
Nature Medicine

nature medicine

https://doi.org/10.1038/s41591-022-02104-7Perspective

Impact of the Human Cell Atlas on medicine
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Single-cell atlases promise to provide a ‘missing link’ between genes, 
diseases and therapies. By identifying the specific cell types, states, 
programs and contexts where disease-implicated genes act, we will 
understand the mechanisms of disease at the cellular and tissue levels and 
can use this understanding to develop powerful disease diagnostics; identify 
promising new drug targets; predict their efficacy, toxicity and resistance 
mechanisms; and empower new kinds of therapies, from cancer therapies 
to regenerative medicine. Here, we lay out a vision for the potential of cell 
atlases to impact the future of medicine, and describe how advances over 
the past decade have begun to realize this potential in common complex 
diseases, infectious diseases (including COVID-19), rare diseases and cancer.

Disease occurs as a result of aberrations in cells and cellular ecosystems 
within tissues — driven by genetic variations as well as environmental 
impacts, from nutrients to pathogens. To understand pathogenesis and 
discover and deliver new treatments, we need to understand cells, their 
internal circuits, and their interactions in health and disease. Although 
this has been appreciated for many decades, technical challenges have 
limited our ability to simultaneously probe human disease at a large 
scale and at high molecular and cellular resolution.

Breakthroughs in single-cell and spatial genomics in the past dec-
ade have opened the way to single-cell and tissue atlases in health and 
disease (Table 1), and are poised to impact every aspect of medicine 
(Fig. 1). These include understanding the cell types and programs in 
which disease genes act, deciphering mechanisms of disease initia-
tion and progress at the cellular and multicellular levels, defining new 
signatures for disease monitoring and diagnosis, and discovering and 
developing new molecular, gene and cell therapies and tracking their 
impact in patients.

As disease is only fully understood in reference to health, and vice 
versa, achieving this vision will require comprehensive reference maps 
of all human cells as a basis for both understanding human health and 
diagnosing, monitoring and treating disease. Mapping human cells 
poses major logistical and technical challenges, which are being met 
by the international Human Cell Atlas (HCA) initiative1. When the 
HCA was being planned, the initial members of the HCA community 
laid out our plans and goals in a white paper2, stating an ambition to 
accelerate biomedical research, drug discovery and development, 

and medical practice by fostering both curiosity-driven research and 
its clinical applications.

Less than a decade since the emergence of single-cell profiling 
methods, and 5 years since the launch of the HCA, the field has made 
enormous strides in delivering findings that are relevant to human 
health, with rapid development and application of new methods to 
tackle medical questions (Table 1 and Fig. 2). In particular, our com-
munity, like many others, was galvanized by the global challenge of 
the COVID-19 pandemic to contribute early information about the 
cells that are most susceptible to infection3–5, and later to characterize 
the impact of SARS-CoV-2 infection on tissues throughout the body6,7  
(Box 1). Here, we explore the key ways in which cell atlases are accelerat-
ing biomedicine and their future potential.

Understanding disease biology: from genes to 
cells, programs and tissues
From disease-associated genes to cells of action
Genetic variants — both common and rare — contribute to the risk of 
developing disease, and human genetic studies have identified more 
than 100,000 variants associated with different human traits, especially 
the risk of developing different diseases. However, to understand the 
role of these variants in disease, we must understand the cells in which 
they are expressed and act. In rare diseases, the relevant cell type may 
be unknown, or even undiscovered. In common complex diseases, 
the candidate loci from genome-wide association studies (GWAS) and 
phenome-wide association studies are often in non-coding regions 
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Table 1 | A selection of key experimental methods for 
construction of cell atlases at different levels of biological 
organization

1. Clinical data

Clinical-trial data; health records; disease registries; patient registries

2. Tissue imaging and histology

Medical and biomedical

Computed tomography (CT); computed axial tomography (CAT)

Magnetic resonance imaging (MRI)

Magnetic resonance spectroscopy (MRS)

Positron emission tomography (PET); single-photon emission computed 
tomography (SPECT)

Photoacoustic imaging

Ultrasound

X-rays

Microscopy

Optical imaging: fluorescence/confocal; light-field; light-sheet; multiphoton; 
super-resolution; spectroscopy

