 and validate
performance in independent cohorts (AUC=0.96). In summary, Griffin is a
framework for accurate tumor subtyping and can be generalizable to other
cancer types for precision oncology applications.

Accurate cancer diagnosis and subtype classification are critical for
guiding clinical care and precision oncology. Current approaches to
determine tumor subtype require a tissuebiopsy,which is oftendifficult
to obtain frompatients withmetastatic cancer. Therefore, at the time of
recurrenceormetastatic cancer diagnosis, treatmentoptionsmayoften
be informed by clinical diagnostics from the primary tumor. However,
molecular changes in the tumor can emerge during metastatic pro-
gression and in the context of therapeutic resistance. Moreover, sur-
veying molecular changes is challenging because repeated biopsies are
problematic and not routine in clinical practice for solid tumors.

Cell-free DNA (cfDNA) is DNA released into circulation by cells
during apoptosis and necrosis1. In patients with cancer, a portion of
this cfDNA is released from tumor cells, called circulating tumor DNA
(ctDNA). The analysis of ctDNA can address the challenges in tissue
accessibility and has demonstrated great potential for clinical utility2–9.
Much of the current research and clinical efforts have focused on the
detection of genetic alterations in ctDNA. Shallow coverage sequen-
cing of cfDNA, including ultra-low pass whole genome sequencing
(ULP-WGS, 0.1×), provides a cost-effective and scalable solution for
estimating the tumor fraction (fraction of the cfDNA that is tumor
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derived) from the analysis of genomic copy number alterations10–13.
Sequencing analysis of genomic alterations fromctDNAhavehelped to
distinguish molecular subsets of tumors14,15. However, these genomic
alterations, including somatic mutations, may not always fully explain
treatment failure or identify therapeutic targets, exemplifying a major
limitation of cancer precision medicine.

Tumor subtypes are often characterized by distinct transcrip-
tional regulation, which can change during treatment resistance,
leading to different clinical tumor phenotypes. For example, prostate
and lung cancers may undergo trans-differentiation from adenocarci-
noma to small-cell neuroendocrine phenotypes16–20. For metastatic
breast cancer (MBC), treatment is guided based on clinical subtypes
determined by the expression of the estrogen receptor (ER), proges-
terone receptor (PR), and human epidermal growth factor receptor 2
(HER2), often in the primary tumor21; endocrine therapies are pre-
scribed to patients with ER-positive (ER + ) or PR-positive (PR + ) car-
cinomas while patients with HER2 positive tumors are prescribed anti-
HER2 drugs. Patients with tumors absent for expression of all three
receptors have triple negative breast cancer (TNBC) and receive
chemotherapy22. However, receptor conversions during primary and
metastatic disease progression have been frequently observed,
including ~20% of patient tumors switching from ER + to ER-negative
(ER-) subtypes23–28. Furthermore, similar to the presence of intra-tumor
genomic heterogeneity in breast cancer, mixtures of clinical subtypes
may also co-exist across or within metastatic lesions in the same
patient, presenting major clinical challenges29,30. Therefore, accurate
subtype classification and identification of transcriptional patterns
underlying emergent clinical phenotype during therapy has critical
implications for studying mechanisms of resistance and informing
treatment decisions.

Recent studies have shown that the computational analysis of
cfDNA fragmentation patterns from genome sequencing data can
reveal the occupancy of nucleosomes in cells-of-origin31–36. When DNA
is released into the peripheral blood following cell death, they are
protected from degradation by nucleosomes1. At accessible genomic
locations, such as at actively bound transcription factor binding sites
(TFBSs) and open chromatin regions, nucleosomes are positioned in
an organized manner that allows access for DNA binding proteins37

(Fig. 1a). This nucleosome organization results in a loss of sequencing
coverage, reflecting DNA degradation at the unprotected binding site
with peaks of coverage at the surrounding protected locations.

Analysis of the protected and unprotected regions, termed
nucleosome profiling, has been demonstrated for cancer detection
and tumor tissue-of-origin prediction, including the analysis of shorter
cfDNA fragments which tend to be enriched from tumor cells38–43.
Tumor subtyping from cfDNA has been explored in castration-
resistant prostate cancer (CRPC) and lung cancer by analyzing frag-
mentationpatterns44,45. However, patientswith other cancer typesmay
also benefit from non-invasive subtype prediction. Specifically, pre-
dicting receptor-based subtypes from cfDNA could enable patients
with late-stage breast cancer to receive targeted treatmentwithout the
need for invasive biopsies. Furthermore, current cfDNA nucleosome
profiling approaches have not been optimized for ULP-WGS data.
Studying the clinical phenotype of tumors from ctDNA remains chal-
lenging due to lack of robust computational methods but has obvious
potential clinical benefits for guiding treatment decisions in patients
with metastatic cancer.

In this present study, we develop a computational framework
called Griffin to classify tumor subtypes from nucleosome profiling of
cfDNA. Griffin overcomes current analytical challenges to profile the
nucleosome accessibility and transcriptional regulation from the ana-
lysis of standard cfDNAgenomesequencing, includingULP-WGS (0.1×)
coverage.Griffinemploys aGCcorrectionprocedure that is specific for
DNA fragment sizes and therefore uniquely suited for cfDNA sequen-
cing data. We apply Griffin to perform cancer detection with high

performance. Then, we demonstrate breast cancer ER subtyping from
cfDNA, showing high classification accuracy and insights into tumor
monitoring and heterogeneity, all achieved from analysis of ULP-WGS
data. Overall, Griffin is a generalizable framework that can accurately
profile chromatin accessibility from cfDNA for cancer subtype pre-
diction and has the potential to direct personalized treatment to
improve patient outcomes.

Results
Griffin framework for nucleosome profiling to predict tumor
phenotype
We developed Griffin as an analysis framework with a GC correction
procedure to accurately profile nucleosome occupancy from cfDNA.
Griffin processes fragment coverage to distinguish accessible and
inaccessible features of nucleosome protection (Fig. 1a). Griffin is
designed to be applied to whole genome sequencing (WGS) data of
cfDNA from patients with cancer to quantify nucleosome protection
around sites of interest and is optimized to work for ULP-WGS data
(Fig. 1b). Sites of interest can be selected from various chromatin-
based assays, such as from assay for transposase-accessible chromatin
using sequencing (ATAC-seq) and are tailored to address specific
problems including cancer detection and tumor subtyping.

The analysis workflow begins with computing the genome-wide
fragment-based GC bias for each sample. Then, for the region at each
individual site of interest, the fragment midpoint coverage is com-
puted and reweighted to remove GC biases (Methods). Midpoint
coverage rather than full fragment coverage is used because it pro-
duces higher amplitude nucleosome protection signals (Supplemen-
tary Fig. 1a). Next, a composite coverage profile is computed as the
mean of the GC-corrected coverage across the set of sites differential
for a tissue type, tumor type, transcription factor (TF), or any pheno-
typic comparison of interest. By examining these coverage profiles
around known cancer-specific and blood-specific TFs, we identified
three quantitative features that distinguish a site as accessible and
inaccessible: (a) the coverage in the window between ±30 bp (central
coverage),where lower values represent increased accessibility, (b) the
coverage in a window between ±1000bp (mean coverage), and (c) the
overall nucleosome peak amplitude calculated using Fast Fourier
transform (amplitude). These features can be used to quantify tran-
scription factor activity or chromatin accessibility and be used as
features for detection of cancer, tumor subtyping, or studying other
phenotypes of interest.

Griffin reduces GC biases enabling detection of differential tis-
sue accessibility
A unique aspect of Griffin is the implementation of a fragment-based
GC bias correction developed by Benjamini and Speed and previously
demonstrated on genomic DNA46. At open chromatin regions, espe-
cially at TFBSs, GC-content is non-uniform between the binding site
and flanking regions, which leads to GC-related coverage biases
(Fig. 2a–c, Supplementary Fig. 1b, c, Supplementary Data 1)47. GC bias
varies between samples andbetweendifferent fragment lengthswithin
a sample46 (Fig. 2b), which can have a major impact on nucleosome
accessibility prediction (Fig. 2c). To correct for this GC bias, for each
sample and each fragment length, Griffin computes the global esti-
mated mean fragment coverage (“expected”) using a fragment length
position model46 (Methods, Fig. 2b). Then, when calculating coverage
around sites of interest, each fragment is assigned a weight based on
the expected coverage for its GC content. This correction eliminates
unexpected increases (or decreases) in coverage at binding sites,
removing technical biases to enhance the tissue-associated accessi-
bility when analyzing WGS (9–25×, Fig. 2c) cancer patient cfDNA and
ULP-WGS (0.1–0.3×, Fig. 2d).

To test the performance of nucleosome profiling following Griffin
GC-bias correction, we compared the estimated TFBSs accessibility
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with the amount of tumor-derived DNA (i.e. tumor fraction) predicted
by ichorCNA. From analysis of WGS data for 14 CRPC, two MBC, and
two healthy donor samples10,15, we observed stronger correlations
between nucleosome profiles derived from shorter (35–100bp) frag-
ments and tumor fraction when using GC correction for multiple
fragment lengths, which lead us to choose this correction strategy
(Supplementary Fig. 2, Supplementary Data 2). However, in ULP-WGS

data from 191 MBC cfDNA samples10 with ≥0.1 tumor fraction, we
focused on the nucleosome sized fragments (100–200bp) due to the
low number of short fragments (<100 bp). For nucleosome sized
fragments, we expected the tumor fraction to be negatively corrected
with the central coverage around tumor-specific sites, and positively
correlated for blood-specific sites. For a blood-specific TF, LYL1, we
observed that the central coverage at TFBSs was positively correlated
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with tumor fraction before GC correction (Pearson’s r = 0.41) as
expected, but this correlation was much stronger after GC correction
(Pearson’s r =0.63, Fig. 2e). For a tumor-specific TF, GRHL2, we
observed a negative correlation between the central coverage and
tumor fraction, as expected (Pearson’s r = −0.62, Supplementary
Fig. 3a). Themean coverage and amplitude features are also correlated
to tumor fraction but appeared to be less influenced by GC bias
(Supplementary Fig. 3a, b, Supplementary Data 3). Similar correlations
between nucleosome profile features and tumor fraction following GC
correction were also observed for blood and cancer specific DNase I
hypersensitivity sites (DHSs) (Supplementary Fig. 3a).

