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Machine learning is frequently being leveraged to tackle problems in the health sector including utilization for clinical decision-
support. Its use has historically been focused on single modal data. Attempts to improve prediction and mimic the multimodal
nature of clinical expert decision-making has been met in the biomedical field of machine learning by fusing disparate data. This
review was conducted to summarize the current studies in this field and identify topics ripe for future research. We conducted this
review in accordance with the PRISMA extension for Scoping Reviews to characterize multi-modal data fusion in health. Search
strings were established and used in databases: PubMed, Google Scholar, and IEEEXplore from 2011 to 2021. A final set of 128
articles were included in the analysis. The most common health areas utilizing multi-modal methods were neurology and oncology.
Early fusion was the most common data merging strategy. Notably, there was an improvement in predictive performance when
using data fusion. Lacking from the papers were clear clinical deployment strategies, FDA-approval, and analysis of how using
multimodal approaches from diverse sub-populations may improve biases and healthcare disparities. These findings provide a
summary on multimodal data fusion as applied to health diagnosis/prognosis problems. Few papers compared the outputs of a
multimodal approach with a unimodal prediction. However, those that did achieved an average increase of 6.4% in predictive

accuracy. Multi-modal machine learning, while more robust in its estimations over unimodal methods, has drawbacks in its
scalability and the time-consuming nature of information concatenation.
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INTRODUCTION

Clinical decision support has long been an aim for those
implementing algorithms and machine learning in the health
sphere'=. Examples of algorithmic decision supports utilize lab
test values, imaging protocols or clinical (physical exam scores)
hallmarks*>. Some health diagnoses can be made on a single lab
value or a single threshold, such as in diabetes in older adults®.
Other diagnoses are based on a constellation of the signs,
symptoms, lab values and/or supportive imaging and are referred
to as a clinical diagnosis. Oftentimes these clinical diagnoses are
based on additive scoring systems that requires an admixture of
positive and negative hallmarks prior to confirmatory labeling.
The modus operandi of a clinical diagnosis may fail to consider
the relative weighting of these disparate data inputs and
potentially non-linear relationships highlighting the limitations
of human decision-making capacity. The strength of algorithmic
decision-making support is that it can be used to offload such
tasks, ideally yielding a more successful result. This is the promise
of precision medicine. Precision medicine/health aims to create a
medical model that customizes healthcare (decisions, treatments,
practices etc.) that are tailored to either an individual or patient
phenotype’. This includes tracking patients’ health trajectories
longitudinally®, oftentimes incorporating genetics/epigenetics®'°
and mathematical modeling'" where diagnoses and treatments
incorporate this unique information'2. Contrast this with a one-
drug-fits-all model, where there is a single treatment per disorder.
Figure 1 illustrates the flow of information from hospitals/care
centers that generate disparate data. It is through computational
modeling and information fusion that outcomes of interest such

as drug and treatment targets ultimately facilitate better decision
making at the patient level in those care centers. This
phenomenon has sparked an interest in fusion studies using
health care data.

Undertakings to characterize this literature have been per-
formed by Huang et al.’®, who performed a systematic review of
deep learning fusion of imaging and EHR data in health. However,
it was limited to EHR and imaging data and deep learning
applications. A follow-up review article included a commentary on
omics and imaging data fusion™. The purpose of this study is to
highlight the current scope of this research domain, summarize
and offer suggestions to advance the field. The current study is
more inclusive in the breadth of the types of machine learning
protocols used and attempts to encompass all current modalities
(information types/sources).

Data fusion is underpinned by information theory and is the
mechanism by which disparate data sources are merged to create
an information state based on the sources’ complementarity'>'®
(Box 1). The expectation in machine learning is that data fusion
efforts will result in an improvement in predictive power'”'® and
therefore provide more reliable results in potentially low validity
settings'®. Data fusion touts the advantage that the results of
modeling become inherently more robust by relying on a
multitude of informational factors rather than a single type.
However, the methodology of combinatory information has
drawbacks; it adds complexity to specifying the model and
reduces the interpretability of results'2°.

Data from different sources and file formats are rarely uniform,
and this is especially the case with clinical data®'. For example,
data sets can have different naming conventions, units of
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measure, or represent different local population biases. Care must
be taken to search and correct for systematic differences between
datasets and assess their degree of inter-operability. For example,
Colubri et al. aggregated computed tomography (CT) and PCR lab
values, by performing an intra-site normalization. This ensured
that the values were comparable across sites. In doing so they
discarded several potentially informative clinical variables since
they were not all available in all datasets??

A balance is required to allow information that is similar to work
together (harmonization) and retain data purity (information
correspondence)?. Successful fusion uses data harmonization
techniques that assure both in the quality control of the

Box 1 Terms and Concepts

Multimodal machine learning: the area of machine learning concerned with
bringing together disparate data sources to capitalize on the unique and
complementary information in an algorithmic framework.

