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Systems immunology provides a holistic understanding of 
the immune system, spanning single immunological com-
ponents and pathways to form cross-scale networks. Unlike 

reductionist approaches aimed at understanding individual parts, 
systems immunology aims to understand properties of indi-
vidual parts working together—a challenge requiring specialized 
methodologies1,2.

During the past century, many successful experimental strate-
gies have been developed that were instrumental in defining cell 
types and cellular states within the immune system to reveal major 
molecular and functional components of the immune system and 
to establish causal relationships for transcriptional and functional 
cascades that drive immune activation (Fig. 1). For two decades, 
high-throughput, high-resolution technologies from the omics field 
have revolutionized our understanding of immunology and enabled 
the simultaneous assessment of hundreds to thousands of cellular, 
functional and molecular parameters with continuously increasing 
throughput and decreasing turn-around times.

Sequencing-based technologies are used to assess genomic, 
transcriptomic and epigenomic information, and sophisticated 
technologies in proteomics, metabolomics, microbiomics and lip-
idomics have been introduced to immunological research. In the 
past decade, single-cell sequencing technologies have emerged, with 
single-cell transcriptomics leading the way3.

In this how-to guide, we provide a brief introduction in the 
use and integration of omics technologies in systems immunol-
ogy and explain how current single-cell-level omics technolo-
gies can be applied to immunological questions in model systems 
and increasingly in human immunology and clinical trials for 
immune-mediated diseases. We focus on the use of transcriptomic 
technologies in systems immunology, particularly on single-cell 
assays, as mRNA constitutes the first functional and relatively eas-
ily accessible readout of the genome; as such, it can serve as a sur-
rogate to bridge genomic and functional phenotypes to enable the 
description and prediction of causal relationships and effectors of 
immune-cell function.

Evolution of omics in immunology
High-throughput, high-resolution omics technologies have been 
used in immunology since microarrays were introduced4,5. These 
early microarray-based techniques were applied widely, for exam-
ple to understand genetic differences and evolution of Bacillus 
Calmette–Guérin (BCG) vaccines6, to examine systemic inflam-
mation and the network of leukocytes in people with systemic 
lupus erythematosus5 and to characterize the activation network of 
macrophages in response to diverse stimuli7. However, in the late 
2000s, microarray-based techniques were superseded by unbiased 
massive-scale whole RNA sequencing (RNA-seq)8,9. The iden-
tification of long non-coding RNAs as broad-acting regulatory 
components of inflammatory responses exemplified how these 
technologies can lead to the discovery of completely new molecular 
concepts in immunology10. Shortly thereafter, the first single-cell 
immune-cell transcriptomes were described11,12, which fundamen-
tally changed the way immune-cell types and cellular states can be 
defined and how this information can be used to predict cellular 
activity and immune-cell function. Since then, a single-cell assay for 
transposase-accessible chromatin using sequencing (scATAC-seq), 
single-cell DNA methylation, single-cell lipidomics and single-cell 
metabolomics have been introduced as further means to character-
ize immune cells13–15.

Specific to immunological research, repertoire analyses of 
recombined B cell receptors (BCRs) and T cell receptors (TCRs) 
by BCR-seq and TCR-seq have a crucial role in understanding 
the complex mechanisms controlling the diversity and specific-
ity of adaptive immune responses16. Combined with single-cell 
transcriptomic and antigen-binding analyses using sophisticated 
analytical tools17–20, BCR-seq and TCR-seq can shed light on the 
functional state of the adaptive immune repertoire and its specific-
ity in response, for example to pathogens or tumor antigens, which 
might become important features for diagnosis and therapy of 
immune-mediated diseases21.

In parallel to the advances in single-cell genomics, the field of 
multiparameter antibody-based characterization of immune cells 
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has deepened our understanding of immunology, mainly owing 
to the advent of heavy-metals-based cytometry by time of flight 
(CyTOF) and oligonucleotide-based cellular indexing of tran-
scriptomes and epitopes (CITE)-seq, complementing the develop-
ment of high-dimensional fluorochrome-based flow cytometry. 
Furthermore, imaging mass cytometry is a highly valuable exten-
sion of CyTOF for characterizing immune cells in their natural 
environment and spatial context.

The first antibody-independent mass-spectrometry-based 
single-cell proteomics technologies, such as ScoPE2, were also 
reported this year and present a logical next step for the character-
ization of immune cells22.

As technologies continue to improve, metabolome, proteome, 
microbiome and lipidome studies and the integration of the data 
that they produce are being used to tackle immunological ques-
tions at a system-wide scale. Nevertheless, sequencing-based tech-
nologies remain the most commonly used techniques, particularly 
at the single-cell level. The most accessible omics technologies for 
immunology researchers are listed in Tables 1–3 and have been 
reviewed elsewhere23–26.

Choosing an omics technology
When it comes to the application of omics technologies in systems 
immunology, one needs first to define which of the omics tech-
nologies are best suited to answer the proposed question. Here, we 
introduce the respective technologies for the three major layers 
of biological information, namely the transcriptome, epigenome 
and genome.

Transcriptomics. Techniques for interrogating the transcriptome 
should be mentioned as forerunners of the omics revolution. RNA 
sequencing remains the gold standard for unbiased, genome-wide 
assessment of gene expression on a population level, and many pro-
tocols exist for a variety of purposes27.