Bioluminescence

Atomic force microscopy

Electron microscopy

3. Spatial (platform, description)

RNA

CosMx; GeoMx In situ multiplex RNA

DNA microscopy

ExSEQ Expansion sequencing

FISSEQ Fluorescent in situ RNA-sequencing

Geo-seq Geographical position sequencing

INSTA-seq In situ transcriptome accessibility 
sequencing

ISS In situ sequencing

smFISH Single-molecule fluorescent in situ 
hybridization (FISH)

MERFISH; osmFISH; SeqFISH Multiplexed smFISH

PLISH Proximity ligation in situ hybridization

Spatial transcriptomics; HDST; 
Slide-seq; Visium

Slide-based spatial transcriptomics

STARMap Spatially resolved transcript amplicon 
readout mapping

TIVA-seq Transcriptome in vivo analysis

Protein

CODEX; CosMx; GeoMx; 
ImmunoSABER

Multiplex protein detection

MIBI Multiplex ion beam imaging

Multiplex IF Multiplex immunofluorescence

tCy-CIF Tissue-based cyclic 
immunofluorescence

4. Multimodal (platform, description)

ASAP-seq Assay for transposase-accessible 
chromatin sequencing (ATAC) with 
select antigen profiling

CITE-seq Cellular indexing of transcriptomes and 
epitopes by sequencing

Perturb-seq; CRISP-seq; 
CROP-seq;

Pooled CRISPR screen with single-cell 
RNA-seq readout

DOGMA-seq Single-cell RNA, protein, mtDNA, + 
ATAC-seq

DR-seq gDNA–mRNA sequencing

ECCITE-seq; Perturb-CITE-seq Pooled CRISPR screen with single-cell 
RNA-seq and protein readout

G&T-seq Genome and transcriptome sequencing

InCITE-seq Single-nucleus RNA-seq and proteins

ORCA Optical reconstruction of chromatin 
architecture

Paired-seq Single-cell RNA and DNA accessibility 
seq

Perturb-ATAC Pooled CRISPR screen with single-cell 
ATAC-seq readout

PHAGE-ATAC Phage-based multiplex protein 
measurements and single-cell ATAC-seq

REAP-seq Single-cell RNA-seq and proteins

scCAT-seq Single‐cell chromatin accessibility and 
transcriptome sequencing

scCOOL-seq Chromatin overall omic-scale landscape 
sequencing

sciCAR Single-cell combinatorial indexing 
chromatin accessibility and mRNA

scMethyl-HiC Single-cell methyl and high-throughput 
chromosome conformation capture

scM&T-seq Single-cell methylome and 
transcriptome sequencing

scNMT-seq Single-cell nucleosome, methylation, 
and transcription sequencing

scNOMeRe-seq Single-cell nucleosome occupancy, 
methylome, and RNA expression 
sequencing

scTrio-seq Single-cell triple omics sequencing

snm3C-seq Single-nucleus methyl-3C sequencing

SHARE-seq Single-cell RNA- and ATAC-seq

SIDR-seq Simultaneous isolation of genomic DNA 
and total RNA

SNARE-seq Single-nucleus chromatin accessibility 
and mRNA expression sequencing

snmCT-seq Single-nucleus methyl cytosine and 
transcriptome sequencing

5. Transcriptomics (platform, description)

CEL-seq Single-cell RNA-seq by multiplexed 
linear amplification

Chromium

Cyto-seq Cytometry-based sequencing

DRoNC-seq Massively parallel sNuc-seq with droplet 
technology

Drop-seq; inDrop Single-cell RNA-seq with droplet 
technology

LCM-seq Laser-capture microdissection coupled 
with PolyA-based RNA-seq

Live-seq Transcriptome profiling of living cells 
after cytoplasmic biopsy

MARS-seq Massively parallel single-cell RNA-seq

MATQ-seq Quantitative single-cell RNA-seq

QUARTZ

scifiRNA-seq Single-cell combinatorial fluidic 
indexing RNA-seq

sciRNA-seq Single-cell combinatorial indexing 
RNA-seq
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that are difficult to connect to the affected protein-coding gene, cell 
of action or function. Moreover, even when common and rare diseases 
have similar clinical phenotypes, these could be the results of variants 
in different genes, thus making it more challenging to identify common 
mechanisms at the pathway or cellular level.