To quantify whether GC correction reduces signal variability
between samples, we examined the central coverage in the 191 MBC
cfDNA ULP-WGS samples for 377 TFs in the Gene Transcription Reg-
ulation Database (GTRD)44,48. For each factor, we compared the varia-
bility between the central coverage and tumor fraction using the
rootmean squared error (RMSE) froma linear regression fit before and
after GC correction. For LYL1, the RMSE decreased (0.062 to 0.046),
indicating less inter-sample variation in the data after GC correction
(Fig. 2e). Similarly, for 351 (93.1%) TFs, the RMSE was decreased
after GC correction, indicating reduced inter-sample variability after
accounting for the correlation between tumor fraction and central
coverage (two-sided Wilcoxon signed rank test p = 1.0 × 10−58, test
statistic = 1421, Fig. 2f, Supplementary Fig. 1d, Supplementary Data 3).
Next, in the cfDNA samples, we systematically analyzed differentially
expressed TFs between blood cells and breast cancer (Methods, Sup-
plementary Data 4). We found that central coverage and tumor frac-
tion were correlated for a subset of these TFs (11 of 35 cancer and
15 of 22 blood TFs, Pearson correlation two-sided adjusted
p-value < 0.05 after GC correction), most correlations were in the
expecteddirection, and that thesecorrelations increased for bloodTFs
after GC correction (two-sided Wilcoxon signed rank test p = 0.0013,
Supplementary Fig. 4a).

Additionally, we examined the central coverage for the 377 TFs in
a cohort of 215 healthy donors38 before and after GC correction.
Because healthy donor samples have no tumor content, we evaluated
the mean absolute deviation (MAD) for each TF to compare inter-
sample variability. We found that the MAD for central coverage
decreased afterGCcorrection for 365 (96.8%)TFs (two-sidedWilcoxon
signed rank test p = 6.28 × 10−62, test-statistic = 466, Fig. 2g, Supple-
mentary Fig. 3c, Supplementary Data 5), indicating lower inter-sample
variability for nearly all TFs. Finally, we tested the impact of mapp-
ability biases and copy number alterations (CNA) and found that
explicit correction accounting for these factors did not improve RMSE
values in the MBC cfDNA samples (Methods, Supplementary Fig. 4b–f,
Supplementary Data 3). Altogether, these results suggest that the GC
correction strategy in the Griffin framework reduces the variability in
chromatin accessibility signals due to GC biases between samples and
allows for improveddetection of differential tissue accessibility inULP-
WGS data.

Griffin analysis at TFBSs enables cancer detection
To determine if Griffin can perform cancer detection, we analyzed a
publishedWGS (1–2×) dataset of cfDNA samples from healthy donors

(n = 215) and early-stage cancer patients (n = 208) (DELFI cohort)38.
We generated nucleosome profiles around the top TFBSs for each TF
and extracted three features from each (central coverage, mean
coverage, and amplitude). Due to the large number of features, we
used principal components analysis (PCA) to select the top compo-
nents that explained 80% of the variance (Methods). Using logistic
regression on these components, we determined that the best per-
formance was achieved when using the top 30,000 TFBSs for each of
270 TFs that contained at least this many sites (Methods, Supple-
mentary Fig. 5a). We achieved a high performance for predicting the
presence of cancer with an area under the receiver operating curve
(AUC) of 0.94 (Fig. 3a, Supplementary Data 6) We observed the
highest performance for stage IV cancers (AUC = 0.99) and moder-
ately lower performance in stage I cancers (AUC =0.93, Fig. 3a,
Supplementary Fig. 5b). The performance was likely reflective of the
higher tumor fractions observed in late-stage cancer relative to early-
stage cancer. As anticipated, we observed higher performance for
samples with tumor fraction ≥ 0.05 (AUC = 0.99) than samples with
<0.03 tumor fraction (AUC = 0.92, Supplementary Fig. 6a). By cancer
type, we achieved the highest performance for lung and ovarian
cancers (AUC ≥0.99) and the lowest for pancreatic cancer (AUC =
0.85, Supplementary Fig. 6d). To test the ability to detect cancer at
ULP-WGS coverage (0.1×), we applied Griffin to the same cfDNA data
downsampled to 0.1× coverage and achieved an AUC of 0.89 (Fig. 3a,
Supplementary Fig. 6a, d).

Next, we systematically evaluated various configurations and
comparisons of Griffin for cancer detection (Supplementary Fig. 7a).
First, because fragments <150bp are enriched for tumor derived
DNA38, we tested whether different fragment size ranges, such as short
(35–150 bp) or all (35–500bp) fragments may improve our ability to
detect cancer in this framework but observed a decreased perfor-
mance (0.91 and 0.92 AUC, respectively, Supplementary Fig. 7a). Next,
when omitting GC correction, we also observed decreased overall
performance for 1–2× WGS (AUC=0.83, Fig. 3b, Supplementary
Fig. 7a) and ULP-WGS (AUC=0.85) for all disease stages (Fig. 3b,
Supplementary Fig. 7a). Then, we tested the use of mappability and
copy number correction, exclusion of Griffin features, and analysis at
DHSs in place of TFBSs and observed similar or lower performance
(Supplementary Fig. 7a). Finally, we compared our results with the
method by Ulz et al.44, which analyzed cfDNA fragments of all lengths
at TFBSs, and found it had lower performance for 1–2× WGS (AUC=
0.82) and ULP-WGS (AUC=0.55) coverages. (Supplementary
Fig. 7a, b).

To validate Griffin for the application of cancer detection, we
analyzed a published cfDNAWGS (1–2×) dataset consisting of 129 lung
cancer patients and 158 healthy individuals (LUCAS cohort)45. A vali-
dation cohort of 46 cancer patients and 385 healthy individuals was
also available in this same study. There was a notable batch effect
between the DELFI and LUCAS cohorts in the initial fragment size
distributions and Griffin coverage profiles before and after GC cor-
rection, which prevented use of the same model on both cohorts
(Methods, SupplementaryFig. 8, SupplementaryData 7). Using the 270
TFs in the Griffin analysis, we built a new model and observed an AUC
of 0.76 in 1–2× WGS and 0.65 for ULP-WGS (downsampled to 0.1×)

Fig. 1 | Griffin framework for cfDNA nucleosome profiling to predict cancer
subtypes and tumor phenotype. a Illustration of a group of accessible sites (left
panel) and inaccessible sites (right panel), suchasTFBSs. Thenucleosomes (in grey)
are positioned in an organized manner around the accessible sites (red box; left
panel), but not around the inaccessible ones (right panel). These nucleosomes
protect the DNA from degradation when it is released into peripheral blood. The
protected fragments from the plasma are sequenced and aligned, leading to a
coverage profile which reflects the nucleosome protection in the cells of origin.
b Griffin workflow for cfDNA nucleosome profiling analysis. cfDNA whole genome
sequencing (WGS)datawith≥0.1× coverage is aligned tohg38genomebuild. (1) For

each sample, fragment-based GC bias is computed for each fragment size. (2) Sites
of interest are selected from any assay. Paired-end reads aligned to each site are
collected, fragment midpoint coverage is counted and corrected for GC bias to
produce a coverageprofile. (3) Coverageprofiles fromall sites in a group (e.g., open
chromatin for tumor subtype) are averaged to produce a composite coverage
profile. Composite profiles are normalized using the surrounding region (−5 kb to
+5 kb). (4) Three features are extracted from the composite coverage profile:
central coverage (coverage from −30 bp to +30bp from the site; orange ‘a’), mean
coverage (between −1 kb to +1 kb; green ‘b’), and amplitude calculated using a Fast-
Fourier Transform (FFT) (red ‘c’).
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coverages in the LUCAS cohort (Fig. 3c, Supplementary Fig. 5c, Sup-
plementary Data 8). We observed an AUC of 0.91 for samples with ≥
0.05 tumor fraction, which was higher than samples with 0.03–0.05
(AUC=0.78) and <0.03 (AUC =0.65) tumor fractions (Supplementary
Fig. 6b). Applying the trained model from the LUCAS cohort to the
LUCAS validation cohort, we achieved anAUCof 0.86 across all stages,
including an AUC of 0.83 for stage I cancers (Fig. 3d, Supplementary

Fig. 5d, Supplementary Data 9). The performance was 0.87 and 0.81
AUC for tumor fractions of <0.03 and ≥ 0.03, respectively (Supple-
mentary Fig. 6c). For ULP-WGS coverage, the performance was 0.69
AUC for stage I and 0.69 AUC across all stages (Fig. 3d, Supplementary
Fig. 5d). Overall, while cancer detection has been demonstrated from
nucleosome profiling analysis in ctDNA38,43–45, we show thatGriffinmay
also be applied in this setting.

Fig. 2 | Griffin GC bias correction improves detection of tissue specific acces-
sibility from cfDNA. aMean ± IQR of GC content around 10,000GRHL2 sites. bGC
bias of various fragment sizes for cfDNA from a healthy donor (HD_46; green) and a
metastatic breast cancer (MBC_315; orange) sample. GRHL2 center and flanking GC
content are noted with dashed lines (same as [a]). The MBC sample (orange dots)
has a larger differencebetween center (2.11) andflanking (1.99) for 165 bp fragments
than the healthy sample (1.90 center, 1.96 flanking; green dots). Thismeans that, for
GRHL2, GC bias will cause increased central coverage relative to the flanking cov-
erage and this effect will be more pronounced in the MBC sample. c Composite
coverage profile of 10,000 GRHL2 sites before and after GC correction, shown for
HD_46 and MBC_315. Before GC correction, the center has increased coverage due
to GC bias. After GC correction, the MBC sample has lower central coverage, which
is consistent with increased GRHL2 activity in tumor cells. d Composite coverage
profiles of 10,000 LYL1 sites before and after GC correction, shown for two MBC