For questions focusing on the heterogeneity of cell popula-
tions in health and disease or cellular differentiation and develop-
mental trajectories, single-cell transcriptomics has quickly gained 
popularity since its introduction28. Despite the cost and technical 
complexity, we encourage the use of single-cell technologies when 
studying heterogeneous cellular populations and molecular pheno-
types (for example, in complex tissues or in response to a diversity 

of perturbations). If preliminary results indicate negligible cellular 
heterogeneity, bulk analysis is a viable option given its lower cost 
and thereby its potential to analyze larger sample sizes and to pro-
vide higher density transcriptomic information. Furthermore, for 
large to very large clinical studies exceeding hundreds of samples, 
bulk technologies in combination with deconvolution algorithms 
trained on a small set of single-cell resolved data are currently an 
effective way to gain important information about transcriptional 
regulation and function (for example, associated with a specific 
disease), pathological processes or therapeutic interventions, 
including vaccines29–31.

Today, several complementary scRNA-seq approaches exist, each 
with specific advantages and applications for answering different 
questions (summarized in Table 1). As examples of the two most 
widely used scRNA-seq methods, plate-based full-length-mRNA 
techniques have the highest sensitivity (albeit limited in through-
put) and enable isoform detection in isolated cell populations32, 
and 3′- or 5′-mRNA-capture approaches using microfluidics or 
nanoliter-well arrays enable high throughput at the cost of decreased 
sensitivity33,34.

Although profiling of the immune-receptor repertoire on a 
population level can inform us about clonal diversity of lympho-
cytes in homeostasis and disease16, its adaptation to single-cell 
resolution (scTCR-seq and scBCR-seq) enables clonotypic pheno-
type analysis35. Furthermore, oligonucleotide-coupled antibodies 
(CITE-seq36 or commercially available reagents, such as TotalSeq 
and AbSeq) enable the combination of scRNA-seq with analysis of 
surface protein expression.

Epigenomics. In addition to the transcriptome, the epigenome can 
be interrogated using omics technologies. The variety within this 
class of technologies reflects the complexity of epigenetic regula-
tion37. Although ATAC-seq is seemingly the most prominent 
representative of epigenomics technologies38, many solutions to 
investigate DNA accessibility and conformation, histone modifica-
tions and transcription factor binding at the bulk and single-cell level 
have been developed and are summarized in Table 2. Furthermore, 
multi-omics methods to profile epigenetic markers alongside the 
transcriptome in single cells have undergone a rapid development 
from proof-of-concept reports to robust protocols applicable at a 
large scale39.

Single-cell omicsMulti omicsBulk omicsNext-generation sequencingMicroarrays

(1995) (2005) (2006) (2010) (2013)

Omics
(1995–current)

Genetic models
(1989)

Hybridoma
(1975)

ELISA
(1971)

Flow cytometry
(1968)

Fig. 1 | Milestone methods in immunology. Timeline of the most important technological developments in immunology research, with a special focus on 
the evolution of omics from the advent of microarrays to current single-cell approaches.
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Genomics. Omics technologies are crucial to define genetic altera-
tions as major drivers for human immune phenotypes (Table 3)40. 
Aside from whole-genome or whole-exome sequencing and targeted 
next-generation sequencing (NGS) panels, genotyping microarrays 
present a scalable and cost-effective solution for population genet-
ics. Genetic variability has been investigated at the single-cell level 
(reviewed elsewhere41), but often these data suffer from sparsity and 
high levels of noise as the biological material assessed in a single cell 
is limited. Exploiting structural genomic rearrangements leading to 
abnormal copy numbers by copy-number variation (CNV) analyses 
or taking advantage of the higher copy number of the mitochondrial 
genome by targeted mitochondrial DNA sequencing (scMito-seq) 
are sophisticated approaches to overcome these limitations and can 
be used to infer cell fate through lineage tracing42–45.

The need for hypothesis-driven research
The potential of omics technologies in immunology seems end-
less, and the high-dimensional output of these technologies often 
triggers unbiased analytical approaches. Although exploratory data 
analysis can be essential to initially understand data structure and 
detect potential biases, we encourage researchers to follow estab-
lished principles of hypothesis-driven science as outlined in the 
proposed systems-immunology cycle (Fig. 2)46. In this cycle, the 
application of (single-cell) multi-omics technologies follows the 
formulation of the hypothesis or question in combination with 
classical experimental design (for example, loss-of-function or 
gain-of-function experiments, defined clinical cohorts or clini-
cal trials, such as vaccine trials or immunotherapy) to establish 
immune function, molecular phenotypes or immunotherapy and 
outcome prediction. Although a hypothesis is seen by some as a 
liability, we stress its guiding function while acknowledging the 
risk of it blinding researchers to alternative questions or paths of 
analysis47. Admittedly, a hypothesis in omics-based immunologi-
cal studies can be vague, such as proposing broad transcriptional 

differences in multiple peripheral immune cells in a case–control 
study of an inflammatory disease. Nevertheless, we argue that a 
hypothesis-driven modus operandi helps scientists formulate and 
focus on central questions and does not preclude the potential for 
independent discovery and the derivation of new hypotheses in 
secondary data usage.

The major difference between this holistic approach and classical 
reductionist experimentation is the requirement for mathematical 
and computational modeling of big data. This step of the cycle could 
be termed ‘data driven’; however, without a well-formulated hypoth-
esis and sound experimental design, cutting-edge multi-omics 
technologies are at risk of missing their mark. By contrast, 
hypothesis-driven approaches and well-conceived experimental 
setups result in high-resolution omics data that provide valuable, 
and often unanticipated, biological explanations while reducing the 
risk of failure and enabling the prioritization of follow-up and vali-
dation studies.