Data harmonization: using machine learning to unify different data sources to
improve its quality and utilization.

Multiview machine learning: another term for multimodal machine learning.
Data fusion: the specific methodologies undertaken to perform data integration
for multimodal/multiview machine learning; they come in three broad categories:
early, intermediate/joint, and late.

integration process. Clinical data harmonization requires multi-
disciplinary research among medicine, biology, and computer
science. The clinical area of heart failure with preserved ejection
fraction (HFpEF) saw novel applications of multiple tensor
factorization formulations to integrate the deep phenotypic and
trans-omic information?4, and this extends to other areas of
precision medicine?>. To increase the portability of EHR-based
phenotype algorithms, the Electronic Medical Records and
Genomics (eMERGE) network has adopted common data models
(CDMs) and standardized design patterns of the phenotype
algorithm logic to integrate EHR data with genomic data and
enable generalizability and scalability®5—°.

There are three main types of data fusion that are used in
machine learning; early (data-level), intermediate (joint), and late
(decision-level)*°. In the case of early fusion, multiple data sources
are converted to the same information space. This often results in
vectorization or numerical conversion from an alternative state,
such as that performed by Chen et al. via vectorized pathology
reports3'. Medical images possess characteristics that can undergo
numerical conversion based on area, volume, and/or structural
calculations®?. These are then concatenated with additional
measurements from structured data sources and fed into an
individual classifier. Canonical correlation analysis®3, non-negative
matrix factorization®**°, Independent Component Analysis (ICA)
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Fig. 1

Multimodal precision health; the flow of information. Information moves in a cyclical pattern from health centers to information

commons, where it can be transformed and algorithmic modeling performed. These algorithms provide insight into many different health
outcomes such as clinical trials, phenotyping, drug discovery, etc. These insights should return to health centers and practitioners to provide

the most efficient, evidence-based medicine possible.
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Fig. 2 Early, intermediate, and late fusion; flow ofinformation from information commons to model structure to outcomes. Information
fusion can occur in a myriad of ways. In machine learning, early, intermediate, and late fusion is typified by if all the information flows into a
single model (early), a step-wise fashion where outputs from one model become inputs for another (intermediate), and lastly, where all unique
data types undergo separate modelling after which ensembling and/or voting occurs (late).

and numerical feature conversion methodologies exist as com-
mon options to transform all data into the same feature space®.

Intermediate data fusion occurs as a stepwise set of models and
offers the greatest latitude in model architecture. For example, a
3-stage deep neural learning and fusion model was proposed by
Zhou et al?’. Stage 1 consists of feature selection by a soft-max
classifier for independent modalities. Stages 2 and 3 constitute
combining these selected features, establishing a further refined set
of features, and feeding these into a Cox-nnet to perform joint latent
feature representation for Alzheimer's diagnosis. In contrast to early
fusion, intermediate fusion combines the features that distinguish
each type of data to produce a new representation that is more
expressive than the separate representations from which it arose.

In late fusion, typically multiple models are trained where each
model corresponds to an incoming data source. This is akin to
ensemble learning, which offers better performance over indivi-
dual models®®. Ensemble methods use multiple learning algo-
rithms (typically applied to the same dataset) to obtain better
predictive performance than could be obtained from any of the
constituent learning algorithm alone. However, multimodal
machine learning ensemble here can refer to ensemble learning
within a data type or across data types. These take symbolic
representations as sources and combine them to obtain a more
accurate decision3®. Bayesian’s methods are typically employed at
this level®® to support a voting process between the set of models
into a global decision. Within late fusion there has been headway
made to perform multitask deep learning*'=#’. A schematic for the
3 subtypes of data fusion is presented in Fig. 2. Attributes in the
fusion techniques are shown in Table 1.

Published in partnership with Seoul National University Bundang Hospital

Table 1. Comparison of fusion techniques.
Attribute Early Intermediate/joint Late/
decision

Scalable No  Yes Yes
Multiple models needed No Yes Yes
Improved accuracy Yes Yes Yes
Voting of multiple models No Yes Yes
Interaction effects across Yes Yes No
sources