Cell atlases provide a way to tackle each of these challenges  
(Fig. 1). In rare Mendelian genetic disorders, healthy tissue atlases 
have led to the discovery of novel cell types, including rare ones, that 
uniquely express key disease genes, and have even corrected long-held 
assumptions. For example, the pulmonary ionocyte — a novel, rare cell 
type discovered in cell atlases of the trachea — is the main cell type 
expressing CFTR8,9, the causal gene in cystic fibrosis. In particular, stud-
ies in the Human Developmental Cell Atlas (HDCA) can shed light on 
Mendelian disorders that manifest at birth, such as the cellular origins 
of different Hirschsprung’s disease variants in the developing10 versus 
adult11 enteric nervous system, or the impact of trisomy 21 on bone 
marrow hematopoietic stem cells and their niche12.

In common complex diseases, similar analyses have related 
disease genes in associated loci to specific cell subsets across many 
inflammatory13–16, autoimmune17–19, neurodegenerative20–23, respira-
tory8,24, fibrotic25,26 and other27,28 diseases, using both healthy and 
disease atlases of the relevant tissue, and revealing novel unexpected 
associations. For example, integrating the extensive GWAS literature 
for ulcerative colitis (UC) with single-cell atlas data enabled the iden-
tification of key cell types expressing genes associated with UC by 
GWAS, including epithelial M-like cells — which are exceedingly rare 
in the healthy colon, but expanded significantly in the inflamed, dis-
eased colon29. Because most risk variants are in non-coding regions30, 
integration of GWAS summary statistics, single-cell profiles and chro-
matin data8,9, as well as joint profiling of chromatin and RNA in single 
cells31, can further facilitate the discovery of such associations32. 
One such analysis showed that not only is a specific gene program 
induced in colonic M cells in UC, accounting for overall disease risk 
heritability, but that common variants in the FERMT1 locus (a gene 
implicated in a rare form of inflammatory bowel disease (IBD)33) con-
tribute substantially to this association34. Moreover, because com-
mon disease genes are often pleiotropic, broader cross-tissue atlases 
can help to better decipher their impact throughout the body35–38. 
Finally, atlases also allow us to move from the level of individual risk 
genes to the modules and programs in which they participate, thus 
helping decipher gene function, nominate causal processes, and 
related diseases with similar morbidities at the level of programs, 
even when the underlying genes are distinct29. This is illustrated in 
monogenic and polygenic IBD39, in which programs involving M cells 
are enriched in both forms of the disease39. Single-cell atlases can also 
reveal cellular subtypes that are shared across tissues or are unique 
in particular locations or disease contexts, such as recent surveys of 
mouse40 and human41 fibroblasts.

seq-Well Single-cell RNA-seq with microwells

SLAM-seq Metabolic mRNA sequencing (thiol 
(SH)-linked alkylation for metabolic 
sequencing of RNA)

SMART-seq Switching mechanism at the end of the 
5′-end of the RNA transcript sequencing

SPLiT-seq Split-pool ligation-based transcriptome 
sequencing

STRT-seq Single-cell tagged reverse transcription 
sequencing

SUPeR-seq Universal poly(A)-independent 
RNA-sequencing

VASA-seq Vast transcriptome analysis of single 
cells by dA-tailing

6. Genome and epigenomics (platform, description)

Genome

LIANTI Linear amplification via transposon 
insertion

MALBAC Multiple annealing and looping-based 
amplification cycles

MDA Multiple displacement amplification

scDNA-seq Single-cell DNA-sequencing

SMOOTH-seq Single-molecule real-time  
sequencing of long fragments  
amplified through transposon  
insertion