How to apply omics technology
Human immunology has already benefited substantially from omics 
technologies, such as the large endeavors of the Human Immunology 
Project Consortium48, the ImmVar study49, the Human Functional 
Genomics Project40,50 and the Milieu Intérieur study51, to study the 
variability of the human immune system and to better characterize 
genotype-phenotype associations. Bulk omics technologies, such as 
DNA-seq, RNA-seq and ATAC-seq, are now commonly included in 
clinical studies of immunological diseases52,53. The Human Cell Atlas 
was the first large initiative to integrate omics technologies54, and 
now single-cell-resolution technologies (in particular scRNA-seq) 
are increasingly included in systems-level immunological readouts 
in large clinical trials55.

Experimental design. For human immunology research, five sce-
narios can be envisioned (Fig. 2): (1) exploratory studies to define 

Table 1 | overview of technologies: transcriptomics

Target Bulk method Single-cell method Approach and application references

Targeted RNA Microarrays Targeted single-cell 
transcriptomics (for 
example, BD Rhapsody)

Quantitative gene expression measurements using 
complementary oligonucleotide probes. Targeted 
transcriptomic approaches for investigation of defined 
gene panels reduce the analytical complexity, the 
required depth of sequencing and, consequently, 
the costs dramatically, but also limit the possible 
observations to a predefined gene set.

4,111

Full-length (m)RNA RNA-seq scRNA-seq (for example, 
Smart-Seq2)

NGS-based analysis of either total or mRNA with full 
transcript coverage. Genome-wide and full-length 
assessment of RNA molecules allows transcriptomic 
analyses at the transcript isoform level. The high 
sensitivity and resolution comes at the price of lower 
throughput for single-cell applications.

27,32

mRNA 3′ RNA-seq (for 
example, Lexogen 
QuantSeq)

3′ or 5′ scRNA-seq (for 
example, MARS-seq, 
Seq-Well, 10x Chromium, 
BD Rhapsody, SPLiT-Seq)

3′ or 5′ mRNA counting using captured 
oligonucleotides with unique molecular identifiers 
and barcode sequences. Single-cell applications rely 
on microfluidics, nanoliter-well arrays or split-pool 
barcoding for single-cell isolation. These technologies 
combine genome-wide transcriptomics with true 
molecular quantification at substantially reduced 
sequencing requirements.

34,112

Immune-receptor repertoire TCR- or BCR-seq scTCR- and scBCR-seq, 
Dextramer-seq

Antigen receptor repertoire profiling using 
high-throughput sequencing technologies. These 
technologies combine the analysis of clonality and 
antigen specificity by sequencing the TCR or BCR locus 
or TCR-bound oligonucleotide-labeled dextramers with 
transcriptional and epigenetic phenotyping.

16,113,114
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immune functions and immune-cell types, usually performed 
in small cohorts up to 20 individuals56; (2) validation studies in 
humans assessing immunological findings derived from model sys-
tems43; (3) cross-sectional cohort studies, either in healthy or dis-
eased individuals, to study human immune variation and immune 
deviation in the context of diseases57; (4) vaccine, immunother-
apy and other therapy-response trials31; and (5) studies exploring 
genetic or environmental effects on human immune function58,59. 
Depending on the goals and the size of the study, factors affecting 
data quality might differ. For example, although human variation 
can have a strong effect on exploratory studies with samples from 
only a few individuals, restricted diversity within a cohort might not 
fully represent the spectrum of human variation for genome-wide 
assessments, which also holds true for genetic susceptibility stud-
ies. Similar considerations need to be included in the design of 
(immuno)therapy trials. For example, the assessment of the dynam-
ics of immune activation, function and cellular distribution fol-
lowing a vaccine will differ between individuals, and genome-wide 
changes might have different kinetics, the capture of which requires 
not only highly standardized sampling schemes, but also sophisti-
cated analytical approaches60–62.

Necessity of teamwork and expertise. Compared with the 
lower-resolution methods that are often used as primary readouts 
in clinical studies63, the application of omics technologies requires 
consideration of many potential factors that affect data quality, 
and thus requires thorough planning to harness the potential of 
high-resolution, high-content technologies. As technologies are 
continuously evolving, a team of omics experts should be included 
in the design of clinical studies that address immunological ques-
tions. Furthermore, omics data generation and analysis should be 
included in educational programs in immunology46.

In addition to study design, sample handling according to 
well-defined standard operating procedures (SOPs), library pro-
duction, sample multiplexing, sequencing strategies and depth, 
data pre-processing and downstream analyses, including metadata  
handling, need to be addressed (Box 1).

Batch effects. One, if not the major, aspect when planning omics 
applications, particularly with increasing sample sizes gener-
ated across different institutions, is the consideration of the effect  
from technical parameters, often referred to as ‘batch’ effects64,65. 
Given the vast number of measurements defining the feature space, 

Table 2 | overview of technologies: epigenomics

Target Bulk method Single-cell 
method

Approach and application references

DNA methylation BS-seq
RRBS-seq

scBS-seq Bisulfite treatment of DNA before routine NGS to determine 
patterns of methylation and thereby infer gene regulation.

115,116

ProteinDNA interaction ChIP–seq scChIP–seq Crosslinking of DNA and protein for immunoprecipitation and 
NGS-based analysis. The assay allows for determination of the 
binding region of specific targets on DNA and inference of the 
binding motif.

117,118

DamID
CUT&Tag

scDamID
scCUT&Tag

Mapping binding sites of DNA- and chromatin-binding proteins 
using DNA adenine methyltransferase or Tn5 transposase fusion 
proteins, providing similar information as ChIP–seq with no need 
for immunoprecipitation.

119–121

Chromatin structure Micrococcal 
nuclease 
(MNase)-seq

scMNase-seq Genome-wide nucleosome positioning and chromatin-accessibility 
profiling using micrococcal nuclease digestion of open chromatin 
regions. This technique provides indirect information on chromatin 
accessibility and its potential influence on gene expression.