Implemented in health Yes Yes Yes
RESULTS

Topic Modeling

The topic modeling displayed in Fig. 3 showcases the category,
specific health ailment under investigation, and the modality type
for the studies included. These were subsequently mapped to the
category of the combination of information that were merged to
create models for prediction/classification/clustering (Table 2).
This plot should serve as a resource to fellow researchers to
identify areas that are less frequent, such as dermatology?,
hematology®®, medication/drug issues such as alcohol use
disorder that may offer new research horizons®®. Figure 4
identifies coding platforms, publishing trend and location over
time, author locations and patient cohorts of the papers included
in this review.
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Fig. 3 Topic and Modality Modeling. Neurology, and in particular, Alzheimer’s disease investigations accounted for the most papers
published on this topic (n = 22). With the onset of the COVID-19 pandemic, several primary research articles were dedicated to this topic,
which can be arrived at through the respiratory or infectious disease hierarchies. All papers noted in this review used either two or three

disparate data sources when fusing their data, and specifically that

Model validation, techniques, and modalities used

Of the models used in the papers, 126/128 explicitly reported
performing a validation procedure of them. The most common
validation processes performed were N-fold cross validation
(55)°"2, train test split (51), leave one out cross validation (10),
and external dataset (10). A cornucopia of machine learning
techniques and methods were used within and across articles in
this review. They have been summarized in Table 2, noting in
which fusion umbrella subtype they were implemented.

Early fusion

Most papers were published using early fusion. Of those, most
were  published using medical imaging and EHR
data34,36,48,53,56,57,60,62—64,68,71,73,75,85—88,90,92—96,98,1 00,104,111 . Nearly
all these papers performed numericalization of image features in
essence converting them to structured data prior to processing,
however, two performed matrix factorization®*36, A combination
of EHR and text  data was noted in 15
papers31°469.72.79-81,91,99.102106112 Meng et al. created a Bidirec-
tional  Representation  Learning model used latent
Dirichlet allocation (LDA) on clinical notes''?. Cohen et al. used
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of imaging and EHR (n = 52), was the most prevalent.

unigrams and bigrams in conjunction with medication usage>*.
Zeng et al. used concept identifiers from text as input features®'.
Nine papers used early fusion with imaging, EHR and genomic
data32°051:5561.658389108 Noan et al. concatenated components
derived from images with polygenic risk scores®3. Lin et al. also
created aggregated scores from MRI, cerebral spinal fluid, and
genetic information and brought them together into a single
cohesive extreme learning machine to predict mild cognitive
impairment>. Tremblay et al. used a multivariate adaptive
regression spline (MARS) after normalizing, removing highly
correlated features®®. Ten papers performed fusion using imaging
and genomic data33°27076-78828497.110 Three of these generated
correlation matrices as features by vectorizing imaging parameters
and correlating them with single nucleotide polymorphisms
(SNPs) prior to feeding into the model®37°7%, Three papers in this
category used EHR and time series®®’#1°', Both Hernandez and
Canniére et al. implemented their methods for purposes of cardiac
rehabilitation and harnessed the power of support vector
machines (SVMs). However, Hernandez preserved time series
information by assembling ECG data into tensors that preserve the
structural and temporal relationships inherent in the feature
space’4, while Canniére performed dimensionality reduction of

Published in partnership with Seoul National University Bundang Hospital
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Table 2. Fusion and machine learning methods included in this review.

Fusion type

Machine learning models/techniques implemented

References

Early

Support Vector Machine

Random Forest, Decision Trees

Gaussian model

Bayesian models: Bayesian network, Naive Bayes
Regression: Logistic, Ridge, Cox, LASSO, MARS
Multitask learning

iMSF

Boosted Models, Adaboost

Deep Neural Networks: DNN, RNN, CNN, DUN, AutoEncoders
Natural Language Processing, GPT, BERT
Clustering: K-means, hierarchical, KNN

31-34,36,50,51,53-81
31,33,34,36,67-71,73-76,78-80,82-91
36,55,92

31,54,71,73-75,80,93
31,51,67-69,77,79,80,87,89,90,94-99
62

100

68,71-75,79,90
48,57,61,80,81,91,97,101-107
81,102,105

65,73,75,76,100,108

Graph models

Ensemble learning

Artificial Neural Networks

Markov Model

Transfer learning

Multitask learning
Intermediate

Support Vector Machine

Decision Trees, Random Forest

Natural Language Processing
Artificial Neural Network
Naive Bayes
Ensemble Learning
Transfer Learning
Multitask learning
Graph Learning

Late Support Vector Machine
Random Forest, Decision Trees

Ensemble learning
Multitask learning
XGBoost
Artificial neural network
Natural Language Processing
Regression: GLM, Logistic
Graph network
Clustering: KNN, graphs
Mixed Random Forest
Artificial neural Network, ElasticNet

Regression: logistic, multivariate, support vector, LASSO

Deep Learning: CNN, DNN, RNN, AutoEncoders
Boosted Learning: gradient boosting, XGBoost, Adaboost 116,118,126

Regression: LASSO, Logistic, Multivariate, GAM
Deep Learning: CNN, DNN, RNN, AutoEncoders

107-109

65,88
57,64,69,73,78,81,88,91,101,104,107,110,111
108

48,62,97,105,112

62

41,43,47,59,113-122
37,59,113-115,117,120,123-126
41,49,59,115-117,120,122,127,128