samples with deepWGS (9–25×, orange), two healthy samples (17–20×, green), and
191 MBC samples with ULP-WGS (0.1–0.3×, median ± IQR, blue). Lower central
coverage in the healthy samples is consistent with LYL1 activity in hematopoiesis.
e cfDNA tumor fraction and central coverage correlation for LYL1. GC correction
increases the strength of the Pearson correlation (n = 191 MBC ULP-WGS samples;
2 sidedwith Benjamini-HochbergFDRcorrection).Rootmean squared error (RMSE)
of the linear fit is shown. f Distribution of the RMSE (linear fit between central
coverage and tumor fraction (n = 191MBCULP-WGS samples) across 377TFs, before
and after GC correction. Boxed range: median ± IQR, whiskers: non-outlier data
(maximumextent is 1.5× IQR), grey dots: outliers. p-value from theWilcoxon signed-
rank test (two-sided). g Distribution of the mean absolute deviation (of the central
coverage across 215 healthy donors [1–2× WGS]) for 377 TFs, before and after GC
correction. Box elements are the same as f. p-value from the Wilcoxon signed-rank
test (two-sided). Source data are provided as a Source Data file.
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Griffin enables accurate prediction of breast cancer subtypes
from ultra-low pass WGS
Breast cancer tumor classification relies on accurate clinical determi-
nation of hormone receptor status primarily by immunohistochem-
istry (IHC) to quantify the expression of ER, but no ctDNA approach
exists for this application. We set out to determine whether Griffin can
be used to predict ER subtype status from ULP-WGS (0.1x) of cfDNA
from MBC patients. We analyzed 254 samples with tumor fraction
greater than 0.05 from 139 patients10,11. First, we inspected the Griffin
profiles at TFBSs for key factors, including ESR1, FOXA1, and GATA3,
which are known to be associated with ER positive tumors49. We
observed that these TFBSs were more accessible in cfDNA samples
from patients with ER +metastases compared to ER-; central coverage
was significantly lower in ER + samples after accounting for tumor
fraction (ANCOVA FDR adjusted p-value < 3.8 × 10−2, Supplementary
Fig. 9, Supplementary Data 10). To predict ER status, we initially built a
logistic regression classifier using features from the Griffin profiles for
all 270 TFs and achieved an accuracy of 0.71 (AUC of 0.79, Supple-
mentary Fig. 10). We also used TFBSs features computed by the Ulz
method for ER subtyping and observed an accuracy of 0.53 (AUC =
0.55, Supplementary Fig. 10), likely because it was not designed for
ULP-WGS data.

Next, we used a more tailored site selection approach by analyz-
ing regions of differential chromatin accessibility. Using ATAC-seq
data generated from 44 ER+ and 15 ER- primary breast tumors by The

Cancer Genome Atlas (TCGA)50, we identified open chromatin sites
that were differentially accessible between ER subtype (Methods,
Fig. 4a, Supplementary Fig. 11, Supplementary Data 11–12). ER + sites
(n = 28,170) were enriched for the TFBSs of ESR1, PGR, FOXA1 and
GATA3, and ER- sites (n = 41,712) were enriched for the TFBSs of STAT3
and NFKB1 (Supplementary Data 13). We observed differences in cov-
erage profiles between differential sites that were shared (9930 ER + ,
22,365 ER−) and not shared (18,240 ER + , 19,347 ER−) with accessible
chromatin in hematopoietic cells51 and analyzed them separately
(Fig. 4b, Supplementary Fig. 12). We applied Griffin to profile nucleo-
some accessibility at these four sets of ER differential accessible
chromatin sites, extracting a total of 12 features. We built a logistic
regression classifier to predict ER subtype from these chromatin
accessibility features (Fig. 4c, Supplementary Data 14, Methods). We
achieved an overall accuracy of0.81 (AUC =0.89, n = 139) with a higher
performance for samples having high tumor fraction (accuracy 0.86,
AUC =0.92, n = 101, tumor fraction ≥ 0.1) compared to those with
lower tumor fraction (accuracy 0.69, AUC=0.75, n = 38, tumor frac-
tion 0.05 to 0.1) (Fig. 4d). Systematic evaluation of different config-
urations and comparisons with Griffin, including fragment size ranges
and data correction strategies, resulted in similar or lower perfor-
mance (Supplementary Fig. 10, Methods).

We validated the trained model from the MBC dataset by evalu-
ating its performance on independent cohorts consisting of additional
ULP-WGS data or data obtained from published studies52,53 (Methods).

Fig. 3 | Griffin enables accurate cancer detection. Receiver operator character-
istic (ROC) curves for logistic regression classification of cancer vs. healthy controls
in three cohorts. Logistic regression was performed on the top PCA components
which explained 80% of the variance in the features (central coverage, mean cov-
erage, and amplitude) extracted from nucleosome profiles around 30,000 TFBSs
for each of 270 TFs. ROC and area under the ROC curve (AUC) performance is
shown for each disease stage. The number of cancer samples (Ca) is indicated for
each stage. Each ROC curve also includes all healthy controls (H) from that cohort.
95% confidence intervals (CI) were obtained from 1000 bootstrap iterations.
a Performance for DELFI cohort38 consisting of plasma samples for 208 early-stage

cancers and 215 healthy controls. b Comparison of the performance in the DELFI
cohort before and after GC correction using Griffin. Samples are the same as in a.
Boxplots indicate median, interquartile range (IQR), whiskers for 1.5× IQR, and
outliers. c Performance of the LUCAS cohort45 consisting of plasma from 129 lung
cancer patients and 158 healthy patients. d Performance of the LUCAS validation
cohort45 consistingof plasma for 46 lung cancers and385healthy controls. For each
dataset, performance is shown for both the original low pass (1–2×) WGS and ultra-
lowpass (0.1×)WGSgeneratedby in-silicodownsampling. Sourcedata are provided
as a Source Data file.
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Using PCA, we did not observe batch effects between the cohorts, but
rather signals could be attributed to the known ER status (by meta-
static tumor IHC) and estimated tumor fraction (Supplementary
Fig. 13a). In 36 patients (25 ER + , 11 ER−) with tumor fraction ≥ 0.05, we
observed an overall accuracy of 0.92 (AUC=0.96), including 0.96
accuracy (AUC =0.98) for samples with higher tumor fraction (≥0.1,
n = 24) and 0.85 accuracy (AUC=0.90) for lower tumor fraction

(0.05–0.1, n = 12) (Fig. 4e, Supplementary Fig. 13b, c, Supplementary
Data 15). For samples with tumor fraction <0.05 (n = 35), the accuracy
was 0.54 (AUC =0.39), indicating the lower limit of accurate ER clas-
sification is likely 0.05 tumor fraction (Supplementary Fig. 13b). These
results illustrate the utility of using chromatin accessibility for cancer
subtyping from ULP-WGS data and showcase ER status prediction in
breast cancer from cfDNA.
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Analysis of ER status from longitudinal cfDNAsuggests potential
subtype heterogeneity
To further investigate the ER predictions, we inspected the classifica-
tion results for 91 patients with known primary ER status and cfDNA
tumor fraction of ≥0.1 (Fig. 4c, f, Supplementary Data 14). In 40
patients who had ER− status for both primary and metastatic tumors
determined by IHC, we predicted 39 (95.1%) to have ER− subtype from
plasma (Fig. 4f). In 41 patients who had ER + primary and metastatic
tumors, we classified 36 (85.4%) to have ER + subtype. Intriguingly, in
the nine patients who had clinical primary ER + and metastatic ER−
status (i.e., ER loss), five (55.6%) were predicted to be ER + , and this
higher prevalence of ER + prediction was statistically significant when
compared to patients with no subtype switches (ER− group,
p = 3.7 × 10−4 and ER + group, p = 0.043, two-sided Fisher’s exact test,
Fig. 4f). We observed a performance of 0.74 AUC for classifying ER
status among patients who had ER +primary tumor status, suggesting
Griffin may have some potential to classify patients with ER loss
(Fig. 4g). These results demonstrate that Griffin has relatively high
performance for ER classification in MBC patients with no subtype
switches but ER status prediction ismore challenging for patients with
subtype switches perhaps due to ER subtype heterogeneity.

To further investigate the ER status predictions and subtype
heterogeneity, we examined eight patients who had ULP-WGS of
cfDNA from plasma collected at different timepoints and ER expres-
sion by IHC available for one or more metastatic biopsies (Fig. 4h,
Supplementary Fig. 14, Supplementary Data 16)11,54. As an interesting
example, MBC_1413 was initially diagnosed with an ER− metastatic
pleural effusion but a secondbiopsy of the livermetastasis revealed ER
expression in 5% of cells. The initial cfDNA sample was collected
178 days after and was predicted to have ER + status (0.74 probability),
in agreement with the metastatic liver biopsy. A third biopsy from the
pleural fluid was ER−, which was consistent with the ER− prediction
(0.23 probability) from a cfDNA sample taken 26 days prior. In another
example, MBC_1009 had two ER− biopsies of the bone and liver, but a
third biopsy had 5% ER expression, which was consistent with ER +
predictions (>0.68 probability) for cfDNA samples taken 251 days
before and 52 days after. These results suggest that Griffin may be
detecting ER status changes or heterogeneity of tumor biopsies and
that that subtype monitoring during therapy may be a potential
application.

Discussion
In this study, we described the development of Griffin, a framework
and analysis tool for studying transcriptional regulation and tumor
phenotypes. Griffin applies a fragment length specific GC-correction
procedure to remove the GC biases that obscure chromatin accessi-
bility signals in cfDNA. We demonstrated that Griffin can be used to
detect cancer from low pass WGS with high accuracy. We also

developed an approach to performER subtyping in breast cancer from
ULP-WGS of ctDNA.

Griffin is versatile and can be used for various applications in
cancer. We highlighted cancer detection and tumor subtype use-
cases. However, Griffin can also be used for any biological compar-
ison where transcriptional regulation and chromatin accessibility
differences can be delineated. The applications described here use
TFBSs from chromatin immunoprecipitation sequencing (ChIP-seq)
and accessible chromatin sites from ATAC-seq. However, Griffin
differs from existing frameworks due to its ability to analyze custom
sites of interest that are specific to any biological context. These sites
may be obtained from external sources and different assays, such as
ChIP-seq, DHS, ATAC-seq or cleavage under targets and release using
nuclease (CUT&RUN). As additional epigenetic data are collected by
the cancer research community, including from single-cell
experiments55,56, Griffin will be integral for advancing tumor pheno-
type studies from liquid biopsies.