122,123

Nucleosome 
occupancy and 
methylome 
(NOMe)-seq

scNOMe-seq Creation of a digital nucleosome footprint by methylation of 
nucleosome-free GpC sites using the GpC methyltransferase 
M.CviPI. Although this method allows for high-resolution 
chromatin-accessibility profiling, it comes with the drawback of 
relying on the presence of GpCs.

124,125

DNase-seq scDNase-seq Genome-wide chromatin profiling using DNaseI enzyme to cut 
accessible double-stranded DNA, followed by primer ligation 
and NGS. Comparable to ATAC-seq, this method provides a 
means for genome-wide chromatin profiling. Comparative studies 
between DNase-seq and ATAC-seq illustrated that both methods 
determining open chromatin landscapes do not entirely overlap, 
which is mainly due to differences in efficiency at different 
genomic locations.

126

ATAC-seq scATAC-seq Genome-wide chromatin profiling using Tn5 transposase to cut 
accessible double-stranded DNA and simultaneously introduce 
primer oligonucleotides for library preparation and NGS. Owing 
to combined fragmentation and tagging by the Tn5 transposase, 
ATAC-seq is simpler and more robust than other methods to 
determine open chromatin landscapes.

38,127–129

Chromosome conformation Hi-C-seq scHi-C-seq
sciHi-C-seq

Chromatin is crosslinked in three dimensions with formaldehyde, 
followed by restriction digestion, biotin fill-in and ligation of 
biotinylated ends, resulting in chimeric DNA fragments. With this 
set of methods, it is possible to study which regions of the genome 
are in close proximity in its three-dimensional organization.

130,131
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Fig. 2 | ‘How to’ in immunomics. The systems-immunology cycle, with representative examples for each step, from the first medical observation or 
phenotype to validation of results. DE, differential expression; ML, machine learning.

Table 3 | overview of technologies: other

Target Bulk method Single-cell 
method

Approach and application references

Genetic markers 
(SNP, CNV)

DNA-seq, Exome-seq, 
Genotyping microarrays

scDNA-seq Whole-genome or whole-exome sequencing on cell populations or 
single cells for detection of genetic polymorphisms. Alternatively, 
DNA microarrays using immobilized allele-specific oligonucleotide 
probes. These methodologies can help to understand the genetic 
variability underlying human phenotypes or diseases.

132

Proteomics  N/A FACS, CyTOF, 
EpiTOF

Assessment of the protein expression for defined extra- or 
intracellular markers at single-cell resolution (FACS or CyTOF). 
EpiTOF, an evolution of CyTOF, can provide single-cell resolved data 
on epigenetic states. These methods rely on antibodies labeled 
with fluorochromes or heavy metals. These methods can provide 
information at relatively low cost for a high number of cells.

133,134

Proteogenome CITE-seq CITE-seq, 
INs-seq, 
AB-seq

Simultaneous assessment of the transcriptome and surface or 
intracellular protein expression using oligonucleotide-coupled 
antibodies. This multi-omics approach enables the addition of 
a functional layer onto the transcriptomic analysis at single-cell 
resolution.

135,136

Lipidome Shotgun lipidomics, liquid 
chromatography- coupled 
mass spectrometry (MS)

Single-cell 
lipidomics by 
MS

Assessment of the lipidome, including diverse lipid classes and 
species, by mass spectrometry, which can provide relevant 
information on the metabolic cellular state.

137,138
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ranging from a few (~100) features in targeted sequencing up to 
hundreds of thousands of features in chromatin-landscape analysis, 
and considering the sensitivity of omics technologies, batch effects 
can be introduced at any step in the sample and data-generation 
process; thus, attempts to decrease batch effects are essential for 
good study design.

For single-cell transcriptomics, multiplexing of samples enables 
joint processing, which can help to reduce technical variability. A 
number of strategies for this purpose have been developed, includ-
ing labeling of cells using either oligonucleotide-tagged antibodies 
(cell-hashing) or lipid-modified and cholesterol-modified oligo-
nucleotides66, or the use of natural genetic variation67 to disentangle 
cells from multiple donors.

To avoid effects of circadian rhythm and seasonality, samples 
should be collected at similar times of day if possible68,69. For stud-
ies conducted over an extended period of time, seasonality might 

either be considered as a covariate of immune function70 or elimi-
nated by sampling during the same time of the year. Although 
seemingly trivial, sampling itself needs to be highly standardized, 
as organ, location of biopsy, sampling devices, time from biopsy 
to sample processing and sample-freezing procedures need to be 
as uniform as possible71–73, and any deviations from the protocol 
must be recorded carefully for each included sample. Such technical 
and clinical metadata can later be useful to understand unantici-
pated variance and tackle batch effects during data analysis using 
batch-effect-removal algorithms65,74. In addition, if available, these 
metadata facilitate further reuse of the data.

Isolation procedures for RNA or DNA also require careful 
standardization. For example, batch effects might be introduced 
by handling some samples manually and others using automated 
sample handling. Similarly, if studies become too large to handle 
all samples in one run, individual batches might have differences 
due to the reagents or buffers that are used. Here, randomization of 
the samples extracted and processed in each batch can prevent the 
introduction of uncontrollable biases in the data.

Prior to the setup of larger (multi-center) studies, small pilot 
trials evaluating all necessary steps and predicting potential con-
founding effects of upscaling are advisable.

Taken together, batch effects have to be considered in the inter-
pretation of omics data, and knowing their origin and how to mini-
mize their effect on data analysis is critical for the production of 
robust results.