SMRT-DNA-seq Single-molecule real-time 
DNA-sequencing

DNA methylation

scAba-seq Single-cell restriction endonuclease 
AbaSI sequencing

scBS-seq Single-cell bisulfite sequencing

scCGI-seq Single-cell CpG island methylation 
sequencing

scMethyl-seq Single-cell methylation sequencing

scRRBS Single-cell reduced-representation 
bisulfite sequencing

TAB-seq Tet-assisted bisulfite sequencing

Histone modification

scChIC-seq Single-cell chromatin immunocleavage 
sequencing

scChIP Single-cell chromatin 
immunoprecipitation followed by 
sequencing

CoBATCH Combinatorial barcoding and targeted 
chromatin release

DAM-ID DNA adenine methyltransferase 
identification

iACT-seq Antibody-guided chromatin 
tagmentation sequencing

scChIL-seq Single-cell chromatin integration 
labeling

scCUT&RUN Single-cell cleavage under targets and 
tagmentation

Chromatin structure

FAIRE-seq Formaldehyde-assisted isolation of 
regulatory elements sequencing

NOME-seq Nucleosome occupancy and 
methylome sequencing

scATAC-seq Single-cell sequencing assay for 
transposase-accessible chromatin

sciATAC-seq Single-cell indexing ATAC-seq

scDNase-seq Single-cell DNase I hypersensitive sites 
sequencing

scMNase-seq Single-cell micrococcal nuclease 
sequencing

scTHS-seq Single-cell transposome hypersensitive 
site sequencing

3D organization

scHi-C Single-cell high-throughput 
chromosome conformation capture

Table 1 (continued) | A selection of key experimental 
methods for construction of cell atlases at different levels 
of biological organization
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Remodeling of cellular composition and multicellular 
architecture in disease tissue
Both cell-intrinsic and cell-extrinsic changes have key roles in pathogen-
esis and can be targeted by therapies, but changes in the cell’s internal 
programs and shifts in cellular composition are often confounded 
in bulk profiling. The cellular — and increasingly spatial — resolution 
provided by atlases distinguishes these contributions and allows more 
accurate and sensitive comparison between health and disease, as 
shown in studies in IBD, asthma, pulmonary fibrosis, rheumatoid arthri-
tis, diabetic kidney disease, cardiomyopathy, Alzheimer’s disease and 
many other common diseases24,29,40–51.

Both compositional and cell-intrinsic expression changes can be 
coordinated across multiple cell types, resulting in shifts in multicel-
lular communities in disease. For example, comparing cellular com-
position in the ileum of patients with Crohn’s disease with the healthy 
reference atlas identified a unique multicellular community of immune 
and stromal cells, which was predictive of a lack of response to anti-TNF 
therapy42. Comparison with healthy references also helps decipher the 
mechanisms driving these coordinated communities, and the gene 
programs within their constituent cells. For instance, compared with 
healthy tissue, atopic dermatitis and psoriasis skin lesions are character-
ized by the expansion of particular classes of macrophages and vascular 
endothelial cells that interact via the chemokine CXCL8 and its receptor 
ACKR1, respectively52. This interaction, which is suggested to promote 
lymphocyte recruitment, represents the re-emergence of a prenatal cel-
lular program in disease tissue52. Finally, computational methods53–55 can 
now recover multicellular gene programs, where cell-intrinsic programs 

are coordinated between multiple different cell types across samples 
or physical niches. Examples include a multicellular program across 
five cell types implicating several disease risk genes for UC54, and the 
coordination of neurotransmission, cell adhesion, and development 
gene expression across cell types in the cortex in epilepsy53.

Mapping malignant and microenvironment cells in tumors
Our understanding of human cancer biology is also being transformed 
by single-cell and spatial genomic atlases. Analysis of solid tumors 
in comparison with healthy references helps to chart their biologi-
cal complexity — combining genetic and epigenetic variation within 
the malignant compartment with the diversity of cells in the tumor 
microenvironment, including immune56–65, stroma57,66 and even neural67 
cells, and their spatial organization68. This has helped identify relevant 
disease mechanisms69,70 and opportunities for therapeutic interven-
tions58, as well as resistance mechanisms71, including cell communities 
that may predict response to therapies such as checkpoint inhibitors64,65 
or chemoradiation72, and the cell of origin in both adult and pediatric 
tumors73–75 (determined in reference to healthy adult, developmental 
and pediatric atlases). As a brief illustrative example, in the specific 
context of interactions between malignant and immune cells in mela-
noma, studies have characterized the immune compartment, malignant 
cells, or both at different disease grades and with different treatment 
histories, describing dysfunctional versus stem-like T cell states associ-
ated with tumor resistance or reactivity76,77, recovering malignant cell 
programs impacting T cell excluded phenotypes58,78, and generalizing 
some of these findings to other tumor types59,63.