37,41-47,59,115-117,121-135

122,126,134,136
43-45,49,116,117,121,126,135
59

120

46

47,137

136

138-143

130,140-147

141,143,147,148
39,130,140,142,144-146,149-153
154

43,47,59,113,120

143,147,153

39,153,155

145,153,155
140-143,147,155,156

157

144,145,157

158

159

CNN convolutional neural network, DUN deep unified networks, MARS Multivariate adaptive regression splines, MLP multilayer perceptron, GLM Generalized
Linear Model, DNN deep neural network, GAM generalized additive model, iMSF incomplete Multi-Source Feature, RNN Recurrent Neural Network.

the time series information using t-SNE plots®®. Two papers
comprised early fusion using imaging and time series®”1%3, There
were two papers that leveraged EHR and genomic informa-
tion®1'°, Luo et al. implemented hybrid non-negative matrix
factorization (HNMF) to find coherence between phenotypes and
genotypes in those suffering from hypertension''®. One paper
leveraged early fusion using imaging and text data'®® and another

used EHR, Genomics, Transcriptomics, and Insurance Claims'®’.

Published in partnership with Seoul National University Bundang Hospital

Intermediate fusion

Intermediate fusion had the second highest number of papers
published. 14 used imaging and EHR data®>°%113114.118121,123.125,
126.129131-133.135137 Zjhni et al. merged the output from a Multilayer
Perceptron (MLP) for modeling clinical data and convolutional
neural network (CNN) for modeling imaging data into a single full
connected final layer to predict stroke'*®. A very similar approach

npj Digital Medicine (2022) 171



npj

20.0

-10.0

-50

-25

Matlab/Python Python/R Matlab R

Python

Coding Platform

A. Kline et al.
a
late fusion 1 1
g early fusion 1 2 S}
>
'_
c
Ke]
%)
[ intermediate fusion 1
mixed
Matlab/SPSS ~ Java Matlab/R CH+
b C
30
25
e
(5]
=
D20
Qo
=}
o
&
515
Q
©
a
10
5
0 J D> X o o A D O O N
ST S S
Year

0

20 40 60 80
Number of Papers

Published in Clinical Journal?

58

e
o
<
S
o WomenI
c
()
=
©
o Menl
0 50 100

Number of Papers

Fig.4 Meta-data from the review process. a Heat map of fusion type broken down into the coding platforms papers used by summing over
paper counts (those that mentioned platform used), the most popular being the Python platform and early fusion. Of note, 37 of the papers
did not explicitly mention a platform. b Total number of original research papers published in this sphere in the last 10 years. ¢ Continental
breakdown of author contributions (note some papers have authors from multiple continents). d Breakdown of publication type (clinical/non-
clinical journal). Less than half (37.6%) of the papers were published in a journal intended for a clinical audience. e Sex breakdown of
populations studied. Both men and women were represented in the papers, however, the degree of representation varied within an individual

studies.

was taken by Tang et al. who used three-dimensional CNNs and
merged the layers in the last layer' '3, EHR and text data were fused
together in 11 papers41'44'8°'1°7'1°9'116'122'126'134'136'142. Of these,
six*14480122134142 1504 long term short term (LSTM) networks,
CNNs, or knowledge-guided CNNs'® in their fusion of EHR and
clinical notes. Chowdhury et al. used graph neural networks and
autoencoders to learn meta-embeddings from structured lab test
results and clinical notes'?”:1%°, Pivovarov et al. learned probabilistic
phenotypes from clinical notes and medication/lab orders (EHR)
data'®. Two models each employing LDA where data type was
treated as a bag of elements and to bring coherence between the
two models to identify unique phenotypes. Ye et al. and Shin et al.
used concept identifiers via NLP and bag-of-words techniques,
respectively, prior to testing a multitude of secondary models' 126,
In general, clinical notes can provide complementary information to
structured EHR data, where natural language processing (NLP) is

npj Digital Medicine (2022) 171

often needed to extract such information'®'~1%3, A few studies were
published using imaging and genomic®”'"7:12°, Here radiogenomics
were used to diagnose attention-deficit/hyperactivity disorder
(ADHD), glioblastoma survival, and dementia respectively. Polygenic
risk scores were combined with MRI by Yoo et al. who used an
ensemble of random forests for ADHD diagnosis'®. Zhou et al.
fused SNPs information together with MRI and positron emission
tomography (PET) for dementia diagnosis by learning latent
representations (i.e., high-level features) for each modality inde-
pendently. Subsequently learning joint latent feature representa-
tions for each pair of modality combination and then learning the
diagnostic labels by fusing the learned joint latent feature
representations from the second stage was carried out®’. Wijethi-
lake used MRI and gene expression profiling, performing recursive
feature elimination prior to merging into multiple models SVM,
linear regression, and artificial neural network (ANN). The linear

Published in partnership with Seoul National University Bundang Hospital
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Table 3. Research questions as outlined in Methods.

predictions such as Alzheimer’s Disease Neuroimaging Initiative

late fusion.

in classification accuracy, sensitivity, and specificity>>1'31>°

it being a relatively new and emerging field.
* The varied techniques implemented are highlighted in Table 3.

dataset from a remote location'®’.