Metadata collection and standardized documentation. Collecting 
dense technical and clinical metadata on participants in clinical tri-
als when using omics technologies is becoming more important. 
Interpretability of variability observed in high-resolution omics 
data might remain opaque without comprehensive records cover-
ing both technical aspects, such as sampling method and device, 
library production protocol or experimental day or batch, and clini-
cal parameters, including sex, age, body-mass index, disease his-
tory, comorbidities, medication, smoking history and additional 
clinical markers such as serum levels of inflammatory biomark-
ers and differential blood-cell counts (see refs. 57,75,76). Even worse, 
missing technical or clinical metadata might cause misinterpreta-
tion of complex data and mislead subsequent research directions. 
Also crucial for meta-analysis is that researchers and publishers 
enable metadata to be accessible while respecting privacy and 
data-protection regulations. Moreover, the use of accepted ontolo-
gies for clinical metadata helps to maintain the highest possible 
degree of consistency across studies77.

In principle, similar caution should be applied when it comes 
to sequencing, as library production, and even sequencing itself, 
have many variables that affect downstream analysis (Box 1). 
Although sequencing core facilities usually know how to mini-
mize batch effects, careful planning of these steps together can 
improve data quality.

Aside from the many pitfalls in data production, data process-
ing and analysis also require high standards for reproducibility and 
documentation. The many options and consequential choices dur-
ing data processing have noticeable effects on data content and qual-
ity and therefore need to be standardized for any given project and 
stringently reported to the community. Taking the simple example 
of the alignment of sequencing reads to a reference genome, it has 
been thoroughly demonstrated how the choice of the alignment 
algorithm and reference genome and transcriptome annotation 
can affect data quality and content78. Another clear but important 
example is the selection of gene biotypes, such as protein-coding, 
long non-coding or microRNAs, in gene expression quantification 
and downstream analyses. Focusing on protein-coding genes, as is 
quite common in transcriptomic analyses, might simplify the task 
of analyzing and interpreting gene expression data, but prevents 

Box 1 | Experimental design checklist

 1. Hypothesis-driven study: Define a clear biological question 
and formulate a corresponding hypothesis on the basis of 
previous observations.

 2. Adequate sample size: Define the size of the study carefully 
according to the aim; studying the immunological variance 
in a population requires a larger cohort than does studying a 
specific disease. When funding is a limiting factor, structure 
the study in two phases so it is possible to increase sample 
size if necessary.

 3. Control for time of day and seasonality: When sampling, 
minimize the variability in the time of day and, when pos-
sible, the season in which the sample is acquired. In any case, 
rigorously document such variables.

 4. Standardize sample collection and storage: Make sure the 
medical devices used for the collection of samples are ad-
equate for the aim of the study and that the same device and 
procedure is used for all samples. This is especially impor-
tant if multiple sites are participating in the sample collec-
tion. The same applies to the storage conditions before and 
after sample processing.

 5. Standardize sample processing: Standardize the sample 
processing and library production (for example, do not  
mix manual and automated sample preparation). If mul-
tiple sites are processing the samples, make sure protocols 
are standardized and the risk of batch effects is minimized. 
When possible, randomize samples within each preparation 
batch. Here, sample multiplexing using cell-hashing ap-
proaches or natural genetic variation can be a valuable ap-
proach to both reduce costs and minimize batches by joint 
sample processing.

 6. Detailed collection of sample and participant metadata: 
Always include a detailed metadata table for each sample 
and participant. When ethically allowable, share this table 
alongside the data with the community.

 7. Streamlined analysis: Define clear biological questions to 
answer and consult with analytics experts to define the best 
methodology to follow.

 8. Computing and storage infrastructure: According to the 
size of the study, setup a computing infrastructure that can 
process the data. Also make sure the raw and processed  
data are stored according to your national data- and privacy-
protection regulations.
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assessment of regulation mediated by non-coding RNAs, despite the 
fact that total RNA libraries contain this information.

Sample size. Sample size is another important aspect to be 
considered in the design of omics studies in human-systems 
immunology. Although exploratory pilot studies work with low 
numbers of well-defined samples, studies addressing genetic sus-
ceptibility require large cohorts. Furthermore, the contrast of the 
inter-individual variability versus the intra-individual (that is, 
inter-cellular) heterogeneity needs to be specifically considered 
for sample-size estimation in single-cell omics studies. Molecular 
profiling of a specific subset of cells from individuals with a het-
erogeneous disease requires many samples from a relatively large 
patient cohort. By comparison, an exploratory study of a clinically 
well-defined disease spanning a whole cellular compartment, such 
as peripheral blood immune cells and their cell states, will require 
large numbers of cells from each individual.

Moreover, the fact that the effect sizes among different features 
can vary considerably further complicates study size estimation. 
Approaches to power calculation, such as the scPower or powsimR 
frameworks79,80, should be taken into account during study design.

The high cost of sequencing-based omics techniques still limits 
the number of samples possible to analyze. One potential solution to 
avoid underpowered studies is to focus on subcohorts of individu-
als in which the largest effect size is predicted to evaluate the initial 
hypothesis considering intra-sample and inter-sample heterogene-
ity and to include additional individuals only if an interim analysis 
has shown differences between the groups. Multiplexing samples 
can substantially reduce cost and is particularly suitable for studies 
with many samples but that require few cells per sample. In addition, 
the initial sequencing data are used to perform a better power esti-
mation and, if necessary, sequencing data from additional samples 
have to be added to the study data set. This is particularly feasible 
for omics data for which samples can be safely stored for extended 
periods of time. This approach enables optimization between cost 
and the informative value of the study, as long as technical batch 
effects between study phases are minimized.