Griffin is designed for the analysis of ULP-WGS (0.1×) of cfDNA,
while other nucleosome profiling methods have focused on deeper
coverage sequencing. Griffin takes advantage of analyzing the breadth
of sites as opposed to individual loci, which was inspired by a similar
strategy used by Ulz et al.44. We showed that Griffin had better per-
formance for both detecting cancer and predicting ER status from
ULP-WGS data when compared to the Ulzmethod, likely because of its
GC bias correction strategy and versatility to analyze any set of
genomic regions. We observed improved performance after GC-
correction consistently for all analyses, suggesting the benefit of the
approach, although this improvement was minor for ER status pre-
diction in ULP-WGS data. While the GC correction strategy was able to
reduce inter-sample variability, we found that it was not able to elim-
inate batch effects between datasets potentially caused by different
cfDNA processing and sequencing workflows, thus preventing cancer
detectionmodels from being compatible across all datasets. However,
Griffin provides a framework to extract cfDNA features, enabling users
to train models on new datasets, as we showed with the LUCAS and
validation cohorts. Griffin can be applied to future large prospective
studies using standardized plasma collection and workflows to care-
fully assess the performance of cancer detection in real clinical
scenarios.

Although this study focused on the analysis of ULP-WGS (0.1×) of
cfDNA, Griffin is not limited to low coverage data. Increased cfDNA
sequencing coverage can allow for analysis of specific gene promoters
and cis-regulatory elements and may enable gene expression
prediction31. While recent studies show the promise of cfDNA methy-
lation and cfRNA analysis for tumor phenotype analysis and cancer
detection57–63, these analytes may be challenging to isolate from clin-
ical specimens or require specialized assays. Overall, Griffin provides a
cost-effective and scalable framework requiring only standard low

Fig. 4 | Griffin enables accurate prediction of breast cancer estrogen receptor
subtypes from ultra-low pass WGS. a ER + and ER- open chromatin sites from
assay for transposase-accessible chromatin using sequencing (ATAC-seq) in ER + (
n = 44) and ER- (n = 15) breast tumors from The Cancer Genome Atlas (TCGA)50.
Differential sites were identified using DESeq282 which employs a Wald test with
Benjamini-Hochberg FDR correction. Sites with an adjusted p-value <5 × 10−4 and a
log2 fold-change >0.5 or < −0.5 (dashed lines) were considered differential and are
shown in blue (ER + ) ororange (ER-).bComposite coverageprofiles (median ± IQR)
for ER+ (n = 18,240) and ER- (n = 19,347) sites inMBC patients (≥0.1 tumor fraction;
ER+ , n = 50; ER-, n = 51). Differential sites shared with hematopoietic cells have
been excluded and are shown in Supplementary Fig. 12a51. c Tumor and cfDNA
characteristics for 101 MBC patients with ≥0.10 tumor fraction plotted with
CoMut87. Statuses are from immunohistochemistry on tumor tissue. Top row:
Binary ER status used for training and testing the model. Second row: primary
(upper left triangle) and metastatic (lower right triangle) ER status. Third row:
tumor fraction from ichorCNA10. Fourth row: median probability ER +predicted

across 1000 bootstrap iterations. d Receiver operator characteristic (ROC) curve
for predicting ER status. 95% CIs from 1000 bootstrap iterations. e Performance of
the trained model on samples from three validation cohorts. f Predictions in
patients grouped by primary and metastatic ER status. P-values from Fisher’s exact
test (two-sided). g ROC curve for predicting ER loss among patients with a primary
ER positive tumor. h Timelines for two patients with multiple biopsies and cfDNA
samples. Top: predicted probability of ER + and tumor fraction for cfDNA samples
with ≥0.05 tumor fraction and ≥0.1× coverage. Bottom: timeline in months from
metastatic diagnosis. The square indicates primary ER status (timeline from pri-
mary tometastatic diagnosis is not to scale). Diamonds indicate eachmetastatic ER
status. Patient MBC_1413 had 3 metastatic biopsies, ER- at zero months (pleural
fluid), weak ER+ (5%) at 5.9 months (liver), and ER- at 12.3 months (pleural fluid).
Patient MBC_1099 had 3 metastatic biopsies, ER- at 0 months (bone), ER- at
7months (liver), and ER low (5%) at 22.5months (liver). Source data are provided as
a Source Data file.
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coverage WGS of cfDNA, which can bemore rapidly incorporated into
existing platforms to predict clinical cancer phenotypes.

A limitation of the binary ER classification (ER + or ER−) is the
decreased accuracy for samples with lower tumor fraction (<10%) and
a 5% limit for accurate prediction, suggesting that it may be challen-
ging to useGriffin for early-stage andminimal residual disease settings.
However, in MBC, previous reports have suggested that up to 34% of
MBC patients may have at least 10% tumor fraction in plasma10, which
highlights potential utility for this disease stage. TNBC patients with
cfDNA tumor fraction ≥ 10% have poorer prognosis11 andwould benefit
more from tumor monitoring. It may be possible to improve perfor-
mance of ER subtyping for lower tumor fraction samples with addi-
tional sequencing depth, using TFBSs identified directly from ER + /−
tumors, or joint analysis of multiple cfDNA timepoints from the same
patient.

The application of Griffin to predict ER status from cfDNA ofMBC
patients led to interesting results for patients with ER loss, suggesting
potential tumor heterogeneity. Intriguingly, we noticed that for the
patients with ER− tumors by IHC, ER + predictions were significantly
enriched when the primary tumor was ER + . Moreover, in some
patients with multiple cfDNA biopsies we observed changes in pre-
dicted ER status thatmight be explained by the presence ofmetastatic
tumors with both subtypes. This subtype heterogeneity and switching
would typically not be captured from a single metastatic biopsy, but
our results demonstrate the possibility of using the predicted ER
probability to monitor subtype status over time during therapy using
ctDNA. Future studies using synchronous tumor biopsy and plasma
sequencing data for more patients will be needed to establish clinical
utility.

We focus our breast cancer subtyping on ER prediction because
its status has important utility in predicting likely benefit to endocrine
therapy64. While PR expression is also determined in the clinic and
ER−/PR + tumors are considered hormone receptor positive, these are
rare, not reproducible or less useful for prognosis65. In our cohort, only
2 out of 139 (1.4%) patients were ER−/PR + . HER2 overexpression is
important for prognosis and determining treatment such as with
trastuzumab66. However, wewere unable to identify sufficient number
of open chromatin sites that were differentially accessible between
HER2 positive and HER2 negative tumors. Since ERBB2 (encodes the
HER2 protein) is amplified in ~20% breast cancers, one can instead
assess ERBB2 copy number amplification from ctDNA genomic
analysis53,67. Alternatively, a model to predict PAM50 status could be
useful as this may be a better indicator of prognosis than ER/PR/HER2
IHC alone68.

In summary, the Griffin framework enables prediction of tumor
phenotypes from ULP-WGS. In this study, we demonstrate the use of
this framework to detect cancer in early-stage cancer patients and to
predict ER status in metastatic breast cancer patients. Combined with
methods for predicting tumor fraction and copy number alterations10

Griffin joins a suite of tools for in depth analysis of ULP-WGS of cfDNA
enabling cost effective, non-invasive monitoring of tumors. Griffin has
the potential to reveal clinically relevant tumor phenotypes, whichwill
support the study of therapeutic resistance, inform treatment deci-
sions, and accelerate applications in cancer precision medicine.

Methods
The research described in this study complies with all relevant ethical
regulations. New patient data (Independent MBC Cohort) was
obtained under protocols which were approved by the institutional
reviewboardof theDana FarberCancer Institute (DFCI-09204) orOhio
State University (2007C0066, 2018C0211). Use of additional clinical
data for the previously publishedMBCULP-WGS cohort was approved
by an institutional review board (Dana-Farber Cancer Institute IRB
protocol identifiers 05-246, 09-204, 12-431 [NCT01738438; Closure
effective date 6/30/2014]). Patients in all studies provided written

informed consent for the study in which they were enrolled. See
descriptions of human subjects and datasets below.

Griffin: GC-content bias correction procedure
GC content influences the efficiency of amplification and sequencing,
leading to different expected coverages (coverage bias) for fragments
with different GC contents and fragment lengths. This is called GCbias
and is unique to each sample. We calculated the GC bias of each bam
file using an implementation of the method developed by Benjamini
and Speed 201246 which was previously implemented in deepTools69.
However, unlike the deepTools implementation, which assumes that
all fragments have the same length, we used the ‘fragment length
model’ which calculates a separate GC bias curve for each fragment
length. This is helpful for cfDNA where different samples may have
different fragment size distributions and different fragment lengths
have biological significance32.

Mappability filtering. Prior to performing GC bias calculation,
we identified all mappable regions of the genome (as described
by Benjamini and Speed and implemented in deepTools) using the
Umap multi-read mappability track for 100bp reads downloaded
from UCSC genome browser70 (https://hgdownload.soe.ucsc.edu/
gbdb/hg38/hoffmanMappability/k100.Umap.MultiTrackMappability.
bw). We used pybedtools (0.8.0)71 to find the mappable regions
(defined as mappability score = 1) and further excluded regions with
known mapping problems including the encode unified GRCh38
exclusion list (https://www.encodeproject.org/files/ENCFF356LFX/),
centromeres, fix patches, and alternative haplotypes for hg38 down-
loaded from UCSC table browser (https://genome.ucsc.edu/cgi-bin/
hgTables).

Multi-fragment length GC bias model and correction. We then
examined all remaining regions of the genome and, for each fragment
length, counted the observed GC content of every possible fragment
overlapping those positions. The observed frequencies of each GC
content for each fragment length are the ‘genomeGC frequencies’ and
are specific to the genome build. We then developed the ‘griffin GC
bias’ pipeline to compute the GC bias in a given bam file. The pipeline
takes a bam file, bedGraph file of valid (mappable, non-excluded)
regions, and genomeGC frequencies for those regions. For each given
sample, we fetched all reads aligning to the valid regions on autosomes
using pysam v0.15.4 (https://github.com/pysam-developers/pysam)72.
We counted the number of observed reads for each length and GC
content, excluding reads with low mapping quality (<20), duplicates,
unpaired reads, and reads that failed quality control. These read
counts are the ‘GC counts’ for that sample. We then divided the GC
counts for a sample by the GC frequencies for the genome to obtain
the GC bias for that bam file and normalized themeanGCbias for each
fragment length to 1, resulting in aGCbias value for every combination
of fragment size and GC content (except those combinations that are
never observed in the genome).We then smoothed the GCbias curves.
For each fragment size we took all GC bias values for fragments of a
similar length (±10 bp). We sorted these values by the GC content of
the fragment to create a vector of GC bias values for similar sized
fragments. We then smoothed this vector by taking the median of k
nearest neighbors (where k = 5% of the vector length or 50, whichever
is greater) and repeated for each possible fragment length. We then
normalized to a mean GC bias of 1 for each possible fragment length
(excluding GC contents that are never observed) to generate a
smoothed GC bias value for every possible fragment length and GC
content observed in the genome.