Impact Challenge

Biobank resources with rich metadata

Safeguarded
patient privacy

New organoids designs for drug discovery screens

Disease
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Clinical safety
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Pathogen entry
factor prediction

Drug re-purposing
prediction

Target discovery
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Fig. 1 | Potential medical impacts of the Human Cell Atlas and remaining challenges. Left, important insights that have been drawn from cell atlases on disease 
mechanisms, diagnosis and treatment. Right, key remaining technical and fundamental barriers for medical impact, including diversity, data availability and 
understanding disease progression.
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Fig. 2 | Single-cell atlases have been collected for a broad range of organs and 
disease tissues. Shown are the key organs and systems for which healthy tissue 
has been profiled by the Biological Networks of the Human Cell Atlas initiative 
(bold), and for which corresponding studies collected atlases of disease tissue 

from the same organ from people with common complex diseases (blue), 
tumors (orange), rare diseases (green), infectious diseases (yellow), or other 
conditions (black).
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Diagnosis and treatment: single-cell insights to 
new clinical approaches
Towards a future of high-resolution cell and tissue diagnostics
Knowledge of all cell types in the body and their roles in disease should 
transform the future of common diagnostic tools, from single-cell 
assays such as complete blood count (CBC) and white blood cell count 
to histopathology. The healthy reference atlas, diseases atlases, and 
underlying lab and computational methods should allow for the devel-
opment of new assays with higher resolution and broader molecular 
scope, as well as improved interpretation of results from individual 
patients (Fig. 1).

For the CBC — currently a census of a limited number of blood 
cell components that is used in a variety of diagnostic settings — we 
envision a future ‘CBC 2.0,’ a high-resolution portrait of the molecular 
profiles of nucleated blood cells, deployed in every disease. The rich 
and growing human reference now spans thousands of individuals 
and tens of millions of cells, with atlases of peripheral blood mononu-
clear cells from multiple diseases (such as melanoma79, rheumatoid 
arthritis80 and lupus81) and of immune cells in multiple tissues. Such a 
reference could form the basis for new diagnostic assays and for bet-
ter interpretations, connecting the cell’s profile in the periphery to 
those in healthy and disease tissue79. Excitingly, single-cell profiling 
of the blood immune cell landscape is beginning to inform our under-
standing of therapeutic responses and prognosis, including pioneer-
ing studies that have identified the blood correlates of the anti-PD1 
response in tumors79,82. For histopathology, a workhorse of medicine, 
we envision conventional H&E staining being elevated to ‘H&E 2.0,’ in 
which single-cell and spatial profiling data are overlaid on standard 
tissue stains to unify genomic and histological analysis — either by 
direct lab assays or even by machine-learning algorithms trained on 
spatial data to predict molecular profiles from H&E stains83. As the 
use of spatial profiling (for genomics, epigenomics, transcriptomics 
and proteomics) in healthy84–86 and disease64,72,84,87,88 tissue62,70,81,84,85 
has grown, algorithms have been able to deconvolve low-resolution 
methods to single-cell resolution89, project the spatial expression of 
genes that were not measured directly89–93, and recover repeatable 
spatio-molecular features in tissue70,94. Given sufficient data, algo-
rithms can also map molecular profiles and histology to each other, 
with the aim of predicting expression from histology95, forming the 
basis of an H&E 2.0 approach.

Early studies are beginning to show the potential impact of such 
future assays, and how atlases provide the necessary tools to under-
stand why therapeutics work — or don’t work — in patients at the cell 
and tissue levels, predicting potential on-target toxicities, efficacy 
and mechanisms underlying intrinsic and acquired resistance. First, a 
healthy reference is invaluable in predicting the risk of on-target toxici-
ties for both molecular and cellular therapies, on the basis of the cell 
types in which the therapeutic target is expressed. For example, a recent 
study has suggested that expression of CD19 by mural cells, vascular 
smooth muscle cells, and pericytes in the blood–brain barrier might 
explain neurotoxicity of CD19-targeting chimeric antigen receptor 
T cells96. Cross-species reference atlases for key models in safety assess-
ment, such as rat and macaque97, would be invaluable. For response and 
resistance in cancer, profiling malignant and immune cells in tumors, 
draining lymph nodes, or the periphery can help monitor response and 
provide insights into resistance, as shown, for example, in response to 
anti-PD-L1 therapy82,98,99 or chemotherapy100. Although access to patient 
tissue may be more limiting in some cases, these approaches are as 
important in other diseases, such as IBD29,42,51, rheumatoid arthritis16,47, 
psoriasis101, atopic dermatitis52, and scleroderma25.