Challenges and opportunities for data analysis. Once data pro-
duction and quality control have been completed, in-depth down-
stream analysis of the data can begin. In Box 2, we list the hardware 
requirements for such analyses and a selection of bioinformatics 
tools that we find particularly useful. With the vast numbers of 
new bioinformatics tools and the fast pace at which they are being 
published, the possibilities for analyses are seemingly endless81. We 
therefore strongly advocate for the formulation of an analysis plan 
with clearly defined and prioritized questions and well-established 
methods to address them (Fig. 3), if possible in consultation with 
experienced data scientists. Such a plan can greatly speed up the anal-
ysis and help computational team members who might not have the 
subject-specific biological knowledge to address the most relevant 
questions. In view of the enormous feature space and large amount 
of room for unexpected observations, this plan must be dynamic. 
But, even if it seems naive, writing a strategy that allows for adjust-
ments prevents the analyst from getting lost in the many analytical 
possibilities. As already emphasized, we favor hypothesis-driven 
studies that combine omics data with computational modeling and 
experimental validation as a powerful approach for data generation, 
interpretation and efficient knowledge gain. Once priorities and 
major questions are defined, and depending on the nature of the 
available data—be it transcriptomic, epigenetic or genetic data at 
bulk or single-cell resolution—different analytical pipelines and 
tools need to be applied (reviewed elsewhere26,81). First analytical 
steps comprise means of data exploration using unbiased and unsu-
pervised methodologies, such as hierarchical clustering or princi-
pal component analysis. Understanding the data independent of 

the initial hypothesis is vital to identify the present axes of variance 
in uncharted data and to grasp the dominating variables, such as 
disease classification in clinical studies or the experimental date in 
case of batch effects. Evaluation of the robustness of parameter set-
tings (for example, quality filtering cut-offs, doublet identification, 
dimensionality-reduction parameters and clustering resolutions) 
and establishment of a suitable data model might take considerable 
time and should not be underestimated.

Subsequently, hypothesis testing using statistical methods 
to contrast gene expression levels in different groups within the 
study cohort presents a major readout82. An alternative to classi-
cal inferential hypothesis testing to define differentially expressed 

Box 2 | Bioinformatics hardware and software requirements

•	 Hardware: Hardware requirements will vary according to the 
task; generally data pre-processing requires more computa-
tional resources. For the most demanding tasks, cloud com-
puting can be an option, with consideration of data-privacy 
regulations.

•	 Pre-processing: Pre-processing is often performed by 
the sequencing center performing the sequencing never-
theless if it is necessary to align bulk or single-cell data. In 
our experience, a convenient computing infrastructure 
requires 32+ CPU cores and 64+ Gb or RAM memory 
with fast storage and adequate capacity.

•	 Data analysis: Hardware requirements for data analysis 
can vary, depending on the amount and type of data. For 
bulk data, standard modern desktop or laptop PCs are 
sufficient for almost all analyses (4 or 6 CPU cores and 
16 or 32 Gb RAM memory). Single-cell data, especially 
those from high-throughput methods, can require a large 
amount of RAM owing to the size of the data matrix to be 
stored in memory; in this case, a system with 100+ Gb of 
memory is advisable.

•	 Software: We provide a short list of tools that we have found 
particularly useful for data pre-processing and analysis. More 
comprehensive lists have been reviewed elsewhere81,139,140.

•	 Operating system: Any long-term-supported 
Linux-based operating system that can run defined soft-
ware environments (for example, Ubuntu or Debian with 
Docker or Singularity installed or any system able to run 
conda environments). We encourage performing both 
pre-processing and analysis within fixed environments to 
ensure full reproducibility.

•	 Pre-processing: Many commercial and academic proto-
cols, especially in the single-cell field, provide a propri-
etary solution for data pre-processing (for example, Cell 
Ranger from 10x Genomics141). For other data types, we 
find the nf-core project142, a community effort to collect 
a curated set of analysis pipelines built using Nextflow, 
particularly useful and versatile.

•	 Bulk data analysis: The most widely used tools for bulk 
data normalization, scaling, data exploration and differ-
ential analysis are DEseq2 (ref. 143) and EdgeR144, which 
provide an extensite toolbox for data analysis.

•	 Single-cell data analysis: The universe of single-cell data 
analysis tools is constantly expanding. Today, the most 
widely used tools are the R-based Seurat145 (with Signac 
for single-cell ATAC analysis) and the Python-based 
Scanpy146 (with EpiScanpy for single-cell ATAC analysis).

NATUrE IMMUNoLogy | www.nature.com/natureimmunology

http://www.nature.com/natureimmunology


Review ARticle NATuRe ImmuNoLogy

genes between groups of samples are gene regulatory network 
approaches that enable identification of subtle, but robust, pat-
terns of expression changes within the study despite small effect 
sizes83,84. Naturally, with the introduction of single-cell resolu-
tion in omics technologies, the complexity of data analysis has 
increased. New challenges have emerged, including unprec-
edented dimensionality as well as high sparsity and noise in the 
data. In addition, cell-type identification and annotation in the 
context of existing knowledge, integration of data across experi-
ments or cell-type-associated expression of genes has demanded 
new analytical solutions85.

The results of such complex computer-aided analyses can be 
viewed as models of the data, which depend on numerous param-
eter settings and aim to represent the underlying biology. This is 
probably the major difference compared with classical readouts (for 
example, a cytokine measurement or cell surface marker expres-
sion). Uncertainties are inherent to all of these computational 
approaches and are controlled in two complementary ways. First, 
the use of different computational methods to describe the data 
structure presents an in silico validation of the model. Second, 
experimental validations are crucial, for example to test predicted 
cellular phenotypes by functional assays in the laboratory.