Griffin: Nucleosome profiling
We designed the Griffin nucleosome profiling pipeline to perform
nucleosome profiling around sites of interest. This pipeline takes a
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bam file, GC bias for that bam file, and site list, and assorted other
parameters described below. For a given bam file and site list, we
fetched all reads in a window (−5000 to +5000bp) around each site
using pysam (excluding those that failed quality controlmeasures).We
then filtered read pairs by fragment length and selected those in a
range of fragment lengths (100–200 bp for all analyses in this study
unless otherwise specified). For each read pair, we determined the GC
bias for the fragment and assigned a weight of 1

GC bias to that fragment
and identified the location of the fragment midpoint. We split the site
into 15 bp bins and summed the weighted fragment midpoints in each
bin to get a GC corrected midpoint coverage profile (see Fig. 1b for a
schematic). Next, we excluded bins that overlapped regions with
known mapping problems (described in Griffin: GC-content bias cor-
rection procedure) and bins with at least one unmappable position
using pyBigWig for fetching data (0.3.17). We also identified bins with
extremely high coverage (10 standard deviations above themean) and
removed these bins. We repeated this for every site on the site list and
took themean of all sites (ignoring excluded bins within those sites) to
generate themean coverageprofile for that site list.We then smoothed
the coverage profiles using a Savitzky-Golay filter with window length
165 bp and polynomial order of 3. Finally, to make samples with dif-
ferent depths comparable, we normalized the coverage profile to a
mean coverage of 1 across the ±5000bp window and retained the
central region (±1000 bp) for further analysis.

Griffin: Nucleosome profile feature quantification
To quantify coverage profiles, we extracted 3 features from each
coverage profile. First, we calculated the coverage value at the site
(±30 bp). Second, we calculated the ‘mean coverage’ value ±1000bp
from the site. And third, we calculated the amplitude of the nucleo-
some peaks surrounding the site by using a Fast Fourier Transform (as
implemented in Numpy v1.21.273) on the window ±960bp from the site
and taking the amplitude of the 10th frequency term. This window and
frequency were chosen due to the observed nucleosome peak spacing
at an active site (190 bp)which results in approximately 10 peaks in the
window ±960bp.

Mappability correction
To test the impact of mappability bias on Griffin profiles, we imple-
mented a per fragment mappability bias correction. First, for each
sample, we obtained an approximate coverage distribution by sam-
pling 1000 random positions within the genome (excluding positions
which overlapped regions with known mapping problems see ‘Griffin:
GC-content bias correction procedure’) and determined the cutoff for
extreme outliers >5 standard deviations above themean. Next, we split
the genome into 5Mbp segments resulting in 587 segments spanning
the genome (autosomes only). For each segment, we sampled every
100th position, skipping positions with known mapping problems. At
sampled positions, we obtained the mappability value from Umap
multi-readmappability track for 100bp reads (described inGriffin: GC-
content bias correction procedure) and the number of reads over-
lapping that position (excluding unpaired reads, reads with mapping
quality <20, duplicates and reads that failed quality control). Sampled
positions with read counts >5 SD above themeanwere excluded. After
obtaining the mappability values and read counts for all sampled
positions, we calculated the mappability bias for each mappability
value within that 5Mbp bin by dividing the total number of reads
observed at positions with a given mappability by the total number of
positions with that mappability value. We repeated this procedure for
all bins. Finally, we took the mappability biases for all mappability
values in all bins and smoothed them using loess regression as
implemented in python statsmodels (version 0.13.2)74. When calcu-
lating coverage profiles, we calculated the mappability value for each
fragment as the mean mappability of all positions covered by the
forward and reverse read.We then assigned aweight of 1

Mappability bias to

that fragment and multiplied this by the weight from GC bias 1
GC bias to

get the total fragment weight used when calculating the mappability
and GC bias corrected coverage profiles. This correction did not
improve performance of any correlations or models and was not used
in the final Griffin models.

Copy number alteration (CNA) correction
To assess whether CNA correction improved Griffin performance, we
performed CNA correction at each site prior to merging sites into
composite coverage profiles. This correction was performed by
dividing the coverage at each position in the profile by the mean
coverage in the surrounding ±50Kbp window. We found that the
addition of CNA correction had aminimal impact on coverage profiles
anddidnot improve the correlations to tumor fractionor performance
of the cancer detection model and resulted in only a small improve-
ment in the ER status predictionmodel.Wedid not useCNA correction
in our final Griffinmodels, however we did leave an option to turn it on
for future users who might find it useful.

Single fragment length GC correction
In order to assess whether to use a single fragment length model or a
multiple fragment length model was better able to correct GC biases
around accessible sites in cfDNA, we implemented a GC correction
model that assumes a single fragment length (165 bp) for all fragments
similar to themethod implementedbydeepTools. Thismodel used the
same procedure as described in Griffin: GC-content bias correction
procedure, with a few modifications. When calculating the GC counts,
it assumed that every read had a fragment length of 165 bp (starting
from the read start position). The resulting GC counts were then
divided by the GC frequencies for 165 bp to generate the GC biases for
each GC possible GC content for 165 bp fragments. Next, when gen-
erating coverage profiles, we found the GC content of each fragment
and then found the GC bias for the 165 bp fragment with the most
similar GC content and used this value to reweight the fragment. This
single fragment length procedurewas found to not perform aswell for
short (35–100 bp) fragments (Supplementary Fig. 2a–c) and perform
similarly for nucleosome sized (100–200bp) fragments (Supplemen-
tary Fig. 2d–f, Supplementary Fig. 7a, Supplementary Fig. 10). Conse-
quently, the multi-fragment length model was used for all subsequent
analysis.

Early-stage cancer and healthy donor cfDNA samples
DELFI cohort. Whole genome sequencing (WGS) cfDNA from patients
with various types of early stage cancer and healthy donors were
obtained from an existing dataset published in Cristiano et al.38. Bam
files were downloaded from EGA (dataset ID: EGAD00001005339).
This data consisted of 1–2× low pass whole genome sequencing from
100bp paired end Illumina sequencing reads. For our analyses, we
used a subset of samples with 1–2× WGS of cfDNA from 208 cancer
patients with no previous treatment and 215 healthy donors. These
were the same samples used for the cancer detection analysis in the
original Cristiano et al. study. cfDNA tumor fraction was estimated
using ichorCNA (github commit 15B1D336)10. An hg38panel of normals
(PoN) with a 1mb bin size was created using all 215 healthy donors in
the dataset. ichorCNA was then run on all cancer and healthy samples
to estimate tumor fraction. ichorCNA_fracReadsInChrYForMale was
set to 0.001. Defaults were used for all other settings.

LUCAS cohort and LUCAS validation cohort. Whole genome
sequencing (WGS) cfDNA from a prospective study of patients with
lung cancer andwithout cancerwereobtained fromanexisting dataset
published by Mathios and colleagues45. Bam files were downloaded
from EGA (dataset ID: EGAD00001007796). This data consisted of
1–2× low pass whole genome sequencing from 100 bp paired end
Illumina sequencing reads. For our analyses, we used the subset of

Article https://doi.org/10.1038/s41467-022-35076-w

Nature Communications |         (2022) 13:7475 10



samples described in the paper as the ‘LUCAS’ cohort and a second
subset of samples described as the LUCAS validation cohort. The
LUCAS cohort included 158 patients who had no history of cancer and
no future cancer diagnosis and 129 patients who were diagnosed with
lung cancer within days of blood draw (0–44 days). The LUCAS vali-
dation cohort included 46 patients with cancer and 385 patients
without cancer. All samples were realigned to hg38 as described below
in ‘sequence data processing’. Tumor fraction was determined using
ichorCNA (as described for the DELFI cohort) with a new panel of
normals constructed using 54 separate healthy donor samples (not
included in either the LUCAS or LUCAS validation cohorts) from the
LUCAS study.

Metastatic breast cancer (MBC) cfDNA samples
Sequencing data. WGS of cfDNA from patients with metastatic breast
cancer (MBC) and healthy donors were obtained from an existing
dataset published by Adalsteinsson and colleagues10. Bam files were
downloaded from dbGaP (accession: phs001417.v1.p1). This data con-
sisted of ~0.1× ultra-low pass whole genome sequencing (ULP-WGS)
from 100 bp paired end Illumina sequencing reads. For our analyses,
we used a subset of 254 ULP samples with >0.1× coverage WGS, > 0.05
tumor fraction and known estrogen receptor (ER) status. Of these
254 samples 133 were ER positive (from 74 unique patients) and 121
were ER negative (from 65 unique patients). Coverage and tumor
fraction metrics were obtained from the supplementary data in the
publication10. Additionally, we used two deep (9–25×) WGS from two
MBC patients (MBC_315 and MBC_288) from the same source and two
deep (17–20×) WGS from two healthy donors (HD45 and HD46) from
the same source for designing and demonstrating the pipeline.

Human subjects and clinical data. Primary and metastatic ER status
was determined by immunohistochemistry and obtained from
pathological review. Metastatic survival time was also abstracted from
the medical records. Use of this data was approved by an institutional
review board (Dana-Farber Cancer Institute IRB protocol identifiers
05–246, 09–204, 12–431 [NCT01738438; Closure effective date 6/
30/2014]).

For training and assessing the ER status classifier we labeled each
sample as ER + or ER− using information about the ER status from
medical records. Ifmetastatic ER statuswas not known, the samplewas
labeled according to the primary tumor ER status (20 samples from 11
patients). ER low (1–10% ER + staining) samples (15 samples from 6
patients) were labeled ER + for the purpose of the binary classifier. For
eight patients (MBC_1413, MBC_1405, MBC_1399, MBC_1099,
MBC_1408, MBC_331, MBC_1312, and MBC_1404) we had information
about multiple metastatic biopsies, some with multiple ER statuses
among the biopsies. In these cases, we used the last biopsy taken prior
to the initial cfDNA collection for the purpose of training and testing
the binary ER status classifier. In a partially overlapping set of 8
patients, we also had information aboutmultiple primarybiopsies, two
with multiple ER statues among the primary biopsies. In these cases,
we used the first ER status to determine if there had been a subtype
switch (see Supplementary Data 16 for details about biopsy ER sta-
tuses, locations, and timelines).