RQ1 - The literature published in this area as displayed and characterized in the Results’ section is one that is of growing and global interest.

« Fueled by a desire to improve predictive capabilities, relying on complementary and correlative (reinforcing) data. This was found to be the

case in the papers surveyed and included in this review, with an increase in 6.4% accuracy.

» Most common health topics were neurology and cancer. This is likely fostered by curated databases that lend themselves to multi-modality
and The Cancer Genome Atlas Program
» Dominance of early data fusion methods likely owe their pervasiveness for three reasons:

o 2 modalities over 3 means less work overall in model building and deployment.
o EHR and image data do not require extensive digital conversion for models as does text.
o Early fusion is built on a single model with a multitude of feature inputs and is typically less computationally complex than is intermediate or

+ Seldomly did articles perform comparisons of machine learning findings against their human clinician counterparts.

+ Several did perform comparisons between uni-modal and multi-modal predictions, with the majority having found a consistent improvement

when leveraging multi-modal data.

* Performance benefits seemingly not limited to a particular subtype of multi-modal strategy that was detectable in our metadata.

» Genera recommendation that multi-modal data integration be attempted to improve performance and better mirror a human expert by
creating a higher validity environment from which to make clinical decisions.

RQ2 - The analysis techniques are varied and currently do not showcase a gold standard machine learning method in the field. This is likely linked to

* N-cross fold validation was the most common and a robust estimator in the face of bias within a dataset.
« Strength of generalizability stems from either the dataset set containing multi-site/location patient data to begin with, or using an external

RQ3 -« Health contexts predominantly impacted by this include Neurology and Cancer.
* No domain/method laid claim to building translation models via FDA (or equivalent) approval for use in clinical circumstances.
+ Compare models more readily to physician decision makers'®8-7", This will guide the validity of the environments suitable to machine
learning and increase adoption and permit FDA approval of these tools

166

172

regression model outperformed the other two merged models and
any single modality''”. Wang et al. and Zhang et al. showcased
their work in merging imaging and text information*>*%, Both used
LSTM for language modeling a CNN to generate embeddings that
were joined together in a dual-attention model. This is achieved by
computing a context vector with attended information preserved
for each modality resulting in joint learning. Seldom were articles
published using: Imaging/EHR/Text''®, Genomic/Text*’, Imaging/
Time series'?”’, Imaging/Text/Time series*’, Imaging/EHR/Geno-
mic'3°, Imaging/EHR/Time series'®*, EHR/Genomic'?®, EHR/Text/
Time series*?,

Late fusion

A much smaller number (n = 20) of papers used late fusion. Seven
of those used imaging and EHR data types'38139144.150151,154,164
Both Xiong et al. and Yin et al. fed outputs into a CNN to provide a
final weighting and decision’*'', Three papers were published
using a trimodal approach: imaging, EHR and genomic'30147:148,
Xu et al. and Faris et al. published papers using EHR and text
data'?®'%°, Faris et al. processed clinical notes using TF-IDF,
hashing vectorizer and document embeddings in conjunction
with binarized clinical data'®>>. Logistic Regression (LR), Random
Forest (RF), Stochastic Gradient Descent Classifier (SGD Classifier),
and a Multilayer Perceptron (MLP) were applied to both sets of
data independently and final outputs of the two models were
combined using different schemes: ranking, summation, and
multiplication. Two articles were published using imaging and
time series'*®'52 both of which employed CNNs, one in video
information of neonates'® and the other in chest x-rays'>2
However, they differed in their processing of the time series data.
Salekin used a bidirectional CNN and Nishimori used a one-
dimensional CNN. Far fewer papers were published using
Imaging/EHR/Text'>3, EHR/Genomic/Text'**, imaging/EHR, time
series/'!, Imaging/Genomic'>®, EHR/Genomic'*’, and Imaging/
Text®®.

Published in partnership with Seoul National University Bundang Hospital

Mixed fusion

Two papers performed multiple data fusion architectures
Huang et al. created seven different fusion architectures. These
included, early, joint, and late fusion. The architecture that
performed the best was the late elastic average fusion for the
diagnosis of pulmonary embolism using computed tomography
and EHR data'®. Their Late Elastic Average Fusion leveraged an
ElasticNet (linear regression with combined L1 and L2 priors that
act as regularizers) for EHR variables. El-Sappagh et al. performed
early and late fusion to create an interpretable Alzheimer's
diagnosis and progression detection model'*®. Their best per-
forming model was one that implemented instance-based
explanations of the random forest classifier by using the SHapley
Additive exPlanations (SHAP) feature attribution. Despite using
clinical, genomic, and imaging data, the most influential feature
was found to be the Mini-Mental State Examination.