However, to propose such validation experiments, the data 
models must be biologically interpreted. Questions to be asked 
range from defining signaling pathways changed within the study 
cohort86, predicting transcription factor binding within regions of 
open chromatin inducing certain transcriptional programs87, to 
modeling potential ligand-receptor interactions between different 
cell types, if single-cell data are available88,89. For almost all of these 
important tasks, many approaches and tools are available. When 
considering how to apply new predictive layers to unravel underly-
ing biology within the data, it is often advisable to collaborate or 

exchange information with experts who have introduced new com-
putational approaches.

Machine learning. Attempts to integrate multiple omics layers, for 
example transcriptomic with metabolomic90 or epigenomic data91, 
add yet another level of complexity to the analysis. As expected, the 
mathematical and computational models for integration are com-
plicated and constantly evolving. We expect new, innovative and 
user-friendly approaches to be introduced in the next few years92. 
This is similarly true when it comes to machine-learning methods 
that are becoming more common for the analysis of omics data93, 
particularly at the single-cell level81. As machine learning is also a 
very wide and strongly proliferating field, it is of utmost importance 
that the question to be answered is phrased clearly before applying 
machine-learning strategies. Reconstruction of gene regulatory net-
works to identify targetable hub genes is one possible application of 
machine learning87. Moreover, for the characterization of transcrip-
tional alterations induced by, for example, a new infectious disease, 
deep-learning strategies can be used to map new data sets on top of 
a reference from healthy individuals94.

Data storage. By definition, omics data sets are large, and with 
regard to large human cohorts or clinical studies, data storage and 
processing require a lot of computing resources (Box 2). Moreover, 
omics data contain information that can be sufficient to re-identify 
individuals and therefore are regulated by national laws for privacy 
protection, such as the General Data Protection Regulation (GDPR) 
in the European Union and the Health Insurance Portability and 
Accountability Act (HIPAA) in the United States. It is therefore 
advisable to take the necessary ethical and legal precaution when 
dealing with human omics data. Data storage needs to occur either 
on highly protected in-house systems or on regulated repositories 

Definition of the main scientific questions of the study 
Hypothesis-driven science  

In a transdisciplinary team of omics experts and bioinformaticians,
define the best experimental and technical conditions for the study   

Experiment or clinical trial
Preprocessing for sequencing

Define who is responsible for
orchestrating the analysis 

Define analysis
timeline    

Define scheduled update
meetings (for example, weekly)  

Define the interdisciplinary 
analysis team      

In the team:  revise the
biological questions and define
analytical strategy        

Experimental validation
of the analytical results        

Formulation of
biological questions         

Distribute tasks to team
members according to
their individual skills           

Report the results
(in a publication or at a 
conference)     

Experimental plan

Analytical plan

Fig. 3 | Experimental and analytical plan. Proposed workflow for experimental and analytical planning in the systems-immunology cycle.
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maintained by public organizations, such as the European Genome 
Archive (EGA) or the database of Genotypes and Phenotypes 
(dbGaP). Pre-processing of raw data, including quality control, 
alignment or pseudoalignment to reference genomes and transcrip-
tomes or novel assemblies, and normalization of data, is computa-
tionally expensive, requiring significant compute power, which is 
best carried out by collaborating genome centers. Once data are 
preprocessed and summarized, the data size is usually smaller, and 
such data can be handled by standard computer equipment that 
is even as low-powered as laptops. Irrespective of the computing 
infrastructure used for analysis, data-privacy standards should be 
recognized at all times, and platforms integrating user management, 
data access, data and metadata management, data storage and data 
analysis in a protective environment are the way forward. Such plat-
forms can provide principles of findability, accessibility, interoper-
ability and reusability (FAIR)95 and containerized environments to 
ensure data reproducibility with the option of serving as a safe place 
to train young scientists in computational biology applications96.

Data availability
Given the high computational component of current omic studies, 
the respective code and scripts are a critical component of the work. 
Although it is impractical to publish the entire code in the materials 
section of a publication, we strongly encourage the community to 
provide the entire source code used for the analysis in public reposi-
tories (for example GitHub or Zenodo) to ensure full reproducibility 
of analyses. Furthermore, online platforms such as FastGenomics96 
provide a place to store both preprocessed data and the accompany-
ing code, allowing the reader to interactively reproduce the analysis 
in predefined containerized environments.

When it comes to data sharing, access and reuse, the omics 
field is currently leading the way147 and it is good to see that simi-
lar strategies are now being supported within the field of immu-
nology research, for example for CyTOF and multiparameter flow 
cytometry data or immunophenotyping data for clinical studies148. 
Benchmarking new studies, or using previous knowledge to classify 
insights from new omics data, is becoming a standard procedure. 
This rich information from existing data can be further leveraged. 
For example, cohort-wide data sets of functional immunological 
and omics information can be used to assess human variation in 
gene expression as a predictor for gene function when comparing 
individuals with low or high expression of a gene of interest97.

Validation of omics data
Omics data are of value during the experimental validation phase 
of the systems-immunology cycle (Fig. 2), both in model systems 
and in human validation studies. The results from human omics 
studies can be validated at the molecular and mechanistic level by 
using well-defined genetic model systems that build on decades of 
immunological and genetic research. Applying omics approaches, 
for example in a specific mouse knockout condition, enables fur-
ther exploration of related molecular alterations and extension of 
the human phenotype97. Nevertheless, mouse models do not always 
reflect human immunology and thus should not be used as the only 
means of validation. We therefore suggest the use of two or more 
validation strategies whenever possible. Mechanistic hypotheses 
can be directly evaluated within the model system with classical 
functional assays and extended by molecular-biology-based in vitro 
studies in cell culture. Insights gained from genetic model systems 
can then be transferred back into the human setting and further 
identified molecular details can be tested in the initially acquired 
human data sets.