Metastatic breast cancer (MBC) validation cohorts
Three independent validation cohorts were used to assess the per-
formance of the ER status prediction model, two of these were from
previously published studies. The first cohort was from the study by
Ahuno et al.52, which included WGS of cfDNA from 14 breast cancer
(BRCA) patients in Ghana with known ER status and ULP WGS (0.1×)
sequencing (dbGaP accession: phs002387.v1.p1). ER status and tumor
fraction were obtained from the publication. Samples were then rea-
ligned to hg38 as described in ‘Sequence data processing’. The second
cohort was from the study by Bujak et al.53, which included

WGS of cfDNA from 27 patients with ER +MBC (NCBI BioProject
accession: PRJNA578569). ER statuswas obtained from thepublication.
The third cohortwas the ‘IndependentMBC cohort’which consisted of
ULP-WGS data generated as described below (Methods: Independent
MBC cohort).

Tumor fraction for the Bujak et al cohort was estimated using
ichorCNA. Sampleswere aligned tohg19 inorder touse thedefault panel
of normal providedwith ichorCNA. ‘ichorCNA_fracReadsInChrYForMale’
was set to 0.001 and all other parameters were defaults. For Griffin
analyses, samples from this cohort were aligned to hg38 as described in
‘Sequence data processing’ and downsampled to 0.1×WGS as described
in ‘Downsampling cfDNA sequencing data to 0.1× coverage’ prior to
Griffin analysis.

Independent MBC cohort
Human subjects. Patients were enrolled on clinical data collection and
biospecimen banking protocols. Eligible patients had biopsy-proven
metastatic breast cancer.Hormone receptor statuswasperformedusing
Clinical Laboratory Improvement Amendments (CLIA) approved assays.
Estrogen receptor (ER) positivity was defined as ≥5% of cells positive by
immunohistochemistry (IHC). Human epidermal growth factor receptor
2 (HER2) negativity was defined as IHC score 0 or 1+ and/or HER2:CEP17
fluorescent in situ hybridization (FISH) ratio <2.0. HER2 positivity was
defined as IHC score 3 + , or IHC score 2+ with HER2:CEP17 FISH ratio
≥2.0. Triple negative breast cancer (TNBC) was defined as <5% staining
for ER and progesterone receptor (PR), as well as HER2 negativity as
previously defined. The protocols were approved by the institutional
review board of the Dana Farber Cancer Institute (DFCI-09204) or Ohio
State University (2007C0066, 2018C0211). All patients provided written
informed consent for blood sample collection, genomic analyses, and
collection of clinicopathologic data. A total of 103 samples from 30
patients were used for this study. This included 15 hormone receptor
positive patients and 15 TNBC patients.

Blood sample processing and plasma extraction. Venous blood
samples (10mL) were collected in EDTA (BD, Franklin Lakes, NJ),
CellSave Preservative (Cell Search, Raritan, NJ) or Cell-Free DNA BCT
(Streck, Omaha, NE) tubes. EDTA tubes were processed within 4 h of
collection and Streck tubes within 48 h. Whole blood was centrifuged
at 1900g for 10min at room temperature with the brake off. Plasma
was removed and transferred to Eppendorf DNA LoBind tubes, then
centrifuged at 1900 g for 10min at room temperature. Plasma was
transferred to cryovials and frozen at −80 °C for storage.

Frozen aliquots of plasma were thawed at room temperature.
cfDNA was extracted using the QIAsymphony DSP Circulating DNA Kit
according to the manufacturer’s instructions, with ~4mL of plasma as
input and with a 60 µL DNA elution.

Library construction. Initial DNA input is normalized to be within the
range of 25–52.5 ng in 50 µL of TE buffer (10mM Tris HCl 1mM EDTA,
pH 8.0) according to picogreen quantification. Library preparation is
performed using a commercially available kit provided by KAPA Bio-
systems (KAPA HyperPrep Kit with Library Amplification product
KK8504) and IDT’s duplex UMI adapters. Unique 8-base dual index
sequences embedded within the p5 and p7 primers (purchased from
IDT) are added during PCR. Enzymatic clean-ups are performed using
Beckman Coultier AMPure XP beads with elution volumes reduced to
30 µL to maximize library concentration.

Post library construction quantification and normalization. Library
quantification was performed using the Invitrogen Quant-It broad
range dsDNA quantification assay kit (Thermo Scientific Catalog:
Q33130) with a 1:200 PicoGreen dilution. Following quantification,
each library is normalized to a concentration of 35 ng/µL, using Tris-
HCl, 10mM, pH 8.0.
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Library pool creation and ultra-low pass sequencing. In preparation
for the sequencing of the ultra-low pass libraries (ULP), approxi-
mately, 4 µL of the normalized library is transferred into a new
receptacle and further normalized to a concentration of 2 ng/µL
using Tris-HCl, 10mM, pH 8.0. Following normalization, up to 95
ultra-low pass WGS samples are pooled together using equivolume
pooling. The pool is quantified via qPCR and normalized to the
appropriate concentration to proceed to sequencing. Cluster
amplification of library pools was performed according to the man-
ufacturer’s protocol (Illumina) using Exclusion Amplification cluster
chemistry and HiSeq X flowcells. Flowcells were sequenced on v2
Sequencing-by-Synthesis chemistry for HiSeq X flowcells. The flow-
cells are then analyzed using RTA v.2.7.3 or later. Each pool of ultra-
low pass whole genome libraries is run on one lane using paired
151 bp runs.

Castration resistant prostate cancer (CRPC) samples
Deep WGS (16-61x) of cfDNA from patients with castration resistant
prostate cancer (CRPC) and healthy donors were obtained from an
existing dataset published by Viswanathan and colleagues and
Adalsteinsson and colleagues10,15. Bam files were downloaded from
dbGaP (accession: phs001417.v1.p1). Coverage and tumor fraction
metrics were obtained from the supplementary data in the publica-
tions. These samples were used for designing and demonstrating the
pipeline.

Sequence data processing
All sequencingdata used in this studywas realigned to thehg38version
of the human genome (downloaded from http://hgdownload.soe.ucsc.
edu/goldenPath/hg38/bigZips/hg38.fa.gz). Bam files were unmapped
from their previous alignment using Picard (v2.18.29) SamToFastq.
Theywere then realigned to thehuman reference genomeaccording to
GATK best practices75 using the following procedure. Fastq files were
realigned using BWA-MEM (v0.7.17)76. Files were then sorted with
samtools (v1.9)77, duplicates were marked with Picard, and base reca-
libration was performed with GATK (v4.1.0.0), using known poly-
morphisms downloaded from the following locations: https://console.
cloud.google.com/storage/browser/genomics-public-data/resources/
broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz and
https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/
VCF/GATK/All_20180418.vcf.gz.

Transcription factor binding site (TFBS) selection
Transcription factor binding sites (TFBSs) were downloaded from
the GTRD database48. This database contains a compilation of ChIP
seq data from various sources. For our analyses, we used the meta
clusters data (version 19.10, downloaded from https://gtrd.biouml.
org/downloads/19.10/chip-seq/Homo%20sapiens_meta_clusters.
interval.gz). This contains meta peaks observed in one or more ChIP
seq experiments. The GTRD database contains some ChIP seq
experiments for targets that are not transcription factors (TFs).
These were excluded by comparing against a list of TFs with known
binding sites in the CIS-BP database78 (v2.00 downloaded from
http://cisbp.ccbr.utoronto.ca/bulk.php). The site position was iden-
tified as the mean of ‘Start’ and ‘End’. For GC, mappability, and CNA
correction analyses as well as TFBSs nucleosome profiling in MBC,
TFs with less than 10,000 sites on autosomes were excluded
resulting in 377 TFs. For each remaining TF, the top 10,000 sites
were selected by choosing those with the highest ‘peak.count’
(number of times that peak has been observed across all experi-
ments). For cancer detection we tried several cutoffs (1000 to
50,000 TFBSs) and selected an optimal cutoff of 30,000 sites,
resulting in 270 TFs (see number of sites analysis below). For the
MBC ER status classifier shown in Supplementary Fig. 10, we also
used the top 30,000 sites.

Identification of differential TFs in blood and cancer
To identify transcription factors that were differentially expressed
between blood cells and breast cancer, we used the University of
California Santa cruise (UCSC) Xena online differential gene expres-
sion analysis tool (http://xena.ucsc.edu/)79 which uses theAppyter bulk
RNA-seq analysis pipeline to run Limma-Voom differential gene
expression analysis80. After launching the tool via a web browser, we
selected the publicly available ‘TCGA TARGET GTEX’ study which
includes RNA seq from TCGA tumors as well as RNA seq from GTEX
healthy tissues. The version of the data was 2016-04-12. We selected
the phenotypic variables ‘main category’ which groups samples by
tissue or tumor type and ‘study’ which groups samples by study. We
then ran a differential gene expression analysis on the ‘main category’
variable and selected GTEX Blood (337 samples) and TCGA_Breast_-
Invasive_Carcinoma (1099 samples) as the two subgroups to compare
in the analysis. All other parameters were left as defaults. We used the
outputs to determine which of the 377 TFs (see ‘Transcription factor
binding site (TFBS) selection’ above) were differentially expressed
between blood cells and breast cancer cells (using default cutoffs:
adjusted p-value ≤0.05 and absolute value of log2 fold-change ≥1.5).
This yielded 107 TFs that were upregulated in BRCA and 82 TFs that
were upregulated in blood. We noted that some TFs shared a large
number of binding siteswithTFs thatwere upregulated in the opposite
tissue type. For instance, MECOM (also called EVI1) has previously
shown to be more accessible in blood than in BRCA44 and we saw the
same trend of increased accessibility in blood in our data. However,
according to the differential RNA seq analysis, MECOM is actually
upregulated in BRCA relative to blood. We suspected that this dis-
crepancy is due to the fact that MECOM shares almost half of its top
10,000 sites (4465 sites) with blood specific LYL1 and >15% of the top
10,000 sites each with of a number of other factors that are upregu-
lated in blood including ZBTB16 (2884 sites), TBX21 (1837 sites),
STAT5A (1936 sites), and SPI1 (2075 sites). Because of this type of
extensive site overlap seen in some differential TFs, we implemented a
filter to exclude differential TFs which shared too many sites with the
opposite tissue type. For the top 10,000 TFBSs for each TF, we
examined how many of them overlapped (binding site was within ±
250bp) with the top 10,000 TFBSs for each TF of the opposite tissue
type (i.e. for each TF that was upregulated in blood, we looked at how
many sites it shared with each of the 107 TFs that were upregulated in
BRCA and took the mean of these 107 values). If a TF overlapped with
an average of 400 or more sites for the factors expressed in the
opposite tissue type, it was excluded from the list of differentially
expressed TFs because it was considered to share too many sites with
the opposite class, potentially confounding tissue specific accessi-
bility. This left us with 22 TFs that were upregulated in blood and
35 factors that were upregulated in cancer.