158,159

Clinical relevance

Data fusion may help address sex representation and increase
population diversity issues (including minority populations) in
health modeling by creating a more representative dataset if one
datatype contained more of one sex and another datatype
contained more of the other. This reciprocal compensation ability
of employing various data sets would also hold true for racial or
ethnic diversities.

Less than half (37.6%) of the papers were published in a journal
intended for a clinical audience. None of the papers included in
the final cohort of studies had created tools for clinical use that
had FDA approval. Based on the rising number of papers in this
field there is a growing and global need and interest to
characterize these findings.

DISCUSSION

Returning to our research questions, we outlined from the
inception of this work, we arrive at Table 3.

npj Digital Medicine (2022) 171



npj

A. Kline et al.

[ Current Limitations in the ML Data Fusion Pipeline

MODEL TESTING

« Lack of comparison with
single modality

« Lack of comparison with
alternative fusion strategies

MODEL TRAINING

«Training multiple models

« Weighting of data interaction

- Voting issues for multiple models

Merging complementary
and correlated data

MODEL BUILDING
« Complex and time-

consuming multi-modal
models, creating a barrier

to creation
« Unclear which fusion
models are superior

DATA FLOW-THROUGH

- Digitally recorded data/retrospective
« Missing data

TRANSLATIONAL SUPPORT
« Lack of FDA approved tools (0%)
« Ease of use for clinical partnerships

- Single site

« Clinical relevance is unclear

Future Directions

J

: Data N Modeling N Translation N
- Explore undersaturated « No consensus on optimal - Keeping front-end model
health topics such as way to combine data usage in mind to allow
dermatology, hematology « Best algorithm is expected to adoption and ease of use
and medication health topics vary by disease/application « Explore multimodal data
« Expand datasets to include « Algorithms such as XGBoost avenues to combat
mutliple sites and make and LightGBM may be robust generizability and bias issues
dataset larger and high performing avenues associated with geographic,

« Create prospective studies to « Graph NN allow for non- gender, ethnic and racial
harness the full extent of ML Euclidean relationships in data subpopulations
« Explicit methodological « Interpretability of model - Deploy data and algorithms
approaches to handle missing development - opt for white according to the FAIR
data box methods over black box principles
« Library development for methods where performance « Seek FDA approvals for ML
data transformation is equivalent models

) AN )

Fig. 5 Limitations to multimodal fusion in health and proposed future directions of the fields. Limitations to multimodal fusion
implementation are stratified by their location in the workflow. These include issues associated with the underlying data, the modeling that
arises from that data, and finally how these are ported back to health systems to provide translational decision support.

Many issues were raised in the papers included in this review.
The most common reported limitations were cohorts from a single
site, small sample sizes, retrospective data, imbalanced samples,
handling of missing data, feature engineering, controlling for
confounding factors, and interpretation of the models employed.
Samples were most often built from a single hospital or academic
medical center'*®, Small sample sizes often lead to poor model
fitting and generalizability. The median number of unique patients
reported across the studies was 658 with a standard deviation of
42,600. This suggests that while some studies were able to
leverage large and multi-center cohorts, a great many were not
able to do 507082120131,

Seldom were machine learning investigations on prospective
data, an issue endemic in the field®*. Sample imbalances were
often ignored, which results in biased models and misleading
performance metrics’>'®!, Missing data were usually ignored by
dropping data or imputing, if not dealt with appropriately can
skew the results®81°%173 More studies need to discuss frequencies
and types of missing data'’4'7”7. Comparison of different
imputation methods on the final results should be part of the
reporting process'’®. When performing statistical analysis,
researchers usually ignored possible confounding factors such as
age or gender. Doing so may have major effects on the impact of
results'>3. Such possible confounding effects should either be
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taken into consideration by the model'”®'8° or adjusted for first,
prior to reporting model results. Reasonable interpretations of the
model and outputs must be presented so that clinicians find the
results credible and then use them to provide guidance for
treatments. However, most authors did not take the time to
interpret the models for clinical audiences. Additionally, how the
results may function as a clinical decision support tool. Different
types of models warrant different explanations'?'3°. These
limitations are highlighted where they occur in the data
processing and modeling building pipeline in Fig. 5.