High-resolution and massively parallel methods for drug 
discovery
For molecular drug discovery, reference atlases and single-cell and 
spatial genomics open the way to high-resolution phenotypic screens 

Box 1

COVID-19: a case study for 
single-cell agility
The COVID-19 pandemic demonstrated the agility and 
transformative impact of single-cell genomics — and the HCA 
community — in tackling a new disease. Early in the pandemic, 
HCA researchers quickly leveraged pre-existing reference maps 
of healthy human tissues to understand the underlying biology 
of this novel disease, and they harnessed single-cell and spatial 
genomics to rapidly initiate new studies in patients with COVID-19. 
This research was accelerated by the HCA’s existing community 
structures and a strong commitment to data sharing and open 
science2,138.

By spring 2020, studies had identified potential routes of 
infection, including the nasal epithelia and oral tissue, using existing 
data5,139–141. This was later confirmed in depth142 and expanded to 
show the surprisingly broad range of tissues and cells that are 
accessible to the virus and are associated with epidemiological 
features3. A recent investigation into the increased infectivity and 
reduced pathogenicity of the Omicron BA.1 variant correlated its 
preferential replication in cells of the upper airway with reduced 
expression of the transmembrane protein TMPRSS2 in these cells — 
TMPRSS2 expression is highest within the lung143.

Pivoting quickly to study patient samples once they became 
available, HCA researchers compared atlases created with data 
collected from autopsy tissue from the lung, heart, liver, kidney 
or brain6,7,144–146 of patients who had succumbed to COVID-19 with 
atlases made using data from healthy and non-COVID-19 diseased 
reference tissues. These studies uncovered viral cell targets, 
dramatic changes in cell composition, pathological inflammatory 
and fibrotic circuits that partly mirrored those of other diseases, 
and failed and aberrant regeneration in different tissues — and also 
related these findings to genetic risk variants associated with severe 
COVID-19. Analysis of nasopharyngeal swabs from living patients 
with either mild, moderate or severe COVID-19 versus healthy 
individuals showed an impairment in local intrinsic immunity to 
SARS-CoV-2 infection in severe COVID-19, which may underlie and 
precede disease147. Large-scale analysis of immune cells, including 
peripheral blood mononuclear cells (PBMCs)148,149 or airway immune 
cells from living patients versus healthy reference cells, has shed 
light on myeloid and T cell states after SARS-CoV-2 infection150 and 
has even suggested that antihypertensive treatments may ‘prime’ 
proinflammatory immune cells that are amplified upon infection151.

Single-cell analyses have the potential to inform drug 
discovery as well as diagnosis and treatment in the clinic, as has 
been the case in the COVID-19 outbreak. For example, single-cell 
RNA-sequencing (scRNA-seq) of SARS-CoV-2-binding B cells from 
patients who had recently recovered COVID-19 (ref. 150) identified 
high-quality neutralizing antibodies from memory and activated 
B cells152. ScRNA-seq of PBMCs from hospitalized patients helped 
to identify changes in cell composition153 and gene expression 
along the course of disease progression154. In the context of the 
Pfizer–BioNTech mRNA vaccine BNT162b2 against SARS-CoV-2 
(ref. 155), a single-cell atlas of innate and adaptive immune cells 
collected longitudinally following first and second vaccinations 
identified a massive expansion of myeloid cells expressing 
interferon-stimulated genes after second immunization, but not 
natural infection — providing further insights into the efficacy of this 
new vaccine technology.
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for desired cell states by coupling the rich, complex and interpret-
able phenotypes of molecular profiles, which can be related to cells 
in patients, to the scale required in screening102,103 (Fig. 1). Perturb-Seq 
screens — pooled genetic screens with single-cell genomics readouts 
— have characterized the impact on single-cell profiles of perturba-
tions in large numbers of genes102,104–107, non-coding variants associated 
with common complex disease108, and coding variants in cancer109 and 
developmental disorders110,111, and can be performed in cell culture or 
co-culture, in organoids, or in animal models. Focused small-molecule 
screens with scRNA-seq readouts have also been conducted112,113. Moreo-
ver, machine-learning algorithms can increasingly be trained on such 
data to yield models that predict the impact of additional perturba-
tions in one or more genes in the same cellular context or of the same 
perturbations in new biological contexts114–116.