Validation is possible entirely within human data sets by mak-
ing use of the availability of natural variation at a locus of interest 
related to the identified results, that is a single nucleotide polymor-
phism (SNP) existing in the human population that can be studied 

as phenotype-linked quantitative trait loci (QTLs)53. Alternatively, 
genetic models can be generated in human cells through gene edit-
ing that can be assessed by functional in vitro assays, or by apply-
ing targeted CRISPR-mediated gene perturbations coupled with 
sequencing (Perturb-seq) that enable entire pathways or molecular 
networks to be targeted within a single experiment and generating 
omics-level readouts98.

Meta-analysis of available data sets. Another important validation 
approach is to link new data and findings to prior knowledge of 
published results (Fig. 2). Newly identified molecular phenotypes 
can be cross-checked in independent human studies with any classi-
cal immunological assay, such as flow cytometry or functional tests. 
Further, studies including omics-level information can be used to 
derive gene signatures for a certain cell state, a cell type or a dis-
ease, which are then tested for enrichment in the new data set. This 
approach is widely used in single-cell transcriptomics, as these data 
are ideal for generating such signatures99. Existing data are found 
in specialized repositories, such as the Gene Expression Omnibus 
(GEO), dbGAP and EGA. Sometimes, anonymized processed data, 
such as gene expression count data, are part of the initial publica-
tion or are available on interactive online platforms for easy access 
and exploration96 (https://data.humancellatlas.org/ and https://
singlecell.broadinstitute.org/single_cell). One needs to know that 
preprocessed data might not always be ideal for secondary use, as, 
for example, realignment against newer versions of the genome or 
inclusion of sequences of pathogenic species, as well as normaliza-
tion considering different covariates, are no longer possible. Under 
these circumstances, starting from raw data and using standardized 
pipelines100 is advisable. Other options to reuse existing data dur-
ing validation include the investigation of newly identified genes of 
interest or pathways of interest in existing data sets, or the reanalysis 
of similar public data sets with the same algorithms as applied to the 
new data to identify similarities and overlap of the new findings.

Beyond comparison to existing data, the integration of newly 
generated data into existing data is another option for meta-analysis. 
This strategy is continuously performed and improved in ongoing 
projects of the Human Cell Atlas (HCA) consortium54. Whether 
data integration or validation cohorts will be the major way forward 
in clinical applications of omics technologies will be determined 
in the near future. On the basis of our experience in COVID-19 
research75,101–103, we favor validation cohorts over data integration. 
While integration can be a powerful way to increase cellular resolu-
tion and enable identification of rare cellular states, it carries the 
risk of erroneous over-correction and loss of biological signaling. 
The validation-cohort approach accepts the limitation of the indi-
vidual data sets but ensures the reproducibility of the observations. 
Both approaches have their merits and areas of application.

Validation cohorts and functional experiments. Research during 
the COVID-19 pandemic has taught us many principles concern-
ing the use of omics, and particularly of single-cell multi-omics 
technologies. During the discovery phase, for example studying an 
unknown disease, single-cell multi-omics technologies provide a 
comprehensive overview of systemic and local changes in molecu-
lar phenotypes of affected tissues as well as the complete immune 
compartment. Well-defined experimental settings for clinical stud-
ies, including independent validation cohorts in combination with 
functional immunological validation experiments, such as flow 
cytometry or functional assessments of individual cell types, and 
potential use of animal models can lead to the discovery of cellular 
alterations and molecular pathways, with relevance to disease sever-
ity and trajectory and to subgroup-stratified prediction of response 
to potential drugs83.

Altogether, we suggest performing experiments that address 
molecular mechanisms and reuse of existing data as the last part of 
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the systems immunology circle for validating the findings of a study 
but also for formulating subsequent hypotheses.

Conclusion
This guide is designed to provide immunologists with an entry 
point to use single-cell and bulk (multi-)omics technologies as a way 
toward a better understanding of the complex cellular and molecu-
lar interactions that operate within the immune system. This ranges 
from comprehensive characterization of immune homeostasis and 
immune variation in whole populations, the molecular definition of 
cell types and states, the characterization of the dynamics of immune 
responses, locally and systemically, to the interaction of the immune 
system within organ systems. Increasingly sophisticated computa-
tional algorithms, combined with perturbation experiments and 
ever larger data sets, enable the identification of causal relationships 
within data104–106. Furthermore, the substantially increased quality 
of multi-omics technologies and the high potential to standardize 
these technologies has already led to their application in clinical 
settings, paving the way towards precision medicine107. Whether it 
is to decipher molecular and functional mechanisms in a new dis-
ease, such as COVID-19 (refs. 75,101–103), to identify therapeutic tar-
gets or monitor therapeutic responses108 or whether it is to guide 
outcome prediction109, single-cell and bulk multi-omics technolo-
gies are suited to capture the immune system’s complexity when in 
action. As the omics community is well prepared for large-scale 
international collaborations, it is foreseeable that large scientific col-
laborative networks will build on the newest developments in exper-
imental techniques as well as data-analysis approaches, which can 
even include concepts of specialized machine-learning approaches 
preserving data ownership and privacy110. We expect an enormous 
acceleration in knowledge once insights from multi-omics data  
can be used across many laboratories and institutions worldwide, 
without the need to share primary data.
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