To expedite and facilitate this field, we have outlined several
gaps for future research in this field. These are listed in Fig. 5 and
explored. Medication/drug topics present an underrepresented
area, with only two papers being published in this field>%¢,
Awareness of drug interaction effects is a difficult and growing
issue'®~184 particularly in geriatrics, which gave rise to Beer's
criteria'®. Performing multimodal machine learning may offer an
earlier detection of adverse events associated with medication
misuse that is a result of iatrogenic error, non-compliance, or
addiction. Similar justifications as outlined above could be applied
to other areas seen as ‘under saturated’ such as hematology with
only one paper*® and nephrology having just three*87:9°,

Augmenting clinical decision-making with ML to improve
clinical research and outcomes offers positive impacts that have
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economic, ethical, and moral ramifications, as it can reduce
suffering and save human lives. Multiple studies have now
pointed out that if the data an ML model is trained on is biased
this often yields bias in the predictions'®'87, Ensuring multisite,
representative data will limit model biases. We also advocate for
the creation of open access pipelines/libraries to speed up data
conversion to make the technology more widely available'8818°,
Improving accuracy at the expense of complex and time-
consuming data transformations may mean the predictive power
gained from a multimodal approach is offset by this front-end
bottleneck, meaning predictions are no longer temporally relevant
or useful.

While incorporating disparate data does lend itself to seemingly
better predictions’®, as knowledge around certain diseases
accumulates, data fusion in healthcare is an evolving target that
warrants proactively adapting to the dynamic landscape'®°. There
is no single ML model with ubiquitous applicability. For example, it
has been shown in protein-protein interactions that utilization of
the XGBoost ensemble algorithm reduces noisy features, main-
tains the significant raw features, and prevents overfitting'?2,
Similarly, LightGBM'®" has the advantages of faster training speed,
higher efficiency, lower memory usage, better accuracy'®?, and
has been consistently outperforming other models'®>'%4. Graph
neural networks can synthesize new connections leading to drug
discovery/targets'?2,

In the same vein, models that permit interpretability should
always be considered. For example, the Perotte et al.”® model
was not compared with conventional simpler machine learning
classifiers, and collective matrix factorization becomes inher-
ently difficult to interpret’”®. Contrast this with the work of
Fraccaro et al. whose study of macular degeneration noted their
white box performed as well as black box methods
implementions®®,

As this field and the datasets associated mature there is work
needed to address the tenets of data management: Findability,
Accessibility, Interoperability, and Reuse of digital datasets
(FAIR)'®®, This entails having metadata that are unique/de-
identified and searchable, with open or federated access points
(Findability/Accessibility), data that are shared broadly (Interoper-
able), and finally data that contain accurate and relevant attributes
under a clear data usage agreement/license (Reusable). It is
imperative there exist a clear definition of outcomes, assessment
of biases and interpretability/transparency of results, and limita-
tions inherent in its predictions'®.

Of crucial importance for uptake is that predictions be patient-
specific and actionable at a granular level'. For example, a 30-
day readmission prediction algorithm'®®, if implemented, may
inform resource management and prompt additional research
that may decrease the number of patients re-admitted. Linden
et al. developed Deep personalized LOngitudinal convolutional
RIsk model (DeepLORI) capable of creating predictions that can be
interpreted on the level of individual patients'?2. Leveraging both
and clinical and empirically driven information to create mean-
ingful and usable recommendations'*® may improve clinician/
end-user under understanding by relating to existing frameworks.
Resources such as CRISP-ML provide a framework for moving use
cases into more practical applications'®®, while efforts to vie for
Food and drug administration (FDA) approvals as a tool for use are
encouraged to increased adoption.

Deployment of models with user interfaces annotating limita-
tions inherent on those predictions'®® will allow clinical decision
makers to interface and implement change accordingly. Follow-
through on the aforementioned tasks will push individual fields to
create recommendations for subsequent real-world implementa-
tions that are relevant, actionable, and transcend regional/
subpopulation differences. Limitations of this scoping review
include that it is not a systematic review. Therefore, it is possible
that some titles that should have been included were missed. As
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the primary purpose of this study was to perform scientific paper
profiling on multimodal machine learning in health, a critical
appraisal of individual methodological quality of the included
studies was not performed. However, commentary is provided on
the methodological limitations that could have affected their
results and impacted their claims. This review offers comprehen-
sive meta-data and evaluation across health domains, immaterial
to the type of machine learning or the data used. This work serves
as both a summary and steppingstone for future research in this
field. Data fusion in health is a growing field of global interest. The
topic areas of health that have high frequency relative to others
were neurology and cancer, which serve to highlight opportu-
nities for further exploration in understudied topics (hematology,
dermatology). Unimodal machine learning is inherently in contrast
to current routine clinical practice in which imaging, clinical or
genomic data are interpreted in unison to inform accurate
diagnosis and warrants further work for ease of use and
implementation. Overall, it appears justified to claim that multi-
modal data fusion increases predictive performance over unim-
odal approaches (6.4% mean improvement in AUC) and is
warranted where applicable. Multimodal machine learning may
be a tool leveraged in precision medicine to further subgroup
patients’ and their unique health fingerprint. Furthermore, as no
papers in our review sought FDA approval, we advocate for more
efforts into model translation and explore necessities that facilitate
that end.