For regenerative medicine and cell therapy, single-cell atlases 
enhance our power to recover regenerative mechanisms in human 
tissue as therapeutic targets, develop better organoid models for 
drug discovery, and define better engineered cell therapies117. In each 
case, the comparison to reference atlases first helps define the desired 
target state, then helps screen for cells or organoids that achieve that 
state, and finally can help monitor the impact and state of the cellular 
therapy in the human patient. For example, when generating faithful 
human-derived models for regenerative medicine, healthy and disease 
reference atlases help compare model and human tissue, identify 
missing cellular components, and predict molecular mechanisms to 
improve the model117, as has been shown for Parkinson’s disease ther-
apy118, brain organoid models where autism-associated gene variants 
were introduced111,119,120, gut enteroid cultures121,122, thymic T cells38, and 
organoid models of the endometrium84 or intestines123. Moreover, for 
in vivo tissue reprogramming, reference atlases help infer differentia-
tion mechanisms and assess whether a therapy has the desired effect, 
for example to characterize the regenerative capacity of overexpress-
ing proneural transcription factors in Müller glia124 or to map net-
works underpinning retinal regeneration125. Finally, for engineered cell 
therapy, Perturb-Seq methods help screen for perturbations that will 
yield therapeutically desirable cell states126,127, and single-cell profiling 
helps characterize the resulting cell therapy before it is administered 
to patients and after administration in both common diseases121 and 
T cell therapy in cancer128–130.

Challenges for cell atlases in medicine
To realize the transformative potential of cell atlases in medicine, sub-
stantial challenges need to be overcome — technical, practical and 
fundamental (Fig. 1). First and foremost, we must ensure that cell atlases 
benefit all of humanity, by assembling healthy and disease atlases that 
reflect human diversity, from ancestry to geography, as well as involv-
ing diverse scientists from across the globe who are experts in these 
approaches. This has been a core aim of the Human Cell Atlas since 
its inception, and has been overseen by a dedicated equity working 
group131,132. For effective deployment in real-world settings, lab methods 
need to be sufficiently cost-effective and robust to empower screening 
and enable adoption, including in under-resourced areas. Connections 
between the lab and the clinic also need to be further enhanced, includ-
ing building more biobank resources with rich metadata, large-scale 
profiling of samples from clinically annotated and diverse cohorts, and 
better experimental methods to tap into banked samples, especially 
formalin-fixed paraffin-embedded issues, which are still incompatible 
with many single-cell methods133,134. Among the key computational 
challenges are the need for open data that reflect human diversity 
for training computational models, while appropriately safeguard-
ing patient privacy; methods to decode cellular dynamics from static 
snapshots; algorithms and platforms for efficient querying for genes, 
cell states and cell types of interest; and fast iterations between lab and 
computation to design faithful human-derived organoids and cells for 
screens and therapies.

Other challenges are more fundamental. First, while analysis of 
expression profiles yields suggestive associations, demonstrating the 
causative disease role of a gene, program or cell state requires direct 
interventions. Using single-cell and spatial genomics with genetic 
screens or in human genetic cohorts and clinical trials, along with 
causal inference, should help advance us from correlation to causation. 
Moreover, although cell atlases shed light on many changes as disease 
unfolds, they often focus on disease onset, rather than prognosis and 
progression. Longitudinal studies can address this challenge, but 
require long-term investment. More broadly, cell atlases on their own 
are an important tool in our arsenal, but not a silver bullet. We draw an 
analogy to the impact of the Human Genome Project, which did not 
‘solve’ disease on its own, but instead laid critical groundwork for many 
areas of biomedicine135.

Conclusion
As single-cell and spatial atlases continue to advance, they are trans-
forming our understanding of different diseases at the cellular and tis-
sue level, and are beginning to inform the development of diagnostics, 
drug discovery and novel treatment avenues. This has been impactful 
for new diseases like COVID-19, for long-standing ones such as cancer, 
and for rare and common complex diseases alike. Much of this progress 
has been driven by the rise of experimental technologies (Table 1) and 
computational algorithms that are applicable in studies at all stages 
of biomedicine, from understanding mechanisms to diagnosing and 
treating disease. As technological advances in sequencing, cell manipu-
lation and spatial profiling are rapidly growing in scale and resolution 
(and dropping in cost)136,137, they enable the collection of diverse ref-
erence atlases across genders, age, ancestry and demographics that 
are needed for clinical work. They also enable the sort of large-scale 
sampling within and across human patients that is required to under-
stand and monitor disease, as well as screening experiments that are 
crucial to drug discovery. Together, these will help deliver the Human 
Cell Atlas mission: to form a reference map as a basis for understanding 
human health as well as diagnosing, monitoring, and treating disease.
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