DNase I hypersensitivity site selection
DNase I hypersensitivity sites for a variety of tissue types were down-
loaded from https://zenodo.org/record/3838751/files/DHS_Index_and_
Vocabulary_hg38_WM20190703.txt.gz81. These sites were split by tis-
sue type for a total of 16 site lists. The ‘summit’ columnwas used as the
site position. The sites were sorted by the number of samples where
that site had been observed (‘numsamples’) and the top 10,000 most
frequently observed sites were selected for each tissue type.

ATAC-seq site selection for ER subtyping
Assay for transposase-accessible chromatin using sequencing (ATAC-
seq) site accessibility for primary breast cancer samples from The
Cancer GenomeAtlas (TCGA)were downloaded from the TCGAATAC-
seq hub (https://gdc.cancer.gov/about-data/publications/ATACseq-
AWG)50. A file containing raw counts for all cancer type specific sites
were downloaded (‘All cancer type-specific count matrices in raw
counts’) and the file containing breast cancer specific sites was used
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(‘BRCA_raw_counts.txt’). The locations of these sites and patient
metadata were obtained from the supplementary tables in the paper50.
Sites on autosomes were kept for further analysis for a total of
211,938 sites. Differentially accessible sites between ER + (n = 44) and
ER− (n = 15) tumors were identified using the DESeq2 software82. The
software was run using default settings described in the ‘quick start’
guide with no co-variates. A differential accessibility experiment was
run using the ‘DESeq’ and ‘results’ functions followed by log fold
change shrinkage using the ‘lfcShrink’ function. Sites with an adjusted
p-value < 5 × 10−4 were selected. Additionally, selected sites were fur-
ther filtered based on the log2 fold-change between ER + and ER−
tumors (see ‘Selection of cutoffs for ER status differential ATAC-seq
sites’ below). Sites with a log2 fold change >0.5 were classified as ER + ,
while sites with a log2 fold change < −0.5 were classified as ER−. These
site lists were further split into sites shared with hematopoietic cells
and those not shared with hematopoietic cells. Hematopoietic sites
were obtained from a database of single cell ATAC-seq data51 (GEO
accession number:GSE129785, peakfile available here: https://ftp.ncbi.
nlm.nih.gov/geo/series/GSE129nnn/GSE129785/suppl/GSE129785%
5FscATAC%2DHematopoiesis%2DAll%2Epeaks%2Etxt%2Egz). Hemato-
poietic sites were lifted over to hg38 using theUCSC liftover command
line tool and sites that changed size during liftover (0.2% of sites) were
discarded. ER differential ATAC-seq sites were overlapped with
hematopoietic sites (Overlapping sites were defined as site centers
being within 500bp of one another) using pybedtools intersect71,83.
This resulted in a total of 4 differential site lists: ER positive sites that
were not shared with hematopoietic cells (18,240 sites), ER positive
sites that were shared with hematopoietic cells (9930 sites), ER nega-
tive sites that were not shared with hematopoietic cells (19,347 sites),
and ER negative sites that were shared with hematopoietic cells
(22,365 sites).

To further characterize these sites, overlapped the four site lists
with the top 10,000 sites for each of 377 transcription factors (TFs)
using pybedtools intersect. An overlapping pair of sites was defined as
having <500 bp between site centers. Each differential ATAC-seq site
list was compared against each list of TFBSs and the total number of
ATAC sites overlapping one or more TFBSs on the given list was
recorded (Supplementary Data 13).

Selection of cutoffs for ER status differential ATAC-seq sites
In order to select the optimal p-value and fold change cutoffs for
identifying ER + and ER− differential ATAC-seq sites, we tried several
different cutoffs for the values output by DESeq2. First we tried 4
different log2 fold-change cutoffs (no cutoff, 0.5, 1, 2) while holding
the adjusted p-value cutoff constant at 0.05. Second, we tried 3 addi-
tional p-value cutoffs while holding the log2 fold-change constant at
0.5. For each cutoff, we ran the griffin nucleosomeprofiling analysis on
the selected ATAC-seq sites, using 100–200bp fragments. We then
extracted features and used these in a logistic regression model to
predict ER status as described below (‘Machine learning, boot-
strapping, and performance evaluation procedure’ and ‘ER status
classification in the MBC cohort’) and calculated the mean accuracy
across all bootstraps. We found that there was a relatively small dif-
ference between cutoffs (~2% accuracy) but chose the cutoff with the
highest accuracy (adjusted p-value ≤ 5 × 10−4 and absolute value of log2
fold-change >0.5) for our final model.

Quantification of GC content at TFBSs
For 377 TFs (see Transcription factor binding site (TFBS) selection
above), the GC content around the top 10,000 TFBSs was quantified
(Shown in Fig. 2a and Supplementary Fig. 1). The sequence at each site
(±1000 bp) was fetched from the genome and the GC content was
calculated. Positions within sites that overlapped the exclusion lists or
had zeromappabilitywereexcluded. GC content at individual siteswas
then smoothed using a Savitsky-Golay filter with length 165 bp and

polynomial order zero. The mean GC content at the site center was
calculated as the mean of the smoothed GC content across all sites in
the window ±30bp from the site. The mean flanking GC content was
calculated as themeanof theGCcontent in thewindow±1000bp from
the site, excluding the central region (±30bp).

Assessment of Griffin before and after GC correction, mapp-
ability correction, and CNA correction
Tumor fraction correlations at TFBSs. For 191 MBCULP samples with
>0.1 tumor fraction, nucleosome profiling with and without GC cor-
rection was performed on the top 10,000 sites for each of 377 tran-
scription factors (TFs) using nucleosome sized fragments
(100–200 bp). For each TF, the relationship between central coverage
and tumor fraction was modeled using scipy.stats.linregress84 produ-
cing a Pearson correlation (r) and line of best fit (scipy version 1.7.1).
Pearson p-values for each feature type were adjusted using a
Benjamini-Hochberg FDR correction. Rootmean squared error (RMSE)
was calculated from the lineof bestfit. Thiswas performedbothbefore
and after GC correction as illustrated for LYL1 in Fig. 2e. For all 377 TFs,
the RMSE values before and after GC correction were compared using
a Wilcoxon signed-rank test (two-sided). This same procedure was
applied to test the benefit of an additionalmappability correction step
and an additional copy number correction step.

Mean absolute deviation (MAD) at TFBSs. For 215 healthy donors,
nucleosome profiling with and without GC correction was performed
on the top 10,000 TFBSs for each of 377 TFs. For each TF, the MAD of
the central coverage values was calculated both before and after GC
correction. For all 377 TFs, the MAD values before and after GC cor-
rection were compared using aWilcoxon signed-rank test (two-sided).

Quantification of differential accessibility of TFBSs and ATAC
sites in MBC
To determine whether nucleosome profiles around TFBSs were dif-
ferentially accessible between ER + and ER− samples we performed an
analysis of covariance (ANCOVA) as implemented in Pingouin
(v0.5.1)85. For this analysis, we used the 191 MBC samples with ≥0.1
tumor fraction and ≥0.1 coverage. Nucleosome profile feature (central
coverage, mean coverage, or amplitude) was the dependent variable,
primary tumor status was the independent variable (‘between’), and
tumor fraction was a covariate. We performed this analysis on all 3
features for all 377 TFs with 10,000 or more sites. We then used
Benjamini-Hochberg FDR correction to perform multi-test correction
for on the p-values for ER status and tumor fraction for each feature.

We performed the same ANCOVA analysis on the features for the
4 types of ER differential ATAC sites but without FDR correction as
therewere only a total of 12 features (central coverage,mean coverage,
and amplitude for each of the 4 site types).

Machine learning, bootstrapping, and performance evaluation
procedure
To detect cancer or predict ER subtype, we used logistic regression
with Ridge regularization (i.e. L2 norm) as implemented in scikit-learn
(v0.23.2)86. All feature valueswere scaled to amean of 0 and a standard
deviation of 1 prior to performing bootstrapping and fitting the
models. We used the following bootstrapping procedure to train and
assess the performance of our models. First, we selected n samples
with replacement from the full set of n samples and used this as a
training set. Samples thatweren’t selectedwere used as the test set.We
then used 10-fold cross-validation on the training set to select the
hyperparameter ‘C’ (inverse of the regularization strength). To account
for class imbalances in the data we used set the ‘class weight’ para-
meter to ‘balanced’ to adjust the sample weighs inversely proportional
to the class frequencies. We trained a final model on all the training
data using the selected regularization strength. Finally, we tested this
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model on the test set and recorded the performance (accuracy and
AUC values) and sample probabilities. Then, a new training set was
selected, and the procedure was repeated for 1000 iterations. After
completing the bootstrap iterations, we calculated the AUC and
accuracy from each bootstrap iteration and used these to generate the
mean and 95% confidence interval around each of these values and to
create boxplots. To visualize the ROC curve, we used the median
probability from all bootstraps where each sample was included in the
test set. For further downstream analyses, including the comut plot,
barplots, and timelines we used this same median probability.

Features used for the final cancer detection classification
To detect cancer, we applied the logistic regression approach descri-
bed above and built a logistic regression classifier on features extrac-
ted from the DELFI cohort cancer and healthy samples. First, we
performednucleosomeprofiling in these samples (selecting fragments
100–200bp in length). For our finalizedmodel we used 30,000 TFBSs
each for 270 TFs with at least 30,000 sites in the GTRD database (see
‘Selection of number of TFBSs for cancer detection’ below). We
extracted three features (as described above ‘Griffin: nucleosome
profile feature quantification’) from each coverage profile for a total of
810 features. We then scaled these features to a mean of 0 and a SD of
1. Within each bootstrap iteration, we reduced the dimensionality of
the feature using PCA as implemented in scikit learn86 on the training
set and selected the features that explained 80% of the variance. We
then applied this same PCA transformation to the test set for that
bootstrap. ThesePCA componentswere thenused as the inputs for the
logistic regression model which was trained on the training set, and
tested on the test set.