A dashboard resource published in conjunction with this review
article is available at: https://multimodal-ml-health.herokuapp.com/.
This dashboard was created as an interactive infographic-based
display of the major findings presented in this paper. To foster
future work, a drop-down menu was created to help researchers
filter the underlying data file of titles based on the specific
overarching health topic by selection. This will facilitate the location
of relevant papers.

METHODS

Search strategy and selection criteria

Inclusion requirements were: (a) original research article; (b)
published within the last 10 years (encompassing years
2011-2021); (c) published in English; and (d) on the topic of
multi-modal or multi-view using machine learning in health for
diagnostic or prognostication applications.’Multi-modal’ or'multi-
view’ for our context means the multiple data sources were not of
the same type. For example, while a paper using CT and MRI may
be considered multi-modal imaging; however, under our criteria it
would be considered uni-modal (i.e, only included imaging).
Exclusions for the purposes of this review were: (a) scientific
articles not published in English; (b) commentaries or editorials; or
(c) other review articles. Papers were also excluded if the data
were not human-derived. We also excluded papers where the
fusion already occurred at the data generation stage, such as
spatial transcriptomics producing integrated tissue imaging and
transcriptomics data'®-2°', All papers underwent a 2-person
verification for inclusion in the manuscript.

Search strings were established via literature searches and
domain expertize. Additional keywords were identified based on
key word co-occurrence matrices established from the abstracts of
the previously included articles. Figure 6a displays the search
strings, where an individual string would include one keyword
from each column, this was performed for all combinations of
search strings. An overview of the inclusion/exclusion process is
noted in Fig. 6b and follows the standard set by PRISMA extension
for scoping reviews?%2,
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Keyword,
health | medicine
b
Google Schol

> 0ogle Scholar -
5 !
S
g
=
=2 # of titles returned
& from search strings <«——— IEEEXplore

(n=5973)
o )
= Title and abstract Remove:
E filtering -->» -irrelevant topics
= (n=348) (n=5625)
> i Remove:
= « duplicates
a Eligibility and scope "
= - reviews
2 assessment EEES o .
= ~ - editorials

(n=128)
- out of scope
l (n=220)

c
o
g Final set for analysis:
e} (n=128)
=

Keyword,

heterogeneous | fusion |
multi-modal | multi-view

Keyword,

learning [machine, deep]
| artificial intelligence

RQ1- What characterizes and is novel in the
published literature using multi-modal data
fusion in the health sector?

A multiplicity of different lenses will be used
to showcase these studies.

RQ2- What are the different analysis techniques,
methods, and strategies applied to analyze
multi-modal health data for diagnosis or
prognosis?

« Summary of types of data being merged

« Summary of the analytical techniques applied

« Summary of clinical translation currently
underway

RQ3- What areas of heterogeneous data fusion
have had the most impact?

« Identify current gaps in the literature that will
provide recommendations for future information
concatenation in the health sector

« Allow health care researchers the opportunity to
make informed decisions on how to use multi-
modal data fusion as part of their studies

Fig. 6 Overview of our PRIMSA-SCR process. a Health-related keyword, Multimodal-related keyword, machine learning-related keywords, |:
or. For example, “health + heterogeneous data + machine learning” would be one of the search strings. b Overview of study inclusion

process. ¢ Research questions posed.

Data extracted

Information garnered from the articles included title, year
published, FDA approval of the tool, whether published in a
clinical journal, author affiliations, number of authors, locations
(continents), and abstract. Health topic(s) addressed were
extracted, as well as the broader medical topic(s) that encompass
the disease. For example, lung cancer would be the specific
disease in question. It arises from the topics of Cancer and
Respiratory according to our classification. Health topic classifica-
tion was overseen and reviewed by a medical doctor to ensure
accuracy. As multiple health topics often encompassed a single
health disease addressed in each paper, several papers are
counted twice. This is true when being mapped from the right
side of the Sankey plot to the specific health disease in the middle.

We recorded and extracted the number of different modalities
and the divisions (i.e,, text/image vs EHR/genomic/time series)
used. The objective of each paper was extracted in a 1-2 sentence
summary along with the keyword (if available). Patient character-
ization in the studies was performed by ascertaining the number
of unique patients in the cohort and patient sex (i.e., Men/women/
both or not mentioned).

Computational information extracted included: (a) the coding
interface(s) used in data processing/analysis, (b) machine learning
type, (c) data merging technique (early, intermediate, late), and (d)
types of machine learning algorithms used. Whether validation
was performed (yes/no), the statistical tests run, the nature of the
validation, and outcomes measures were all recorded for each
paper. The significance, impact, and limitations of each paper
were extracted by reviewing the primary findings and limitations
as noted in the papers.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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