For the LUCAS cohort, we found that therewere batch effects that
prevented using the samemodel trained on the DELFI cohort. Because
of this we trained and tested a new model on the LUCAS cohort using
the same bootstrapping approach and performed a final validation of
this model in the LUCAS validation cohort (described below, ‘Valida-
tion of the cancer detection model’).

Finally, we downsampled both the DELFI and LUCAS cohorts to
~0.1× coverage (procedure described below) and performed the same
cancer detection analysis in this lower coverage data.

Validation of the cancer detection model
After training and testing a logistic regression model using the boot-
strapping approach on the LUCAS cohort, we applied the final model
to the previously unseen LUCAS validation cohort (385 healthy sam-
ples and 46 cancer samples). To get this final model, first, we per-
formed PCA on the full LUCAS cohort (not including the LUCAS
validation cohort) and extracted 35 features that explained 80% of the
variance in that cohort. Then, we used these 35 features to build a
logistic regression model using the regularization strength most fre-
quently chosen by the 1000 bootstraps on the LUCAS cohort
(‘C’ = 0.01). Finally, we applied the PCA transformation and logistic
regression model to the LUCAS validation cohort, extracted the same
35 features, and got a probability of cancer for each sample. We
obtained confidence intervals for the AUC using a bootstrap proce-
dure in which we selected 431 samples with replacement from the
original 431 samples and calculated the AUC for the selected samples.
We then repeated this 1000 times to get 1000 AUC values which we
used to obtain confidence intervals and boxplots.

We repeated this same procedure for the downsampled LUCAS
validation cohort.

Selection of number of TFBSs for cancer detection
In order to select the optimal number of TFBSs for cancer detection,
we tried several different cutoffs for the number of sites (1000, 5000,
10000, 20000, 30000, and 50000 sites). For each cutoff we identified
all TFs with at least that many sites in GTRD resulting in 566, 446, 377,

316, 270, and 202 TFs respectively for the cutoffs above. We then
picked the top sites by choosing those with the highest ‘peak.count’.
We next used the logistic regression with bootstrapping and PCA
dimensionality reduction described above (‘Features used for the final
cancer detection classification’) to train and test models on both the
original 1–2× WGS DELFI cohort samples and the downsampled 0.1×
DELFI cohort samples.We found that the number of sites had a greater
impact on the downsampled data (Supplementary Fig. 5a) so we
selected the cutoff with the highest AUC in downsampled data which
was 30,000 sites.

Cancer detection from DNAse hypersensitivity sites
In addition to examining TFBSs, we also performed nucleosome pro-
filing at the 16 tissue-specific DHS site lists described above. We
extracted the same 3 features from each site profile for a total of 48
features and used the same bootstrapping plus PCA dimensionality
reduction described above to test the performance of this model.

Downsampling cfDNA sequencing data to 0.1× coverage
WGS data for the DELFI cohort, LUCAS cohorts (training and valida-
tion), and Bujak et al. dataset was aligned to aligned to hg38 and
subsequently downsampled using Picard DownSampleSam. The
probability used by DownSampleSamwas calculated based on a target
of 2,463,109 readpairswhich resulted in approximately0.11x coverage
as calculated by Picard CollectWgsMetrics. Downsampled bam files
from the DELFI dataset were realigned to hg19 for use in the Ulz
pipeline for comparison. The realignment procedure was the same as
above but using the hg19 genome (downloaded from https://
hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz) and
hg19 known polymorphic sites for base recalibration (downloaded
from ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/
hg37/Mills_and_1000G_gold_standard.indels.hg37.vcf.gz and ftp://ftp.
ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/
GATK/All_20180423.vcf.gz).

ER status classification in the MBC cohort
To predict ER status, we applied the logistic regression approach
described above to features extracted from the MBC patient samples.
Because some patients had multiple samples, we modified the boot-
strapping procedure to select 139 patients (rather than samples) with
replacement from a full set of 139 patients. For each selected patient,
all samples from that patientwere added to the training set (If a patient
was selected multiple times, all their samples were included multiple
times). This ensured that separate samples from the same patient
(biological replicates) could not appear in both the training and test
set. Samples from patients that weren’t selected were used as the
test set.

For our model, we applied nucleosome profiling using
100–200bp fragments to the 4 ER differential ATAC seq lists and
extracted 3 features per profile for a total of 12 features. For evaluating
the model, we only included the first timepoint for each patient in the
test set when calculating the accuracy and AUC for each bootstrap
iteration. This prevented a small number of patients with many sam-
ples from having a large impact on the scores.

ER status prediction from TFBSs
In order to assess whether ER status could be predicted from the
nucleosome profiles around TFBSs, we performed nucleosome pro-
filing for the top 30,000 sites for 270TFs and extracted 3 features each
for a total of 810 features. We then used the bootstrapping approach
described above (‘ER status classification in the MBC cohort’) to train
and test the model. Because of the high dimensionality of the data,
within each bootstrap, we performed PCA on the training set and
selected the top PCA components that described 80% of the variance.
We then used these components as the features in our logistic

Article https://doi.org/10.1038/s41467-022-35076-w

Nature Communications |         (2022) 13:7475 14

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg37/Mills_and_1000G_gold_standard.indels.hg37.vcf.gz
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg37/Mills_and_1000G_gold_standard.indels.hg37.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/GATK/All_20180423.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/GATK/All_20180423.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/GATK/All_20180423.vcf.gz


regression model. This model did not perform as well as the differ-
ential ATAC site model and was not used for further analysis.

Validation of the ER status prediction model
After training and testing a logistic regression model using the boot-
strapping approach on the MBC cohort and features from griffin
profiles around differential ATAC sites, we applied the final model to
the three previously unseen validation cohorts. To get this finalmodel,
we trained a logistic regression model on the full MBC dataset
(254 samples) using the regularization strength most frequently cho-
sen by the 1000 bootstraps on the MBC cohort (‘C’ = 0.1). We then
applied this model to the three validation cohorts and got the prob-
ability of ER+ for each sample. For patients with multiple samples (in
the independent MBC cohort) we used the first timepoint when eval-
uating performance, resulting in a total of 71 samples from unique
patients across all three cohorts. We obtained confidence intervals for
the accuracy and AUC using a bootstrap procedure in which we
selected 71 samples with replacement from the original 71 samples and
calculated the AUC and accuracy for the selected samples. We repe-
ated this procedure 1000 times to get 1000 AUC and accuracy values
which we used to obtain confidence intervals and boxplots.

Transcription factor profiling using pipeline from Ulz et al.
We downloaded the Transcription Factor Profiling pipeline published
by Ulz and colleagues from Github (https://github.com/PeterUlz/
TranscriptionFactorProfiling)44 and ran it using the following proce-
dure as described in the paper. hg19 aligned bam files were used
because the pipeline was written to for this version of the genome.
Scripts weremodified so that theyworked in python3.We trimmed the
reads in each bam to 60bp using ‘trim from bam single end’ with
modifications to skip unaligned reads.We ran ichorCNAon theoriginal
(untrimmed) bam using the default ichorCNA settings for hg19 except
thebin size, whichwasmodified to 50,000bpandnopanel of normals.
We then ran the transcription factor profiling analysis on the trimmed
bam using the script run_tf_analyses_from_bam.py with options ‘-calc-
cov’ and ‘-a tf_gtrd_1000sites’ and the ichorCNA corrected depth file as
the ‘-norm-file’. This ran transcription factor profiling on 1,000 sites for
each of 504 TFs. Finally, we ran the scoring pipeline. We used the high
frequency amplitude (‘HighFreqRange’) for each of the 504 TFs in the
accessibility output file (Accessibility1KSitesAdjusted.txt) as the fea-
tures for a logistic regression model using the same bootstrapping
with PCA dimensionality reduction as described for cancer detection
and ER status prediction from TFBSs above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated for the independent MBC cohort are not publicly
available because patients did not consent to data deposition in public
data repositories but are available under restricted access from
daniel.stover@osumc.edu on reasonable request, fulfilling a data
transfer agreement; datawill be available for up to one year for research
purposes. All other datasets used in this study were published datasets
from previous studies and can be obtained by authorization through a
database (WGS of cfDNA) or downloaded freely (ATAC-seq, RNA-seq,
ChIP-seq, DNAse-seq). WGS of cfDNA from castration resistant prostate
cancer,metastatic breast cancer, andhealthydonorswas obtained from
dbGaP (accession phs001417.v1.p1). WGS of cfDNA from breast cancer
patients in the Ahuno et al. study was obtained from dbGaP (accession
phs002387.v1.p1).WGSof cfDNA fromER+breast cancerpatients in the
Bujak et al. studywasobtained fromNCBI (BioProject accessionnumber
PRJNA578569). The DELFI cohort (WGS of cfDNA from early stage
cancer patients and healthy donors) was obtained from EGA (dataset ID

EGAD00001005339). The LUCAS and LUCAS validation cohorts (WGS
of cfDNA from lung cancer patients and healthy donors) were also
obtained from EGA (EGAD00001007796). ATAC seq peak counts and
sample metadata were downloaded from TCGA (https://gdc.cancer.
gov/about-data/publications/ATACseq-AWG) and is freely available
without authorization. DNAse-seq was downloaded from zenodo
(https://zenodo.org/record/3838751/files/DHS_Index_and_Vocabulary_
hg38_WM20190703.txt.gz). ChIP seq was downloaded from GTRD ver-
sion 19.10 (https://gtrd.biouml.org/downloads/19.10/chip-seq/Homo%
20sapiens_meta_clusters.interval.gz). RNA seq to obtain differential
gene lists was accessed from https://toil-xena-hub.s3.us-east-1.
amazonaws.com/download/TcgaTargetGtex_RSEM_Hugo_norm_count.
gz (version 2016-04-12) using the UCSC Xena online tool. Source data
are provided with this paper.

Code availability
Griffin software and the subtype classifier tool can be obtained from
https://github.com/adoebley/Griffin. Code for analysis and machine
learning models can be accessed at https://github.com/adoebley/
Griffin_analyses.
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